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A numerical criterion for admissibility of semi-simple elements

SAMPEI Usul

Abstract

In this article, we shall generalize a theorem of Cattani and Kaplan on hor-
izontal representations of SL(2). Their theorem plays an important role in the con-
struction of their partial compactifications of the classifying spaces D modulo an

arithmatic subgroup of Hodge structures of weight 2.

Introduction

A horizontal SLj-representation is a generalization of the notion of “(Hj)-
homomorphism” of SL; in the case of the classical theory of Hermitian symmetric
domains (cf., e.g., [Sa.2, III]). More precisely, let G = Gr := Aut(Hg,S) be the
automorphism group of the classifying space D of Hodge structures of weight w (see
§1). A representation p : SL2(R) — G is said to be horizontal at r € D if the
morphism p, : slp(R) — g of the Lie algebras is a morphism of Hodge structures
of type (0,0) with respect to the Hodge structures on sl(C) and gc induced by
i € U := (upper-half plane) and r € D respectively (see Definition (2.1)). In this

case, the pair (p,r) is uniquely determined by the pair (Y,r) € g x D with

1 0
(0.1) Y :=p, ( ) .
0 -1
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Conversely, a pair (Y,r) € g X D is said to be admissible if there exists a
representation p : SL2(R) — G horizontal at r and satisfying (0.1). The main result
in the present article is a numerical criterion for admissibility of a pair (Y,r) in the
case of general weight.

Given a pair (p,r) as above, one can refine the Hodge decomposition Hc =
@®H??, corresponding to r € D, under the horizontal action of sl3(C) at r, called a
Hodge-(Z, X 1) decomposition (see (2.7)). Our proof of the main result is based on an
elementary but useful observation (Corollary (2.11), see also Remark (2.12)), which

says that the transformation of the Hodge-(Z, X) decomposition by the inverse ¢!

_ a (01
ci=p exp4 Lo

yields a split mixed Hodge structure, called a mized Hodge-(Y,Ny) decomposition,

of the Cayley element

which is nothing but the limiting mixed Hodge structure of the associated SL;-orbit
p: U — D defined by p(gi) := p(g)r for g € SLa(R) (cf. [Sc, Theorem (6.16)] and
its proof). By virtue of this observation, we can view the relationship between the
pairs (p,r) and (Y,r) from a better perspective, and generalize a numerical criterion
[CK, Theorem (2.22)] for admissibility of (Y,r) in the case of weight 2 to the case of
general weight.

The author is grateful to all the participants of a special seminar at Osaka
University in February—March, 1992, especially to Professors Masaru Takeuchi and
Toshiyuki Tanisaki for stimulating discussions. The author is also grateful to the
referee for his valuable suggestions on the construction and the expressions of this

article.

§1. Preliminaries

We recall first the definition of a (polarized) Hodge structure of weight w.
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Fix a free Z-module Hg of finite rank. Set Hq := Q® Hz, H = Hp := R ® Hz and
Hcg := C ® Hz, whose complex conjugation is denoted by 0. Let w be an integer. A
Hodgé structure of weight won Hc is a decomposition

(1.1) Hc= @ H™* with oHPY = HI?,
pte=w

The integers
(1.2) hP9 := dim HPY

are called the Hodge numbers.

A polarization S for a Hodge structure (1.1) of weight w is a non-degenerate
bilinear form on Hgq, symmetric if w is even and skew-symmetric if w is odd, such
that its C-bilinear extension, denoted also by S, satisfies

S(H,oHP ") =0 unless (p,q) = (¢',9),
(1.3)
?79S(v,0v) >0 forall 0#ve HPI.
Remark (1.4) In the geometric case, i.e., the Hodge structure on the w-th

cohomology group H*(X, Q) of a smooth projective variety X C P¥ of dimension d

over C, we take as a polarization

S(u,v) := (—1)‘"(‘"_1)/2/ uAvApt®
X

for primitive classes u,v € H%, (X,C) ~ H%, (X,Qy) where n € H'(X, Q%) is the

prim prim

cohomology class of a hyperplane section of X.

For fixed S and {hP?}, the classifying space D for Hodge structures and its

“compact dual” D are defined by
D := {{H?"} | Hodge structure on Hc with dim HP? = hP4,

(1.5) satisfying the first condition in (1.3)},

D := {{H""} € D | satisfying also the second condition in (1.3)}.
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These are homogeneous spaces under the natural actions of the groups
(1.6) Gc := Aut(Hc,S), G =Gr:={9€Gc|gHr = Hr},
respectively. Taking a reference point » € D, one obtains identifications
(1.7) D ~Gg/Bc, D=~G/V,

where Bc and V are the isotropy subgroups of G¢ and of G at r € D, respectively.

It is a direct consequence of the definition that
O(2h, k), Uh®0) x -+« x U(hHH1=1) x O(hBY) if w = 2t,
(1.8) G~ { Ve~ {
)

Sp(2h, R Uh¥®) x -+ x U(hH*IY) if w =2t +1,

where k= 371 <1/2) ht+2=25 and h:= (dim H — k)/2 if w = 2¢, and h := dim H/2
if w=2t+ 1. It is an important observation that V is compact, but not maximal

compact in general. Hence D is a symmetric domain of Hermitian type if and only if

(t+1,t—=1),(¢t,t)or (t—1,t+1),
(1.9) h?? =0 unless (p,q) = and Att1t-1 =1 if w = 2t,

(t+1,t)or (t,t+1) fw=2t+1.

A reference Hodge structure r = {H??} € D induces a Hodge structure of

weight 0 on the Lie algebra g¢ := Lie G¢ by
(1.10) g " = {X € gc | XHP? C HP**9* for all p, q}.

