ON ELLIPTIC FIBRATIONS AND HYPER-KÄHLER STRUCTURES

Ryushi Goto

Osaka University

§0. INTRODUCTION

In this paper we shall discuss the class of Ricci-flat manifolds called hyper-Kähler manifolds. A hyper-Kähler manifold is, by definition, a Riemannian manifold equipped with three complex structures I, J, K satisfying the quaternionic relations, with respect to all of which the metric is Kählerian. The standard example of hyper-Kähler manifold is the vector space over the quaternion. The well known compact hyper-Kähler manifolds are K3 surfaces and even dimensional complex tori. A class of hyper-Kähler manifolds arises as moduli spaces of certain geometric structures, such as the moduli spaces of instantons on S^4 , monopoles on \mathbb{R}^3 or Higgs bundles on Riemannian surfaces. Eguchi-Hanson firstly discovered an interesting example of noncompact complete hyper-Kähler manifold which is diffeomorphic to the holomorphic cotangent bundle of $\mathbb{C}P^1$. Its 4*m* dimensional generalization was obtained by Calabi. He showed that the holomorphic cotangent bundle of $\mathbb{C}P^m$ has a hyper-Kähler structure. Gibbons-Hawking constructed hyper-Kähler structures on all minimal resolutions of rational double points of type A_k . They are called hyper-Kähler 4 manifolds of type A_k . Kronheimer-Nakajima constructed 4*m* dimensional noncompact complete hyper-Kähler manifolds which generalize hyper-Kähler 4 manifolds of type A_k . In [G-1], the author has studied geometrical and topological properties of these hyper-Kähler 4*m* manifolds of type A_k .

The first purpose of this paper is to construct new families of noncompact complte hyper-Kähler 4 manifolds. In [G-2], we shall give the 4m dimensional generalization. The following table (i) will show the significance of our new manifolds.

	4 dim	$4m \dim (m > 1)$
A ₁	T*CP¹ (by Eguchi-Hanson)	T*ℂP‴ (by Calabi)
A _k	Hyper-Kähler 4 manifolds of type A_k (by Gibbons-Hawking)	4m dimensional hyper- Kähler manifolds of type A_k (in [KN], [G-1])
A_{∞}	Hyper-Kähler manifolds of type A_{∞} (constructed in this paper)	4m dimensional hyper- Kähler manifolds of type A_{∞} (constructed in [G-2])
A^+_{∞}	Hyper-Kähler manifolds of type A_{∞}^+ (in [AKL])	4m dimensional hyper- Kähler manifolds of type A_{∞}^{+} (constructed in [G-2])

Hyper-Kähler manifolds of type A

Table (i)

As shown in Table (i), we obtain two families of type A_{∞} and of type A_{∞}^+ . In 4 dimensional case, hyper-Kähler manifolds of type A_{∞}^+ were constructed by Anderson-Kronheimer-Lebrun [AKL]. But our construction is different from their construction. Our construction of hyper-Kähler 4-manifolds of type A_{∞} is well understood by the comparison with Kronheimer's construction of hyper-Kähler 4manifolds of type A_k . This comparison will be well explained by the following table (ii).

Construction	Construction
of hyper-Kähler 4 manifolds	of hyper-Kähler 4 manifolds
of type A_k	of type A_{∞}
by Kronheimer	in this paper
cyclic group Γ_k of order $k+1$	maximal torus S^1
in $SU(2)$	in $SU(2)$
extended Dynkin diagram	extended Dynkin diagram
of type A_k	of type A_{∞}
regular representation R	regular representation $L^2(S^1)$
$\int \int \Gamma_k$	of S^1
module over H	Hilbert manifold
$M = (\operatorname{End}(R) \otimes_{\mathbb{C}} \mathbb{H})^{\Gamma_{\star}}$	$\hat{M} \subset (\operatorname{Hom}(L^2(S^1)) \otimes_{\mathbb{C}} \mathbb{H})^{S^1}$
Lie group	Hilbert Lie group
$G = U(R)^{\Gamma_k}$	$G \subset U(L^2(S^1))^{S^1}$
hyper-Kähler moment map μ	map μ given by (0-1)
The hyper-Kähler quotient $\mu^{-1}(\zeta)/G$	Our new quotient $\mu^{-1}(\zeta)/G$

Table (ii)

Let us explain Kronheimer's construction briefly. His construction has relied on the hyper-Kähler quotient construction. He has used the regular representation R of Γ_k to construct the \mathbb{H} module $M = (\operatorname{Hom}(R) \otimes_{\mathbb{C}} \mathbb{H})^{\Gamma_k}$ and the Lie group $G = U(R)^{\Gamma_k}$, where M is a set of Γ_k -invariant elements of $\operatorname{Hom}(R) \otimes_{\mathbb{C}} \mathbb{H}$ and G is the set of Γ_k -invariant unitary map of R. The Lie group G acts on the \mathbb{H} -module M preserving its hyper-Kähler structure. Then we have the hyper-Kähler moment map $\mu \colon M \to \operatorname{Im} \mathbb{H} \otimes_{\mathbb{R}} \mathfrak{g}^*$, where $\operatorname{Im} \mathbb{H}$ is the imaginary part of the quaternion and \mathfrak{g}^* the dual space of the Lie algebra of G. For generic $\zeta \in \operatorname{Im} \mathbb{H} \otimes \mathfrak{g}^*$, we obtain a hyper-Kähler manifold $\mu^{-1}(\zeta)/G$. Then Kronheimer has showed that this hyper-Kähler manifold $\mu^{-1}(\zeta)/G$ coincides with hyper-Kähler manifold of type A_k . Moreover he has showed that this construction can be described in terms of the extended Dynkin diagram. (Note that Kronheimer has constructed hyper-Kähler metrics on all minimal resolutions of rational double points.)

