
A numerical criterion for admissibility of semi-simple elements

                         SAMPEI USUI

       Abstract

       In this article, we shall generalize a theorem of Cattani and Kaplan on hor-

izontal representations of SL(2). Their theorem plays an important role in the con-

struction of their partial compactifications of the classifying spaces D modulo an

arithmatic subgroup of Hodge structures of weight 2.

       Introduction

       A horizontal SL2-representation is a generalization of the notion of "(Hi)-

homomorphism" of SL2 in the case of the classical theory of Hermitian symmetric

domains (cf., e.g., [Sa.2, III]). More precisely, let G = GR : = Aut(HR,S) be the

automorphism group of the classifying space D of Hodge structures of weight w (see

gl). A representation p : SL2(R) - G is said to be horizontal at r E D if the

morphism p* : s[2(R) - g of the Lie algebras is a morphism of Hodge structures

of type (O,O) with respect to the Hodge structures on s[2(C) and gc induced by

i E U := (upper-half plane) and r E D respectively (see Definition (2.1)). In this

case, the pair (p,r) is uniquely determined by the pair (Y, r) E g Å~ D with

(o.i) y:=p*(8 e,)
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       Conversely, a pair (Y, r) E g Å~ D is said to be admissible if there exists a

representation p : SL2(R) -. G horizontal at r and satisfying (O.1). The main result

in the present article is a numerical criterion for admissibility of a pair (Y, r) in the

case of general weight.

       Given a pair (p,r) as above, one can refine the Hodge decomposition Hc =

oH9'q, corresponding to r E D, under the horizontal action of s[2(C) at r, called a

Hodge-(Z, XÅ}) decomposition (see (2.7)). Our proof of the main result is based on an

elementary but useful observation (Corollary (2.11), see also RÅímark (2.12)), which

says that the transformation of the Hodge-(Z, XÅ}) decomposition by the inverse c-i

of the Cayley element
                         c-p (exp \' (? 5))

yields a split mixed Hodge structure, called a mixed llodge-(Y, IVÅ}) decomposition,

which is nothing but the limiting mixed Hodge structure of the associated SL2-orbit

p'V : U - D defined by pN (gi) := p(g)r for g E SL2(R) (cf. [Sc, Theorem (6.16)] and

its proof). By virtue of this observation, we can view the relationship between the

pairs (p,r) and (Y, r) from a better perspective, and generalize a numerical criterion

[CK, Theorem (2.22)] for admissibility of (Y, r) in the case of weight 2 to the case of

general weight.

       The author is grateful to all the participants of a special seminar at Osaka

University in February-March, 1992, especially to Professors Masaru Takeuchi and

Toshiyuki Tanisaki for stimulating discussions. The author is also gratefu} to the

referee for his valuable suggestions on the construction and the expressions of this

article.

       gl. Preliminaries

       We recall first the definition of a (polarized) Hodge structure of weight w.
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Fix a free Z-module Hz of finite rank. Set HQ : = QX Hz, H = HR := RX Hz and

Hc : = CXHz, whose complex conjugation is denoted by a. Let w be an integer. A

Hodge structure of weight w on Hc is a decomposition

(1.1) Hc=e Hp,q with aHp,q=Hq,p.
                       p+g=w
The integers

(1.2) hp,q := dimHp}q
are called the Hodge numbers.

       A polarization S for a Hodge structure (1.1) of weight w is a non-degenerate

bilinear form on HQ, symmetric if w is even and skew-symmetric if w is odd, such

that its C-bilinear extension, denoted also by S, satisfies

                S( HP,g, aHP',g') = O unless (p, q) = (i q'),
(1.3)

                iP-qS(v, av) År O for all Ofv E HP'g.

       Remark (1.4) In the geometric case, i.e., the Hodge structure on the w-th

cohomology group HW(X, Q) of a smooth projective variety X c PN of dimension d

over C, we take as a polarization

                  S(u, v) : = (-1)W(W-i)/2 fx u A v A nd-W

for primitive classes u,v E HpW,i.(X, C) cy HpW,i.(X, stX) where n E Hi(X, R}) is the

cohomology class of a hyperplane section of X.

       For fixed S and {hP'q}, the classifying space D for Hodge structures and its

" compact dual" D are defined by

          b := {{HP'g}1 Hodge structure on Hc with dimHP'g = hP'q,

(1.5) satisfying the first condition in (1.3)},
          D := {{HP'g} E D 1 satisfying also the second condition in (1.3)}.
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       These are homogeneous spaces under the natural actions of the groups

(1.6) Gc := Aut(Hc, S), G =: GR :== {g E Gc lgHR = HR },

respectively. TakiRg a reference poiRt r E D, eRe e5taiRs ideRtificatioR$

(1.7) bcti GclBc, D2t CIV,

where Bc and V are the isotropy subgroups of Gc and of G at r E D, respectively.

It is a direct consequence of the definition that

(i.s, . ,, ( gg,2 ,},kk .. ( Z::l:l : III ( Z:illliww, ?Å~. 2.(ijl•1 ii- == 2t•

where k :== :lll)•ls[,/2] ht+2J,tww2J and h := (dimH - k)12 if w : 2t, and h :== dim .EI12

if w = 2t + 1. It is an important observation that V is compact, but not maximal

compact in general. Hence D is a symmetric domain of Hermitian type if and only if

(1.9) kP'g =e unless (p, g) =

       A reference Hodge structure r

weight O on the Lie algebra gc := Lie

(2.le) gt'-S :rr {X G sc lXff.P'g c ff,PÅÄS'e-S for &ll p, g}

One can define the associated Cartan involution e

(1.11) e,(X) := Åí(ww1)Sxs,-s

                    s

 (t + 1,t - l), (t, t) or (t - l,t+ l),

        and ht",twwi = l ifw= 2t
                               ,

 (t + 1, t) or (t,t+ 1) if w= 2t + 1.

