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  Abelian conformal field theory is usually discussed from the view point of the
llniversal Grassmann maBifold and K!'ichever maps (P]). Here, we ceRsider it from
the view peigt gf i}elkabeliaR coi}forma} field t}ieery develeped ii} I2]. We take tke

Heisenberg algebra as a gauge group. In the foiiowing we shall show that the main
ideas of the paper [2] can be applied to our situation.

  We thank A. '11'uchiya for pointing out a gap of our original proof of the main
theorem and showing us an idea of a proof of Lemma 2.3 below.

Sl. Main Theorem

  For a positive even integer M we let HM be a H
eperaters a(n), n ff Z with commntatioR relation

eisen berg algebra generated by

(Ll) [a(n), a(m)] = Mn6.+.,o • id.

The Heisenberg algebra is a universaJ enveloping algebra of an aMne Lie algebra
{a(n)} associated wit}} a one-dimensional abelian Me algebra C with cemmutation
relatieft (1.l). For eacl} p E C, by J (p) we dekete aR irreducible kigkest weigkt

moduie of HM determined by

a(o)lpÅr :plpÅr

a(n)lpÅr=e, if n)l,

where lpÅr is a highest weight vector. Let to,ti,t2,,.. be in

         o
 a(m) :              m=        at.'
a(-n) me nMtm n ==

O, 1, 2,...

1, 2, 3,...

dependent variables. Put
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Then, the Heisenberg algebra HM and its irreducible module X(pu) are realized as

                                  oo a o           HM :C[tl,t2,•••tn,''',ato'otl'''Ot.'''''at.'''•]

          •F(p) :Citl,t2,...,t.,...ePto,ewwptei,

where the highest weight vector lpÅr corresponds to ePtO. Using there realization, let

us iRtreduee aR eperator qA as

                               gA= MtO'

Put

                    ip(x) = a+ a(o) log z -- 2 g(.n)x-n

                                       n7EO
                    a(i) = 2 a(ft)i-noti

                          nEZ

Then we have
                            dip(z) == a(x)dz

For each integer k, the Vertex operator VkM(x) is defined as

                          VkM(z) = gek'ip(z) g

where 8 g is a normal ordering defined by putting a(nÅr, n k O tl}e right hand
side akd gA , a(-n),n .År l tke left hai}d side. Kekce, we }}ave

          vkM(i) = ek .]IS:i a(:") Z",h-g-eha(g) i.g .ewwk .]Illil a(.n)z-"

The Vertex operator VkM(x) is an ii}tertwiner between tl}e representations .1'(p)
aftd J7E' (kM+p). Nete tlmt ii} coi}formal fiald tl}eery a(i) be}}aves as a ene-ferm
and Vk-M(i) behaves as a AlizaLM-form, The energy-momentum tensor T(i) is defined

as
                        T(z) = 211i ga(z)a(z)g

There i$ a formal expansion

                          T(z) me 2 L.zww"-2,

                                nEZ
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and {L.} is a Virasoro algebra. In the following we only consider irreducible highest

weight representations of HM with highest weight vectors lpÅr where p's are integers.

  Let A = {O,1,... ,M - 1} be representatives of the module ZIMZ. For each
p- E {O, 1,... ,M- 1}, put

                       n(p-):=: (iD F(p)•

                              p=P mod M

Let ac = (C; (?i,... , (llN; 6i,... ,6N) be an N-pointed stable curve of genus g with

formal neighbourhoods. Tg each point (?j we associate an element tt E A and put

                     P-= (P-i,P-2,••• ,P-N),

                  7-t(p) = 7-tl(p-,) X 7-tl(p-2) Q • • • X 7-t(PN)

Put also
                       IFtt(pl = Homc(7t(pl,C)•

We have a natural pairing

                        Ht(pl Å~ 7-t(pl - C

                          (Åqcb1,1ipÅr) NÅqth1ipÅr

where Åqth1ipÅr means th(1ipÅr).

Definition 1.1. The space of vacua V;-(ec) attached to the N-pointed stable curve

with formal neighbourhoods ec is a subspace of 7tt(pl consisting of vectors ÅqthI

satisfying the following conditions.
  (1) For each IdiÅr E 7't(pl, the data Åqthlp,•(a(4,•))lipÅrd4,•, 2' = 1,2,... ,N are the

Laurent expansions of an element w E HO(C,wc(* E) Qj)) at (?j's with respect to
the formal coordinates 6i•'s,
  (2) For each 1ipÅr E 7't(pl, the data Åqthlpj(VÅ}M(e,•)lipÅr(d6,•)2\L, 1' = 1,2,...,N,

are the Laurent expansions of an element T E HO(C,wcX-Y (*2Qj)) at (?j's with

respect to the formal coordinates 6i•.

