ADJOINT BUNDLES OF AMPLE AND SPANNED VECTOR BUNDLES ON ALGEBRAIC SURFACES

HIDETOSIII MAEDA

0. Introduction

Here we carry out a brief survey of [Lanteri-Maeda 91].

The linear system $|K_X + C|$ "adjoint" to a curve C on a surface X has played an important role in understanding the geometry of X since the early days of surface theory. The adjoint bundle $K_X + L$ to a very ample line bundle L on a smooth complex projective surface X was investigated in modern terms by Sommese [Sommese 79] and Van de Ven [Van de Ven 79]. The study of $K_X + L$ was made in [Lanteri-Palleschi 84] when L is simply supposed to be an ample line bundle. Recently, several authors ([Fujita 90], [Wiśniewski 89], [Ye-Zhang 90]) have dealt with a generalized polarized pair (X, \mathcal{E}) consisting of a smooth complex projective variety X and an ample vector bundle \mathcal{E} on X, and have investigated the nefness and the ampleness of the adjoint line bundle $K_X + \det \mathcal{E}$. In this note we treat an ample and spanned vector bundle \mathcal{E} of rank $r(r \geq 2)$ on a smooth complex projective surface X, and study some properties of the adjoint bundle $K_X + \det \mathcal{E}$. Precisely, we ask the following

Questions.

(a) When is $K_X + \det \mathcal{E}$ spanned?

(b) When is $K_X + \det \mathcal{E}$ very ample ?

We can obtain a complete answer to (a) by using Reider's method [Reider 88]. In fact, we will prove the

Theorem A. Let \mathcal{E} be an ample and spanned vector bundle of rank $r \geq 2$ on a smooth complex projective surface X. Set $L = \det \mathcal{E}$. Then $K_X + L$ is spanned unless $(X, \mathcal{E}) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}}(1)^{\oplus 2})$.

The same method also enables us to give a partial but satisfactory answer to (b). The precise statement of our result is as follows:

Theorem B. Let \mathcal{E} be an ample and spanned vector bundle of rank $r \ge 2$ on a smooth complex projective surface X. Set $L = \det \mathcal{E}$ and assume $L^2 \ge 9$. Then $K_X + L$ is very ample unless (X, \mathcal{E}) is one of the following.

- (1) X is a \mathbb{P}^1 -bundle over a smooth curve C and $\mathcal{E}_F \cong \mathcal{O}_F(1)^{\oplus 2}$ for any fiber F of $X \longrightarrow C$.
- (2) $(X, \mathcal{E}) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}}(1)^{\oplus 3}).$
- (3) $(X, \mathcal{E}) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}}(2) \oplus \mathcal{O}_{\mathbb{P}}(1)).$
- (4) $(X, \mathcal{E}) \cong (\mathbf{P}^2, T_{\mathbf{P}}).$

Note that this theorem proves the 2-dimensional part of the conjecture (2.6) in [Lanteri-Palleschi-Sommese 89] since $L^2 = 9$ in the three cases (2), (3) and (4). By the way we notice that the higher dimensional part of it should be restated in the following form.

Conjecture. Let \mathcal{E} be an ample and spanned vector bundle of rank $n \geq 3$

2

on a smooth projective variety X of dimension n. Let $L = \det \mathcal{E}$ and assume $L^n \ge (n+1)^n + 1$. Then $K_X + L$ is very ample unless X is a \mathbb{P}^{n-1} -bundle over a smooth curve C and $\mathcal{E}_F \cong \mathcal{O}_F(1)^{\oplus n}$ for any fiber F of $X \longrightarrow C$.

In case $L^2 \leq 8$, we use the adjunction theory developed by Sommese and Van de Ven [Sommese-Van de Ven 87] to make an answer to (b) on the assumption that L is very ample. Our result is the

Theorem C. Let \mathcal{E} be an ample and spanned vector bundle of rank $r \geq 2$ on a smooth complex projective surface X. Set $L = \det \mathcal{E}$. Assume that L is a very ample line bundle with $L^2 \leq 8$. Then $K_X + L$ is very ample unless (X, \mathcal{E}) is one of the following.