 == {H.P'q} E D induces a Hodge structure of

Gc by

                       .

         r on gc by

 for X = ]!Åí XS'rw" G gc = O gtrS.

          ss
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This can be interpreted in the following way: Set

                  Hr+ :me llrW'O O H.W-2'2 O H,W-4'4 $ - • • ,

(1.12)
                  Hr- :rm HrW-1" e H.W'3'3 OH,W-5'5 (D ''' .

Ie is clear by defiRltiolt that the isotrepy sllbgrggp of the decempesltieft ffc = ll.+ tw

                                                                 '".ny induces the maximal compact subgroup

,.,, ,,.(Z:jXO`k' l.iW.;':l•.,,

of G which contains V, and the Cartan involution er in (1.11) is the one associated

te K. Defue a C-liRear automorphism

(i.i4) E,:Hc.Hc by Er:=(Li g:HHIIi

Then the Cartan involution er in (1.11) can also be written as

(1.15) e,X=(IntE.)X for Xff sc.

      We recall Row well-kllowR results eR SL2-representatioRs. Let e,g be two

variables, and write

(1.16)

(i)(.,,.,,

 em
em-in

  l

 9m

(m :O,1,2,•••).

A representatiefi

(1•17) Pm SL2(R) --, SLm+i(R) defined by pm(g) (i)(M) = (g (nC))(M)
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is called a symmetric tensor representation of dimension m+1, It is known that the p.

(m = O, 1,2,•••) are absolutely irreducible and constitute a full set of representatives

for the equivalence classes of finite dimensional irreducible representations of SL2(R).

       We take the standard gekeraters for the Lie algebra$ s{2(R) and su(l,1)

which are related by the Cayley traRsformatioR IRt ci, wkere

(i.is) ci -expl:f' (? 8)=zk (l i)•

as follows:

         ,,,,.,,,,,.,(6 g),..,=(g s), .-,=(? g)

         su(i,i)Dz:xe (? wh,Z), x+ =S(-It i)•x-:=S(i l,)

       The following lemma can be verified directly by using the monomial basis

(1.l6) and the defiRitioR (i.19), and so we omk the preoÅí

       Lemma (1.2e). (i) ln the above Rotation, Y. :== p..(y) aBd N.Å} :me

pm*(nÅ}) satisfy

           Y.(CM"nJ) ww (m -- 21')eM-'n',

           N.+(eM-"nj') nm (m - 1')6M-j-lnJ'+1,

           N.-(4M-i'nj') ww 2'eM-,'+i"i--i.

       (ii) For the Cayley elemeRt cm := fim*(cD E SLm"(C),

           ec. = cMi6, where u is the complex conjugation.

           c:2(eM-)'nJ') me ( t i)MnM-J'ei',

           c4.(eM-1,lj) me (-1)MeM-lnl.
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       Remark (1.21). The Hodge structure on gic := s[2(C) induced byiE

U := (upper-half plane) bt SL2(R)IU(1) coincides with the canonical decomposition

    'by the standard "H-element" (n+ - n-)12 (cf., e.g., [Sa.2, II. S7]):

       gic = glb-' + g?eO + gr6'i == p. + ec + p+ = {x-}c + {z}c + {x+}c.

       S2. Horizontal SL2-representations

       From now on, we assume that w År O and all Hodge structures of weight w

satisfy HP'q = O unless p, q År- O.

       Definition (2.1) (cf. [Sc, p.258]). An SL2-representation p : SL2(R) . G

is said to be horizontal at r == {H.P'g} E D if p*(x+) E g6i'i := {X E gc 1XH.P'g c

H,P-i'q+i for all p, q}.

       Remark (2.2). It is clear that an SL2-representation p is horizontal if and

only if p* : sr2(R) - g is a morphism of Hodge structures of type (0,O) with respect

to the Hodge structures induced by i E U and r E D, respectively. A horizontal SL2-

representation p induces an equivariant horizontal map pN : Pi . D with pN(i) == r:

                                   p                          SL2(C) - Gc
                             ii

                            pi Lb

This is a generalization to the present context of the notion of `(Hi)-homomorphism'

in the case of symmetric domains of Hermitian type (cf., e.g., [Sa.2, II. (8.5), III. gl]).

      Let p : SL2(R) - G be a representation horizontal at r == {H.P'g} E D, and

set

(2.3) y := p*(y), NÅ} := p.(nÅ}); Z := p,(z), XÅ} :=

          -147-
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Notice that by (1.19) these are related under the Cayley transformation:

(2.4) Z= (Int c) Y, XÅ} = (Int c) NÅ}, c:= p(ci ).

       (Y, IVÅ}) and (Z, XÅ}) define direct sum decompositions of H and Hc whose

surnrnands are

  (2.s) p{A+2k) := Nk(H(Y;A+2k)nKer lV+),

  (2.6) (?SA+2k) := xE(Hc(z;A+2k) nKer X+),

for all eigenvalues A E {O,Å}1,Å}2,•••Å}w} of Y and Z and for k }lr max{-A,O},

respectively. Here we denote by Il(Y; A+2k) etc. the eigenspace of an endomorphism

Y of fl with eigenvalue A+2k. Since p is horizontal at r = {H,P'g}, (2.6) is compatible

with this Hodge structure and we set

(2.7) (?9+2k)"+k,b+A+k := (?9+2k)nH."+k,b+A+k (a,b}l o).

These form a refined direct sum decomposition which we call the Hodge-(Z,XÅ})

decomposition of (p,r) (cf. Remark (2.12) below). Transforming this by the inverse

c-i of the Cayley element, we define

(2.s) pi[A+2k) a+k,b+k := c-i(?SA+2k) a+k,b+ x+k.

      Lemma (2.g). (i) a(?9+2k)"+k,b+A+k = (?S:7AA+2(A+k))b+A+k,a+k.

      (ii) c(?9+2k)a+k,b+A+k .. c2pEA+2k)a+k,b+k = pS-AA+2(A+k))a+A+k,b+A+k.

          c-ip:A+2k)a+k,b+k ,,. c-2Q9+2k)a+k,b+A+k = (2S:-ATA+2(A+k))a+A+k,b+k.