One can define the associated Cartan involution 6, on gc by

(1.11) Or(X) =Y (-1°X*™° for X =) X" egc=Pog "

3
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This can be interpreted in the following way: Set

‘ HY = H:_U,O GHY 2 pH " g. ..
(1.12)
Hr—' s H;U‘—l,l @ H;U—a,a @ H:U-'S,s @ e
It is clear by definition that the isotropy subgroup of the decomposition Hc = H} @

H; induces the maximal compact subgroup

Uk) x O(k)  if w=2t,
(1.13) K ~ {

U(h) ifw=2t+1,
of G which contains V, and the Cartan involution 8, in (1.11) is the one associated
to K. Define a C-linear automorphism
1 on HY,
(1.14) E.:Hc — Hc by E,:= {
-1 on H .

Then the Cartan involution 6, in (1.11) can also be written as
(1.15) 0, X =(Int E,)X for X € gc.

We recall now well-known results on SLp-representations. Let £, be two

variables, and write

gm
e\™ | ey
(1.16) ( ) = ) (m=0,1,2,---).
n :
17111

A representation

f (m) f (m)
(1.17)  pm : SLz(R) — SLm41(R) defined by pm(g) ( ) = (9 ( ))
n
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is called a symmetric tensor representation of dimension m+1. It is known that the p,,
(m=0,1,2,---) are absolutely irreducible and constitute a full set of representatives
for the equivalence classes of finite dimensional irreducible representations of SLy(R).

We take the standard generators for the Lie algebras sla(R) and su(1,1)

which are related by the Cayley transformation Int ¢, where

- /0 1 1 =
) 1

(1.18) c1 1= exp — = — ,
4\1 0/ V2\i 1

as follows:
1 0 0 1 0 0
sh(R) 3y:= , Mg = , n_ =
0 -1 0 0 1 0

(1.19) Intq | ! l l
0 —i L[ ~i 1 L[ 1
ﬁU(l,l)a‘ZZ:’-— (z O), :E+!=§(1 i),1_2=§(1 —z)

The following lemma can be verified directly by using the monomial basis

(1.16) and the definition (1.19), and so we omit the proof.

Lemma (1.20). (i) In the above notation, Yp, := pm.(y) and Npy :=
pms(n4) satisfy
Yo(€™I7) = (m — 2)6™ 0,
Nt (§77797) = (m — j)Em™~3 717,
N (€770 = jE™ 71970
(i1) For the Cayley element cm := pm«(c1) € SLm41(C),

1o, where ¢ is the complex conjugation.

OCm = €y

cE2(emig?) = (H)m e,

(€)= (-1
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Remark (1.21). The Hodge structure on g;c := $l(C) induced by i €
U := (upper-half plane) ~ SLy(R)/U(1) coincides with the canonical decomposition
by the standard “H-element” (ny —n_)/2 (cf., e.g., [Sa.2, IL. §7]):
-1,1

gic= i + 8e+ 8¢ =P+t +p+ = {z-}c + {z}c + {z4}c.

§2. Horizontal SL;-representations

From now on, we assume that w > 0 and all Hodge structures of weight w

satisfy HP? = (0 unless p,q > 0.

Definition (2.1) (cf. [Sc, p.258]). An SLi-representation p : SLo(R) — G
is said to be horizontal at r = {HP*} € D if p.(z4) € ga"' := {X € gc | XH C

HEL9H for all p, q).

Remark (2.2). It is clear that an SLs-representation p is horizontal if and
only if p. : sla3(R) — g is a morphism of Hodge structures of type (0,0) with respect
to the Hodge structures induced by i € U and r € D, respectively. A horizontal SL,-

representation p induces an equivariant horizontal map 5 : P! — D with p(i) = r:

SLy(C) —— Gc

l l

P! L)D

This is a generalization to the present context of the notion of ‘(H;)-homomorphism’

in the case of symmetric domains of Hermitian type (cf., e.g., [Sa.2, II. (8.5), III. §1]).
Let p: SL2(R) — G be a representation horizontal at » = {HI"*} € D, and

set

(2.3) Yi=p.(y), Ni:=pi(ng); Z:=pi(2), Xi:=pu(zs).
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Notice that by (1.19) these are related under the Cayley transformation:
(2.4) Z =(Inte)Y, X4 =(Intc)Ny, c:=p(a).

(Y, N+) and (Z, X4) define direct sum decompositions of H and Hc whose
summands are
(2.5) PP .= NE(H(Y; A+ 2k) N Ker Ny),
(2.6) Q) = Xk (Hc(Z; A + 2k) NKer X)),
for all eigenvalues A € {0,%1,%2,--- £ w} of Y and Z and for k¥ > max {—A\,0},
respectively. Here we denote by H(Y; A+2k) etc. the eigenspace of an endomorphism
Y of H with eigenvalue A+2k. Since p is horizontal at r = {HP*?}, (2.6) is compatible

with this Hodge structure and we set

(2.7) QE\,\+2k)a+k,b+/\+k — QE\/\+2k) A Hf+k’b+’\+k (a,b > 0).

These form a refined direct sum decomposition which we call the Hodge-(Z, X.)
decomposition of (p,r) (cf. Remark (2.12) below). Transforming this by the inverse

¢! of the Cayley element, we define

A2k atkbbk 1 ~A(A+2K) atk b+ A+E
(2.8) P§ e =c IQS\ )a +E

(i) CQE\,\+2k)a+k,b+,\+k _ 02P§A+2k) a+kb+k _ PS’\“(’\“))”’\“‘H’\H,

_ k)a+kb+k _ b k -
c 1P§’\+2 Jat+kbt+k _ c 2Qf\z\+2k)a+k, Ak _ Q_,\,\+2(,\+k))a+,\+k,b+k.

