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Abstract
Opn5 is a group within the opsin family of proteins that is responsible for visual and non-

visual photoreception in animals. It consists of several subgroups, including Opn5m, the

only subgroup containing members found in most vertebrates, including mammals. In addi-

tion, recent genomic information has revealed that some ray-finned fishes carry paralogous

genes of Opn5m while other fishes have no such genes. Here, we report the molecular

properties of the opsin now called Opn5m2 and its distributions in both the retina and brain.

Like Opn5m, Opn5m2 exhibits UV light-sensitivity when binding to 11-cis-retinal and forms

a stable active state that couples with Gi subtype of G protein. However, Opn5m2 does not

bind all-trans-retinal and exhibits exclusive binding to 11-cis-retinal, whereas many bistable

opsins, including fish Opn5m, can bind directly to all-trans-retinal as well as 11-cis-retinal.
Because medaka fish has lost the Opn5m2 gene from its genome, we compared the tissue

distribution patterns of Opn5m in medaka fish, zebrafish, and spotted gar, in addition to the

distribution patterns of Opn5m2 in zebrafish and spotted gar. Opn5m expression levels

showed a gradient along the dorsal–ventral axis of the retina, and preferential expression

was observed in the ventral retina in the three fishes. The levels of Opn5m2 showed a simi-

lar gradient with preferential expression observed in the dorsal retina. Opn5m expression

was relatively abundant in the inner region of the inner nuclear layer, while Opn5m2 was

expressed in the outer edge of the inner nuclear layer. Additionally, we could detect Opn5m

expression in several brain regions, including the hypothalamus, of these fish species.

Opn5m2 expression could not be detected in zebrafish brain, but was clearly observed in

limited brain regions of spotted gar. These results suggest that ray-finned fishes can gener-

ally utilize UV light information for non-image-forming photoreception in a wide range of

cells in the retina and brain.
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Introduction
Opsins constitute a photoreceptive G protein-coupled receptor family responsible not only for
visual photoreception, such as image-forming and color vision, but also for non-visual (non-
image-forming) photoreception such as photoentrainment of circadian rhythm, photoperiod-
ism, and pupillary light reflex in animals [1]. Most vertebrates have two types of visual cells in
their retinas, rods and cones [2]. It is well known that rod cells express rhodopsin for scotopic
vision and cone cells express cone pigments for photopic and color vision. Recent sequencing
of vertebrate and invertebrate genomes has revealed that animals express diversified opsin
genes in addition to visual pigments [3,4]. These opsins are expressed in retinal interneurons,
including horizontal, bipolar, amacrine, and ganglion cells and multiple brain regions, which
indicates that these opsins are responsible for non-image-forming photoreceptions.

Opsins identified so far are classified into several groups based on amino acid sequence.
Opsin classification correlates well with the diversity of their molecular properties. Among
opsin groups, the Opn5 (neuropsin) group has members originally found by using a bioinfor-
matics approach on mouse and human genomes and forms one independent opsin group [5].
Since then, multiple Opn5-related genes have been found from non-mammalian vertebrates,
and the corresponding proteins were phylogenetically clustered into some distinct subgroups
[6]. Mammals have only one Opn5 gene, Opn5m (mammalian type), and non-mammalian
vertebrates have additional Opn5 genes (Opn5L1 and Opn5L2) [7]. The Opn5m gene can be
found widely in vertebrates from fish to mammals. Previous reports showed that Opn5m func-
tions as a Gi-coupled UV-sensitive pigment and that this property is common to Opn5m from
various vertebrate species [8–10]. In addition, the analysis of its distribution patterns in birds
and mammals revealed that Opn5m is localized to retinal interneurons, including the amacrine
and ganglion cells, and several brain regions including the hypothalamus [8–11]. Therefore, it
is thought that Opn5m can regulate various non-image-forming photoreceptions in these ani-
mals. In fact, avian Opn5m modulates a photoperiodic response in the hypothalamus and
mammalian Opn5m photo-entrains the local circadian clock in the retina [11–14]. In this
study, we characterized an additional Opn5 paralog found exclusively in ray-finned fishes that
is closely related to Opn5m.

Results

Genomic characterization of Opn5m2
A BLAST search using mammalian Opn5m sequences as bait on fish genome databases identi-
fied two opsin genes, which are more closely related to Opn5m than other Opn5 subgroups in
several fish species. One is phylogenetically clustered with tetrapod Opn5m and thus could be
categorized as an Opn5m gene. In contrast, the other was found only in teleostei and holostei
and constituted a sister group of Opn5m in the phylogenetic tree of Opn5 group (Fig 1). There-
fore, we refer to this gene as Opn5m2. The zebrafish Opn5m2 has average amino acid identities
of 46.6 ± 0.7% (n = 6), 35.2 ± 1.3% (n = 10), and 34.9 ± 1.9% (n = 9) to those of Opn5m,
Opn5L1, and Opn5L2 in Fig 1, respectively. The amino acid identities between the sequence of
zebrafish Opn5m2 and those of the spotted gar Opn5m2, squid rhodopsin, bovine rhodopsin,
and mouse peropsin are 68.2%, 34.1%, 23.8%, and 30.9%, respectively. To calculate the amino
acid identities, all positions containing gaps in a multiple sequence alignment were excluded
(see Materials and Methods). We could not find the Opn5m2 gene in tetrapoda, coelacanthi-
morpha (coelacanth) or chondrichtyes (elephant shark) genomes. However, we found
Opn5m2 genes from deposited nucleotide databases of ray-finned fishes (actinopterygii). Fig 2
shows the synteny of Opn5m2 genes from the genome databases of ray-finned fishes [15–18].

Two UV-Sensitive Photoreceptor Proteins Opn5m and Opn5m2 in Ray-Finned Fish

PLOS ONE | DOI:10.1371/journal.pone.0155339 May 11, 2016 2 / 16

jp/index.html; Naito Foundation: https://www.naito-f.or.
jp/jp/index.php; Mochida Memorial Foundation: http://
www.mochida.co.jp/zaidan/; The Shimizu Foundation
for Immunology and Neuroscience: http://www.
shimizu-immun-neurosci.or.jp/outline/index.html;
Takeda Science Foundation: http://www.takeda-sci.or.
jp/).

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: RPE, retinal pigment epithelium;
ONL, outer nuclear layer; INL, inner nuclear layer;
GCL, ganglion cell layer; PO, preoptic area; NT,
tuberal nucleus; HP, hypophysis (pituitary gland);
rHB, right habenula; EN, entopeduncular nucleus;
OT, optic tectum; PTN, pretectum nucleus; PVO,
paraventricular organ; PHN, periventricular nucleus;
OC, optic chiasm; 3v, third ventricle; tris, tris
(hydroxymethyl)aminomethane.

http://www.jsps.go.jp/index.html
https://www.naito-f.or.jp/jp/index.php
https://www.naito-f.or.jp/jp/index.php
http://www.mochida.co.jp/zaidan/
http://www.mochida.co.jp/zaidan/
http://www.shimizu-immun-neurosci.or.jp/outline/index.html
http://www.shimizu-immun-neurosci.or.jp/outline/index.html
http://www.takeda-sci.or.jp/
http://www.takeda-sci.or.jp/


Fig 1. Phylogenetic tree for Opn5 genes. The phylogenetic tree of Opn5 genes was constructed using the
Neighbor-Joining method. The percentage of replicate trees in which the associated taxa clustered together in the
bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the
same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were
computed using the Poisson correction method and are in terms of the number of amino acid substitutions per site.