      Proof. It is easy to see, by definition, that cpEA+2k) = (?SA+2k). Hence, by

the first equality in (1.20.ii), we have

       a09+2k) = acpEA+2k) = c-iapEA+2k) = c-ipY+2k) = c'2e9+2k).
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On the other hand, by the second equality in (1.20.ii), the third and the second

equalities in (1.20.i), we see that on p{A+2k)

                    .-2-(ll:iil,SIIII.,,Xi, li1igi

Taking their Cayley transforms, we see that on (?SA+2k)

(2.io) c-2-(!.::ii:lst.i, li:ig]

Thus, by the definition of the (?9+2k), we have in both cases that

       ae9+2k) = c-2e9+2k) = xTÅ}AQ9+2k) = Q9,+2k) = e(:,A+2(A+k)).

This together with aH,"+k'b+A+k = H.b+A+k'"+k yields the assertion (i).

      By horizontality, X- E gl}-i and X+ E g6i'i, hence X,Å}FA E gAc'-A. This

together with (2.10) shows that

     c-2(?SA+2k)a+k,b+A+k ,,. xTÅ}A(?9+2k)a+k,b+A+k = (?[:ATA+2(A+k))a+A+k,b+k.

Thus we obtain the second equality in (ii). The first equality in (ii) follows from the

second. 1

      Corollary (2.11). Let (p,r) be as above. For each eigenvalue A ofY and

for k ) max {-A,O}, we see that

                 cx pAA+2k) = e pEA+2k) a+k,b+k

                              a+b+2k=w-A                                a,b20
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is a Hodge structure of weight w-A. Moreover, in the case A = k = O, this is

S-polarized.

       Proof. We should observe the behavior under the complex conjugation a:

       apAA+2k)a+k,b+k ,. ac-leSA+2k)a+k,b+A+k = ceL'AA+2(A+k))b+A+k,a+k

                      = c2pS-AA+2(A+k))b+A+k,a+A+k ., p9+2k)b+k,a+k.

This shows the first assertion.

       The representation p is trivial on (?80), hence po(O)",b .. c-i(?80)",b ., (?80)a,b,

and so the second assertion trivially holds. 1

       We call a direct sum decomposition in (2.11) the mixed Hodge-(Y, IVÅ}) de-

composition of (p, r).

       Remark (2.12). We remark here some observations which are verified easily

by (1.20.i), their Cayley transforms and horizontality of p at r. A Hodge-(Z, XÅ})

decomposition and a mixed Hodge(Y, NÅ}) decomposition form "nests of diamonds",

respectively. For example, in the case of weight w = 3, these nests of diamonds are

illustrated respectively as in Figures 1 and 2.

(Figure 1)
                       (?L3g3,o

               eL233•O (?L232•i

        ,? Lil3,O (? L312,i QLi3i,2 ,? Li22,i
o80)3,O Q82)2•i (?82)i,2 Q80)O,3 , e80)2,i e80)i,2,
        eii)2,i                       ei3)i,2                                      Qli)o,3                                                                eii)i,2

               eS2)i,2 QS2)o,3

                       eg3)o,3
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(Figure 2)

P,(O)3,o

PSii)3,i

Pl(1)2,o

PS2,)3,2

Po(2)2,i

P,(2)i,o

PS33)3,3

PS3,)2,2

Pl(3)1,1

P,(3)o,o

PS2,)2,3

Po(2)'•2

P,(2)O,i

PSii)i,3

P,(i)O,2

p,(O)o•3 , p,(o)2,i

PSi,)2,2

P,(i)i,i

P,(O)i,2.

On these nests of diamonds, the complex conjugation by a sends respectively a sum-

mand (?SA+2k)a+k'b+A+k to a summand (?!l:AIA+2(A+k))b+A+k'a+k which are symmetric

with respect to the origin of the diamonds, and a summand p{A+2k)a+k,b+k to a

summand pEA+2k)b+k'a+k which are symmetric with respect to the vertical axis. The

operator x+ (resp. x-) sends a summand e9+2k)a+k'b+A+k one step down (resp. up)

to a summand (?SA++22+2(k-1))"+k-1,b+A+2+k-1 (resp. eSA--22+2(k+1))a+k+1,b+A-2+k+1),

and XÅ} are inverse to each other up to non-zero constant between these summands

whenever both summands actually appear in the nest of diamonds. Similarly, the

operator N+ (resp. N-) sends a summand pssA+2k)"+k'b+k one step down (resp. up)

to a summand pE#2+2(k-i))a+k-i'b+k-i (resp. pSs2+2(k+i))"+k+i'b+k+i), and NÅ}

are inverse to each other up to non-zero constant between these summands when-

ever both summands actually appear in the nest of diamonds. The Cayley element

c transforms the second nest of diamonds together with the action of the operators

Y, NÅ} to the first nest of diamonds together with the action of the operators Z,XÅ}:

cpY+2k)a+k,b+k ., eSA+2k)a+k,b+A+k.

      By using these operators, we can explain why the summands outside the nests

of diamonds vanish in the following way. we claim first that e9+2k)"+k,b+A+k .. o for

A År O and b Åq O. Indeed, Xl+k is injective on this summand by the Cayley transform

of the third equality in (1.20.i). On the other hand, looking at the Hodge type, we see
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that xi+k(?9+2k)"+k'b+A+k c (2SL-AA--22kk+2(A+2k))"+A+2k'b nm o by horizontality. Thus

we get our claim. It follows by symmetry under the complex conjugation a that

QSA+2k)a+k,b+A+k = o for A Åq o and a Åq o. Finally, by the inverse of the Cayley

transformation, we have p{X"2k)"+k'5+k = g for A År e and b Åq e, and for A Åq e and

aÅq&
      We call the length of the side of the biggest diamond in anest the size of the

nest of diamonds.