- (1) $(X, \mathcal{E}) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}}(1)^{\oplus 2}).$
- (2) $X \cong Q^2$, a smooth hyperquadric in \mathbb{P}^3 , and $\mathcal{E} \cong \mathcal{O}_Q(1)^{\oplus 2}$.
- (3) X ≅ P_C(F) and E ≅ ρ*G ⊗ H(F) for some indecomposable vector bundles
 F and G of rank two on an elliptic curve C with c₁(F) = c₁(G) = 1, where
 H(F) is the tautological line bundle on X and ρ is the projection X → C.
- (4) X is a Del Pezzo surface with $K_X^2 = 2$, and $\mathcal{E} \cong (-K_X)^{\oplus 2}$.
- (5) X is as in case (4) and E ≅ f*F ⊗ (-K_X), where f : X → P² is the blowing-up of P² along seven points and F is the cokernel of a bundle monomorphism O_P(-1)^{⊕2} → (Ω¹_P ⊗ O_P(1))^{⊕2}.

We will work over the complex number field. Basically we use the standard notation from algebraic geometry. For a vector bundle \mathcal{E} on X, the tautological line bundle on the projective space bundle $\mathbb{P}_X(\mathcal{E})$ associated to \mathcal{E} is denoted by $H(\mathcal{E})$. A vector bundle is called *spanned* if it is generated by its global sections.

1. Preliminaries

This note relies heavily on Reider's method, which we recall first in the following form.

Lemma 1. [Reider 88] Let N be a nef line bundle on a smooth projective surface X.

(1) If $N^2 \ge 5$ and $K_X + N$ is not spanned, then there exists an effective divisor E satisfying either

 $NE = 0, E^2 = -1$ or $NE = 1, E^2 = 0$.

(2) If $N^2 \ge 9$ and $K_X + N$ is not very ample, then there exists an effective divisor E satisfying one of the following conditions.

 $NE = 0, E^2 = -1 \text{ or } -2;$

 $NE = 1, E^2 = 0 \text{ or } -1;$

$$NE = 2, E^2 = 0;$$

$$N \equiv 3E, E^2 = 1.$$

Second we use Wiśniewski's idea [Wiśniewski 89, Lemma 3.2] to obtain a result on ample and spanned vector bundles on curves.

Lemma 2. Let \mathcal{E} be an ample and spanned vector bundle of rank $r \ge 2$ on a projective curve C. Take arbitrary points p_1, p_2, \dots, p_{r-1} of C with $\mu_i = \operatorname{mult}_{p_i}(C)$.

(1) If C is rational, then $c_1(\mathcal{E}) \ge (\sum_{i=1}^{r-1} \mu_i) + 1$.

(2) If C is non-rational, then $c_1(\mathcal{E}) \ge (\sum_{i=1}^{r-1} \mu_i) + 2$.

Corollary 1. Let \mathcal{E} be an ample and spanned vector bundle of rank $r \ge 2$ on a projective variety X. Put $L = \det \mathcal{E}$. Then X has no effective 1-cycles E such that LE < r.

Corollary 2. Let X, \mathcal{E} and L be as above. If an effective 1-cycle E on X satisfies LE = r, then $E \cong \mathbf{P}^1$.

We need also the following lemma.

Lemma 3. Let \mathcal{E} be an ample and spanned vector bundle of rank $r \ge 2$ on a smooth projective variety X of dimension $n \ge 2$. Then $H(\mathcal{E})^{n+r-1} \ge 3$.

Furthermore we can prove a slight strengthening of Wiśniewski's theorem [Wiśniewski 89, Theorem 3.4] which will be used later on.

Lemma 4. Let X be a smooth projective variety of dimension $n \ge 1$ and \mathcal{E} an ample and spanned vector bundle on X of rank $r \ge n$. Assume $c_n(\mathcal{E}) = 1$. Then $(X, \mathcal{E}) \cong (\mathbf{P}^n, \mathcal{O}_{\mathbf{P}}(1)^{\oplus n})$.