doi:10.1371/journal.pone.0155339.g001

Two UV-Sensitive Photoreceptor Proteins Opn5m and Opn5m2 in Ray-Finned Fish

PLOS ONE | DOI:10.1371/journal.pone.0155339 May 11, 2016 3 / 16



The Opn5m2 gene is located in the conserved synteny, flanked by glyceraldehyde 3-phosphate
dehydrogenase (gapdh) and intermediate filament family orphan 1b (iffo1b) genes. We could
not find the Opn5m2 gene from medaka fish, platyfish, amazon molly, or tilapia, although the
genomes of these species have a similar arrangement of natriuretic peptide C-like (nppcl),
gapdh, and iffo1 genes. In the phylogenetic relationship of teleosts, the Amazon molly, platy-
fish, and medaka fish are classified into one monophyletic group, the cladus Atherinomorpha,
while the Nile tilapia is also closely related to them. Hence, these data imply an evolutional sce-
nario in which the common ancestor of ray-finned fishes had already acquired the Opn5m2
gene before the whole genome duplication event in Teleostei, and the common ancestor of Nile
tilapia, Amazon molly, platyfish, and medaka fish subsequently lost it (S1A Fig). Alternatively,
if the Opn5m2 gene emerged before branching of the Actinopterygii and the Sarcopterygii, the
gene would have been independently lost in the ancestor of the Sarcopterygii and specific tele-
ost lineages in Actinopterygii (S1B Fig). Further genomic analyses of vertebrate species will
reveal the scenario of when the gene duplication of Opn5m and Opn5m2 occurred in the early
evolutionary process of Osteichthyes. To obtain further insight into the physiological relevance
of the gene duplication of Opn5m and Opn5m2 in the early evolution of ray-finned fishes, we
compared the molecular properties and distribution patterns of these opsins in several fish
species.

Molecular properties of Opn5m2
To examine whether or not Opn5m2 can form a photopigment, we expressed a recombinant
protein of zebrafish Opn5m2 in cultured mammalian cell lines in the presence of 11-cis-retinal.
The UV-visible absorption spectra of recombinant Opn5m2 were recorded after they were sol-
ubilized with dodecyl maltoside and purified by affinity column chromatography. The result-
ing pigment exhibited absorbance in the UV region (Fig 3A). Irradiation with UV light caused
the absorption spectrum to shift to the visible region, and subsequent irradiation with a yellow

Fig 2. Synteny of Opn5m2 gene in ray-finned fish species. Phylogeny and syntenic orthologues in
genomic regions containing the Opn5m2 gene of ray-finned fishes are shown. Phylogenetic relationship of
ray-finned fish species was drawn based on Near, et al [17]. Pentagons represent the genes and the direction
of the complementary strand. Blue, green, red, and orange pentagons correspond to orthologues of iffo1b,
Opn5m2, gapdh, and nppcl, respectively.

doi:10.1371/journal.pone.0155339.g002
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light caused the formation of a spectrum identical in shape with that of the original one. These
results indicate that Opn5m2 has two spectral forms, the UV light-absorbing and visible light-
absorbing forms, which are interconvertible with each other by light. These spectral character-
istics are similar to those of previously reported avian and mammalian Opn5m, strongly sug-
gesting that UV light- and visible light-absorbing forms are 11-cis- and all-trans-retinal
binding forms, respectively. We calculated the absorption spectra of the UV light- and visible
light-absorbing forms. The absorption maximum (λmax) of the UV light-absorbing form (360
nm) is the same as that of zebrafish Opn5m, whereas λmax of the visible light-absorbing form
(462 nm) is ~10 nm blue-shifted compared with that of zebrafish Opn5m (Fig 3C). We subse-
quently expressed the recombinant protein in the presence of all-trans-retinal in cultured cells
to determine if Opn5m2 can bind directly to all-trans-retinal. Irradiation with yellow or UV
light caused no detectable absorption change (Fig 3D). This result showed no formation of a
pigment, indicating that Opn5m2 lost the ability to bind directly to all-trans-retinal. These
observations are in contrast to those previously reported for zebrafish Opn5m, but are appar-
ently similar to those of mammalian Opn5m [10].

Fig 3. UV-visible absorption spectral properties of zebrafish Opn5m2. A, Absorption spectra of zebrafish
Opn5m2 purified after addition of 11-cis-retinal. Spectra were recorded in the dark (curve 1, black) and after
UV light irradiation (curve 2, red), subsequent yellow light (>480 nm) irradiation (curve 3, green), and
following repetition of UV (curve 4, cyan) and yellow light irradiations (curve 5, magenta), respectively. B,
Difference spectra calculated based on the spectra in panel A. Curve 1 (red) is the difference spectrum
calculated by subtracting curve 2 from curve 1 in panel A. Curves 2, 3, and 4 also show the spectral changes
from curve 2 to 3, from curve 3 to 4, and from curve 4 to 5, in panel A, respectively. C, The calculated
absorption spectra of zebrafish Opn5m2 in the dark and after UV light irradiation. The absorption spectrum of
visible light-absorbing pigment (red curve) was calculated by fitting the visible spectral region of curve 3 in
panel B according to the method described in a previous study [8]. The gray curve was acquired by
subtracting the best-fitted curve from curve 3 in panel B, which is fitted by a Gaussian function (black curve).
The spectra were normalized to the peak absorption of the visible-light absorbing pigment. The calculated
absorption maxima were 360 and 462 nm for UV- and visible light-absorbing pigments, respectively. D,
Absorption spectra of zebrafish Opn5m2 purified following addition of all-trans-retinal. Spectra were recorded
in the dark (curve 1, black), after yellow light (>480 nm) irradiation (curve 2, red), and subsequent UV light
irradiation (curve 3, green). Inset, Difference spectra calculated by subtracting curve 2 from curve 1 (curve 1,
red), and curve 3 from curve 2 (curve 2, green) in panel D.