      Another remark is that a mixed Hodge-(Y,Ndr) decomposition is nothing

but the limiting split mixed Hodge structure of the associated SL2-orbit pN : U --+ D,

ff(gi) := p(g)r (g E SL2(R)), and the monodromy weight fi}tr&tion L is described as

Li : (DAÅqi ek PYx+2k) (cÅí [Sc, (6.l6)] akd its proof, [CK, pp. I3-k]).

      In the above notation, for all A, a and b, put

              nA : : dimRNr(Y; A) = dimcHc(Z; A),
(2.13)
              pK,b : : dimcpY-),ak+k,b+k = di.c(?SAwh)2ak+k,b+A-k.

Notlce that, by coRstruÅëtioxx, the middle teTms and the terms on the extreme right

haRd side ef tke secoRd equality iR (2.l3) are iRdepekdent ef k (cÅí Remark (2.l2)).

      Lemma (2.14). For (p,r) as above, the fo11owing hold:

  (i) ]Z) pK'b = nA -nA.+.2 for all O f{ A s{ w.

      a+b =u,-A
  (ii) pbx,"=p"sb for all A, a, b with O f{ A f{g w,a }lr O,b}l O anda+b=w-A,

 (iii) ha,b ., ha+i,b-i .-. (pgÅÄi,b-i + pf+i,5-2 + . . . -}- pgma+l,e)

                                       + (pg•b + pfnyit" + . . . + p2}b)

      for all a, b with ahO,b)O anda+b=w.

      Proof. We first observe that there is an exact sequence

                               -l52-
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                   o- pY) - H(y; A) -l!.h+ H(y;A+2) -, o

for every A ) O (and IV- yields a right splitting). (i) and (ii) follow from this and

(2.11).

       In order to show (iii), we look at the morphism X+ : H"+i,b-i . Ha,b and

its kernel and cokernel:

              Ker = Q80)a"'b-i e (?Si)"'i'b7' (D ••• e eSb:,i)"+'•b-i

                   c                  g. po(O) a+i,b-i e pi(i) a+i,b-2 o . . . o pb(-bli)a+i,O,

            Coker bt (?80)"'b o (?L'3"'b o . .. o (?Sf.) "•b

                  t: e80)a,b o Qii)a-i,b+i o . . . (D (?Sa)O,b+a

                   c                  -cr po(O) a'b o pi(i) a-i'b o • • • e p.(") O,b.

Looking at the dimension, we get (iii). 1

       Definition (2.15). We call a set ofintegers {paxb}, which satisfies the con-

ditions (D, (ii) and (iii) of (2.14), a set of primi'tive Hodge numbers belonging to

{hP,q,nA}.

       S3. Admissible R•-semi-simple elements

       We continue to use the notation in the previous sections.

       Proposition (3.1). Given a pair (Y,r) E g Å~ D, there exists at most one

representation p : SL2(R) . G which is horizontal at r and p.y = Y.

       Proof. Since y and z generate fi[2(C), it is enough to show that if such a

representation p exists then the eigenspaces of Z, and hence Z itself, are determined

by the pair (Y, r). Actually, we shall show by induction on the size w of the nest of

diamonds of the Hodge-(Z,XÅ}) decomposition (2.7) (cf. Remark (2.12)) that this

nest of diamonds is completely determined by (Y, r).
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      First notice that

(3.2) Y== i(X+ -X-).
For a subspace M of Hc, we put, throughout this proof,

       MÅ} := {v E Hc l S(v, au) = O for all u E M},

       projection{M - H.P'g} : : Im{M c Hc = ({D H,P"q' - H."'g }•

                                        p'+q'=w

Then we see that

(?SW)O'W = projection{YWH,W'O . H,O'W},

(?$W22kiW-k == projection{ykQSW)O'W - H.k'W-k} (o s{ k s{; w),

  (IE) (? 9R W'O - H.w'O n ((? Lw3 w•O) 'L,

 OÅqAÅqw-1
(?LW--i)i'W-i = projection{YW-i (o.A(.iD.-i (?LAR W'O) - H,i'W-i},

(?LW--ii-)2ik+k'W-i-k : projection{yk(?SW-1i)i'W-' - H,i+k'W-i-k} (o s{ k f{ w-1),

  e (2 9R W'O - H.w •O n ( e (? 9R w•O) Å},

 OÅqAÅqw-2 w-1ÅqAÅqw
(?S!-l-22)2'W-2 = projection{YW-2 (oÅqAet.-2 (2LAkW'O) - H.2'W-2},

(?SW 22-)22k+k'W'2-k == projection{Yk(?$W--22)2'W-2 - H,2+k'W-2-k} (o f{ k f{ zv -2),

Thus (?9-)2Wk-A+k'A-k (o sl A f{ w,O f{ k fE{ A) are determined. Taking the complex

conjugation by a ofthese, we get (?9k }5kk'W-A+k = a(?9-)2t"k'A+k'A-k (o f{ A s[ w, o s

le -Åq A). Applying the induction hypothesis to the nest of diamonds of size sl zv -2 in

               (,.(,D.. (e9-)2Wk-"'k'"'k e eL"Ris,k•w"+k))Å}

                O-Åq-k-Åq-X

(cf. Remark (2.12)), we get our assertion. 1
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       Definition (3.3). A pair (Y,r) E g Å~ D is admissible if there exists a rep-

resentation p : SL2(R) . G which is horizontal at r and p.(y) = Y.

    '       The set ofprimitive Hodge numbers {p"A'b} belonging to {hP'g,nA} is 6alled

     '
                                                         'the type of an admissible pair (Y, r).

       Y E g is said to be admissible if (Y, r) is an admissible pair for some r E D.

       Now we prove the following numerical criterion for admissibility:

       Theorem (3.4). Y E g is admissible if and only if Y is semi-simple over

R whose eigenvalues are contained in {O,Å}1,Å}2,••• ,Å}w} and there exists a set of

primitive Hodge numbers {pK'b} belonging to {hP'g,nA}, where nA := dimH(Y;A)

(cf. Definition (2.15)).