Main Theorem. We have

               dimc )2;-(ac) =( oM, g' i.'fth.P-.i.1.,5''+P" =O

where g is the genus of the stable curve C.

g2. 0utline of a proof of Main Theorem.
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  First we shall rewrite the conditions (1),
condition (1) is equivalent to the condition

(2) in DefinitioR 1.1. Note that the

(i")
 n
,2ot   Res
   cj =o

(Åqcb1pj (a(4j))1ipÅrg(ej)d4j) - O

for every g E HO(C, Oc(* Åí C?j)), where g(6o•) is the Laurerit expansion of g at (?j.

The ceRdition (2) is equivalent to tl}e coRditioR

(2")
N

,Åí..,,ER,.gSe(ÅqVifij(VskM(C j))lÅëÅrh(WdCj )xee

for every h E He(C, cv2(i-\)(*ÅíQ,•)), where h(6J•)(d6,J)2iSt is the Laurent expan•-

sion of h at Q3•. In the following we choose integers p3• such that pj -= p- j mod M.
Put
                lpi,p2,••• ,pNÅr :lpiÅr (g) lp2År X••• X lpNÅr•

Apply the cendition (1") te an element Åqthl G V,ÅÄ- (2e) and 1 E He(C, Oc(*Åí9ti)).

Since we have
                  Res{(g(e,•)lp,iÅrdG•} = a(g)Ip3-År = pj=lp3'År,
                 Ci--e

the condition (1") implies tl}at

 N
(Åí P3' )ÅqXSi2); ,P2 , . . .

j'=1

,pxÅr :g.

Hence, if Åqthlpi,p2,... ,pNÅr S e, tlien 2)S•t.i pj = O•

  First let us consider an N-pointed projective line (Pi(C);ai,a2,...

ai = e,a2 = l,aN = oo. Let i (rcsp.w) be a cogrdkiatc ef ai} gMxe lk}e
containing O (resp.oo) with i • w = 1. Put

,aN) with
ik Pi(C)

(2.1)
e, =(itr"i• l.I 1, 2,•••

N,
,N-1

and
ec .(Pi(C);a!,a2,••• ,aN;&,62,••t ,6N).

First we shall prove the following proposition.
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proposition 2.1.

             dirr}cV;-•(sc) :{61 i.'f,k.P-?.:..g2+'''+P"=O

  Let Fg7i(p-,-) be a subspace ef 7iC(pl spakked by the kigkest weigkt vectors llM+

p7'År, IEZover C. P{!t ,
             Fo 7tl(pl me .l To 7t(p-i ) X Fo 7t(P2 ) X • • - Q Fo 7t(p-N)•

  To prove the above proposition we need the following lemma.

Lemma 2.2. Under a llatural mapping

               j : Homc(7iC(pl,C) . Homc(.}}Te7t(pl,C),

the space ef vacHa YS-O(sc) of the N-peinted projective line with ceerdinates (2.1)

is mapped injectively.

  The lemma and the above consideration imply

                            v;-(ec) = o

if p-- i + p- 2 + . . . + p- N 7E O. There fo re, assume p- i + P2 + . . , + PN = O. Cho ose pJ• 's in

such a way that
                       pl +p2 +•••+pN =: e,
alld fix tkem iii tlie fellowi!zg. For ai} elemei}t ÅqVl e V;-•(X), pnt

       thi, ,i,,... ,t. : Åqtipl(lti M + p, År Q ll,M + p2År Q • • • op llNM + pNÅr).

If cbi,,i,,... ,i. 7E O, then li+l2+. .. IN = O. Tlie condition (1*) implies that zbt,,i,,... ,i.

determines uniquely the values

    ÅqipI(a(-n(,i)) . . . a( -nki? )Ili M + piÅr x a(-n(,2)) . . . a(-nÅí.2.) )ll2M + p2 ÅrX

              . . . x a(-nS")) . . . a(-nÅí.N.År)IINM + pMÅr),

for any pesitive integers nSi). A}so,the condition (2*) implies that th,,t,,...,iN can

be uniquely determined by the value cbo,o ,.. . ,o. Thus, we conclude that

                          dimc V;-(ec) = 1

                              -59-
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This proves Proposition 2.1.