doi:10.1371/journal.pone.0155339.g003
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Comparison of Opn5m and Opn5m2 distribution patterns
Vertebrate UV light-sensitive opsins characterized so far are categorized into three groups:
cone pigment for visual photoreception, parapinopsin and Opn5 for non-visual photorecep-
tion. In ray-finned fishes, UV light-sensitive cone pigment is expressed in the retina while para-
pinopsin is expressed in the pineal gland [19]. We investigated the distribution patterns of UV
light-sensitive Opn5m and Opn5m2 in ray-finned fishes. In non-mammalian vertebrates, it is
well known that retinal interneurons, ganglion cells and some neurons in the brain have the
ability to receive external light signals directly. To determine the precise cellular location of the
expression of Opn5m and Opn5m2 in these fish species, we performed in situ hybridization on
the retina and brain. We previously reported that chicken and mammal Opn5m are distributed
in a subset of retinal amacrine and ganglion cells and in several brain regions, including the
pineal gland and hypothalamus. We went on to investigate the expression patterns of Opn5m
and Opn5m2 in the retinas and brains of three different fish species: zebrafish, medaka fish,
and spotted gar. Zebrafish and medaka fish belong to the Teleostei, but medaka fish lacks the
Opn5m2 gene. Spotted gar belongs to the Holostei and has both Opn5m and Opn5m2 genes.
Because the Holostei group branched from the Teleostei lineage in the phylogeny of ray-finned
fishes before the whole-genome duplication event, it is interesting to analyze the distribution of
Opn5-related expressions for understanding the evolution of the UV light-sensing system in
ray-finned fishes. Through the analysis of the hybridization signal of Opn5m and Opn5m2 in
the retinas of these fishes, we found that the signal intensities were significantly altered in the
dorsal-ventral orientation in the retina. First, we analyzed the pattern of Opn5mmRNA
expression in the medaka fish retina. Hybridization signals for Opn5m were relatively denser
in the ventral region rather than in the dorsal region (Fig 4A and 4B). In the ventral retina, the
transcript of Opn5m was expressed densely in the population throughout the inner nuclear
layer (INL), except for horizontal cells, and in a small number of ganglion cells (Fig 4C, S2A
and S2B Fig). In the dorsal retina, hybridization signals were observed in fewer subsets of cells
in the INL (Fig 4D, S2C Fig). Next, we compared the expression patterns of zebrafish Opn5m
and Opn5m2 in the retina. Opn5m hybridization signals were detected only in the ventral side
of the retina (Fig 4E and 4F). We observed strong signals in a sparse population of ganglion
cells and weak ones in the INL (Fig 4G, 4H and S2D Fig). Strong Opn5m2 hybridization signals
were detected in the horizontal cells of both the dorsal and ventral regions (Fig 4I and 4J),
while signals in the dorsal retina were denser than those in the ventral retina (S2E and S1F
Figs). Additionally, we also observed signals in bipolar or Müller cells of the ventral retina (Fig
4K, 4L and S2E Fig). Moreover, we successfully detected Opn5m and Opn5m2 mRNA in the
spotted gar retina. Hybridization signals were sparse for spotted gar Opn5m in the dorsal retina
(Fig 4O and 4P) and abundant in the ventral retina (Fig 4M, 4N and S2G Fig). Specific expres-
sion signals were detected in a variety of cells in the INL, which is similar to those of medaka
fish Opn5m. In contrast, Opn5m2 expression was relatively strong in the dorsal retina, espe-
cially in the outer edge of the INL (Fig 4Q–4T, S2H Fig), which is similar to the zebrafish
Opn5m2 expression pattern. However, spotted gar Opn5m2 was expressed in a smaller popula-
tion of horizontal cells, or cell types of the INL than those in zebrafish retina. In summary, the
expression of Opn5m was more prominent in the ventral retina than in the dorsal retina of
these fishes. Additionally, Opn5m was distributed predominantly on the inner side of the INL
and in the ganglion cell layer, which is generally consistent with the expression pattern of
Opn5m in avian and mammalian retinas. Furthermore, Opn5m2-positive cells were more
abundant in the dorsal retina of zebrafish and spotted gar, which is in contrast to the expres-
sion pattern of Opn5m. Expression was detected predominantly in the outer side of the INL,
which is also in contrast to that of Opn5m.
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Fig 4. In situ hybridization analysis of Opn5m and Opn5m2mRNA in the retina of medaka fish, zebrafish, and spotted gar. A-D,
Detection of medaka fish Opn5m in the retina. Frontal consecutive sections were hybridized with Opn5m antisense (A) and sense (B)
probes. Enlarged views of the boxed areas, ventral and dorsal sides, in (A) are shown in (C) and (D), respectively. E-H, Detection of
zebrafish Opn5m in the retina. Frontal consecutive sections were hybridized with Opn5m antisense (E) and sense (F) probes. Enlarged
views of the boxed areas, ventral and dorsal sides, in (E) are shown in (G) and (H), respectively. I-L, Detection of zebrafish Opn5m2
within the retina. Frontal consecutive sections were hybridized with Opn5m antisense (I) and sense (J) probes. Enlarged views of the
boxed areas, ventral and dorsal sides, in (I) are shown in (K) and (L), respectively. M-P, Detection of spotted gar Opn5m within the
retina. Ventral regions were hybridized with Opn5m antisense (M) and sense (N) probes. Dorsal regions were hybridized with Opn5m
antisense (O) and sense (P) probes. Q-T, Detection of spotted gar Opn5m2. Ventral regions were hybridized with Opn5m antisense (Q)
and sense (R) probes. Dorsal regions were hybridized with Opn5m antisense (S) and sense (T) probes. All the sections shown in this
figure were counterstained with Nuclear Fast Red. Scale bar: A, B, E, F, I, J, 200 μm; C, D, G, H, K, L, M-T 50 μm

doi:10.1371/journal.pone.0155339.g004
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Next, we examined the expression patterns of Opn5m and Opn5m2 in the brain of the three
fishes. In the medaka fish brain, we detected the expression of Opn5m in several brain regions,
including the preoptic area, tuberal nucleus, pituitary, and right habenula (Fig 5, S3A–S3D
Fig). In the zebrafish brain, hybridization signals of Opn5m were detected in the endopeduncu-
lar nucleus, optic tectum, pretectal nucleus, paraventricular organ, and periventricular nucleus
(Fig 6, S3E–S3I Fig). However, we could not detect significant mRNA expression for zebrafish
Opn5m2 in the brain. In the spotted gar brain, the hybridization signals of Opn5m and
Opn5m2 were detected in quite small numbers of cells in the brain. There is limited informa-
tion about the brain atlas of spotted gar. Thus, based on the correspondence with the zebrafish
brain atlas, Opn5m is expressed dorsally in the preoptic area along the optic chiasm, and
Opn5m2 is weakly expressed in the tuberal nucleus along the third ventricle (Fig 7, S3J and
S3K Fig). No hybridization signals could be detected in the other brain regions (Figs 5, 6 or 7).
These results show that the expression patterns of orthologous Opn5 genes are highly diversi-
fied within ray-finned fishes.

Discussion
In the present study, we investigated the molecular properties and the expression patterns of
an additional Opn5 paralog, Opn5m2, found exclusively in ray-finned fishes and closely related
to Opn5m. Opn5m2 can form a UV light-sensitive pigment by the incorporation of 11-cis-reti-
nal, which is shared with the spectral sensitivity of fish Opn5m. However, Opn5m2 does not
form a photo-pigment by direct binding to all-trans-retinal, which is in contrast with the bind-
ing preference of retinal isomers in fish Opn5m. Direct binding of all-trans-retinal to opsin can
form a G protein activation state without light, increasing noise component of light-dependent
signaling. Mammalian Opn5m has lost the ability to bind to all-trans-retinal due to a single ala-
nine-to-threonine mutation at position 168 (in the bovine rhodopsin numbering system) dur-
ing the course of molecular evolution [10]. However, Opn5m2 contains an alanine residue at
position 168 just like in non-mammalian Opn5m. This indicates that amino acid residue(s) at
other position(s) control the binding specificity of Opn5m2 to retinal isomers, and that inde-
pendent evolutionary events have enabled mammalian Opn5m and fish Opn5m2 to work as a
UV light sensor without noise of direct all-trans-retinal binding.