Proof. It is easy to see, by definition, that cPiH'zk) = Qf\'\+2k). Hence, by

the first equality in (1.20.ii), we have

an\sz) _ UCP§A+2L-) _ c_10P§A+2k) _ c_1P§,\+2k) _ c_fo\sz)'
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On the other hand, by the second equality in (1.20.ii), the third and the second

equalities in (1.20.i), we see that on Pi’\“")

A+2k k! A
6_2:{1 mN_ lf/\ZO,
P2k QLN e ) <o

Taking their Cayley transforms, we see that on Qf\'\+2k)

A2k Ko ¥ ifA>0
A+RI - =
(2.10) ¢ ?= {

. o) .
Atk '\+_k ’Ai if A <O.

Thus, by the definition of the E\'\+2k), we have in both cases that

UQE\,\+2k) _ C__zQE\,\+2k) — X::Ft,\QE\,sz) — QE\;%) — Q(__,\'\+2('\+k)).

This together with g HATE AR _ prbtdtkatk oiolds the assertion (i).
By horizontality, X— € gg~' and X4 € g5, hence X2* € g™, This

together with (2.10) shows that

—2 ~(A+2k)a+k b+ A+k A (A +2k)a+kb+A+k A (=A+2(A+k))a+A+kb+k
T2 = X3a; = QY :

Thus we obtain the second equality in (ii). The first equality in (ii) follows from the

second. |

Corollary (2.11). Let (p,r) be as above. For each eigenvalue A of Y and

for k > max {—X\,0}, we see that

C® P§A+2k) _ @ P§A+2k)a+k,b+k

atb42k=w—2A
a,b20
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is a Hodge structure of weight w — A. Moreover, in the case A = k = 0, this is

S-polarized.
Proof. We should observe the behavior under the complex conjugation o:

b — kb+A+k —A4+2(A4k)) b+
aP§A+2k) atkb+k _ o 1QE\,\+2k)a+ bEAHE cQ(_A +2(A+k)) b+A+k,a+k

_ 2p(=A+2(A+K) b+A+ka+A+k 5 (A+2k) b+-k,a+k
=c"P2, = Py .

This shows the first assertion.
The representation p is trivial on Q((]O), hence Po(o)a’b = c‘ngo)a’b = ng)a’b,

and so the second assertion trivially holds. g

We call a direct sum decomposition in (2.11) the mired Hodge-(Y, Ni) de-

composition of (p,r).

Remark (2.12). We remark here some observations which are verified easily
by (1.20.i), their Cayley transforms and horizontality of p at r. A Hodge-(Z, X4)
decomposition and a mixed Hodge-(Y, V1) decomposition form “nests of diamonds”,
respectively. For example, in the case of weight w = 3, these nests of diamonds are

illustrated respectively as in Figures 1 and 2.

(Figure 1) Q(_sga’o
o
QU Q! Q) QU
((]0)3,0 ng)z,l ng)l,z ng)o,s , ng)z,l Q((]O)I,Z’
le)z,l Q£3)1’2 le)o,a le)1,2
Q@2 Q03
QPO
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(Figure 2)

P£3)3’3
2)3,2 2)2,3
P£2) Piz)
P£11)3,1 P£31)2,2 P£11)1’3 P_(_11)2’2
Péo)s,o PéZ)Z,l PéZ)l,Z Péo)o,s ’ PéO)Z,l Pé0)1,2'
P1(1)2,0 Pl(s)l,l P1(1)0’2 P1(1)1,1
P2(2)1,0 P2(2)0,1
P3(3)°’°

On these nests of diamonds, the complex conjugation by o sends respectively a sum-

E)a+kb+A+k —A+2(A+k))b+A+k,a+k
mande\’\+2)“+’+’\+ Q(_,\+(+))++“+

to a summand which are symmetric

with respect to the origin of the diamonds, and a summand P§A+2k)a+k’b+k to a

P§'\+2k)b+k’a+k which are symmetric with respect to the vertical axis. The

(A+2k)a+k,b+A+k
A

summand

operator X4 (resp. X_) sends a summand @ one step down (resp. up)

to a summand Qf\i-;z+2(k—1))a+k—1,b+A+2+k—1 (resp. QE\,\_—22+2(k+1))a+k+1,b+A—2+k+1)’
and X4 are inverse to each other up to non-zero constant between these summands
whenever both summands actually appear in the nest of diamonds. Similarly, the

pO+2E)atk btk
A

operator N4 (resp. N_) sends a summand one step down (resp. up)

to a summand P§:\’-02-2+2(k—1))a+k—1,b+k-—l (resp. P§1\32+2(k+1))a+k+1,b+k+l)’ and Ny
are inverse to each other up to non-zero constant between these summands when-
ever both summands actually appear in the nest of diamonds. The Cayley element
¢ transforms the second nest of diamonds together with the action of the operators
Y, N1 to the first nest of diamonds together with the action of the operators Z, X4:

b+k A+2k kb+A+k
cPOFIIFRbHE _ o0t Ja+kb+A+E

By using these operators, we can explain why the summands outside the nests
of diamonds vanish in the following way. We claim first that Qf\'\“k)“"'k’b""\"'k =0 for
A>0and b <0. Indeed, X Atk g injective on this summand by the Cayley transform

of the third equality in (1.20.i)). On the other hand, looking at the Hodge type, we see
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that X’\+’°C;?(’\+2k)a+,c btk - Q(_ '\_22k+2(’\+2k))a+’\+2k b — o by horizontality. Thus

we get our claim. It follows by symmetry under the complex conjugation o that
Q/(\/\+2k)a+k,b+/\+k = 0 for A < 0 and a < 0. Finally, by the inverse of the Cayley
transformation, we have P§"+2k)a+k’b+k =0for A >0 and b < 0, and for A < 0 and
a <0.