       Proof. Since Y is semi-simple over R, the eigenspaces ff(Y;A) are defined

over R and H(Y;A) and H(Y;") are S-orthogonal unless A + pa = O. Therefore

H(Y; A) and H(Y; -A) are S-dual.

       Since nA, -nA,+2 ) O for A' }il O by the condition (2.14.i), we can take a direct

sum decomposition

(3.s) H(y; A) == pY) e pE"'2) o pS"'`) e••- for A)o

with dim P{A+2k) = nA+2k -nA+2k+2. Moreover, in the case A == O, the decomposition

(3.5) can be taken to be S-orthogonal. We denote the S-dual decomposition by

(3.6) H(y; -A) = p9,) o pS",' 2) $ p9,'`) e••• (A }i o),

i.e, p9A+2k) and pEA+2M) are s-orthogonal unless k = m.

       By the conditions (i) and (ii) of (2.14), we can choose a Hodge decomposition

(3.7) cxp9+2k)= e pEA+2k)"+k,b+k forA2o,k)o,
                        a+b+2k=w-X
                          a,b)O
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with dimp{A+2k)a+k'b+k -- p"xe2k. Moreover, in the case A = k = O, the Hodge

structure (3.7) can be chosen to be S-polarized. We denote the S(•,a•)-orthogonal

decomposition by

(3.s) cxpS-AA+2(A+k))= e pS-,A+2(A+k))a+A+k,b+A+k (A)o,k)o),
                     a+ b+2A+2k = w+ A
                        a,b)O

i.e., s(pS-AA+2(A+k))"+A+k'b+A+k,apEA+2k)"'+k'b'+k) == o unless (a, b) = (a', b'). Notice

that pS-AA+2(A+k))a+A+k,b+A+k = p9A+2k) a+A+k,b+A+k.

      Now we consider the cases A }) O and A Åq O altogether. For k -År max{-A,O}

and a ) b, let

(3.g) {vtc,+• 2k)a+k'b+k 1l s j' -Åq pK'+b,k}

be a c-basis of pKA+2k)"+k'b+k such that

(3.lo) s(vSL ilJ+. 2(A+k))"+A+k,b+A+k,..Åí +.,2k)a+k,b+k) = 6ab.,(-1)aiw-A/(•)L 12k).

In the case a == b, we can moreover take the above basis (3.9) to consist of real

elements. Put

    '

(3.11) v9J+• 2k)b+k'a+k = avS"j+. 2k) "+k'b+k (a 2 b).

      Define now C-linear endomorphisms NÅ} of Hc by

           lv+vSL+. 2k) a+k,b+k := kvS(+Ai2J.)+2(k-i))a+k-i,b+k-i,

(3.12)
           N-.S))+, 2k) a+kib+k ,= (A + k).S(-A212i,)+2(k+i)) a+k+i,b+k+i,
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for al1 A, non-negative a, b and k X max{-A,O}. By construction, it is easy to see that

NÅ} cornrnute with the complex conjugation a and satisfy the commutation relations:

(NÅÄ,Nww] = Y, and IY,NÅ}l = th2NÅ}, respectively. It is also easy to verify that

S(NÅ}-, -) + S(•, Nsk•) = O, respeetively. Indeed, for example, one can compute as

  S(lv.+.vSL l 3+. 2(A+k)) "+A+k,b+A+k, crvS(.A-27; ].)+2(k+i)) a+k+i,b+k+i)

    + s(vS'xl ; 2(X"}-k)) aÅÄX+ki5ÅÄ}+k, N+..X(-Ai32-}-2(k+i)) a-i-kÅÄi,5-i-k-}-i )

,.

 6if(wwi)aiw-A+2 (A + k)(A ( A+ +fo  ik )i!)!(k + i)! + 6,-d,(-i)aiw-A (k +( )i, )il!2( Ak )I,: k)! == o.

Thus we see that Nsk G g aRd kexxce there exists a uRigue repfesentatioR

(3.13) p: SL2(R) --+ G such that p*y= Y and p*nÅ} = N,t,, respectively.

By using tke Cayley elemeRg c : = p(cD E Gc, we defifie

(3.14) (?9+2k)a+k,bbulwA+k :.. .pEA-F2k)a+k,b+k, llp,q ,., ({E) (?9+2k)a+k,b-FA+k,

                                              a+kurp                                              b+X+h :g

where, on the right hand side of the second equality, the suinmation is taken over all

the eigenvalues A of Y, all integers k }ir max{-A,O} and all non-negative integers a,b

wkh a -i- 5+ A + 2k me w. This defines a Kedge structure. IRdeed, by using (1.20.ii),

ene sees that

     cr(?9+2k)a+k,b+)L+k = acpSA-t-2k)a+k,b+k ., c-lap(A+2k)a+k,b+k

   wwww.oflpEX+2k)b-fnvk}a'+"k = c})S-AA-t-2(A+k)Årb+A+k,a+A+K" = q(:xA-l-2(A+kÅrÅrb+A+k,a-l-k,

and hence aHP,q = Hcr'P. One can moreover verify that (3.14) is S-polarized. Indeed,

the direct sum in (3.14) is S-orthogonal by construction and, for

         cvSl; 2k)a-+-k,b+k, cvsc;,2k)aÅÄk,b+k E eSA-I-2k)aÅÄk,b+A-l-k c Hp,g,
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one can compute as

           ip-qs(cvSl; 2k) a+k,b+k, acvSV+.,2k) a+k,b+k)

          ,.ia-b-As(cvSi);.r2k)a+k,b+k,c-!avSi);.t,2k)a-tnyk}b+k)

          =ig-b-Xs(c2vSl; 2k) aÅÄk,b+k, ffySl;,2k) a+k,b"k)

          =ia-b-X+A-l-2ks(vSLr i),t; 2(A+k)} a-i-X+k,b+X+k , crvft;,2k) aÅÄk,bÅÄk)

          ..6j.J.ia-b+2k+2a-Ftv-A/ (A +k2k) = 6",/ (A 12k).

Thus we have {HP,q} e D.