In our case of hyper-Kähler manifolds of type A_{∞} , we shall use the regular representation $L^2(S^1)$ of the maximal torus S^1 of SU(2) to construct the HIlbert manifold \hat{M} and the Hilbert Lie group \hat{G} . The HIlbert manifold \hat{M} is a subset of $(\operatorname{Hom}(L^2(S^1)) \otimes_{\mathbb{C}} \mathbb{H})^{S^1}$ of S^1 -invariant elements of $\operatorname{Hom}(L^2(S^1)) \otimes_{\mathbb{C}} \mathbb{H}$, where Hom $(L^2(S^1))$ is the set of operators of $L^2(S^1)$ whose domains are dense. The Hilbert Lie group \hat{G} is a subgroup of S^1 -invariant unitary operators $U(L^2(S^1))^{S^1}$. An element of \hat{M} can be regarded as a \mathbb{H} valued operator $\alpha + \beta j$, where α, β are operators of $L^2(S^1)$. We shall define the map $\hat{\mu}$ from \hat{M} to Im $\mathbb{H} \otimes \mathfrak{g}^*$ by

(0-1)
$$\begin{cases} \mu_I(\alpha + \beta j) &= ([\alpha, \alpha^*] + [\beta, \beta^*]), \\ \mu_{\mathbb{C}}(\alpha + \beta j) &= -2\sqrt{-1} \ [\alpha, \beta]. \end{cases}$$

where $\mu = \mu_I + \mu_C j$. Then a hyper-Kähler manifold of type A_{∞} will be constructed as a quotient space $\mu^{-1}(\zeta)/G$ for generic $\zeta \in \text{Im}\mathbb{H} \otimes \mathfrak{g}^*$. Moreover we shall show that our construction can be described in terms of the extended Dynkin diagram of type A_{∞} in table (ii). For the construction of hyper-Kähler manifolds of type A_{∞}^+ , we shall use the representation space $L^{2+}(S^1)$ of L^2 functions on the circle S^1 whose negative Fourier coefficients vanish. Then we follow the same procedure as in type A_{∞} . This construction of type A_{∞}^+ corresponds to the following extended Dynkin diagram of type A_{∞}^+ .

where each vertex has the weight number 1.

The second purpose of this paper is to discuss the relation between hyper-Kähler manifolds of type A_{∞} and elliptic fibrations. Let X_{ζ} be the hyper-Kähler manifold of type A_{∞} . When we consider a certain subfamily of hyper-Kähler manifolds of type A_{∞} , we can choose a special complex structure I and a holomorphic symplectic form $\omega_{\mathbb{C}}$ on each X_{ζ} in this subfamily. Then there exist three kind of actions on X_{ζ} . At first \mathbb{C}^* acts on X_{ζ} preserving I and $\omega_{\mathbb{C}}$. We denote by Φ the holomorphic moment map on X_{ζ} for the action of \mathbb{C}^* . (We shall describe this moment map Φ explicitely.) Secondly there exits the holomorphic action of an additive group \mathbb{Z} on X_{ζ} . Since the moment map Φ is invariant under the action of \mathbb{Z} , we have a map $\tilde{\Phi}$ from the quotient space $X_{\zeta}/b\mathbb{Z}$ to \mathbb{C} for any positive integer b. Denote by Δ the disk { $t \in \mathbb{C} \mid |t| < 1$ }. When we restrict the map $\tilde{\Phi}$ to the inverse image $\tilde{\Phi}^{-1}(\Delta)$, we have the map $\hat{\Phi} : \tilde{\Phi}^{-1}(\Delta) \to \Delta$. Then we obtain the following Theorem.

Main theorem. $\hat{\Phi} : \tilde{\Phi}^{-1}(\triangle) \to \triangle$ is biholomorphic to the fibre space of elliptic curves of type I_b .

Remark. All fibre space of elliptic curves over the disk were classified by a celebrated theorem of Kodira. Our notation is the same as in his paper [KK].

Colollary. The hyper-Kähler 4 manifold of type A_{∞} is the universal cover of the fibre space of elliptic curves of type I_b .

Finally we shall show that there exists the holomorphic involution σ on X_{ζ} . By the action of σ , we can obtain the fibre space of elliptic curves of type I_b^* . In the final theorem of this paper, we shall discuss hyper-Kähler manifolds of type D_{∞} . We shall show that hyper-Kähler manifolds of type D_{∞} can be constructed by the regular representation of the normalizer of S^1 in Sp(1) as in type A_{∞} [G-4].