Our analysis of the distribution patterns of Opn5m and Opn5m2 showed that these opsins
are localized in retinal interneurons and ganglion cells with a dorsal-ventral gradient of expres-
sion levels. It was reported that two cone pigments, UV- and green-sensitive ones, were
expressed in a dorsal-ventral gradient in mouse retina [20,21]. Similar expression patterns
were also reported in four green-sensitive cone pigments in zebrafish retina [22–24]. However,
there are no reports on the dorsal-ventral alteration of the expression level of non-image-form-
ing opsins in the retina. Therefore, we are the first to demonstrate that non-image-forming
opsins are expressed in a dorsal-ventral gradient in the retina. Ventral and dorsal retinas would
mainly receive downwelling and upwelling light, respectively. Many fish species have UV
light–sensitive cone pigments, suggesting that UV light is an important transmitted signal in
aquatic environments. Generally, downwelling light originates from the sun, whereas upwelling
light is due to light that is reflected or scattered underwater. Thus, we can speculate that
Opn5m2 in dorsal retina, which has a high signal-to-noise ratio for light signaling, is appropri-
ate for detecting weak reflected or scattered light. Retinal interneurons and ganglion cells of the
Teleostei express several opsins, such as melanopsin, VA opsin, and TMT opsin, and exhibit an
intrinsic light response [25–31]. These non-image-forming opsins are all sensitive to visible
light, whereas Opn5m and Opn5m2 are uniquely sensitive to UV light [29,32–36]. UV light
reception by Opn5m and Opn5m2 would therefore modify the visual photoreception system
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in a cooperative manner as secondary inputs, and also contribute directly to non-visual func-
tions in retinal interneurons and ganglion cells with visible light inputs by other non-image-
forming opsins.

The analysis of expression patterns in the brain showed that Opn5m-positive cells are local-
ized not only in the hypothalamus but also in other brain regions of ray-finned fishes, some of
which are responsible for reproductive activities in vertebrates. In the medaka fish and spotted
gar brains, Opn5m was distributed in the preoptic area, which is consistent with the expression
pattern of Opn5m in the mammalian brain [10]. The expression patterns of several genes in the
preoptic area of both mammals and fishes indicate sexual dimorphism [37,38]. This suggests
that Opn5m plays a conserved role in vertebrate brains, probably in the regulation of sexual
behavior or reproductive activity. Opn5m was also expressed abundantly in the medaka fish
pituitary gland. Thus, medaka fish Opn5mmay directly regulate the production and secretion of
pituitary hormones such as gonadotropin [39]. Moreover, Opn5m was localized to the tuberal
nucleus of medaka fish and in the periventricular nucleus of zebrafish. Previous reports showed
that kisspeptin is expressed in the tuberal nucleus and periventricular nucleus of medaka fish
and zebrafish [40–42]. Kisspeptin plays a crucial role in regulating the activity of the GnRH neu-
ron in mammals [43], whereas knockouts of kisspeptin1 or 2 do not impair reproductive activity
in zebrafish [44]. Recent reports showed that kisspeptin2 cells in the periventricular nucleus of
zebrafish have fibers that form a wide network projecting to several brain regions [45]. Thus,
Opn5mmay be related to the unknown physiological function of kisspeptin in medaka fish and

Fig 5. Distribution of Opn5mmRNAwithin medaka fish brain. A, Schematic drawing of medaka fish
brain, dorsal view. Numbered lines indicate the positions of cross sections shown in B-J. B-J, Localization of
medaka fish Opn5m in the brain. Expression signals were detected within frontal sections cut along lines 1
(B), 2 (E) and 3 (H). Sections were hybridized with Opn5m antisense (B, C, E, F, H, I) and sense (D, G, J)
probes. Enlarged views of regions around preoptic area in panel B, pituitary in panel E, and habenula in panel
H are shown in panels C, F, and I, respectively. Panels D, G, and J show the consecutive tissue sections to
C, F, and I hybridized with Opn5m sense probe, respectively. All sections shown in this figure were
counterstained with Nuclear Fast Red. Scale bar: B, E, H, 200 μm; F, G, I, J, 100 μm; C, D, 50 μm.

doi:10.1371/journal.pone.0155339.g005
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Fig 6. Distribution of Opn5mmRNAwithin zebrafish brain. A, Schematic drawing of zebrafish brain, dorsal view. Numbered lines
indicate the positions of cross sections shown in B-M. B-M, Localization of zebrafish Opn5mwithin the brain. Expression signals were
detected within frontal sections cut along lines 1 (B), and 2 (E). Sections were hybridized with Opn5m antisense (B, C, E, F, H, J, L) and
sense (D, G, I, K, M) probes. Enlarged views of regions around entopeduncular nucleus in panel B, optic tectum, pretectal nucleus,
paraventricular organ, and periventricular nucleus in panel E are shown in panels C, F, H, J, and K, respectively. Panels D, G, I, K, and M
show consecutive tissue sections to C, F, and I hybridized with Opn5m sense probe, respectively. We could not detect any hybridization
signals for Opn5m2 in the zebrafish brain. All sections shown in this figure were counterstained with Nuclear Fast Red. Scale bar: B, E,
200 μm; C, D, F-M, 50 μm.

doi:10.1371/journal.pone.0155339.g006

Fig 7. Distribution of Opn5m and Opn5m2mRNAwithin spotted gar brain. A, Schematic drawing of
spotted gar brain, dorsal view. Numbered lines indicate the positions of cross sections shown in B-G. B-D,
Localization of spotted gar Opn5mwithin the brain. Expression signals were detected within the frontal
section cut along line 1. Sections were hybridized with Opn5m antisense (B, C) and sense (D) probes.
Enlarged view of the region around the optic chiasm in B is shown in panel C. Panel D shows the consecutive
tissue section to C hybridized with Opn5m sense probe. The broken line indicates the border between optic
chiasm and brain parenchyma. E-G, Localization of spotted gar Opn5m2 in the brain. Expression signals
were detected in the frontal section cut along line 2. Sections were hybridized with Opn5m2 antisense (E, F)
and sense (G) probes. Enlarged view of the region around third ventricle in panel E is shown in F. Panel G
shows the consecutive tissue section to F hybridized with Opn5m sense probe. All sections shown in this
figure were counterstained with Nuclear Fast Red. Scale bar: B, E, 200 μm; C, D, F, G, 50 μm.

doi:10.1371/journal.pone.0155339.g007
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zebrafish. As seen in retinal interneurons, it has been reported that melanopsin, VA opsin and
TMT opsin are also expressed in multiple teleost brain regions, such as the optic tectum and
hindbrain [29,46,47]. By using a variety of non-image-forming opsins, the teleost brain would be
capable of sensing a wide range of wavelengths from UV to visible light for the modulation of
long-term activities, such as neuroendocrine activities, and short-term activities, such as sensory
inputs. In contrast to Opn5m, the expression level of Opn5m2 in the brain was quite low. We
could not identify Opn5m2-positive cells in the zebrafish brain and could detect them only in a
cluster of tuberal nuclei of the spotted gar. The molecular properties of Opn5m2 showed that the
function of Opn5m2 requires the molecular system to supply the 11-cis-retinal, which may lead
to quite a small number of Opn5m2-positive cells in the brain due to a shortage of 11-cis-retinal.

In conclusion, we showed that Opn5m and Opn5m2 diverged by gene duplication early in
the evolution of ray-finned fishes, exhibit common UV light-sensitivity, and exhibit different
affinities to retinal isomers. In addition, the distribution patterns of Opn5m and Opn5m2 in
three ray-finned fishes revealed that these opsins are localized in multiple retinal interneurons
and ganglion cells with a dorsal-ventral gradient of expression levels, and also in several brain
regions, including the hypothalamus. Therefore, in contrast to only a small number of UV
light-sensing visual cells for visual photoreception, a wide range of cells in the retina and brain
have the potential to respond to UV light. This finding suggests the importance of UV light
information for various non-visual photoreceptions in ray-finned fishes.

