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g Intreduetien

   'rbis rePort is -a short review of a work in progress, jointly with Prof.
Keaji UeRo, 'o'k abellak coRfg!mal fie}d theo!y (abb!eyiated as CFT). The

adjective "abelian" means that we start ftom the symmetry of the gange
group Gm : C" (the multiplicative group) in contrast to the "non-abelian"

CFT's.
   Our metivatieft is te give a ftamewerk, llataral frem ike geemetTic view-
point, to this abelian CFT studied by [IMO], [KNTY], [ACKP], etc, in a
fashion comparable to [BS], [TUY].
   Tke teckgique ef lecaiizatigx is eeyeloped by [BSj, {BFMI, based gxx the

idea that the dressed moduli spaces are a kind of fiag varieties for Virasoro
and afine Lie algebras, cL[K].

   CFT Sells kew Se ceRs{i=ct (prejective) mekgd:emy !epresentatioms gi
the Teichmtiller modular group (i.e. mapping cldss group). We want to
study these mbnodromy representations and the' corresponding systems of
differeRthl equatieRs are ca}}ed as (P-)modules o{ coRfo!mal b}ecks. Local-

ization procGdu!e produces these modules from the givell represeRiations of
the (infinite-dimensional) Lie algebra.
   We will treat the case of the aMnization of the one-dimensioBa} Lie a}-

geb:a (tke U(l)-cg=eR{ algebra). We describe the cekstructioa ef tke D-
modules of conformal blocks and comment on the factorization property.

   Our consideration can be extended to the non-abelian case to a certain
extekt. k wra be tieated iR gur we!k iR preparatiex.
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Sl Setting

l.l "Modu}i"
         N   We fix RoR-Regative intege!s g, N with 3g -- 3+ N ) O. A scheme meaks
a C-sckeme iR whaS follews.
   Le{ Mg,N be tke medali space ef N•-poikted smeoth prejetive &lgeb!&ic
curves over C of genus g, and Mg,N its Ratura} compactificatioR, i.e., the
moduli space of Ar-pointed stable curves of genus g. These are smooth stacks
of dimension 3g -- 3 + N and Mg,N is also proper over C, cf.[DM],[Kn].

   Consider the morphism

x:ff=Mg,N+1 -' M= Ug,N

which fo!gets the (N+1)-th point aRd is th

ikis gives rise to tke••ukiyer$a} cutve

e "ukivesal" curye. By restiictioR

x : e = eg,N-- M = Ms,N•

   We can consider the relative Picard group for rr of degree g - 1 P =
Picg7jlz, which is a $emi-abelian scheme over U. Its restriction to M is a

(relative) abelian scheme of dimension g over M. Put P = PicZ7fu L M.

We have the Poincar6 bundle P on C Å~ MP and dispose the determinant line
bundle C = d(P) ur det lerr*(P) on P, where T is the projection CÅ~ mP - P.

cÅíIKM].

   Let .MSco,N} be the meduli space ef dre$$ed N-peinted cgives, wkich is in-

troduced by Beilinson and Kontsevich and which we eal} the dressed moduli
spac' e, cf.[KNTY,KSU]. A dressed N-pointed curve (C; xi, • • • , xN; ti , • • • , tN)

consists of a IV`pointed curve (C; xi , • • • , xN) and isdmorphisms of C- algebras
ti : bc,., -N C[[z]](1 S i Åq.- N) (formal local parametrizations).

   Put M(co) = M(,co,N) and P(OO) = P xM M(co),

   Consider also the moduli space of dressed inveputible sheaves over dressed
N-poiRted cuTves .P(#). A dressed iRve!tible skeaf on a diessed N-poiRted

curve (C;xi,••-,xN;ti,•••,SN) is aR iRverSible sheaf L (or a liRe buRdle)
egllipped with t{-ligea: isemeipkisms vi : Z., cr C([zl](l S i Åq- N). Tligs

P(#) is a G.(C{{ill)N-torsor ovef pÅqee).

1,3 Let tis summarize the situation in the following "basic diagram" :
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                         r"L. P(#)
                          r/
   c- p(oo)= picZ7jL,,., Sg
                           pX
                                M(oo)= MSO,O.).M=M,,N

   We have a similar picture over Mg,N.