§1. PRELIMINARY RESULTS

In this section, we shall give a brief review of the hyper-Kähler quotient construction and Kronheimer's result.

Definition 1-1. A hyper-Kähler structure on a Riemannian manifold (X, g) consists of three almost complex structures (I, J, K) which satisfy following conditions

(1)

$$g(u,v) = g(Iu, Iv) = g(Ju, Jv) = g(Ku, Kv).$$

(2)

$$I^{2} = J^{2} = K^{2} = -1, \quad IJ = -JI = K \in \text{End}(TX).$$

(3) Let ∇ be a Levi-Civita connection of (X, g). Then

$$\nabla I = \nabla J = \nabla K = 0.$$

A hyper-Kähler manifold is a Riemannian manifold with a hyper-Kähler structure. Especially the module over the quaternion is a standard example of a hyper-Kähler manifold. Next we define a hyper-Kähler moment map. Let (X, g, I, J, K)be a hyper-Kähler manifold. We assume that a Lie group G acts on X so as to preserve the hyper-Kähler structure of X. Each element $\xi \in \mathfrak{g}$ of the Lie algebra of G defines a vector field $\hat{\xi}$ on X by the action of G.

Definition 1-2. A hyper-Kähler moment map for the action of G on M is a map $\mu = i\mu_I + j\mu_J + k\mu_K$: $M \longrightarrow \text{Im}\mathbb{H}\otimes \mathfrak{g}^*$ which satisfies

$$\begin{split} \mu_{I_{\alpha}}(gx) &= \mathrm{Ad}_{g}^{*}(\mu_{I_{\alpha}})(x), \qquad x \in M, g \in G, \alpha = 1, 2, 3\\ \langle \xi, d\mu_{I_{\alpha}} \rangle &= i(\hat{\xi})\omega_{I_{\alpha}}, \qquad \xi \in \mathfrak{g}, \alpha = 1, 2, 3 \end{split}$$

where $(I_1, I_2, I_3) = (I, J, K)$, \mathfrak{g}^* the dual space of \mathfrak{g} , $\mathbf{Ad}_g^*: \mathfrak{g}^* \to \mathfrak{g}^*$ the coadjoint map, \langle , \rangle the dual pairing between \mathfrak{g} and \mathfrak{g}^* , and $i(\hat{\xi})$ the interior product.

Under the assumption that M is simply connected, a hyper-Kähler moment map always exists and is unique up to addition of a constant $\zeta \in \text{Im}\mathbb{H}\otimes Z \subset \text{Im}\mathbb{H}\otimes \mathfrak{g}^*$, where Z is the set of G-invariant elements of \mathfrak{g}^* . The set $\mu^{-1}(\zeta) \in M$ is invariant under G-action for any $\zeta \in \text{Im}\mathbb{H}\otimes Z$. After choosing $\zeta \in \text{Im}\mathbb{H}\otimes \mathfrak{g}^*$, one defines the hyper-Kähler quotient as

$$X_{\zeta} = \mu^{-1}(\zeta)/G.$$

We are now ready to state the hyper-Kähler quotient construction.

Fact 1-3[H-K-L-R]. Suppose that G acts freely on $\mu^{-1}(\zeta)$, then the hyper-Kähler quotient $\mu^{-1}(\zeta)/G = X_{\zeta}$ is a hyper-Kähler manifold. Moreover if G is compact and M is complete, then X_{ζ} is a complete hyper-Kähler manifold.

Kronheimer constructed the family of hyper-Kähler structures on minimal resolutions of rational double points. Let Γ be a finite subgroup of SU(2). There is the natural action of Γ on the quaternion \mathbb{H} by the identification $SU(2) \cong Sp(1)$. Denote by R the regular representation with the invariant Hermitian metric. Then $\operatorname{End}(R) \otimes_{\mathbb{C}} \mathbb{H}$ is regarded as a module over the quaternion on which Γ acts preserving its hyper-Kähler structure. Let $M := (\operatorname{End}(R) \otimes_{\mathbb{C}} \mathbb{H})^{\Gamma}$ be the set of invariant elements of $\operatorname{End}(R) \otimes_{\mathbb{C}} \mathbb{H}$ under the action of Γ . Denote by G the group of unitary maps of R which are invariant under the adjoint action of Γ . Then M is the module over the quaternion on which the compact Lie group G acts so as to preserve the hyper-Kähler structure.

When we apply hyper-Kähler quotient construction on M and G, we obtain the following Theorem by Kronheimer.

Theorem 1-4. Let M, G be as before. Let μ be the hyper-Kähler moment map from M to Im $\mathbb{H} \otimes \mathfrak{g}^*$. For generic $\zeta \in \operatorname{Im} \otimes Z$, the hyper-Kähler manifold $\mu^{-1}(\zeta)/G$ is diffeomorphic to the minimal resolution of \mathbb{C}^2/Γ .