Materials and Methods

Animals and ethics statement
Adult zebrafish (Danio rerio: ~3 cm) and juvenile spotted gars (Lepisosteus oculatus: ~7 cm)
were purchased from Shimizu Laboratory Supplies Co., Ltd., Kyoto, Japan, and Nippon Aquar-
ium Co., Ltd., Tokyo, Japan, respectively. They were euthanized and dissected immediately
after they were brought into our laboratory. The medaka fish (Oryzias latipes) strain d-rR was
maintained and bred at Kyoto University. They were kept under a light/dark cycle of 14/10 h at
25°C. Adult medaka fishes (~3 cm) were chosen for the experiment. Fishes were euthanized by
immobilization using MS222 and immediately decapitated thereafter. The use of animals in
these experiments was in accordance with guidelines established by the Ministry of Education,
Culture, Sports, Science and Technology of Japan. The protocols in this paper were approved
by the Animal Care and Use Committee of Kyoto University (permit number: 26–71).

Search for Opn5-related genes and isolation of their cDNAs
The clones of ray-finned fish Opn5m and Opn5m2 were subject to BLAST searches against
Ensemble or NCBI databases by using mammalian Opn5m sequences. Although tetraodon
Opn5m2 was not annotated in these databases, exons of orthologous genes were found between
the gapdh and iffo1b genes in tetraodon genome through blast search using zebrafish Opn5m2
as bait. Accordingly, cDNA sequence of tetraodon Opn5m2 was manually organized from pre-
dicted exons. To express recombinant proteins and conduct in situ hybridization, cDNAs of
Opn5m and Opn5m2 (NCBI accession number; XM_004083639, AY493740, XM_005157939,
XM_006626015, XM_015337843) were cloned from total RNA of eyes and brain of medaka
fish, zebrafish, and spotted gar.

Phylogenetic analysis and synteny mapping
Multiple amino acid sequences were aligned using MAFFT [48]. The phylogenetic tree was
inferred by using MEGA6 software [49]. The analysis involved 30 amino acid sequences. All
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positions containing gaps and missing data were excluded. There were a total of 252 positions
in the final dataset. A synteny map was constructed using Genomicus [15,16] except for dam-
selfish whose map was manually organized based on the data in NCBI database
(NW_007578555).

Preparation of recombinant proteins
Detailed procedures to prepare recombinant Opn5 proteins were previously reported [10]. In
short, the cDNA encoding zebrafish Opn5m2 tagged with the epitope sequence of the anti-
bovine rhodopsin monoclonal antibody Rho1D4 (ETSQVAPA) at the C terminus was intro-
duced into the mammalian expression vector, pCAGGS. The plasmid DNA was transfected
into the HEK293S cell line using the calcium phosphate method. After a day of incubation, 11-
cis-retinal or all-trans-retinal was added to the medium (final retinal concentration, 5μM).
After additional incubation for 1 day in the dark, opsin-expressing cells were collected. The
pigments were extracted with a buffer containing dodecyl maltoside and purified using
Rho1D4-conjugated agarose.

Spectrophotometry
Absorption spectra were recorded using a Shimadzu UV2450 spectrophotometer and an opti-
cal cell (width, 2 mm; light path, 1 cm) according to the previous study [10]. An optical cell-
holder was connected to a Neslab RTE-7 temperature controller, which kept the sample tem-
perature at 0 ± 0.1°C. The sample was irradiated with light from a 1 kW tungsten halogen lamp
(Rigaku Seiki) that had been passed through a glass cutoff filter (Y50 and UV-D36).

Tissue sample preparation
After eyes and brains were dissected from juvenile spotted gars (~7 cm), adult zebrafish (~3
cm) and adult medaka fish (~3 cm), they were fixed overnight in PBS-buffered 4% (zebrafish
and medaka fish) or 8% (spotted gar) PFA. Tissues were subsequently immersed in 20%
sucrose in PBS overnight for cryoprotection and were frozen in a deep freezer in OCT com-
pound (tissue tech). Frozen tissues were sliced into 16 μm sections and were attached to glass
slides (MAS-GP typeA coated glass slide, Matsunami Glass Co.,Ltd.). Slides were stored in a
dry chamber at -20°C.

In situ hybridization
In situ hybridization on tissue sections was performed according to the previously described
protocol [10] with a slight modification. Digoxigenin-labeled RNA probes were synthesized
from Opn5 open reading frame cDNAs inserted into either pBluescript KS(+) or pTA2 vector
(TOYOBO Co., LTD.) using either T7 or T3 RNA polymerase. Tissue sections on slide glasses
were successively immersed in PBS-buffered 4% PFA for 15 min, methanol for 30 min, PBS for
5 min, Tris buffer (50mM Tris-HCl, 10 mMNaCl, pH 7.2) containing 0.2 ug/ml proteinase K
for 15 min, PBS for 5 min, PBS-buffered 4% PFA for 15 min, DEPC-treated water for 2 min,
acetylation buffer (0.27%(v/v) acetic anhydride, 0.1 M triethanolamine, pH 8.0) for>10 min,
and PBS for 5 min. Then, slides were transferred into hybridization buffer (0.75 M NaCl, 75
mM sodium citrate, 0.2 mg/mL yeast tRNA, 0.1 mg/mL heparin sodium, 1x Denhardt’s solu-
tion, 0.1% (v/v) Tween, 0.1% (w/v) CHAPS, 5mM EDTA, 50% (v/v) formamide) and incubated
for 3 hours at 65°C. After that, sections on slide glasses were incubated with digoxigenin-
labeled RNA sense or antisense probe diluted with hybridization buffer in a moist chamber
box for about 40 hours at 65°C. After hybridization, they were successively immersed in SSC

Two UV-Sensitive Photoreceptor Proteins Opn5m and Opn5m2 in Ray-Finned Fish

PLOS ONE | DOI:10.1371/journal.pone.0155339 May 11, 2016 12 / 16



buffer (0.15M NaCl, 15 mM sodium citrate, pH 7.0) containing 50% formamide for 15 min
and for 1 hours at 65°C, one-fifth diluted SSC buffer for 1 hour at 65°C, and MABT (100 mM
maleate, NaCl, 0.1% Tween 20, pH 7.5) for three times 30 min at R.T. After washing, the sec-
tions were incubated with blocking buffer (1% BSA, 10% sheep normal serum and 1% Triton-
X100 in PBS) for 30 min. After that, they were incubated with anti-digoxigenin Fab fragment
conjugated with alkaline phosphatase in a moist chamber box overnight at 4°C. The slides were
subsequently washed three times with MABT for 30 min, and twice with alkaline phosphatase
reaction buffer (100 mM Tris-HCl, 50 mMMgCl2, 100 mM NaCl, 0.1% Tween 20, pH 9.5).
Finally, they were immersed in alkaline phosphatase reaction buffer containing NBT and BCIP
for color development.

Supporting Information
S1 Fig. Possible evolutionary scenarios for the acquisition and loss of Opn5m2 gene.
(TIF)

S2 Fig. High-power field microscopic images of in situ hybridization in fish retinas (600x
magnification). (A) Medaka fish Opn5m in the INL of the ventral retina. (B) Medaka fish
Opn5m in the GCL of the ventral retina. (C) Medaka fish Opn5m in the dorsal retina. (D) Zeb-
rafish Opn5m in the ventral retina. (E) Zebrafish Opn5m2 in the ventral retina. (F) Zebrafish
Opn5m2 in the dorsal retina. (G) Spotted gar Opn5m in the ventral retina. (H) Spotted gar
Opn5m2 in the dorsal retina. Scale bar: 10 μm.
(TIF)

S3 Fig. High-power field microscopic images of in situ hybridization in fish brains (600x
magnification). (A) Medaka fish Opn5m in preoptic area. (B) Medaka fish Opn5m in tuberal
nucleus. (C) Medaka fish Opn5m in pituitary gland. (D) Medaka fish Opn5m in right habe-
nula. (E) Zebrafish Opn5m in entopeduncular nucleus. (F) Zebrafish Opn5m in optic tectum.
(G) Zebrafish Opn5m in pretectal nucleus. (H) Zebrafish Opn5m in paraventricular organ. (I)
Zebrafish Opn5m in periventricular nucleus. (J) Spotted gar Opn5m in preoptic area. (K) Spot-
ted gar Opn5m2 in tuberal nucleus. Scale bar: 10 μm.
(TIF)

Acknowledgments
We thank Prof. R. S. Molday for the generous gift of a Rho1D4-producing hybridoma, and
Prof. H. Niwa for pCAGGS vector.