1.4 "Some representation theory"
   We recall some ndtations for representations of an infinite-dimensional

Heisenberg algebra.
   Let u(1) be the one-dimensional Lie algebra over C and

            a(1) = C((z)) e C • K, C((i)) = C[[z]][i-il

be its (completed) aMnization, whe're IC is a central element. Its Lie bracket

is defined to be

               [f(z),g(z)] = Res.=o(f'(z)g(z)dz) • K

for f(z),g(z) E C((z)). Thus, for example, we have

                     [zm, z"] : m6m+n,o ' K•

Therefore tl(1) contains an infinite-dimensional Heisenberg algebra gener--

ated by the elements h. = z",h-. = z-"/n (n År O),ho = K.
   We also consider the "N-point" variant of ti(1) :

                                          '                                         '                           N
                   aN(1) = (ID c((zi)) e c • K.

                           i---1

Here K is again a centraJ element and the Lie bracket is given by

                           N
          [(fi(xi)), (gi(zi))] = 2 Res.,=o(fl• (zi)gi(zi)dzi) • K

                          i=1

Put also
                               N
                      u.(1) : : ({D C((z,)).

                              i=1
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Then, aN(1) is a central extension of uN(1) as a Lie algebra.

   Let us introduce the Fock representations which have two complex pa-
rameters Aiw :
                   F(w,A) := U(a(1))II(tu,A),

where U(fi(1)) is the universaJ enveloping algebra of a(1) and I(u,, A) is the
left ideal of U(ti(1)) generated by C[[z]], zO -- w and K -- A.

   Put Fo := F(O,O) for later use.
   Given A, tvi,•••,tvlv E C. Then we have natuturally an action of tlN(1)
on the tensor product F(A, w-) := XX•.iF(A, wi) ( 2v" = (wi,•••, wN))•

S2 Localization

   Localization is a natural procedure for producing the space of coinvari-
ants as a fiber of a D-module. It is effectively used in the study of repre-
sentations of finite-dimensional reductive Lie groups by Beilinson-Bernstein
and Brylinski-Kashiwara.

2.1 PROPOSITION
   There exists a Lie algebra homomorphism with dense image :

                 e :. Op(t) Xc fiN(1) ' D,Åq;iL/M(eo)

which lifts a natural Lie algebra homomorphism (with dense image? :

                 e : ep(t) xc uN(1) . Tp(#)/M(..)•

   Both e have the same kernel:

                      Kere = T*Oc(*2si)•

   There is a similar Lie algebra homomorphism with L replaced by L-i.

   We denote by D,.LIM(co) the (shear of) ring of differential operators act-

ing on the sections of the invertible sheaf r'L which commute with OM(oo),
and DSi     ,.L/M(..) denOtes the part of operators of order S 1. For more on

these notions, see 3.2.

   For the construction of e : ep(t) Xc uN(1) . Tp(#)/M(.), we make use
of the fo11owing short exact sequence :

o . Snd(L)(-(rn + 1)Zxi) . Snd(L)(nXxi) - $,"•., e .-. Cz,k• - O.
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Heie X = (C;'$1,•••,xN;ti,•••,tN;L;yi,-••,vK) degetes a peikt e{ .P(#)
and the sheafhomomorphism Snd(L)(n2 xi) - eX•,.it di2.-.Cx,k• is induced
from vi's. 'rNhe associated cobourmdary map (from HO to Hi) gives risG to

the ftber at X of e.

   For the constrRctioxx of its liftikg e, we use a theerem of Bei}iRsoft-
Schechtman [BS, Thm,2.3]. It is essentia}ly a kind of Cech calculation
around the sections.

   Let us dekote by ihe same symabel e the compositien of the above e and
the natural inclusion D,Åq'.i c/M . D,Åq'.iL :

                   e : epÅqi) Qc a.(l) -+ D.Åq-.i.

   This gives rise to the following algebra homomorphism :

                 e ; Op{l) xc U(aN(l)) - D,.Åí.

2.2 DEFINITION
tiok A(E) by

GiveR a representatioR E of gN(l), we define its localiz&-

,A(E) := Dr'Åí Xu(aN(i)) E•

   Let .Eo denote the Fock representation F'(O,O) and put

                        A(FeX") = M.