We call the length of the side of the biggest diamond in a nest the size of the
nest of diamonds.

Another remark is that a mixed Hodge-(Y, N%) decomposition is nothing
but the limiting split mixed Hodge structure of the associated SLa-orbit p: U — D,
p(gi) := p(g9)r (¢ € SL2(R)), and the monodromy weight filtration L is described as

Li = @< B PO (cf. [Sc, (6.16)] and its proof, [CK, pp. 13-14]).

In the above notation, for all A, a and b, put

ny = dimgp H(Y;A) = dimcHc(Z; A),

, A)a+kb+k A)a+kbtr-k
Py’ = dime PO = dime @R

(2.13)

Notice that, by construction, the middle terms and the terms on the extreme right

hand side of the second equality in (2.13) are independent of k (cf. Remark (2.12)).

Lemma (2.14). For (p,r) as above, the following hold:

Qo > pyP =ny —nyye forall 0 <\ < w.
at+b=w-A
() ph*=pSt forall A, a,bwith0<A<w,a>0,b>0anda+b=w—\
(iii) ha,b — ha+1,b—l - (p8+1,b——1 + p¢11+1,b—2 4o :+11 0)
+ (5t +pf M 4 )

for alla, b witha > 0,b >0 anda+b=w.

Proof. We first observe that there is an exact sequence
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0 P® — HY;N) 5 HY; A +2) -0
for every A > 0 (and N_ yields a right splitting). (i) and (ii) follow from this and
(2.11).
In order to show (iii), we look at the morphism X, : Het1:b-1 _, fa:b angd

its kernel and cokernel:

Ker — (()o)a+1,b—1 @le)aﬂ'w @“'@Ql(,ll—ll)a+l,b—l

c
ol PO(O)a+l,b—1 @ Pl(l)a+1,b—2 @@ Pb(le)a+1,0,

Coker ~ QP 9 Q") ** @ ... 0 Q1)
~ Q((JO)a,b ® le)a—l,b+l @D an) 0,b+a

c
jod PO(O)a,b 69Pl(l)a—l,b ®--- @P‘Sa)o,b.
Looking at the dimension, we get (iii). B

Definition (2.15). We call a set of integers {pg’b}, which satisfies the con-
ditions (i), (ii) and (iii) of (2.14), a set of primitive Hodge numbers belonging to
{hp’qanz\}‘

§3. Admissible R-semi-simple elements
We continue to use the notation in the previous sections.

Proposition (3.1). Given a pair (Y,r) € g x D, there exists at most one

representation p : SLo(R) — G which is horizontal at r and p,y =Y.

Proof. Since y and 2 generate sl2(C), it is enough to show that if such a
representation p exists then the eigenspaces of Z, and hence Z itself, are determined
by the pair (Y,r). Actually, we shall show by induction on the size w of the nest of
diamonds of the Hodge-(Z, X1) decomposition (2.7) (cf. Remark (2.12)) that this

nest of diamonds is completely determined by (Y,r).
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First notice that
(3.2) Y =i(Xy — XO).

For a subspace M of Hc, we put, throughout this proof,
Mt := {v e Hc|S(v,ou) =0 for all u € M},

projection{M — HP?} := Im{M C Hc = @ HP - HP9},
p'+e’=w

Then we see that
@)0w projection{Y“’H:”’0 — Hf’"’},

Q(w) kw=k _ projection{YkQSUw) o Hf’w-k} (0<k<w),

w—2k
4
D oA = n QW)
0<A<w—-1
Euui__ll)l’w_l = projection{Y'”—l( @ Q(_’\g‘”’o) - H,l"”‘l},
0<A<w—1

QU5 717 = projection {Y*QUV T HIFReTIH (0 <k Sw -1,

D e =mn( @ @¥)

0<ALw-2 w—1<A<w
vaw_—22)2,w—2 = projection{Y'”_2( @ Q(_’\gw’o) N Hr2,w—2},
0<A<w-2

QU 72 = projection { YU ™E — HIRO2 M (0 <k <w-2),

Thus QE\'\_);Z—'H’C"\_,C (0 <X <w,0 <k <)) are determined. Taking the complex
conjugation by o of these, we get Q(_'\gi;kk’w_'\'*k = aQE\'\_);;C—'Hk"\_k (0<A<w,0<

k < )). Applying the induction hypothesis to the nest of diamonds of size < w —2 in

4
A w=2A+k, -k A) A-kw—A+k
(@ (@ oaiz))

0<A<w
0<k<A

(cf. Remark (2.12)), we get our assertion. §
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Definition (3.3). A pair (Y,r) € g X D is admissible if there exists a rep-
resentation p : SLa(R) — G which is horizontal at r and p.(y) =Y.
\ The set of primitive Hodge numbers {p3"} belonging to {*9,n,} is called
the type of an admissible pair (Y, r). ‘

Y € g is said to be admissible if (Y,r) is an admissible pair for somer € D.
Now we prove the following numerical criterion for admissibility:

Theorem (3.4). Y € g is admissible if and only if Y is semi-simple over
R whose eigenvalues are contained in {0,%1,+2,--- ,+w} and there exists a set of
primitive Hodge numbers {pi’b} belonging to {hP9,ny}, where n) := dim H(Y; A)
(cf. Definition (2.15)).