-187-

§2. Hyper-Kähler manifolds of type A_{∞}

Let V_n be a irreducible representation of the circle group S^1 which is generated by the function $e^{in\theta}$ on S^1 . By the basis $e^{in\theta}$ each V_n may be regarded as the one dimensional complex vector space \mathbb{C} . Consider the following diagrm with all edges doubled up and assigned orientations both ways :

$$\cdots \xrightarrow{\alpha_{n-2}}_{\beta_{n-2}} V_{n-1} \xrightarrow{\alpha_{n-1}}_{\beta_{n-1}} V_n \xrightarrow{\alpha_n}_{\beta_n} V_{n+1} \xrightarrow{\alpha_{n+1}}_{\beta_{n+1}} \cdots$$

where each arrow implies a homomphism between irreducible representations. Denote by (α_n, β_n) an element of $\operatorname{Hom}(V_n, V_{n+1}) \oplus \operatorname{Hom}(V_{n+1}, V_n)$. Consider the infinite dimensional module

$$H := \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}(V_n, V_{n+1}) \oplus \operatorname{Hom}(V_{n+1}, V_n).$$

We define the Hilbert space M by

$$M := \left\{ \begin{array}{cc} (\alpha_n, \beta_n)_{n \in \mathbb{Z}} \in H & \big| & \sum_{n \in \mathbb{Z}} |\alpha_n|^2 + |\beta_n|^2 < \infty \end{array} \right\}$$

Since M is a vector space over \mathbb{C} , we have the almost complex structure I on M by the mutiplication of i. An almost complex structure J is defined by

$$J(\alpha_n, \beta_n)_{n \in \mathbb{Z}} := (\beta_n^*, -\alpha_n^*)_{n \in \mathbb{Z}}.$$

When we set K = IJ, then M has a hyper-Kähler structure. Define an element $\Lambda = (\Lambda_n)_{n \in \mathbb{Z}}$ by

$$\Lambda_n = \begin{cases} (ni,0) & \text{if } n \ge 0, \\ (0,ni) & \text{if } n < 0. \end{cases}$$

Definition 2-1. We define the Hilbert manifold \hat{M} by

$$\hat{M}:=\Lambda+M\subset H$$

An element of \hat{M} may be written as $(\alpha_n, \beta_n)_{n \in \mathbb{Z}}$ where $(\alpha_n, \beta_n) = \Lambda_n + (x_n, y_n)$ for $(x_n, y_n)_{n \in \mathbb{Z}} \in M$. Define the Hilbert space \mathfrak{g} by

$$\mathfrak{g} := \{ (\xi_n)_{n \in \mathbb{Z}} \in \bigoplus_{n \in \mathbb{Z}} u(V_n) \mid \sum_{n \in \mathbb{Z}} (1+n^2) |\xi_n - \xi_{n+1}| < \infty, \quad \lim_{|n| \to \infty} \xi_n = 0 \}.$$

7

Definition 2-2. Define the Hilbert Lie group G by

$$G := \left\{ \begin{array}{cc} (e^{\xi_n})_{n \in \mathbb{Z}} \in \underset{n \in \mathbb{Z}}{\times} U(V_n) & | \quad (\xi_n)_{n \in \mathbb{Z}} \in \mathfrak{g} \end{array} \right\}.$$

The Lie algebra of the Hilbert Lie group G is the Hilbert space \mathfrak{g} . Since G is the subgroup of $\underset{n \in \mathbb{Z}}{\times} U(V_n)$, we have the action of G on $H := \underset{n \in \mathbb{Z}}{\oplus} \operatorname{Hom}(V_n, V_{n+1}) \oplus \operatorname{Hom}(V_{n+1}, V_n)$. Then the Hilbert manifold \hat{M} is invariant under the action of G. Hence we have the action of G on \hat{M} . It is clear that the G acts on \hat{M} preserving the hyper-Kähler structure. Then there exists the hyper-Kähler moment map μ on M for the action of G.

$$\mu: M \longrightarrow \operatorname{Im} \mathbb{H} \otimes \mathfrak{g}^*.$$

The map μ is described by

$$< \mu^{I}(q), \xi^{I} > = \sum_{n \in \mathbb{Z}} < (\alpha_{n}^{*}\alpha_{n} - \beta_{n}\beta_{n}^{*} - \alpha_{n-1}\alpha_{n-1}^{*} + \beta_{n-1}^{*}\beta_{n-1}), \quad \xi^{I}_{n} >$$

$$- < C^{I}_{n}(\Lambda), \quad \xi^{I}_{n} >$$

$$< \mu^{\mathbb{C}}(q), \xi^{\mathbb{C}} > = \sum_{n \in \mathbb{Z}} 2i < \beta_{n}\alpha_{n} - \alpha_{n-1}\beta_{n-1}, \quad \xi^{\mathbb{C}}_{n} > - < C^{\mathbb{C}}_{n}(\Lambda), \quad \xi^{\mathbb{C}}_{n} >,$$

where $q = (\alpha_n, \beta_n)_{n \in \mathbb{C}} \in \hat{M}$, $\xi = (i\xi_n^I + j\xi_n^J + k\xi_n^K)_{n \in \mathbb{Z}} \in \text{Im}\mathbb{H} \otimes \mathfrak{g}$, $\xi_n^{\mathbb{C}} = \xi_n^J + i\xi_n^K$ and $C_n(\Lambda) := C_n^I(\Lambda) + C_n(\Lambda)^{\mathbb{C}}j$ is a constant which does not depend on $q \in \hat{M}$. We consider the following element $\hat{e}^n \in \text{Im}\mathbb{H} \otimes \mathfrak{g}$

$$\hat{e}_{m}^{n} = \begin{cases} i(i+j+k) & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$$