      Finally, we claim that the representation p in (3.13) is horizonta} at {HP,g} G

D. IRdeed, since Z = (Iut c)Y, XÅ} = (IRt c)NÅ}, oRe can Åëompute, by (l.2g), as

       z(?9+2k)a+fo,b"+k ma cypEA+2k)a+k,bÅÄk ., t?SA-i-2k)a+k,b+X+k,

       xÅ}(?9+2k)a+k,b+A+k ,,. cNÅ}pkA+2k)a+k,b+k

         = cpE[iAl2Å}2)+2(kpt)) a+kTi,b+kTi = (?S(IIil 2)+2(k ri))a+k Fi,b+A+kÅ}i.

This completes the proof of the theorem. I

      We remark tkat tke condltioR eR {nz} IR Theorem (3.4) ceiRcides wkh the

one in {CK, (2.2g)] iA ihe case ef weight 2.

      Fix identifications D ts GIV and R t GIK, where I( is a maximal compact

subgroup of G containing V and R is the associated Riemannian symmetric domain,

and let eK be the associated Cartan involution. We denote the projection by

(3.15)

an ad

  Proposition

missible element.

T:PftGIV - GIK i-vww R.

(3.16). We use the notation in Theorem (3.4). Let YEg be
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       (i) ffr ff D forms an admissible pair (Y, r), then 3.Y == -Y, where e. is the

CartaR iRvollltion on g induced from (1.11).

    '       (ii) ifeKY = -•Y, then there existsrE rrini([K]) such that (Y,r) is an

admissible pair

       (iii) For each set ofprirnitive Nodge numbers {p:'b} belonging to {hP'g,nA},

Gy := {g E G 1 (Ad g)Y = Y} acts transi tively on the set {r E D l (Y, r) is an

adraissibie pair of type {pft'b}}.

       jF'reef. (i) follows from (3.2) and (1.ll).

       (ii): Assume eKY = --Y. Take a point r' E D at which Y is admissible and

let K' be the maximal compact subgroup of G associated to the Cartan involution

e.i. By the result in (i) for (Y, rt) and the assumption, Y can be viewed as a tangent

vector to R at [K'] as well as at [K]: Y E TR([K']), Y E TR([K]). By the transitivity

of tangeRt spaces of a Riemarmian symmetric demalxx, there exists g E G suck that

(Intg)IÅq' : K and (Adg)Y = Y. Hence the admissibility of (Y, r') implies that of

((Adg)Y, gr') = (Y, gr'), where gr' E r--i([K]).

       (iii): Sgppose that r, r' E P are pciRts at wkiÅëh Y ls adinissible of the same

type {pK'b}. Let p, p' : SL2(R) - (i! be the corresponding representations. It is

enough to show that there existsgE G such that p' me (Intg)p. Indeed, if this is the

case, tkeR (Adg)Y == (Adg)(p.(y)) = p'.(y) = Y aRd gr = gp'Y(i) = pAnd'(" = r'.

       Since (Y, r) and (Y, r') have the same type {pK'b}, the types of the irreducible

deÅëompositions of p and p' coincide. Now we use the well-known fact that any finite-

diraeRsioma} irreducible represent&tion of SL2 is isomorphic to a suitable symmetric

tensor power representation (cL gl). Thus we get our assertion. 1

       Appendix

           '
       In this appendix, we shallgeneralize the results in [CK] and construÅët a partial
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compactMcation of the classifylRg spaÅëe rXD, r ww Gz : : {g G GIgHz = Hz},

of Hodge structures in general weight, adding those points which correspond one-

parameter degenerations of type II. Since the arguments are analogous to those in

[CK], we $hall oftly iRdicate the egt}ime of the cegseructloft. We use tke kotatien iR

previous sections.

       An admissible semi-simple element Y E g is of type ll if its eigenvalues are O

or Å}1.

       A horizontal SL2-representation A is of type ll if so is Y = p(y).

       A period map op : A' ---ÅÄ rND from the punctured disc, i.e., a holomorphic

map with horizontal local liftings, is of type ll if its monodromy logarithm N ;=

(11m) }og7M satisfies ?V2 = g, where 7 is the moRodromy of g aRd m is tke least

positive integer such that the eigenvalues of 7M are all unity.

       Throughout this appendix, we shall consider only those Y, p and g of type II.

       (A.l) Let H be an R-vector space uRderlyiRg Hedge structgre$ ef weight

w, and S the polarizing bilinear form on JEI (see gl). For an isotropic subspace Wl, of

H, we have a filtration O =: W2 C Wi C Wo :rm Wii C W-i := H, where Wii means

the subspace of ll perpendicular to Wi witk respect tc S. Set f?;i :-"ww'- dim WVWA".

We assume that there exists a set of primitive Hodge numbers {pK'b} belonging to

{hPA,nA} (see Definition (2.15)). We denote by S the non-degenerate bilinear form

on Wa/Wi induced by S. Let Åë be a polarizing billnear form of a Hodge structure

on Wic of type {pK'b}. Two such forms are considered to be equivalent if they are

different oxxly up to a poskive multlpllcative constant.

       Definition(A.1.1). Given Wi,p := {pk'b} and ip as above . The associated
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boundary component B = B(VVi,p, ip) = BW(Wi,p) Å~ BW-i(VVi,p, ip) is defined by

   BW(VVi,p) : classifying space for S-polarized Hodge structures on (WolWi)c
                                                                     .
     ' of type {pg'b}•

   BW-i(Wl,p, ip) : classifying space for ip-polarized Hodge structures on VVIc

                  of type {pf'b}•

       The boundary bundle B = B(VVi,p) == BW(Wi,p) Å~ BW'i(Wi,p) is defined

as the disjoint union of all boundary components B(Wi,p, ip) where ip. runs over all

equivalence classes ofpolarizing forms on Wi of type {p:'b}.