Proof. Since Y is semi-simple over R, the eigenspaces H(Y; A) are defined
over R and H(Y;A) and H(Y;p) are S-orthogonal unless A + ¢ = 0. Therefore
H(Y;)) and H(Y;—\) are S-dual.

Since ny: —nyi42 > 0 for A’ > 0 by the condition (2.14.i), we can take a direct

sum decomposition
(3.5) HY;)) =PV g PMD g P g ... for x>0

with dim P/{’\+2k) = n42k —Na42k+2. Moreover, in the case A = 0, the decomposition

(3.5) can be taken to be S-orthogonal. We denote the S-dual decomposition by
(3.8) HY;-\) =P o P3P Pl g... (120,

i.e, P£’;+2k) and P/{’H’zm) are S-orthogonal unless k = m.

By the conditions (i) and (ii) of (2.14), we can choose a Hodge decomposition

(3'7) C ®P§'\+2k) — @ P§,\+2k)a+k,b+k for A >0,k >0,

a4 b+2k = w—2A
a,b>0

—155—

15



with dimP’{'\+2k)a+k’b+k = p;’_?_zk. Moreover, in the case A = k£ = 0, the Hodge
structure (3.7) can be chosen to be S-polarized. We denote the S(-,o-)-orthogonal

decomposition by

(3.8) C @ P20+ _ D PO IRIAE () 5 0 &5 )

a+b42242k = wiA
a,b>0

ie., S(P£1A+2(A+k))a+A+k’b+A+k,0P§A+2k)a’+k'bl+k) = 0 unless (a, ) = (', ). Notice

(=A+2(A+k)) a+r+k b+ A+k _ p(A+2k) a+A+-k,b+A+k
that P, =P, .

Now we consider the cases A > 0 and A < 0 altogether. For £ > max{—),0}

and a > b, let

A+2k) atk,b+k . b
(3.9) e 11<5 <piin)

be a C-basis of P’{'\+2k) atkb+k such that

B a a w— A+ 2k
(3.10) S(v(_,\',\;!'zo"'k)) +A+k,b+)\+k,av§j\;2k) +k,b+k) =5J‘j'(—1)“z“’ ,\/( 4;0 >

In the case a = b, we can moreover take the above basis (3.9) to consist of real

elements. Put

(3.11) gx;uzk)wk otk _ f\A;{-2k) a+k,b+k (a>b).

Define now C-linear endomorphisms Ny of Hc by

()\+2k)a+k btk g (Q+D42(k-1) atk—Lbtk1

N_ vg)\j—zk) a+k, b+k (/\ + L)v (A 2)+2(L+1)) a+k+1, b+k+1,
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for all A, non-negative a, b and k > max{—\,0}. By construction, it is easy to see that
N4 commute with the complex conjugation ¢ and satisfy the commutation relations:
[Ny, N.] =Y, and [Y,Ny] = £2Ny, respectively. It is also easy to verify that

S(Nx-,-)+ S(-, Nx-) = 0, respectively. Indeed, for example, one can compute as

—=A42(A+k)) a+A+k,b+A4+k A—2)42(k+1)) a+k+1,b+k+1
S(N, o HH2OH0) ooy 2 akD) )

_A)j
+ S(Uf_j\i\;z(uk)) a+,\+k,b+/\+k’N+avf\(j2—’?+2(k+l))a+k+1,b+k+1)
- 1)! ! ! !
:6jj’("1)aiw"A+2(/\ + k)(/\ +k 1)(k + 1) + 6jj'(—1)aiw_'\(k + 1)k(/\ + k) ~0

(A + 2k)! (A + 2k)!

Thus we see that N3 € g and hence there exists a unique representation
(3.13) p: SLy(R) — G such that p,y =Y and p,nt = Ny, respectively.

By using the Cayley element ¢ := p(¢1) € G¢, we define

(3.14) Qf\)\+2k)a+k,b+)\+k — cP§A+2k)a+k,b+k, HPY .— @ Qf\,\+2k)a+k,b+,\+k’

atk=p
b4 Atk=q

where, on the right hand side of the second equality, the summation is taken over all
the eigenvalues ) of Y, all integers £ > max{—A,0} and all non-negative integers a, b

with @ + b + A + 2k = w. This defines a Hodge structure. Indeed, by using (1.20.ii),

one sees that
A4-2k kb4+A4-k 2 kb - A+2k kb4 k
o E\+2 Ya+kb+A+ =O_CP§/\+k)a+,+k=c laPi +2k) a+k,b+

- k ~A+2(A+k)) b2 +k,a+A+k —A+2(A+k)) b+2 k
—c 1P§"+2")”+ otk _ cPL\” (A+k)) b+A+k,a+2+ =Q(_,\ +2A+R) b A+ katk

and hence o H?? = H%?. One can moreover verify that (3.14) is S-polarized. Indeed,

the direct sum in (3.14) is S-orthogonal by construction and, for

A4-2k) a+k,b+k A42k)a+k,b+k A42k) a4k, b+ 4+k
cvf\,j )a ,cvg’j, e EQ& ) C HPY,
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one can compute as

oy b b

b2 (A+2k)a+kb+k 1 (2R athb+E
12778 (ev ,c lov vy )

~b=2A 2 (A+2k)a+k b+k (A+2k)a+k b+k
® S(civy; , oy )

ja—b-2+A+2k o (= A+2(A+k))a+A+k bHA+E _ (A+2K)a+kbtk
S(vZ AJ 10Uy, 5 )

g we A4 2k A+ 2k
=6, ;30 b+2k+204 A/( ; )=6jj'/( ; )

Thus we have {H?P?} € D.
Finally, we claim that the representation p in (3.13) is horizontal at {HP?} €
D. Indeed, since Z = (Int ¢)Y, X4 = (Int ¢)/V4, one can compute, by (1.20), as

A
ZQ(A+2k)a+k,b+A+k — CYP(A+2k)a+k,b+k _ QE\ +2k)a+k,b+/\+k,

XiQ(,\+2k) at+kb+A+k cNy P(’\+2k) a+kb+k

_ P((/\:h2)+2(k=|:l))a+k=Fl,b+k=Fl _ Q((A:t2)+2(k:Fl))a+k:F1,b+A+k:hl
= 12 = W2 .