Author Contributions
Conceived and designed the experiments: KS TY YH HOMK YS. Performed the experiments:
KS TY YH. Analyzed the data: KS TY YH HOMK YS. Contributed reagents/materials/analysis
tools: KS TY YH HOMK. Wrote the paper: KS TY YH HOMK YS.

References
1. Terakita A. The opsins. Genome Biol. 2005; 6: 213–213. doi: 10.1186/gb-2005-6-3-213 PMID:

15774036

2. Shichida Y, Matsuyama T. Evolution of opsins and phototransduction. Philos Trans R Soc Lond B Biol
Sci. 2009; 364: 2881–2895. doi: 10.1098/rstb.2009.0051 PMID: 19720651

3. Koyanagi M, Terakita A. Diversity of animal opsin-based pigments and their optogenetic potential. Bio-
chim Biophys Acta BBA—Bioenerg. 2014; 1837: 710–716. doi: 10.1016/j.bbabio.2013.09.003

Two UV-Sensitive Photoreceptor Proteins Opn5m and Opn5m2 in Ray-Finned Fish

PLOS ONE | DOI:10.1371/journal.pone.0155339 May 11, 2016 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155339.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155339.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155339.s003
http://dx.doi.org/10.1186/gb-2005-6-3-213
http://www.ncbi.nlm.nih.gov/pubmed/15774036
http://dx.doi.org/10.1098/rstb.2009.0051
http://www.ncbi.nlm.nih.gov/pubmed/19720651
http://dx.doi.org/10.1016/j.bbabio.2013.09.003


4. DaviesWIL, Tamai TK, Zheng L, Fu JK, Rihel J, Foster RG, et al. An extended family of novel verte-
brate photopigments is widely expressed and displays a diversity of function. Genome Res. 2015; 25:
1666–1679. doi: 10.1101/gr.189886.115 PMID: 26450929

5. Tarttelin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ. Neuropsin (Opn5): a novel opsin identi-
fied in mammalian neural tissue. FEBS Lett. 2003; 554: 410–416. doi: 10.1016/S0014-5793(03)01212-
2 PMID: 14623103

6. Tomonari S, Migita K, Takagi A, Noji S, Ohuchi H. Expression patterns of the opsin 5–related genes in
the developing chicken retina. Dev Dyn. 2008; 237: 1910–1922. doi: 10.1002/dvdy.21611 PMID:
18570255

7. Ohuchi H, Yamashita T, Tomonari S, Fujita-Yanagibayashi S, Sakai K, Noji S, et al. A Non-Mammalian
Type Opsin 5 Functions Dually in the Photoreceptive and Non-Photoreceptive Organs of Birds. PLoS
ONE. 2012; 7: e31534. doi: 10.1371/journal.pone.0031534 PMID: 22348098

8. Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y. Opn5 is a UV-sensitive bistable pig-
ment that couples with Gi subtype of G protein. Proc Natl Acad Sci U S A. 2010; 107: 22084–22089.
doi: 10.1073/pnas.1012498107 PMID: 21135214

9. Kojima D, Mori S, Torii M, Wada A, Morishita R, Fukada Y. UV-sensitive photoreceptor protein OPN5 in
humans and mice. PloS One. 2011; 6: e26388. doi: 10.1371/journal.pone.0026388 PMID: 22043319

10. Yamashita T, Ono K, Ohuchi H, Yumoto A, Gotoh H, Tomonari S, et al. Evolution of Mammalian Opn5
as a Specialized UV-absorbing Pigment by a Single Amino Acid Mutation. J Biol Chem. 2014; 289:
3991–4000. doi: 10.1074/jbc.M113.514075 PMID: 24403072

11. Nakane Y, Ikegami K, Ono H, Yamamoto N, Yoshida S, Hirunagi K, et al. A mammalian neural tissue
opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci U S A. 2010; 107: 15264–
15268. doi: 10.1073/pnas.1006393107 PMID: 20679218

12. Nakane Y, Shimmura T, Abe H, Yoshimura T. Intrinsic photosensitivity of a deep brain photoreceptor.
Curr Biol. 2014; 24: R596–R597. doi: 10.1016/j.cub.2014.05.038 PMID: 25004360

13. Buhr ED, Gelder RNV. Local photic entrainment of the retinal circadian oscillator in the absence of
rods, cones, and melanopsin. Proc Natl Acad Sci. 2014; 111: 8625–8630. doi: 10.1073/pnas.
1323350111 PMID: 24843129

14. Buhr ED, YueWWS, Ren X, Jiang Z, Liao H-WR, Mei X, et al. Neuropsin (OPN5)-mediated photoen-
trainment of local circadian oscillators in mammalian retina and cornea. Proc Natl Acad Sci. 2015; 112:
13093–13098. doi: 10.1073/pnas.1516259112 PMID: 26392540

15. Louis A, Muffato M, Crollius HR. Genomicus: five genome browsers for comparative genomics in eukar-
yota. Nucleic Acids Res. 2013; 41: D700–D705. doi: 10.1093/nar/gks1156 PMID: 23193262

16. Louis A, Nguyen NTT, Muffato M, Roest Crollius H. Genomicus update 2015: KaryoView and Matrix-
View provide a genome-wide perspective to multispecies comparative genomics. Nucleic Acids Res.
2015; 43: D682–D689. doi: 10.1093/nar/gku1112 PMID: 25378326

17. Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, et al. Resolution of ray-finned fish phy-
logeny and timing of diversification. Proc Natl Acad Sci. 2012; 109: 13698–13703. doi: 10.1073/pnas.
1206625109 PMID: 22869754

18. Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, et al. The genome of the platyfish,
Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat
Genet. 2013; 45: 567–572. doi: 10.1038/ng.2604 PMID: 23542700

19. Koyanagi M, Wada S, Kawano-Yamashita E, Hara Y, Kuraku S, Kosaka S, et al. Diversification of non-
visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions. BMC Biol. 2015;
13: 73. doi: 10.1186/s12915-015-0174-9 PMID: 26370232

20. Applebury ML, Antoch MP, Baxter LC, Chun LLY, Falk JD, Farhangfar F, et al. The Murine Cone Photo-
receptor: A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning. Neuron.
2000; 27: 513–523. doi: 10.1016/S0896-6273(00)00062-3 PMID: 11055434

21. Roberts MR, Srinivas M, Forrest D, Morreale de Escobar G, Reh TA. Making the gradient: Thyroid hor-
mone regulates cone opsin expression in the developing mouse retina. Proc Natl Acad Sci U S A.
2006; 103: 6218–6223. doi: 10.1073/pnas.0509981103 PMID: 16606843