       Theorem(3.4) shows that for every boundary bundle B(Wi,p) there exists

an admissible element Y E g with the set of primitive Hodge numbers p and Wi =

H(Y; 1). Theorem(3.4) and Proposition(3,16,iii) (and some argument in linear alge-

bra) show that for every boundary component B(VVI,p, ip) there exists a horizontal

SL2-representation p such that Wi = H(Y;1),pK'b = dim piA}a'b and ip = s(lv-., .).

       Definition (A.1.2). Aboundary bundle B(VVi,p) is rational if the isotropic

subspace VVi c ll is defined over Q. A boundary component B(Wi,p, ip) is rational

if Wi and the form ip are defined over Q. We denote by D" c D' the union of

all rational boundary components and the union of all rational boundary bundles,

respectively.

       (A•2) Let (VVi,p, ip) be a polarized isotropic subspace, and {PP)"'b} E

B(VVi,p, ip) a point in the associated boundary component. Then these are trans-

formed by g E G to the polarized isotropic subspace (gVVi,p, (g-i)'ip) and the point

{gp{A)"'b} E (gvVi,p,(g-i)'ip), respectively. This defines a natural action of G on

the union of all boundary components, which restricts to an action of GQ on D' and

D**.
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       Notice also that g G G transforms an admissible pair (Y,r) E g Å~ D to the

admissible pair (Ad(g)Y,gr), and an SL2-representation p : SL2(R) - G horizontal

at r E D to the SL2-representation Int(g)p horizontal at gr.

       DefiRitien(A.2.1). For a boundary bxndle B = 3(Wi,p), we defiRe its

normalizer N(B) :== {g E G1gB = B} and its centralizer Z(B) : : {g E G1glB = id},

Let Y e g be an admissible senvLsimple element such that (Wi,p) = (ff(Y;1),p).

We denote by Gy the isotropy subgroup ofY in the adjoint action ofG, and G(Y) :==

{g E Gy l det(glw,) = l}i

       In order to expres$ these groups by rnatrices, we take a basis of H ww H-i O

He OHI, HA : = ll(Y; A), subjected to the decempositlofi so that tke biliftear form S

                                               'becomes

           s=(

whefe J i$ aR aRtid

are of the form

91

*

*

o

9o

*

o
o

gl

o

- J

ia

6) if w is odd,

genal raaSrix J : aRtidia

O Å}I

JO
g(1,...,

where go E Aut(Ho,SIHo),gi E

,.]r

o

o

if w is even,

l), TheR the matrices of N(B)

GL(ni, R),y-i = Jtg,wwiJ,

and

For

    Z(g) = {g G N(g) igg = Å}Jg,si =

    Gy = {g G N(B) 1 the *' s are O},

    G(Y) = {g E Gy l detgi = l}•

these expressions, one can see easily
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       Proposition (A.2.2). (i) N(B), Z(B), Gy, G(Y) are all in dep en dent of the

choice of a set of primitive Hodge numbers p.

     . (ii) N(B) is aparabolic subgroup ofG preserving the filtration O= W2 c

Wi CVVo =WiiCW-i :H.

       (iii) Z(B) is a closed normal subgroup ofN(B).

       (iv) G(Y) is a semi-simple group, acting transitively on B with compact

isotropy subgroup.

       (v) IV(B) = G(Y) • Z(B) is an almost direct product, i.e., G(Y) nZ(B) is

finite.

       Let g = e+ p be a Cartan decomposition with Y E p, t a maximal abelian

subspace, containing Y (i.e., t is the intersection of g with a maximal R-split Cartan

subalgebra of gc), m the centralizer of f in e, and Åë c f" the system of restricted

roots for the adjoint action of ton g. Then we have a root space decomposition

g = fO rri O X.EÅë ga, where gcr := {X E gl Ad(H)X = a(H)X (H E t)}.

       If we select a basis of H, compatible with the choice in (A.1), with respect

to which the matrices of t are of the diagonal form

H(A,, .,A.) -( gl::[Z:l::::::llggl::[ai]iiIiii6',W,Z,1:d,j...,A,),., .ven,

where r is the R-rank of g and Ai E R. Notice that Y = (1,...,1,O,...,O), and

that the elements Hi := H(Ai,...,Ar) with Aj -- 6ii' form a basis of f and define the

lexicographic order of the roots in which the system of the positive roots Åë+ contains

{a EÅëla(Y) År O}. Let ei (1 -Åq iS r) be the basis of f' dual to Hi (1 Si -Åq r).

Then the positive roots are calculated as

       Let us denote t := Åí.EÅë+ g.,R := exp t,T := exp t and by K the maximal

compact subgroup of G with e := LieK. Then one has the Iwasawa decomposition

G = RTK. This induces the corresponding decompositions:
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       Proposition(A.2.3). (i) N(B) == RTKy, where IÅqy =Kn Gy.

       (ii) Z(B) = (R n Z)(T n Z)(K n Z), where Z = Z(B).

       (iii) Let g(Y) := LieG(Y). Then tng(Y) is amaximal abelian subspace of

png(Y), Åë+(Y) := {a E Åë+ 1a(Y) = O} is the system ofpositive roots for theadjoint

action offng(Y) on g(Y) and tng(Y) = 2 ).EÅë+(y) g. (because of the compatibility

of the orders), whence one has G(Y) = (R n G(Y))(T n G(Y))(K n G(Y)).

       (iv) Let r E D be apoint with which Y forms an admissiblepair and whose

isotropy subgroup Vr ofG is contained in K (cf. Proposition(3.16.ii)), and let Ib be

the isotropy subgroup ofN(B) at b= b(Y,r) := {PKA)"'b} E B(Y, r) c B. Then one

has V. nG(Y) c Ib nG(Y) cKnG(Y), Ib nRT c Z(B), Ib = (RT nZ(B))(Kn Ib).

       The proof is similar to those for [CK, (3.28), (3.36), (3.40)]. Our present

assumption `type II' will be used in the proof of (iv) of the above proposition.