This completes the proof of the theorem. g

We remark that the condition on {r)} in Theorem (3.4) coincides with the
one in [CK, (2.20)] in the case of weight 2.

Fix identifications D ~ G/V and R ~ G /K, where K is a maximal compact
subgroup of GG containing V and R is the associated Riemannian symmetric domain,

and let 8 be the associated Cartan involution. We denote the projection by
(3.15) m:D~G/V->G/K~R

Proposition (3.16). We use the notation in Theorem (3.4). Let Y € g be

an admissible element.
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(i) Ifr € D forms an admissible pair (Y,r), then 6,Y = Y, where 0, is the
Cartan involution on ¢ induced from (1.11).
(i) IfOxY = —Y, then there exists r € 7~}({K]) such that (Y,r) is an
admissible pair
(iii) For each set of primitive Hodge numbers {p}"} belonging to {k?9,n,},
Gy := {g € G| (Adg)Y = Y} acts transitively on the set {r € D | (Y,r) is an

admissible pair of type {pi’b}}.

Proof. (i) follows from (3.2) and (1.11).

(ii): Assume 0gY = Y. Take a point r' € D at which Y is admissible and
let K' be the maximal compact subgroup of G associated to the Cartan involution
0,:. By the result in (i) for (Y,r') and the assumption, ¥ can be viewed as a tangent
vector to R at [K'] as well as at [K]: Y € Tr([K']), Y € Tr([K]). By the transitivity
of tangent spaces of a Riemannian symmetric domain, there exists g € G such that
(Int g)K’' = K and (Adg)Y =Y. Hence the admissibility of (Y,r') implies that of
((Adg)Y, gr') = (Y,gr'), where gr' € =~1([K]).

(iii): Suppose that r,r' € D are points at which Y is admissible of the same
type {pi’b}. Let p, p' : SLa(R) — G be the corresponding representations. It is
enough to show that there exists g € G such that p' = (Int g)p. Indeed, if this is the
case, then (Ad g)Y = (Adg)(ps(y)) = pi(y) =Y and gr = gp(i) = p'(s) = r'.

Since (Y,r) and (Y, r') have the same type {pi’b}, the types of the irreducible
decompositions of p and p’ coincide. Now we use the well-known fact that any finite-
dimensional irreducible representation of SLj is isomorphic to a suitable symmetric

tensor power representation (cf. §1). Thus we get our assertion. i

Appendix

In this appendix, we shallgeneralize the results in [CK] and construct a partial
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compactification of the classifying space '\D, I' = Gz := {g € GlgHz = Hz},
of Hodge structures in general weight, adding those points which correspond one-
parameter degenerations of type II. Since the arguments are analogous to those in
[CK], we shall only indicate the outline of the construction. We use the notation in

previous sections.

An admissible semi-simple element Y € g is of type IIif its eigenvalues are 0

or +1.
A horizontal SLa-representation p is of type ITif so is Y = p(y).

A period map ¢ : A* — I'\D from the punctured disc, i.e., a holomorphic
map with horizontal local liftings, is of type II if its monodromy logarithm N :=
(1/m)log 4™ satisfies N2 = 0, where v is the monodromy of ¢ and m is the least

positive integer such that the eigenvalues of v™ are all unity.

Throughout this appendix, we shall consider only those Y, p and ¢ of type 11.

(A.l) Let H be an R-vector space underlying Hodge structures of weight
w, and S the polarizing bilinear form on H (see §1). For an isotropic subspace Wy, of
H, we have a filtration 0 =: Wy, C W; C Wy = WIJ‘ C W_, := H, where WIJ‘ means
the subspace of H perpendicular to W) with respect to S. Set ny := dim Wy /Wy 4;.
We assume that there exists a set of primitive Hodge numbers {p‘;’b} belonging to
{hP4 1} (see Definition (2.15)). We denote by S the non-degenerate bilinear form
on Wy/Wj induced by S. Let ¢ be a polarizing bilinear form of a Hodge structure
on Wic of type {pg'b}. Two such forms are considered to be equivalent if they are

different only up to a positive multiplicative constant.

Definition(A.1.1). Given Wy,p := pa’b and ¢ as above . The associated
A
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boundary component B = B(W1,p,¢) = BY(W1,p) x BY~1 (W, p, ¢) is defined by

BY (W1, p) : classifying space for S-polarized Hodge structures on (Wo/Wh)c

b
of type {py"}.

B¥~Y(W1,p, @) : classifying space for ¢-polarized Hodge structures on Wic

b
of type {p7"}.

The boundary bundle B = B(Wy,p) = B¥(W1,p) x B¥~1(Wy,p) is defined
as the disjoint union of all boundary components B(W1,p,¢) where ¢ runs over all

equivalence classes of polarizing forms on Wi of type {p‘ll’b .

Theorem(3.4) shows that for every boundary bundle B(Wji,p) there exists
an admissible element Y € g with the set of primitive Hodge numbers p and W; =
H(Y;1). Theorem(3.4) and Proposition(3,16,iii) (and some argument in linear alge-
bra) show that for every boundary component B(W1i,p, ¢) there exists a horizontal

SLy-representation p such that Wi = H(Y; 1),p§’b = dim P}A}a’b and ¢ = S(N_-,-).