(Note that I18bN = F(o, 6) in the notation of 1.4.)

   nihis is just {he P-medu}e of gagge cekditieR acce:ding to the

:

2.3 I,EMMA
   We have

A(F(A, w' ))Qo.(s)Op(s)/mx•Op(*) fr .F(A, w")IHO(C, S

feRewiftg

nd(L)(*2 xi)).F"(A, ill").

   Note that llO(C,Snd(L), considered as a subspace of eX•.,iC((zi)) C

aAr(1) by Means of local parametrizatioRs ti, is a Lie subalgebra of aN(1),

siRce we kaye
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              2V N        lf, g] = Åí Res.,.o(vi(f)'vi(g)dzi) = Åí Res.,(gdf) = O.

              iem 1 i--.:1
   lt is obyious that A(E) is a cohereRt D,.L-medule if E is fikitely geRe!-

ated as & U(BN(1))-raedgle.
   k pa!a3}el with {TgY], we call ike space

         vx,di(x) :-.ww. .rv(A, di)/ffe(c, trnd(L)(* Åí xi))F(A, w')

the space of covacua attached to X.
   The vector space )2K,di(X) dual to )2A,..(iV) is called the space of vacua.

The fo11owing spaces are of particular interest :

               v(,v):=:v,,,-(x), vt(x):= )•28a(,u).

                                        ,

2.4 •Let =s defi=e tke "dgal" ef lgcalizaiiek, whick loeks Rai#yaf irom tke

viewpeiRi cf Tepresek{atioxx tkeery.
   Let M' be defined as the ep(#l- submodule of Op(i) &c (Fei)eN aRni-

hilated by T.Oc(*Z si):

 M' := {Åqul E Op(pt) xc (,ES)AX" I F • Åqul = o for .li' E T.Oc(* 2 s,)}

From Proposition 2.1, we infer easily the following lemma.

2.5 LEMMA
   M' is g P..Åí-i-medule.

   Witk respect te tke n&tesaf paklRg betweeR .Ec axxd Fg, the ftbe! gf M'

is egllal to ihe space of vacga :

              M" Xo.(t) Op(#)lmre • Op(s) nt Vt(X).

S3 Modu!es ofcomhormal blocks
3.1 Consider the Op(oo)-module N defined as follows ;

                    N .. (,.M)I'Ir., Gm(a,,).

TheR N kas a siruct::e of D"medgle igkerited frem tk&t of P,.c-mcdgle
eR 2if.

   We defiRe the medule of cenfermal blocks to be the di!ect image p.N,
which has a priori a structure of p.DL-module. This module can be given
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a structure of twisted D-module in a simple manner as found by Beilinson
and K&zhd,an [BKI, which we recall in 3.3. •

   VVe caR' foimniate the du&l veisioR N" ef N whic}} has a strucinse of
DÅí-t-igcdgle.

3.2 We recall the defini{ien of a ring ef twisted Åqlueerential epeTators (ab-

breviated as a tdo).

   A tdo is a filtered ring (i.e. sheaf of rings) (D,F), which satisfies the

following conditions :

       i) ui FiD= D, F-iD =: O,
      ii) Fi DIFi-iD cr Si(Tx)
          cempatibly with tke m"ltipljcatioRs on the both sides.

   If L i$ a like bugd}e eit X, theR tke skeaf PÅí of diffeiexSiaf ijpeiaSoss

actiRg oit L is a basic'example of tde. The shea{ D,.Åí/M(..) iR 2.l is a family

of tdo's parametrized by M(eo).

   Let us recall a theorern of Beilinson and Kazhdan [BK] mentioned in 3.1

:

3.3 LEMMA
   Let f : X - S be a proper smooth morphism between smooth schemes
whose .fiber hgs a structure ef a5eiign variety. Let also L be an relative
iRveTSi5;e shegf on X tghcse restricSig# tg .fi5eTs is net ef the same cia3s as

haif the egnenicai class in the PicaTd grggp of the fi5ex

   Then f.DL is alsoatde. •
   Thanks to this lemrna, p*DL is a tdo. As to p*DÅí-i , it is a tdo and is iso-

morphic to D;'A., where AH is the Hodge line bundle, i.e., the determinant

line bundle det RT.O. This follows from the fact that p.L-i is isomorphic

to gAH on Mg.
   In conclusion, p.N' has a structure of DsAN-rnodule. This means that

we have a natura} (twisted) integrable coRRection on p.N". Tliis coRRection

c&R be iRtespieted as a kiRd ei keaS eqgatieR cLS4.