  Let us consider a bigger subspace ),7;-(n) of 7tt(pl. An element Åqcb1 is in )2;-(n), if

Åqcbl satisfies the following two conditions (1:") and (2:').

                     n(i:) ,2.., ,R, gs,(Åqthla(6j )1ipÅrgj(cj)d6j)-o

for all

           (g)• (6J- )d4J• ) E C e $,"•.i (C [6j]6,: "), and l q5År E 7i (pT) ,

where an element c E C in the right hand side can be considered as (c, c, ... ,c).

                    n
(2;") ,2.., ,R, 2s,(ÅqipIVÅ}M(6j)lipÅrgj(cj)dO -o

for all

                       N
        (hj(4j)(dCj)\)E([E)(Cl6j]6i•")(d4j)(i-Z'`), and                                                    lq5År E 7-t(pT).

                       j=1

Key Lemma. Under the above notation we have

                            dim V;-(n) Åq oo.

  To prove the Key Lemma we need the following Lemma due to Tuchiya.

Lemma 2.3. Let ac be an IV-pointed smooth curve of gei]us g with formal neigh-
bourhoods. Thcn we have
                            dim v;-(ac) -Åq ng.

  The idea of the proof is as follows. For each non-zero element Åqcb1 E )2;-(iE) and

any element lvÅr E Fo7'tl(pl we can define a meromorphic form

        ÅqthIVÅ}M(ii)VÅ}M(Z2)''' VÅ}M(Zm)IVÅr(dzi)41'` (di2)!lf'` ''' (dzrn)\

on C Å~ C Å~ • • • Å~ C. By t,he operator product expansion of the energy momentum
  V------•--.
         mtensor T(z) we know singularities of this form and we can express the form by
means of prime forms. This shows Lemma 2.3. To prove Key Lemma we need also
the following lemma.
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Lemma 2.4. Forpositive integers n and N there exist a smooth curve D ofgenus
g and points 9! , - • • , qN on D wi th jocal coerdinates &, C2 , - • • , CN such that

    Gr.FHe(D,oD(*Åí Qj)) c c (ID e;.,C[4,-• ']e,: "

Gr.FHO(D,w9(i-\)(* X Qj)) c ce o,"•.ic[4,r ile,: "(d4j)i-\

where the EjtratioR F cai} be defu}ed by tke erde2' efpeles at e3•.

  The first inclusion can be proved, if the divisor n((?i+(?2+• • •+QN) is not special
on a curve D. The second inclusion is trivially true, if we have (2g-2)(1- ll!1) År nN.

  Now introducing the filtration on 7-tl(pl and 7tt(pl compatible with the filtration

iR Lemraa 2.4, we cai} sl}ow finite dimensignaiiSy of }2s(ee) for al} N-peiRted stab}e

curve wkh fermal neighbollrl}oods.
  Now let us consider a semi-stable curve C. For a double point I]' E C we let
r:di -År C be the normalization at the point P, Then, the inverse image 7r-i(P)

of the point P consists of two points P+, P-. Let n+,n- be formal coordinates of
PÅÄ axxd P-respectively such tl}at C is defuied formal!y iR a neighbeur}}eod of t}}e
erigin of C2 by an equatigR eq+•nyww = g. Let X =(C; qi,...,(2Ar;&,...,eN) be
an N-pointed stable curve with formal neighbourl}oods whose underling curve is
the semi-stable curve C. Put

X : (C; 9,,... , QN, PÅÄ, jP. ;&,-•• , CN, g-i-, ny- )•

Then,we have the following theorem.

Theorem 2.5. Under the above notation and assumptions, we have a canonical
isomorphism.
                       e vl,-,,.-(tc)blve-(ee)•

                      qEzlMz

  From this theorem and Proposition 2.1 we infer the following lemma.

Lemma 2.6. Let X = (C;Qi,... ,qN;&,... ,CN) be aii N-poii}ted stable curve
witk formal xeighbogrkeeds. Assgme tkat all tke k'red{icible ce]mpexeRt ef tke
semi-stabie curve C are Pi(C) and the genus ofC is g. Then, we have

diincv;-(ec)-{,",g' i.",,.P"-7.1.I,5I''"-" :O.

  Now we need to show that dimc Vp+- (X) depends only on the genus of the under-

lying curve C. For that purpose we need to consider the family Vp-•,N = Usc Vp+. (3;)
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over the moduli space MSpaN) of N-pointed c"rves of genus g with formal neighbour-

hoods. By a similar method as the one in [2], we can show that Vp-,N comes from
a sheaf vS.lk on M;IN, the moduli space of N-pointed curves of genus g with first

order neighbourhoods. Then, by Key Lemma we can show that VS-•lk is a coher-

ent O-Mi-7(,i,N -module and it carries a logarithmic projectively flat connection. IJIrom

these fact we infer that vS-lk is locally free on the open part of M:N corresponding

to non-singular curves.
  Again, using a similar arguments as in [2] we can show that VS-lk is locally free.

By Lemma 2.6 this implies our main theorem.
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