Definition (A.1.2). Aboundary bundle B(W1,p) is rational if the isotropic
subspace Wi C H is defined over Q. A boundary component B(W1,p, ¢) is rational
if Wi and the form ¢ are defined over Q. We denote by D** C D* the union of
all rational boundary components and the union of all rational boundary bundles,

respectively.

(A.2) Let (Wh,p,¢) be a polarized isotropic subspace, and {P§A)a’b} €
B(Wy,p,¢) a point in the associated boundary component. Then these are trans-
formed by g € G to the polarized isotropic subspace (¢gW1,p,(g71)*¢) and the point
{gP)EA)a’b} € (gWh,p,(g71)*¢), respectively. This defines a natural action of G on
the union of all boundary components, which restricts to an action of Gq on D* and

D**.
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Notice also that ¢ € G transforms an admissible pair (Y,r) € g x D to the
admissible pair (Ad(g)Y, gr), and an SLs-representation p : SL2(R) — G horizontal

at r € D to the SLs-representation Int(g)p horizontal at gr.

Definition(A.2.1). For a boundary bundle B = B(W),p), we define its
normalizer N(B) := {g € G |gB = B} and its centralizer Z(B) := {g € G |g|g = id}.
Let Y € g be an admissible semi-simple element such that (Wy,p) = (H(Y;1),p).

We denote by Gy the isotropy subgroup of Y in the adjoint action of G, and G(Y) :=

{9 € Gy | det(g|w,) = 1}.

In order to express these groups by matrices, we take a basis of H = H_; &
Ho @ Hy, Hy := H(Y;A), subjected to the decomposition so that the bilinear form S

becomes

o 0 J
o J
S = ( ) fwisodd, | O £I O | if wis even,
-J 0
J O O

where J is an antidiagonal matrix J = antidiag(1,...,1), Then the matrices of N(B)

are of the form

a O O
* go O | where go € Aut(Ho, S|n,), 91 € GL(n1,R), g1 = J g7/,

* * g1

and

Z(B)={g € N(B)|go = 2Iy,g1 = al1 (e € R")},
Gy = {g € N(B) | the %’ s are 0},
G(Y)={g € Gy|detg, =1}.

For these expressions, one can see easily
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Proposition(A.2.2). (i) N(B),Z(B),Gy,G(Y) are all independent of the

choice of a set of primitive Hodge numbers p.
- (ii) N(B) is a parabolic subgroup of G preserving the filtration 0 = W, C

Wi CcWo=WtcWw_,=H.

(iii) Z(B) is a closed normal subgroup of N(B).

(iv) G(Y) is a semi-simple group, acting transitively on B with compact
isotropy subgroup.

(v) N(B) = G(Y) - Z(B) is an almost direct product, i.e., G(Y)NZ(B) is

finite.

Let g = £+ p be a Cartan decomposition with Y € p, t a maximal abelian
subspace, containing Y (i.e., t is the intersection of g with a maximal R-split Cartan
subalgebra of gc), m the centralizer of t in & and ® C t* the system of restricted
roots for the adjoint action of t on g. Then we have a root space decomposition
g=tOM®Y .o %a, Where gy := {X € g|Ad(H)X = o(H)X (H € )}.

If we select a basis of H, compatible with the choice in (A.1), with respect

to which the matrices of t are of the diagonal form

diag(—A1,...,—Ar) @ diag(A,,..., A1), w: odd,
H(A, . o0 0) = {

diag(—A1,...,—A;) @ diag(0,...,0) @ diag(A,,..., A1), w: even,
where r is the R-rank of g and A; € R. Notice that Y = (1,...,1,0,...,0), and
that the elements H; := H()1,...,A,) with A; = §;; form a basis of t and define the

lexicographic order of the roots in which the system of the positive roots ®* contains

{a € ®|a(Y) > 0}. Let & (1 < i <) be the basis of t* dual to H; (1 <i<r).

Then the positive roots are calculated as
Let us denote t:= )", g+ Ga; R :=expt,T := exp t and by K the maximal
compact subgroup of G with & := Lie K. Then one has the Iwasawa decomposition

G = RTK. This induces the corresponding decompositions:
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Proposition(A.2.3). (i) N(B) = RTKy, where Ky = K N Gy.

(il) Z(B)=(RNZ)TNZ)IK NZ), where Z = Z(B).

(iii) Let g(Y) := LieG(Y). Then tNg(Y') is a maximal abelian subspace of
pNg(Y), ¥ (Y) := {a € @t |(Y) = 0} is the system of positive roots for the adjoint
action of tNg(Y) on g(Y') and tNg(Y) = 3 ,cp+(y) 9a (because of the compatibility
of the orders), whence one has G(Y) = (RN G(Y))(T NG(Y)) (K NG(Y)).

(iv) Letr € D be a point with which Y forms an admissible pair and whose
isotropy subgroup V; of G is contained in K (cf. Proposition(3.16.ii)), and let I, be
the isotropy subgroup of N(B) at b = b(Y,r) := {P§A)a’b} € B(Y,r) C B. Then one
has V., NGY)Cc L,NGY)Cc KNG(Y), I, NRT C Z(B), I, = (RT N Z(B))(K N I).

The proof is similar to those for [CK, (3.28), (3.36), (3.40)]. Our present

assumption ‘type II’ will be used in the proof of (iv) of the above proposition.

