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ON ABELIAN CONFORMAL FIELD THEORY

KEeNJI UENO

Department of Mathematics, Faculty of Science, Kyoto University

Abelian conformal field theory is usually discussed from the view. point of the
universal Grassmann manifold and Krichever maps ([1}). Here, we consider it from
the view point of non-abelian conformal field theory developed in [2]. We take the
Heisenberg algebra as a gauge group. In the following we shall show that the main
ideas of the paper [2] can be applied to our situation.

We thank A. Tuchiya for pointing out a gap of our original proof of the main
theorem and showing us an idea of a proof of Lemina 2.3 below.

§1. Main Theorem

For a positive even integer M we let Hys be a Heisenberg algebra generated by
operators a(n), n € Z with commutation relation

(1.1) [a(n),a(m)] = Mnb,ymyp - id.

The Heisenberg algebra is a universal enveloping algebra of an affine Lie algebra
{a(n)} associated with a one-dimensional abelian Lie algebra C with commutation
relation (1.1). For each p € C, by F(p) we denote an irreducible highest weight
module of Hjs determined by

a(0)|p) = p|p)
a(m)p) =0, if n>1,

where |p) is a highest weight vector. Let tg,t1,t2,... be independent variables. Put
7]
T —— 20,1,2,...
a(m) o m

a(-n) =nMt,, n=123,...
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Then, the Heisenberg algebra H)s and its irreducible module F(p) are realized as

92 6 9 0
"“aatoaat]-~-3tmy~.-,8tm,...
J:(p) :C[tl,tg,... ,tn7'“epto’e~pt0]’

HM == C[tl,tg,...tn

where the highest weight vector |p) corresponds to eP*. Using there realization, let
us introduce an operator 7 as

Put

Then we have
d¢(z) = a(2)dz

For each integer k, the Vertex operator Vips(z) is defined as

VkM(Z) — 8ek¢(z)8
where ¢ is a normal ordering defined by putting a(n), n > 0 the right hand
side and g, a(—n),n > 1 the left hand side. Hence, we have

a(n) _,

z

Py Ao —k
n L~ .
Vim(z) = e n=1 ekqeka(O)logz‘3 1

The Vertex operator Vi(z) is an intertwiner between the representations F(p)
and F(kM + p). Note that in conformal field theory a(z) behaves as a one-form
and Vi (2) behaves as a -LZ—ZM -form. The energy-momentum tensor T'(z) is defined

T(z) = 51— Sa(z)a(z)

There is a formal expansion
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and {L,} is a Virasoro algebra. In the following we only consider irreducible highest
weight representations of H s with highest weight vectors |p) where p’s are integers.

Let A = {0,1,... ,M — 1} be representatives of the module Z/MZ. For each
p€{0,1,... ,M -1}, put

HE):= @ Flp)

P=Pp mod M

Let X =(C;Q1,... ,QnN;&1,... ,én) be an N-pointed stable curve of genus g with
formal neighbourhoods. To each point Q; we associate an element p; € A and put

p= (51,1752,“- ’ﬁN))
H(p) = H(P) @ H(P2) ®--- @ H(Py)

Put also

HY($) = Homc(H(p), C).

We have a natural pairing

HY(P) x H(p) - C
(W, 18))  + (¥¢)

where (¥|¢) means ¥(|¢)).

Definition 1.1. The space of vacua V;.ﬂ.(.'f) attached to the N-pointed stable curve

with formal neighbourhoods X is a subspace of H'(p) consisting of vectors (|
satisfying the following conditions.

(1) For each |¢) € H(p), the data (|p;j(a(é;))l¢)déj, § = 1,2,... ,N are the
Laurent expansions of an element w € HY(C,wc(* Y Q;)) at Q;’s with respect to
the formal coordinates §;’s,

(2) For each |g) € H(7), the data (]p;(Vin(&;)|#)(dé;) V¥, =1,2,...,N,

are the Laurent expansions of an element 7 € H°(C, wg T (xYQj5)) at Q;’s with
respect to the formal coordinates ¢;.

Main Theorem. We have

M9, if y+--+Py=0

0, otherwise

dimg V;(.’f) = {
where g is the genus of the stable curve C.

§2. Outline of a proof of Main Theorem.
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First we shall rewrite the conditions (1), (2) in Definition 1.1. Note that the
condition (1) is equivalent to the condition

(1*) Z tes ((¥105(a(€5))I¢)a(£5)de;) = 0

i=1 &=

for every g € HY(C,0¢(* Y. Q;)), where g(¢;) is the Laurent expansion of g at Q.
The condition (2) is equivalent to the condition

N

(2*) > ggg((¢lpj(ViM(Ej))M)h({j)dfj) =0

3=1

M

for every h € HO(C,wg(l z )(*Z Q;)), where h({j)(dfj)%t is the Laurent expan-
sion of h at Q;. In the following we choose integers p; such that p; =p; mod M.
Put

|P1,P2,--- »PN) = P1) @ |P2) ® - ® |pN).

Apply the condition (1*) to an element (| € V;(I) and 1 € HY(C,0¢c(* 3. Q;)).
Since we have

Res{ E] Ip]>d£]} = a( )lpj> =lepj>,

the condition (1*) implies that

N
(ZPJ)(‘MPI»}"Z;- apN) = 0.
i=1

Hence, if (¥|p1,p2, ... ,pn) #0, then T p; = 0.

First let us consider an N-pointed projective line (P!(C);ay,az,... ,ay) with
a; =0,a; =1,ay = co. Let z (resp.w) be a coordinate of an affine line in P!(C)
containing 0 (resp.co) with z-w = 1. Put

(2.1)
and

X= (PI(C);alaaZa“' ,aN;£1)£27"' agN)

First we shall prove the following proposition.
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proposition 2.1.