2. Proof of Theorem A

Theorem A. Let \mathcal{E} be an ample and spanned vector bundle of rank $r \geq 2$ on a smooth projective surface X. Set $L = \det \mathcal{E}$. Then $K_X + L$ is spanned unless $(X, \mathcal{E}) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}}(1)^{\oplus 2}).$

Proof. Assume that $(X, \mathcal{E}) \ncong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}}(1)^{\oplus 2})$. Then we have $c_2(\mathcal{E}) \ge 2$ by

- 142 -

Lemma 4, since $c_2(\mathcal{E}) > 0$ by [Bloch-Gieseker 71]. Combining the formula $L^2 = c_2(\mathcal{E}) + H(\mathcal{E})^{r+1}$ with Lemma 3 gives $L^2 \geq 5$, so that Lemma 1 applies; but the exceptions to the spannedness of $K_X + L$ are excluded in view of Corollary 1, and we are done. Q.E.D.

3. Proof of Theorem B

Theorem B. Let \mathcal{E} be an ample and spanned vector bundle of rank $r \ge 2$ on a smooth projective surface X. Set $L = \det \mathcal{E}$ and assume $L^2 \ge 9$. Then $K_X + L$ is very ample unless (X, \mathcal{E}) is one of the following.

(1) X is a \mathbb{P}^1 -bundle over a smooth curve C and $\mathcal{E}_F \cong \mathcal{O}_F(1)^{\oplus 2}$ for any fiber F of $X \longrightarrow C$.

(2)
$$(X, \mathcal{E}) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}}(1)^{\oplus 3}).$$

- (3) $(X, \mathcal{E}) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}}(2) \oplus \mathcal{O}_{\mathbf{P}}(1)).$
- (4) $(X, \mathcal{E}) \cong (\mathbf{P}^2, T_{\mathbf{P}}).$

Proof. (outline) Assume that $K_X + L$ is not very ample. Then by Lemma 1 and Corollary 1, there exists an effective divisor E satisfying one of the following.

- (i) $LE = 2, E^2 = 0;$
- (ii) $L \equiv 3E, E^2 = 1.$

(3.1) In case (i), combining LE = 2 with Corollary 1 and Corollary 2 gives r = 2 and $E \cong \mathbb{P}^1$. Since $E^2 = 0$, X is ruled and E is a fiber of the ruling. We use Corollary 1 again to see that every fiber F is irreducible and reduced. Thus

X is a \mathbb{P}^1 -bundle over a smooth curve C and $\mathcal{E}_F \cong \mathcal{O}_F(1)^{\oplus 2}$.

(3.2) In case (ii), E is ample and so E is irreducible and reduced. By Corollary 1 LE = 3 implies $r \leq 3$. If r = 3, then from Corollary 2, $E \cong \mathbf{P}^1$. By the classification theory of polarized surfaces of sectional genus zero [Lanteri-Palleschi 84, Corollary 2.3], we have two possibilities:

(3.2.1)
$$(X, \mathcal{O}_X(E)) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}}(i)), i = 1, 2$$

(3.2.2) $(X, \mathcal{O}_X(E))$ is a scroll over \mathbb{P}^1 .

In case (3.2.1), i = 1 and $L = \mathcal{O}_{\mathbf{P}}(3)$. Consider the vector bundle $\mathcal{E} \otimes \mathcal{O}_{\mathbf{P}}(-1)$. This is trivial when restricted to any line in \mathbf{P}^2 . Therefore itself is trivial, and hence $\mathcal{E} \cong \mathcal{O}_{\mathbf{P}}(1)^{\oplus 3}$. In case (3.2.2), we may assume $X = \mathbf{P}_{\mathbf{P}}(\mathcal{O}_{\mathbf{P}} \oplus \mathcal{O}_{\mathbf{P}}(-e))$ for some $e \ge 0$. Thus E is very ample. Since $E^2 = 1$, we have $(X, \mathcal{O}_X(E)) \cong$ $(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}}(1))$. This is absurd.

(3.3) In the following we can assume r = 2. Then we can prove that the arithmetic genus $g(E) \leq 1$. Therefore the classification theory of polarized surfaces of sectional genus ≤ 1 applies.