(A.3) Now we choose as t a maximal Q-split Cartan subalgebra of g and
choose a maximal compact subgroup K of G such that t C p for the associated Cartan
decomposition. Let t* be the positive Weyl chamber, and t+ its closure. We denote
by & the set of complete representatives of the Gq-equivalent classes of Q-rational
admissible element Y of type Il in tF. It is easy to see by definition that & is a finite
set and that, for any admissible element Y € gq of type II, there exists ¢ € Gq
satisfying Ad(g)Y € G.

Definition(A.3.1). The boundary bundles B(Y,p) forY € & and p being a

set of primitive Hodge numbers compatible with'Y will be called the standard rational

boundary bundles.

Let # : D — G/K be the canonical projection. By Proposition(3.16.ii)

and Remark(2.12), one can choose a reference point ry, € 7~ ([K]) C D for each
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compatible pair (Y,p) with ¥ € &, so that (Y,ry,) is an admissible pair. Let
B(Y,ry,) be the boundary component contained in the boundary bundle B(Y, p).

Let G = RTK be the Iwasawa decomposition in the presrnt context.

Definition(A.3.2). A Siegel set in G is defined as 0 = wpT)\K, where
wr C R is a compact subset and Ty := {t € T |e*(t) > X (a € ®*)} for a positive
real number .

The extended Siegel set in D* is the subset o* = UYEG,p oyby, C D*, where
oy = o N N(B(Y,p)), by, = b(Y,ry,) := {PM**} € B(Y,ry,) C B(Y,p), and the

union is taken over the finite set of all compatible pairs (Y,p) with Y € G.

Notice that the extended Siegal set o* in D* is independent of the choice
of a set of complete representatives of the reference points ry, € #~!}([K]) ¢ D. It
is known that a Siegel set o in G' has the Siegel property: for any g € Gq, {y €
I'|yo Ngo # 0} is a finite set. Moreover, if the subset wp and the constant )\ are
adequately chosen, then there exists a finite subset C' C Gq containing 1 such that
G =TCo and D* =TCo".

Let 7y, : N(B(Y,p)) — B(Y, p), sending g to gby,, be the natural projection.

Definition(A.3.3). Let U; C B(Y,p) be an open set, U an open neiborhood
of 1 € K, and X a positive real number. Then the open set, in D, V(U1,U,, A) :=
{gryplg € w}z;(Ul)Uz, e*(g) > 0 (« € ®,a(Y) > 0)} will be called a tube over

U1 C B(Y,p)

Theorem(A.3.4). (i) The sets U(Uy,Uz, A) := (U UV (U;,Us, N)) No?*,
together with the natural topology on ¢' := ory, C D, form a basis of a Hausdorff
topology T* on the extended Siegel set o*.

(ii) Letge€ G andz € 0. If go € o*, then, for any T7*-neighborhood U’

of gz € o*, there exists a T*-neighborhood U of z € o* such that g No* CU'. If

—165—

25



gz ¢ o*, then there exists a T*-neighborhoos U of z € o* such that g No* = {.

The proof is analogous to those of [CK, (4.16), (4.25)]. In the proof, the
following lemma will play an important role, and a Hodge-(Z, X1) decomposition

will also used.

Lemma(A.3.5). Let W C RT and V C Ky be open subsets satisfying
(i) W(Z(B(Y,p)) N RT) C W and

(iil) V(ly,,NKy)CV.

Then there exists an open subset U C B(Y, p) such that xy}(U) = WV.

This lemma is proved by using various kind of the Iwasawa decompositions
in Proposition(A.2.3).

As in [Sa.1], the results in Theorem(A.3.4) will be transformed to the corre-
sponding assertions on the fundamental domain * := Co* in D* for the action of T,

and finally one gets a Satake topology 7T on D* which has the following properties:

Theorem(A.3.6). (i) The topology * on D* induces the topology T* on

(ii)  The operations of T are continuous.
(ili) KTz NTz',z,z' € D*, then there exists T' -neighborhoods U,U' of
z,z' € D* such that TU NTU' = §.

(iv) For each z € D*, there exists a fundamental system of T'-neighbor-

hoods {U} of z € D* such that YU =U for v €y and yU NU = B for v ¢ T.
As a corollary, one obtaines

Corollary(A.3.7). the quotients I'\D*,I'\D** endowed with the topologies
induced from 17 have the following properties:

(1) T\D* and I'\D** are locally compact and Hausdorff.

—166~

26



(ii) T\D cT\D** is open and everywhere dense.
(iii) T\D* = [[T(B:)\Bi, where B; runs over a finite set of complete rep-
resentatives of I'-equivalence classes of rational boundary bundles, and I'(B;) := (I'N

N(B;))/(TNZ(B;)) are arithmetic subgroups of the semi-simple groups N(B;)/Z(B;).

(A.4) Let (Y,r) € g x D be an admissible pair, p the corresponding
horizontal SLs-representation, and g : U — D the associated horizontal embedding

of the upperhalf plane. Then, as [CK, (6.17)], one obtains

Proposition(A.4.1). If p is defined over Q, then in the Satake topology

lim exp(tY)r =_ lim p(z) = b(Y,r) € D**.
t—oo Im z—o00

This is an analogous result to [Sa.2, (8.1) and its proof].

The following theorem will be proved similarly to [CK, (6.1), (6.18)]. A proof
is based on the SLy-orbit theorem in [Sc], the Iwasawa decompositions (A.2.3), the
Satake topology (A.3.6), (A.3.7) and Theorem(3.4) and Proposition(3.16).

Theorem(A.4.2). (i) Let ¢ : A* — I'\D be a period map of type II.
Then ¢ can be extended continuously over the puncture to g : A — I'\D**.

(ii) Let b € T\D** ‘be an arbitrary point. Then there exists a period map
¢ : A* = T\ D of type II such that }i_r}(l)go(t) =b.
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