3.4 "P}gckerembedding"
   The determiRant line bundle L is kkown to equal O(-e) for the theta
divisor e on PicZ7iLt, cL[Sz]. We relate L or its inverse to the structure of

the modules of conforrnal blocks.
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   Let us calculate a fiber of the determinant line bundle L'OO. Let ,V ==
(C;xi,•••,xN;ti,•••,tN;L;vi,•••,vN) be a point of P(#). Then the fiber

at X of r'6-i is isovaorphic to d(cvc x L-i) := det Rr(C, wc Q L'i) where

wc deketes {he daalizi"g sheai ef ihe caiye C. ]Flrom {he exact segReRce

    e - wc x L-i -, wc x L-i(m 2) x{) - ee,N•--i eek---M-i Cz,! dzi . fi

                              i

we have

  d(cvc x L-i) = d(`vc x Lwwi(m 2) xi)) • Amax(eX•.,i twkww.I-rtw, czl dzi)-i.

                            i

Note that the data ti's and vi's are necessary here.
   Recal} that .Eg i realized as a semi-iRfiRite form medule, which is ob-

taiRed f!cai tke yeciet space C((z)) by semi--iRfikiSe wedge p:ed=ct, cÅí[IÅqNT\,gll.

   In our situatioR, the isemorphisms v{ 's induce an embeddiRg :

                                      N
              HO(c, llwwi Q wc(* Åí xi)) g (D C((xi))•

                                     iml

   Then, it defines a Iine in (Ea)aN by the semi-infinite wedge product.

This leads to the following:

3.5 LEMMA
   There e$i3Ss a natural e?nbedding

                         r'C-1 g M"

of D,.L-i -modules.

   This gives rise to the natural embedding

                         rl L+ IV'.

Hence we have
                        p.L-i g p.N'.

   We kaye simil&r ceRstructioft for tkeir "duals".

   The basic pioblem is to understaRd the structure ofp.N oT p.N". This
can be done by the above embedding of p.L or p*L-i and the consideration
of theta structures, cf.[SU].
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S4 Comments on further results and problems

4.l "LiRe bundles on moduli"
   Te fo!mulate tke factorizatiok pioperty ioi our D-modu}es oi coR{oimal
blecks, we keed te kkow the be=kdary bekavieg: ef tke basic line bwadle Åí.

   CgBside! the diagram :

  Pg )Pb cr"llb gPg-1
M,,N )Do ut Mg-i,N+2/(Z/2)g Jffg-i,N+2

   Here Do is the open dense subset corresponding to smooth curves of the
irreducib}e divisor of Mg,N whose general point represents aR irreducible

curve with oRly one node. The }eft sqlla!e is cartesiak aRd zv has a structure

of C'-buftdle.

   TheR we have
          i
PROPOSITION
                       a'LglDo tzv"Cg-i•

   This result is analogous to the theorem of Beilinson and Manin which
states that the restriction of the Hodge line bundle to Do is again the Hodge

line bundle of the genus less by one.•

   UsiRg the above reslll{, we caR foTmu}ate the factoriz&tioR property ef

ike ccnfeimal blecks usikg the ftea;by cyc}e k:ctor a}oRg the be=Rdaiy
Ds. We develep Reces$ary ieckkiqges fg! tkis psrpese sllch as ike Rearby
cycle functer for twisted D-medules, ce!Tespondence with mekodremic D-
modules on the total space of a line bundle, etc.

   We have to care about the compactification of our Picard schemes and
D-modules on (singnlar) algebraic stacks.

4.2 We end this expositien by commenting on two points.
   The first is the problem of descent of the D-modules of conformal blocks.
It is c}ose}y coftRected with the so-called Sllgawara constructioR fer a U(l)-

casreRt algebra. We cak veiify the cempatibility eHoca}izatiofts aRd the
Sggawara cgRst;uctiok. Tke laite! esseptia]ly ;educes te ike ke&{ equa{iek.
   The seceRd cokcaras the structure of p.N(") as paentioned in 3.5. We

can analyze its structure in terins of HeiseRberg group by introduciRg the
moduli space of pointed curves with theta characteristics.
   For these, we refGr to [SU].
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