22. Takechi M, Hamaoka T, Kawamura S. Fluorescence visualization of ultraviolet-sensitive cone photore-
ceptor development in living zebrafish. FEBS Lett. 2003; 553: 90–94. doi: 10.1016/S0014-5793(03)
00977-3 PMID: 14550552

23. Takechi M, Kawamura S. Temporal and spatial changes in the expression pattern of multiple red and
green subtype opsin genes during zebrafish development. J Exp Biol. 2005; 208: 1337–1345. doi: 10.
1242/jeb.01532 PMID: 15781894

Two UV-Sensitive Photoreceptor Proteins Opn5m and Opn5m2 in Ray-Finned Fish

PLOS ONE | DOI:10.1371/journal.pone.0155339 May 11, 2016 14 / 16

http://dx.doi.org/10.1101/gr.189886.115
http://www.ncbi.nlm.nih.gov/pubmed/26450929
http://dx.doi.org/10.1016/S0014-5793(03)01212-2
http://dx.doi.org/10.1016/S0014-5793(03)01212-2
http://www.ncbi.nlm.nih.gov/pubmed/14623103
http://dx.doi.org/10.1002/dvdy.21611
http://www.ncbi.nlm.nih.gov/pubmed/18570255
http://dx.doi.org/10.1371/journal.pone.0031534
http://www.ncbi.nlm.nih.gov/pubmed/22348098
http://dx.doi.org/10.1073/pnas.1012498107
http://www.ncbi.nlm.nih.gov/pubmed/21135214
http://dx.doi.org/10.1371/journal.pone.0026388
http://www.ncbi.nlm.nih.gov/pubmed/22043319
http://dx.doi.org/10.1074/jbc.M113.514075
http://www.ncbi.nlm.nih.gov/pubmed/24403072
http://dx.doi.org/10.1073/pnas.1006393107
http://www.ncbi.nlm.nih.gov/pubmed/20679218
http://dx.doi.org/10.1016/j.cub.2014.05.038
http://www.ncbi.nlm.nih.gov/pubmed/25004360
http://dx.doi.org/10.1073/pnas.1323350111
http://dx.doi.org/10.1073/pnas.1323350111
http://www.ncbi.nlm.nih.gov/pubmed/24843129
http://dx.doi.org/10.1073/pnas.1516259112
http://www.ncbi.nlm.nih.gov/pubmed/26392540
http://dx.doi.org/10.1093/nar/gks1156
http://www.ncbi.nlm.nih.gov/pubmed/23193262
http://dx.doi.org/10.1093/nar/gku1112
http://www.ncbi.nlm.nih.gov/pubmed/25378326
http://dx.doi.org/10.1073/pnas.1206625109
http://dx.doi.org/10.1073/pnas.1206625109
http://www.ncbi.nlm.nih.gov/pubmed/22869754
http://dx.doi.org/10.1038/ng.2604
http://www.ncbi.nlm.nih.gov/pubmed/23542700
http://dx.doi.org/10.1186/s12915-015-0174-9
http://www.ncbi.nlm.nih.gov/pubmed/26370232
http://dx.doi.org/10.1016/S0896-6273(00)00062-3
http://www.ncbi.nlm.nih.gov/pubmed/11055434
http://dx.doi.org/10.1073/pnas.0509981103
http://www.ncbi.nlm.nih.gov/pubmed/16606843
http://dx.doi.org/10.1016/S0014-5793(03)00977-3
http://dx.doi.org/10.1016/S0014-5793(03)00977-3
http://www.ncbi.nlm.nih.gov/pubmed/14550552
http://dx.doi.org/10.1242/jeb.01532
http://dx.doi.org/10.1242/jeb.01532
http://www.ncbi.nlm.nih.gov/pubmed/15781894


24. Tsujimura T, Chinen A, Kawamura S. Identification of a locus control region for quadruplicated green-
sensitive opsin genes in zebrafish. Proc Natl Acad Sci. 2007; 104: 12813–12818. doi: 10.1073/pnas.
0704061104 PMID: 17646658

25. Philp AR, Garcia-Fernandez JM, Soni BG, Lucas RJ, Bellingham J, Foster RG. Vertebrate ancient (VA)
opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar). J Exp Biol. 2000; 203:
1925–1936. PMID: 10821749

26. Bellingham J, Whitmore D, Philp AR, Wells DJ, Foster RG. Zebrafish melanopsin: isolation, tissue loca-
lisation and phylogenetic position. Mol Brain Res. 2002; 107: 128–136. doi: 10.1016/S0169-328X(02)
00454-0 PMID: 12487121

27. Moutsaki P, Whitmore D, Bellingham J, Sakamoto K, David-Gray ZK, Foster RG. Teleost multiple tis-
sue (tmt) opsin: a candidate photopigment regulating the peripheral clocks of zebrafish? Mol Brain Res.
2003; 112: 135–145. doi: 10.1016/S0169-328X(03)00059-7 PMID: 12670711

28. DaviesWIL, Zheng L, Hughes S, Tamai TK, Turton M, Halford S, et al. Functional diversity of melanop-
sins and their global expression in the teleost retina. Cell Mol Life Sci. 2011; 68: 4115–4132. doi: 10.
1007/s00018-011-0785-4 PMID: 21833582

29. Kojima D, Mano H, Fukada Y. Vertebrate ancient-long opsin: a green-sensitive photoreceptive mole-
cule present in zebrafish deep brain and retinal horizontal cells. J Neurosci Off J Soc Neurosci. 2000;
20: 2845–2851.

30. Kojima D, Torii M, Fukada Y, Dowling JE. Differential expression of duplicated VAL-opsin genes in the
developing zebrafish. J Neurochem. 2008; 104: 1364–1371. doi: 10.1111/j.1471-4159.2007.05093.x
PMID: 18036148

31. Cheng N, Tsunenari T, Yau K-W. Intrinsic light response of retinal horizontal cells of teleosts. Nature.
2009; 460: 899–903. doi: 10.1038/nature08175 PMID: 19633653

32. Matsuyama T, Yamashita T, Imamoto Y, Shichida Y. Photochemical properties of mammalian mela-
nopsin. Biochemistry (Mosc). 2012; 51: 5454–5462. doi: 10.1021/bi3004999

33. Torii M, Kojima D, Okano T, Nakamura A, Terakita A, Shichida Y, et al. Two isoforms of chicken mela-
nopsins show blue light sensitivity. FEBS Lett. 2007; 581: 5327–5331. doi: 10.1016/j.febslet.2007.10.
019 PMID: 17977531

34. Sato K, Yamashita T, Ohuchi H, Shichida Y. Vertebrate Ancient-Long Opsin Has Molecular Properties
Intermediate between Those of Vertebrate and Invertebrate Visual Pigments. Biochemistry (Mosc).
2011; 50: 10484–10490. doi: 10.1021/bi201212z

35. Koyanagi M, Takada E, Nagata T, Tsukamoto H, Terakita A. Homologs of vertebrate Opn3 potentially
serve as a light sensor in nonphotoreceptive tissue. Proc Natl Acad Sci U S A. 2013; 110: 4998–5003.
doi: 10.1073/pnas.1219416110 PMID: 23479626

36. Sakai K, Yamashita T, Imamoto Y, Shichida Y. Diversity of Active States in TMTOpsins. PLoS ONE.
2015; 10: e0141238. doi: 10.1371/journal.pone.0141238 PMID: 26491964