(3.4) Now suppose g(E) = 0. Then the same argument as in (3.2) shows $(X, L) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}}(3))$, hence \mathcal{E} is a uniform bundle of splitting type (2,1). By the classification theory of uniform bundles on \mathbb{P}^2 [Van de Ven 72], \mathcal{E} is either the direct sum of two line bundles or the twisted tangent bundle. Consequently $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}}(2) \oplus \mathcal{O}_{\mathbb{P}}(1)$ or $T_{\mathbb{P}}$.

(3.5) To complete the proof of Theorem B, we discuss the case g(E) = 1. There are two possibilities [Lanteri-Palleschi 84, Corollary 2.4]:

(3.5.1) X is a Del Pezzo surface and $\mathcal{O}_X(E) = -K_X$.

(3.5.2) $(X, \mathcal{O}_X(E))$ is a scroll over an elliptic curve C.

In case (3.5.1), $K_X^2 = 1$ and $L = -3K_X$. In case (3.5.2), we can write $X = \mathsf{P}_C(\mathcal{F})$ for some normalized vector bundle \mathcal{F} of rank two on C. Moreover, $\mathcal{O}_X(E) = H(\mathcal{F}) + \rho^* A$ for some line bundle A on C, where ρ is the projection. Set $e = -c_1(\mathcal{F})$ and $a = \deg A$. Then $e \ge -1$ and $E^2 = 2a - e = 1$. By the criterion for an ample line bundle, we have e = -1 and a = 0. Thus \mathcal{F} is indecomposable and $L = 3H(\mathcal{F}) + \rho^* B$ for some line bundle B of degree 0 on C. In sum, (X, L) is one of the following:

- (1) X is a Del Pezzo surface with $K_X^2 = 1$, and $L = -3K_X$.
- (2) $X \cong \mathbf{P}_C(\mathcal{F})$ for some indecomposable vector bundle \mathcal{F} of rank two on an elliptic curve C with $c_1(\mathcal{F}) = 1$. $L = 3H(\mathcal{F}) + \rho^* B$ for some line bundle B of degree 0 on C, where ρ is the projection $X \longrightarrow C$.

However, we can show that neither (1) nor (2) occurs. Q.E.D.

For the proof of Theorem C, we refer to [Lanteri-Maeda 91].

References

[Bloch-Gieseker 71] S. Bloch and D. Gieseker, The positivity of the Chern classes of an ample vector bundle, Invent. Math. 12(1971), 112-117 [Fujita 90] T. Fujita, On adjoint bundles of ample vector bundles, to appear in the Proc. of the Conference in Alg. Geometry, Bayreuth (1990) [Lanteri-Maeda 91] A. Lanteri and H. Maeda, Adjoint bundles of ample and spanned vector bundles on algebraic surfaces, preprint (1991)

[Lanteri-Palleschi 84] A. Lanteri and M. Palleschi, About the adjunction process

for polarized algebraic surfaces, J. reine angew. Math. 352(1984), 15-23

[Lanteri-Palleschi-Sommese 89] A. Lanteri, M. Palleschi and A. J. Sommese, Very ampleness of $K_X \otimes \mathcal{L}^{\dim X}$ for ample and spanned line bundles \mathcal{L} , Osaka J. Math. 26(1989), 647-664

[Reider 88] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. 127(1988), 309-316

[Sommese 79] A. J. Sommese, Hyperplane sections of projective surfaces I-The adjunction mapping, Duke Math. J. 46(1979), 377-401

[Sommese-Van de Ven 87] A. J. Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278(1987), 593-603

[Van de Ven 72] A. Van de Ven, On uniform vector bundles, Math. Ann. 195(1972), 245-248

[Van de Ven 79] A. Van de Ven, On the 2-connectedness of very ample divisors on a surface, Duke Math. J. 46(1979), 403-407

[Wiśniewski 89] J. A. Wiśniewski, Length of extremal rays and generalized adjunction, Math. Z. 200(1989), 409-427

[Ye-Zhang 90] Y.-G. Ye and Q. Zhang, On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J. **60**(1990), 671-687

Hidetoshi Maeda

Department of Mathematics

School of Education

Waseda University

1-6-1 Nishi-Waseda, Shinjuku-ku

Tokyo 169-50

Japan