1, if py+pPy+---+Dy=0
0, otherwise

dimc VI(X) = {

Let FoH(p;) be a subspace of (p) spanned by the highest weight vectors [IM +
p;), | € Z over C. Put

FoH(p) = FoH(p,) ® FoH(p,) ® -+ ® FoH(Py ).

To prove the above proposition we need the following lemma.

Lemma 2.2. Under a natural mapping
7 : Home(H(p), C) — Homc(FoH(p), C),

the space of vacua vf;)(x) of the N-pointed projective line with coordinates (2.1)
is mapped injectively.

The lemma and the above consideration imply
1 —
Vi(l{) =0
ifp, +P, +...+ Py # 0. Therefore, assume p, +P, + ... +Py = 0. Choose p;’s in

such a way that
p+pt+...+pnv =0,

and fix them in the following. For an element {y| € v;(x), put

Uiy ot = WHLM +p1) @M +p2) ® - Q|INM + pn)).

Ko, 1y, 1y # 0, then li+lp+... Iy = 0. The condition (1*) implies that ¥y, 1,,... 1
determines uniquely the values

Wl(a(-n{")...a(=n) M + p1) ® a(-niP) ... a(=n)| M + p2)®
L ®a(-n{M). .. a(-ng))uNM +par)),

for any positive integers nt?. Also,the condition (2*) implies that ¢, 1,... 1y can
be uniquely determined by the value g, ,... ,o. Thus, we conclude that

dimg V(%) =1
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This proves Proposition 2.1.

Let us consider a bigger subspace V"( ) of H!(5). An element (3| is in V"( ), if
(¢] satisfies the following two condltlons (13*) and (23*).

(137) Zl ggg((fﬂla(fj)I¢)9;‘(§j)d€j) =0
J=
for all
(9i(&)d;) € CP @Li(ClE1E;™), and  [9) € H(p),
where an element ¢ € C in the right hand side can be considered as (c,c, ... ,c).
(2%) Zg}e% YIVaenm(€5)|4)g;(65)de;s) =
for all

(h;(€)(d&;) ) € @(CIEIET™) (e, and  |¢) € H(B).

=1
Key Lemma. Under the above notation we have
dim V;(n) < 0.

To prove the Key Lemma we need the following Lemma due to Tuchiya.

Lemma 2.3. Let X be an N-pointed smooth curve of genus g with formal neigh-
bourhoods. Then we have

dim V;).(I) <nd.

The idea of the proof is as follows. For each non-zero clement (¢| € V;.(I) and
any element |v) € FoH(p) we can define a meromorphic form

M
2

(| Var(21)Var(z2) - Virr(zm)|o)(d21) ¥ (d2o) ¥ - (d2m)

on C x C x --- x C. By the operator product expansion of the cnergy momentum

m
tensor T(z) we know singularities of this form and we can express the form by

means of prime forms. This shows Lemma 2.3. To prove Key Lemma we need also
the following lemma.
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Lemma 2.4. For positive integers n and N there exist a smooth curve D of genus
g and points Qq,--- ,Qx on D with local coordinates £1,&3,-- , €N such that

GrfHY(D,0p(x 3 Q;)) c CP e, CleT e
GrlH(D,wp" "+ 30 Q,) € cP @, Cle; e dey) ¥

where the filtration F' can be defined by the order of poles at Q;.

The first inclusion can be proved, if the divisor n(Q;+Q2+- - -+Q ) is not special
on a curve D. The second inclusion is trivially true, if we have (29—2)(1— %l—) >nN.

Now introducing the filtration on H(p) and H!(5) compatible with the filtration
in Lemma 2.4, we can show finite dimensionality of V(%) for all N-pointed stable
curve with formal neighbourhoods.

Now let us consider a semi-stable curve C. For a double point P € C we let
7 : C — C be the normalization at the point P. Then, the inverse image 7~1(P)
of the point P consists of two points Py, P_. Let n4,n_ be formal coordinates of
P, and P_respectively such that C is defined formally in a neighbourhood of the
origin of C? by an equation 74 - 7_ = 0. Let X = (C;Q1,... ,Qn; &, ... ,&N) be
an N-pointed stable curve with formal neighbourhoods whose underling curve is
the semi-stable curve C. Put

i"_:' (é;le 3QN,P+7P—;EI$"° :EN7n+77]—-)'

Then,we have the following theorem.

Theorem 2.5. Under the above notation and assumptions, we have a canonical
isomorphism.

by e pt
D Vi 0=V,
JEZ/MZ

From this theorem and Proposition 2.1 we infer the following lemma.

Lemma 2.6. Let X = (C;Q,... ,QN;&1,... ,&N) be an N-pointed stable curve
with formal neighbourhoods. Assume that all the irreducible component of the
semi-stable curve C are P!(C) and the genus of C is g. Then, we have

M3, if Py+-+Py =0

0, otherwise.

dime VY(%) = {

Now we need to show that dime V; (X) depends only on the genus of the under-
lying curve C. For that purpose we need to consider the family Vi,n = Uy V; (%)
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over the moduli space —Mgoi,) of N-pointed curves of genus g with formal neighbour-
hoods. By a similar method as the one in [2], we can show that V; y comes from
a sheaf v;(s‘ll)v on M 511,3\(’ the moduli space of N-pointed curves of genus g with first

order neighbourhoods. Then, by Key Lemma we can show that V};I)\, is a coher-

ent Oﬁ(l) -module and it carries a logarithmic projectively flat connection. From
a. N

these fact we infer that Vg}v is locally free on the open part of 7\4_213\, corresponding
to non-singular curves.

Again, using a similar arguments as in [2] we can show that V,g.ll)v is locally free.
By Lemma 2.6 this implies our main theorem.
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