Definition 2-3. An element $\zeta \in \operatorname{Im}\mathbb{H} \otimes \mathfrak{g}^*$ is said to be nondegenerate if $\sum_{i=n}^m \zeta_i \neq 0 \in \operatorname{Im}\mathbb{H}$ for all $n \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}$, where $\zeta_i := \langle \zeta, \hat{e}^n \rangle - \langle C_n(\Lambda), \hat{e}_n^n \rangle$.

Form the definition of μ , an inverse image $\mu^{-1}(\zeta)$ is invariant under the action of G. So we have the quotient space $X_{\zeta} := \mu^{-1}(\zeta)/G$ for $\zeta \in \text{Im}\mathbb{H} \oplus \mathfrak{g}^*$.

Theorem 2-4. The quotient space $X_{\zeta} := \mu^{-1}(\zeta)/G$ is a noncompact complete hyper-Kähler 4 manifold for any nondegenerate element $\zeta \in \text{Im}\mathbb{H} \otimes \mathfrak{g}^*$.

It is natural that X_{ζ} in Teorem 2-4 is called a hyper-Kähler manifold of type A_{∞} by the following Theorem.

Theorem 2-5. Let X_{ζ} be a hyper-Kähler manifold of type A_{∞} . Then there exist submanifolds $L_n \in X_{\zeta}$, $n \in \mathbb{Z}$ such that

- (1) each L_n is homeomorphic to the sphere S^2
- (2) the inclusion $\bigcup_{n \in \mathbb{Z}} L_n \subset X_{\zeta}$ is a deformation retract.
- (3) each intersection number is given by

$$L_{n_1} \cdot L_{n_2} = \begin{cases} -2 & \text{if } n_1 = n_2, \\ 1 & \text{if } |n_1 - n_2| = 1 \\ 0 & \text{otherwise }, \end{cases}$$

The intersection form of $H(X_{\zeta},\mathbb{Z})$ can be interpreted as (-1) times of Cartan matrix of type A_{∞} .

Sketch of a proof of Theorem 2-4. For any nondegenerate element ζ , we see that $\mu^{-1}(\zeta)$ is a submanifold of \hat{M} by using an implicit functin theorem. A key point of a proof is an existence of a slice on $\mu^{-1}(\zeta)$ for the action of G. Denote by S_q a slice on $q \in \mu^{-1}(\zeta)$. Then we have an othogonal decomposition

$$T_q \mu^{-1}(\zeta) = T_q S_q + T_q G(q),$$

where $T_qG(q)$ is the tangent space of G-orbit through q. By the action of G on \hat{M} , each element $\xi \in \mathfrak{g}$ defines a vector field V_{ξ} on \hat{M} . So we define the map $d_q:\mathfrak{g}\to T_q\hat{M}$ by

$$d_q(\xi) := V_{\xi}(q) \in T_q M$$

Consider the following diagram

$$0 \longrightarrow \hat{\mathfrak{g}} \xrightarrow{d_q} T_q \hat{M} \xrightarrow{d\dot{\mu}_q} T_{\dot{\mu}(q)} \hat{N} \longrightarrow 0,$$

where $d\mu_q$ is the differencial of the map μ at q. Let d_q^* be the adjoint operator of d_q . Then the decomposition $T_q\hat{\mu}^{-1}(\zeta) = T_qS_q + T_q\hat{G}_q$ implies that

$$T_q S_q \cong \operatorname{Ker} d_q^* \cap \operatorname{Ker} d\mu_q.$$

We define the map $D_q := d_q^* + d\mu_q : T_q \hat{M} \to \mathfrak{g} \oplus (\operatorname{Im} \mathbb{H} \otimes \mathfrak{g}^*) \cong \mathbb{H} \otimes \mathfrak{g}^*$, where the image of the map d_q is in the real part of $\mathbb{H} \otimes \mathfrak{g}^*$ and \mathfrak{g} is identified with \mathfrak{g}^* by the metric. Then the map D_q satisfies the followings,

- (1) $D_q: T_q \hat{M} \to \mathbb{H} \otimes \mathfrak{g}^*$ is a linear operator between Hilbert spaces over \mathbb{H} ,
- (2) D_q is a Fredholm operator whose index is equal to 4 for all $q \in \mu^{-1}(\zeta)$,
- (3) $\operatorname{Coker} D_q = \{0\}.$

We see that

$$T_q S_q = \operatorname{Ker} D_q.$$

Hence $\dim_{\mathbb{R}} T_q S_q = \operatorname{ind} D_q = 4$. Since D_q is a linear operator over \mathbb{H} , $\operatorname{Ker} D_q$ is a vector space over \mathbb{H} . This implies that $T_q S_q$ has a hyper-Kähler structure. Let π denote a natural projectin from $\mu^{-1}(\zeta)$ to $X_{\zeta} := \mu^{-1}(\zeta)/G$. Then each tangent space $T_x X_{\zeta}$ may be considered as $T_q S_q$ for $\pi(q) = x$. Hence X_{ζ} has an almost hyper-Kähler structure. Finally we can prove that this almost hyper-Kähler structure defines a hyper-Kähler structure.