37. Forger NG. Control of cell number in the sexually dimorphic brain and spinal cord. J Neuroendocrinol.
2009; 21: 393–399. doi: 10.1111/j.1365-2826.2009.01825.x PMID: 19207822

38. Hiraki T, Nakasone K, Hosono K, Kawabata Y, Nagahama Y, Okubo K. Neuropeptide B Is Female-Spe-
cifically Expressed in the Telencephalic and Preoptic Nuclei of the Medaka Brain. Endocrinology. 2013;
155: 1021–1032. doi: 10.1210/en.2013-1806 PMID: 24424038

39. Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen
Comp Endocrinol. 2010; 165: 438–455. doi: 10.1016/j.ygcen.2009.04.017 PMID: 19393655

40. Kanda S, Akazome Y, Matsunaga T, Yamamoto N, Yamada S, Tsukamura H, et al. Identification of
KiSS-1 Product Kisspeptin and Steroid-Sensitive Sexually Dimorphic Kisspeptin Neurons in Medaka
(Oryzias latipes). Endocrinology. 2008; 149: 2467–2476. doi: 10.1210/en.2007-1503 PMID: 18202129

41. Kitahashi T, Ogawa S, Parhar IS. Cloning and Expression of kiss2 in the Zebrafish and Medaka. Endo-
crinology. 2009; 150: 821–831. doi: 10.1210/en.2008-0940 PMID: 18927220

42. Servili A, Le Page Y, Leprince J, Caraty A, Escobar S, Parhar IS, et al. Organization of Two Indepen-
dent Kisspeptin Systems Derived from Evolutionary-Ancient Kiss Genes in the Brain of Zebrafish.
Endocrinology. 2011; 152: 1527–1540. doi: 10.1210/en.2010-0948 PMID: 21325050

43. d’Anglemont de Tassigny X, Fagg LA, Dixon JPC, Day K, Leitch HG, Hendrick AG, et al. Hypogonado-
tropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A. 2007; 104:
10714–10719. doi: 10.1073/pnas.0704114104 PMID: 17563351

44. Tang H, Liu Y, Luo D, Ogawa S, Yin Y, Li S, et al. The kiss/kissr Systems Are Dispensable for Zebrafish
Reproduction: Evidence FromGene Knockout Studies. Endocrinology. 2014; 156: 589–599. doi: 10.
1210/en.2014-1204 PMID: 25406015

Two UV-Sensitive Photoreceptor Proteins Opn5m and Opn5m2 in Ray-Finned Fish

PLOS ONE | DOI:10.1371/journal.pone.0155339 May 11, 2016 15 / 16

http://dx.doi.org/10.1073/pnas.0704061104
http://dx.doi.org/10.1073/pnas.0704061104
http://www.ncbi.nlm.nih.gov/pubmed/17646658
http://www.ncbi.nlm.nih.gov/pubmed/10821749
http://dx.doi.org/10.1016/S0169-328X(02)00454-0
http://dx.doi.org/10.1016/S0169-328X(02)00454-0
http://www.ncbi.nlm.nih.gov/pubmed/12487121
http://dx.doi.org/10.1016/S0169-328X(03)00059-7
http://www.ncbi.nlm.nih.gov/pubmed/12670711
http://dx.doi.org/10.1007/s00018-011-0785-4
http://dx.doi.org/10.1007/s00018-011-0785-4
http://www.ncbi.nlm.nih.gov/pubmed/21833582
http://dx.doi.org/10.1111/j.1471-4159.2007.05093.x
http://www.ncbi.nlm.nih.gov/pubmed/18036148
http://dx.doi.org/10.1038/nature08175
http://www.ncbi.nlm.nih.gov/pubmed/19633653
http://dx.doi.org/10.1021/bi3004999
http://dx.doi.org/10.1016/j.febslet.2007.10.019
http://dx.doi.org/10.1016/j.febslet.2007.10.019
http://www.ncbi.nlm.nih.gov/pubmed/17977531
http://dx.doi.org/10.1021/bi201212z
http://dx.doi.org/10.1073/pnas.1219416110
http://www.ncbi.nlm.nih.gov/pubmed/23479626
http://dx.doi.org/10.1371/journal.pone.0141238
http://www.ncbi.nlm.nih.gov/pubmed/26491964
http://dx.doi.org/10.1111/j.1365-2826.2009.01825.x
http://www.ncbi.nlm.nih.gov/pubmed/19207822
http://dx.doi.org/10.1210/en.2013-1806
http://www.ncbi.nlm.nih.gov/pubmed/24424038
http://dx.doi.org/10.1016/j.ygcen.2009.04.017
http://www.ncbi.nlm.nih.gov/pubmed/19393655
http://dx.doi.org/10.1210/en.2007-1503
http://www.ncbi.nlm.nih.gov/pubmed/18202129
http://dx.doi.org/10.1210/en.2008-0940
http://www.ncbi.nlm.nih.gov/pubmed/18927220
http://dx.doi.org/10.1210/en.2010-0948
http://www.ncbi.nlm.nih.gov/pubmed/21325050
http://dx.doi.org/10.1073/pnas.0704114104
http://www.ncbi.nlm.nih.gov/pubmed/17563351
http://dx.doi.org/10.1210/en.2014-1204
http://dx.doi.org/10.1210/en.2014-1204
http://www.ncbi.nlm.nih.gov/pubmed/25406015


45. Song Y, Duan X, Chen J, HuangW, Zhu Z, HuW. The Distribution of Kisspeptin (Kiss)1- and Kiss2-
Positive Neurones and Their Connections with Gonadotrophin-Releasing Hormone-3 Neurones in the
Zebrafish Brain. J Neuroendocrinol. 2015; 27: 198–211. doi: 10.1111/jne.12251 PMID: 25529211

46. DrivenesØ, Søviknes AM, Ebbesson LOE, Fjose A, Seo H-C, Helvik JV. Isolation and characterization
of two teleost melanopsin genes and their differential expression within the inner retina and brain. J
Comp Neurol. 2003; 456: 84–93. doi: 10.1002/cne.10523 PMID: 12508316

47. Fischer RM, Fontinha BM, Kirchmaier S, Steger J, Bloch S, Inoue D, et al. Co-Expression of VAL- and
TMT-Opsins Uncovers Ancient Photosensory Interneurons and Motorneurons in the Vertebrate Brain.
PLoS Biol. 2013; 11: e1001585. doi: 10.1371/journal.pbio.1001585 PMID: 23776409

48. Katoh K, Standley DM. MAFFTmultiple sequence alignment software version 7: improvements in per-
formance and usability. Mol Biol Evol. 2013; 30: 772–780. doi: 10.1093/molbev/mst010 PMID:
23329690

49. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Anal-
ysis Version 6.0. Mol Biol Evol. 2013; 30: 2725–2729. doi: 10.1093/molbev/mst197 PMID: 24132122

Two UV-Sensitive Photoreceptor Proteins Opn5m and Opn5m2 in Ray-Finned Fish

PLOS ONE | DOI:10.1371/journal.pone.0155339 May 11, 2016 16 / 16

http://dx.doi.org/10.1111/jne.12251
http://www.ncbi.nlm.nih.gov/pubmed/25529211
http://dx.doi.org/10.1002/cne.10523
http://www.ncbi.nlm.nih.gov/pubmed/12508316
http://dx.doi.org/10.1371/journal.pbio.1001585
http://www.ncbi.nlm.nih.gov/pubmed/23776409
http://dx.doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://dx.doi.org/10.1093/molbev/mst197
http://www.ncbi.nlm.nih.gov/pubmed/24132122