       (A.3) Now we choose as fa maximal Q-split Cartan subalgebra of g and

choose a maximal compact subgroup K of G such that t c p for the associated Cartan

decomposition. Let f+ be the positive Weyl chamber, and t+ its closure. We denote

by S the set of complete representatives of the GQ-equivalent classes of Q-rational

admissible element Y of type II in t+. It is easy to see by definition that G is a finite

set and that, for any admissible element Y E gQ of type II, there exists g E GQ

satisfying Ad(g)Y E G.

       Definition(A.3.1). The boundary bundles B(Y, p) for Y E 6 andp being a

set ofprimitive Hodge numbers compatible with Y will be called the standard rational

boundary bundles.

       Let T : D - GIK be the canonical projection. By Proposition(3.16.ii)

and Remark(2.12), one can choose a reference point ry,p E T-i([K]) c D for each

- 164-

24



compatible pair (Y,p) with Y E S, so that (Y,ry,p) is an admissible pair. Let

B(Y, ry,p) be the boundary component contained in the boundary bundle B(Y,p).

       Let G = RTIÅq be the Iwasawa decomposition in the presrnt context.

       Definition(A.3.2). A Siegel set in G is defined as a =: tuRTAK, where

cvR C R is a compact subset and TA := {t E Tlea(t) 2 A (a E Åë+)} for apositive

real number A.

       The extended Siegel set in D' is thesubset a' = UyE6,p oyby,p C D*, where

ay := anN(B(Y,p)),by,p == b(Y,ry,,) :='{PY)"'b} E B(Y,ry,p) c B(Y,p), and the

union is taken over the finite set of all compatible pairs (Y, p) with Y E S.

       Notice that the extended Siegal set a' in D' is independent of the choice

of a set of complete representatives of the reference points ry,p E T-i([K]) c D. It

is known that a Siegel set a in G has the Siege! property: for any g E GQ,{7 E

T[ora n ga 7E e} is a finite set. Moreover, if the subset cvR and the constant A are

adequately chosen, then there exists a finite subset C C GQ containing 1 such that

G= rCa and D' = rCa'.

       Let ry,p : N(B(Y, p)) - B(Y, p), sending g to gby,p, be the natural projection.

       Definition(A.3.3). Let Ui C B(Y,p) be an open set, U2 an open neiborhood

of 1 E K, and A a positive real number. Then the open set, in D, V(Ui,U2,A) :=

{gry,plg E Ti,ip(Ui)U2, ea(g) År O (cy E Åë,a(Y) År O)} wiH be called a tube over

Ui c B(Y, p).

       Theorem(A.3.4). (i) The sets U(Ui , U2, A) := (Ui U V( Ui, U2, A)) n a',

together with the natural topology on a' := ary,p c D, form a basis of a Hausdorff

topology 7' on the extended Siegel set a'.

       (ii) Let gE G andx E a. Ifga E a", then, for any 7'-neighborhood or'

ofgx E a', there exists a r'-neighborhood or ofx E a' such that gU na' c or'. ff
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gx Åë a', theR there exists a T"-neighborhoos U ofx ff ff' such that gU fi cr" = e.

      'rhe proof is akalogeus te those ef ICK, (4.16), (4.25)]. In the preof, the

following lemma will play an important role, and a Hodge-(Z,Xth) decomposition

will also used.

      Lemma(A.3.5). Let W c RT and V c Ky be open subsets satisfying

       (i) W(Z(g( Y, p)) fi RT) c W alld

       (ii) V( Jb .,. n Ky) C V.

       tXhen there exists an open subset U c B(Y, pu) such that TV}(U) me WV.

      This }emma is preved by llslng various kind of the Iwasawa decompositions

in Proposition(A.2.3).

      As in [Sa.1], the results in Theorem(A.3.4) will be transformed to the corre-

spogdiRg assertloRs oR the fuadamegtal domaiR st' :me Ca' in P' fer the actieR of r,

and finally one gets a Satake topology rr on D' which has the following properties;

      Theorem(A.3.6). (i) Thetopology7r on D' induces thetopology7' on

U*,

      (ii) The operatiens ofV are continuotts.

      (iii) ff rx n rx',x,x' E D', then there exists Tr-neighborhoocls U,ort of

x,x' E P' such that Iior fi I'2;l' ww g.

      (iv) For each x E D", there exists a fundamental system of Tr-neighbor-

hoods {U} ofxG D' such that 7U =U for 7E Tx and ryU nU =e for7Åë rx.

      As a corollary, one obtaines

      Corollary(A.3.7). the quotients rND',rND" endowed with thetopologies

indllced frem 7T have tke fgHowiRg properties:

      (i) PND' and rND"" are locally compact and Hausdorff.
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       (ii) rND crXD" is open and everywhere dense.

       (iii) rND' = ll r(Bi)XBi, where Bi runs over a finite set of complete rep-

    '
resent4tives ofr-equivalence classes ofrational boundary bundles, and r(Bi) := (rn

IV(Bi))1(rnZ(Bi)) are arithmetic subgroups of the semi-simple groups N(Bi)IZ(Bi).

       (A.4) Let (Y,r) E gÅ~D be an admissible pair, p the corresponding

horizontal SL2-representation, and pN : U . D the associated horizontal embedding

of the upperhalf plane. Then, as [CK, (6.17)], one obtains

       Proposition(A.4.1). If p is defined over Q, then in the Satake topology

                 ,ttm. exp(tY)r = i.1Åíg}.P(z) = b(Y, r) E D".

       This is an analogous result to [Sa.2, (8.1) and its proof].

       The following theorem will be proved similarly to [CK, (6.1), (6.18)]. A proof

is based on the SL2-orbit theorem in [Sc], the Iwasawa decompositions (A.2.3), the

Satake topology (A.3.6), (A.3.7) and Theorem(3.4) and Proposition(3.16).

       Theorem(A.4.2). (i) Let p : A" . rXD be a period map of type IL

Then g can be extended continuously over the puncture to g5 : A - rND".

       (ii) Let 8 E rXD" 'be an arbitrary point. Then there exists aperiod map

g : A* . rXD of type II such that limeg(t) = 5.
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