§3. Holomorphic descriptin of hyper-Kähler manifolds of type A_{∞}

We use the same notation as in section 2. In this sectin, we choose $\zeta \in i\mathfrak{g} \subset \operatorname{Im}\mathbb{H}\otimes\mathfrak{g}^*$, i.e., $\zeta^J, \zeta^K = 0$.

Proposition 3-1. Let X_{ζ} be a hyper-Kähler manifolds of type A_{∞} and let L_n be submanifolds of $X_{\zeta}, n \in \mathbb{Z}$. Then there exists a complex structure I on X_{ζ} such that each L_n is a complex submanifold with repect to I.

This proposition implies that X_{ζ} has an infinite chain of rational curves. Since $\zeta^{\mathbb{C}} := \zeta^J + \zeta^K i = 0$, we have an inclusion $\mu^{-1}(\zeta) \hookrightarrow \mu_{\mathbb{C}}^{-1}(0)$, where $\mu_{\mathbb{C}} := \mu_J + \mu_K i$. By the explicit description of the hyper-Kähler moment map μ , we see that

$$\mu_{\mathbb{C}}^{-1}(0) = \left\{ (\alpha_n, \beta_n)_{n \in \mathbb{Z}} \in \hat{M} \mid \beta_n \alpha_n = \alpha_{n-1} \beta_{n-1}, \quad \forall n \in \mathbb{Z} \right\}.$$

We consider the following open subset $\mu_{\mathbb{C}}^{-1}(0)_+ \subset \mu_{\mathbb{C}}^{-1}(0)$,

$$\mu_{\mathbb{C}}^{-1}(0)_{+} := \left\{ (\alpha_{n}, \beta_{n})_{n \in \mathbb{Z}} \in \mu_{\mathbb{C}}^{-1}(0) \mid |\alpha_{n}|^{2} + |\beta_{n}|^{2} \neq 0, \quad \forall n \in \mathbb{Z} \right\}$$

For simplicity, we assume that $\zeta_i > 0$ for all $i \in \mathbb{Z}$. Then we have a natural inclusion

$$\mu^{-1}(\zeta) \hookrightarrow \mu_{\mathbb{C}}^{-1}(0)_+.$$

Let $G^{\mathbb{C}}$ denote the complexification of G. Then we have the map

$$\iota: X_{\zeta} \to \mu_{\mathbb{C}}^{-1}(0)_+ / G^{\mathbb{C}}.$$

Theorem 3-2. $\mu_{\mathbb{C}}^{-1}(0)_+/G$ is a complex surface with a holomorphic symplectic form $\tilde{\omega}_{\mathbb{C}}$. The map $\iota: X_{\zeta} \to \mu_{\mathbb{C}}^{-1}(0)_+/G^{\mathbb{C}}$ is biholomorphic with respect to the complex structure I on X_{ζ} . Moreover $\iota^*(\tilde{\omega}_{\mathbb{C}}) = \omega_{\mathbb{C}}$.

§4. Elliptic fibrations and hyper-Kähler manifolds of type A_∞ and D_∞

Let (X_{ζ}, I) be a pair of a hyper-Kähler manifolds of type A_{∞} and a complex structure in Proposition 3-1. Then we have three kind of actions on X_{ζ} .

- (1) the action of \mathbb{C}^* ,
- (2) the action of an additive group \mathbb{Z} ,
- (3) the involution σ .

At first we shall define the action of \mathbb{C}^* on X_{ζ} . Choose an element $(\alpha_n, \beta_n)_{n \in \mathbb{Z}}$ of $\mu_{\mathbb{C}}^{-1}(0)_+$. Denote by $[\alpha_n, \beta_n]_{n \in \mathbb{Z}}$ the equivalent class of $(\alpha_n, \beta_n)_{n \in \mathbb{Z}}$ in X_{ζ} . Then the action of \mathbb{C}^* is defined by

$$\phi : \mathbb{C}^* \times X_{\zeta} \longrightarrow X_{\zeta}$$
$$\phi(\lambda, [\alpha_n, \beta_n]_{n \in \mathbb{Z}})_n := \begin{cases} (\lambda \alpha_0, \lambda^{-1} \beta_0) & \text{if } n = 0\\ (\alpha_n, \beta_n) & \text{if } n \neq 0\\ -191 - \end{cases}$$

It is clear that this definition is well defined. Since the action of \mathbb{C}^* on X_{ζ} is preserving the holomorphic symplectic form $\omega_{\mathbb{C}}$, we have the holomorphic moment map Φ on X_{ζ} for the action of \mathbb{C}^* .

$$\Phi: X_{\zeta} \longrightarrow \mathbb{C},$$

where \mathbb{C} is considered as the dual space of the Lie algebra of \mathbb{C} . The map Φ is explicitly described by

$$\Phi([\alpha_n,\beta]_{n\in\mathbb{Z}})=\alpha_0\beta_0.$$

Secondly we shall define the action of \mathbb{Z} on X_{ζ} . Consider the following map

$$f:\mu_{\mathbb{C}}^{-1}(0)_{+} \to V$$

$$f((\alpha_{n},\beta_{n})_{n\in\mathbb{Z}}):=\begin{cases} (-in^{-1}\alpha_{n},ni\beta_{n}) & \text{if } n>0,\\ (\alpha_{0},\beta_{0}) & \text{if } n=0,\\ (ni\alpha_{n},-in^{-1}\beta_{n}) & \text{if } n<0, \end{cases}$$

where $V = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}(V_n, V_{n+1}) \oplus \operatorname{Hom}(V_{n+1}, V_n)$. Let Y denote the image of the map f. Denote by \hat{X}_{ζ} the quotient space $Y/G^{\mathbb{C}}$. Then X_{ζ} may be considered as \hat{X}_{ζ} .

$$X_{\zeta} \cong \hat{X}_{\zeta}.$$

We define the map ψ by

$$\psi: \hat{X}_{\zeta} \longrightarrow \hat{X}_{\zeta},$$

$$\psi([\hat{\alpha}_n,\hat{\beta}_n]_{n\in\mathbb{Z}}):=[\hat{\alpha}_{n-1},\hat{\beta}_{n-1}]_{n\in\mathbb{Z}}.$$

Notice that $(\hat{\alpha}_{n-1}, \hat{\beta}_{n-1})_{n \in \mathbb{Z}}$ is an element of Y. The map ψ is well explained by the following diagram:

The action of \mathbb{Z} on \hat{X}_{ζ} is defined by

$$n \longrightarrow \psi^n \in \operatorname{Aut}(\hat{X}_{\zeta}),$$

where $n \in \mathbb{Z}$. By the identificaton $X_{\zeta} \cong \hat{X}_{\zeta}$, we have the action of \mathbb{C}^* on X_{ζ} . Note that $\hat{\beta}_n \hat{\alpha}_n = \hat{\alpha}_{n-1} \hat{\beta}_{n-1}$ for all $n \in \mathbb{Z}$ where $(\hat{\alpha}_n, \hat{\beta}_n)_{n \in \mathbb{Z}} \in Y$ This implies that the holomorphic moment map Φ is invriant under the action of \mathbb{Z} . Hence we have the map $\tilde{\Phi} : X_{\zeta}/b\mathbb{Z} \to \mathbb{C}$ for any positive integer b.

$$\tilde{\Phi}: X_{\zeta} \longrightarrow X_{\zeta}/b\mathbb{Z}$$

Set $\Delta := \{ t \in \mathbb{C} \mid |t| < 1 \}$. Then we shall show that $\tilde{\Phi}^{-1}(\Delta) \to \Delta$ is biholomorphic to the fibre space of elliptic curves of type I_b .

Proof of Main theorem. When $t = \hat{\alpha}_0 \hat{\beta}_0 \neq 0$, we can define an invariant function X by

$$x := (\prod_{n \ge 0} \hat{\alpha_n}) (\prod_{n < 0} \hat{\beta}_n)^{-1},$$

where each infinite product converges absolutely. By a simple calculation, we see that (t, x) defines a local coordinate aroung a generic fibre $\Phi^{-1}(t)$ of X_{ζ} for $t \neq 0$. Moreover any general fibre is written as $\Phi^{-1}(t) \cong \mathbb{C}^* = \{ (t, x) \mid x \in \mathbb{C}^* \}$. The action of \mathbb{Z} can be described as the following,

$$\psi((t,x)) = (t,t^{-1}x).$$

This implies that each general fibre $\Phi^{-1}(t)$ is an elliptic curve $\mathbb{C}/(\mathbb{Z}\sqrt{-1} + \mathbb{Z}\log t)$. In order to determine a special fibre $\Phi^{-1}(0)$, we describe the infinite chain of rational curves in Theorem 3-1. Define \hat{L}_n by

$$\hat{L}_n := \left\{ \begin{array}{cc} [\hat{\alpha}_n, \hat{\beta}_n]_{n \in \mathbb{Z}} \in \hat{X}_{\zeta} & | & \hat{\alpha}_i = 0(i < n), & \hat{\beta}_i = 0(i \ge 0) \end{array} \right\}.$$

Each \hat{L}_n is well explained by the following diagram:

$$\cdots \qquad \underbrace{\longleftarrow}_{\beta_{n-2}} V_{n-1} \qquad \underbrace{\longleftarrow}_{\beta_{n-1}} V_n \qquad \underbrace{\xrightarrow{\alpha_n}}_{N+1} V_{n+1} \qquad \underbrace{\xrightarrow{\alpha_{n+1}}}_{\cdots} \cdots$$

Then we have a holomorphic map $\hat{L}_n \to \mathbb{C}P^1$ by

$$[\hat{\alpha}_n, \hat{\beta}_n]_{n \in \mathbb{Z}} \longrightarrow [\prod_{i \ge n} \hat{\alpha}_i, \quad \prod_{i < n} \hat{\beta}_i] \in \mathbb{C}P^1.$$

We can see that this map is bijective. Hence the infinite chain of rational curves may be considered as $\hat{L}_n, n \in \mathbb{Z}$. By definition of ψ , we have

$$\psi(\hat{L}_n) = \hat{L}_{n+1}.$$

12

Moreover we see that $\Phi^{-1}(0) = \bigcup_{n \in \mathbb{Z}} \hat{L}_n$. This implies that a special fibre $\tilde{\Phi}^{-1}(0)$ is a circle of rational curves. Hence we can conclude that $\tilde{\Phi}^{-1}(\Delta) \to \Delta$ is biholomorphic to the fibre space of elliptic curves of type I_b . \Box

Finally we shall define an involution σ on X_{ζ} . Consider the following map $\tilde{\sigma}: V \to V$ defined by,

$$\tilde{\sigma}((\alpha_n,\beta_n)_{n\in\mathbb{Z}})_n := \begin{cases} (-\beta_{-n-1},\alpha_{-n-1}) & \text{if } n > 0, \\ (\beta_{-n-1},-\alpha_{-n-1}) & \text{if } n \le 0. \end{cases}$$

This map $\tilde{\sigma}$ is well understood by the following diagram:

$$\cdots \xrightarrow{\beta_{n-2}} V_{-1} \xrightarrow{\alpha_{n-1}} V_0 \xrightarrow{\alpha_n} V_1 \xrightarrow{\alpha_{n+1}} \cdots$$

$$\downarrow \tilde{\sigma}$$

$$\cdots \xrightarrow{\beta_1} V_{-1} \xrightarrow{\beta_0} V_0 \xrightarrow{-\beta_{-1}} V_1 \xrightarrow{-\beta_{-2}} \cdots$$

It is clear that $\tilde{\sigma}$ defines an involution σ on X_{ζ} . By using this involution σ , we obtain the fibre space of elliptic curves of type I_b^* . It must be noted that σ is a hyper-Kähler isometry. Hence we have a hyper-Kähler orbifold X_{ζ}/σ . This orbifold X_{ζ}/σ has two rational double points of type A_1 .

Theorem 4-1. (hyper-Kähler manifolds of type D_{∞}). Let \tilde{X} be a minimal resolution of X_{ζ}/σ . Then \tilde{X} has a complete hyper-Kähler structure.

Remark 4-2. A hyper-Kähker manifold \tilde{X} has a infinite sequence of rational curves. The dual graph of these rational curves coinsides with the following Dynkin diagram of type D_{∞} :

Remark 4-3. Let D_{∞} denote by the normalizer of the maximal torus of Sp(1). When we consider the Hilbert space $L^2(D_{\infty})$, we can construct a family of hyper-Kähler manifolds by the hyper-Kähler quotient method. Then we can see that X_{ζ}/σ and \tilde{X} can be obtained as these hyper-Kähler quotient spaces which correspond to $L^2(D_{\infty})$.

Hence it is natural that \tilde{X} of Theorem 4.1 is considered as the hyper-Kähler manifold of type D_{∞} .

References

- [A-K-L] T. Anderson, P.Kronheimer, Claude Lebrun, Complete Ricci-flat Kälher manifolds of infinite topological type, Commum.Math.Phys 125 (1989), 637-642.
- [C] E. Calabi, Métriques Kähleriennes et fibrés holomorphes, Ann. Ecol. Norm. Sup. 12 (1979), 269-294.
- [EH] T. Eguchi and A. Hanson, Asymptotically flat solutions to Euclidean gravity, Phys. Lett. 74B (1978), 249-251.
- [G-1] R. Goto, On toric hyper-Kähler manifolds given by the Hyper-Kähler quotient method, INFINITE ANALYSIS, Advanced Series in Mathematical Physics - Vol.16.
- [G-2] R.Goto, On hyper-Kähler manifolds of type A_{∞} , preprint.
- [G-3] R.Goto, On elliptic fibrations and hyper-Kähler structures, preprint.
- [G-4] R.Goto, On hyper-Kähler manifolds of type D_{∞} , preprint.
- [GH] G.W. Gibbons and S.W. Hawking, Gravitational multi-instantons, Phys. Lett. 78B number 4 (1978), 430-432.
- [H1] N.J. Hitchin, Polygons and Gravitons, Math. Proc. Camb. phil. Soc. 85 (1979), 465– 476.
- [HKLR] N.J. Hitchin, A. Karlhede, U. Lindström, and M. Roček, Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
- [KK] Kunihiko Kodaira, On compact analytic surfaces, II, Ann. J. Math., 85 (1963), 563-626.
- [K1] P.B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differ. Geom. 29 (1989), 665-683.
- [K2] P.B. Kronheimer, A Torelli-type theorem for gravitational instantons, J.Differ. Geom. 29 (1989), 685-697.
- [KN] P.B. Kronheimer, and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), 263-307.
- [PP] H. Pedersen and Y.S Poon, Hyper-Kähler metrics and a Generalization of the Bogomolny Equation, Comm. Math. Phys 117 (1988), 569-580.