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RIGID GEOMETRY AND IT'S APPLICATIONS

KAZUNIIRO FUJIWARA

Department of Mathematical Sciences, Tokyo

§1. Introduction

Analytic Geometry over p-adic fields has been studied over years. ngld analytic
geometry is one of such approaches, defined by J. Tate in 60’s [T]. (a different
approach was proposed by Berkovich. Cf. [Be] )

A naive approach would be the following: Q, naturally has a topology, which
makes it locally compact, so for an algebraic variety X over Q, X(Qj) is naturally
endowed with the topology. We should be able to do analytic geometry with it.

But this idea is too naive. First of all we do not have a good notion of "analytic
function ” or ” analytic continuation” using such topology. Secondly, the topology
is totally disconnected, so it does not give the "expected topological invariants” for
analytic varieties, even for mg.

Tatc’s idea was to introduce family of "rings of analytic functions”, called Tatc
algebras, and use a Grothendieck topology to patch them together, which fits into
the pattern established by Grothendieck for commutative rings. Tate needed such
a theory to study the degeneration of elliptic curves. The idea was developed by
many people, especially by German school [K], [BGR].

In mid 70’s , Raynaud published his very beautiful idea in [Ray 2. ( He claimed
it at Nice congress too, so the idea emerged in late 60’s.) The idea is to view the
category of rigid-analytic spaces as a quotient category of formal schemes, at least
for quasi-compact and quasi-separated spaces. By this idea, many basic facts in
rigid geometry are reduced to the knowledge of formal geometry, where EGA III
is at our disposal. Moreover the construction carries over any noetherian formal
schemes, not only over valuation rings. So the rigid geometry is base space free, but
the absolute rigid geometry remains almost unexplored. Unfortunately, many basic
facts from Raynaud’s viewpoint are still unpublished, except recent papers by [BL]
and a few references. The author believes that rigid-geometric ideas are effective in
algebraic geometry. From the viewpoint of algebraic geometry, the role of formal
geometry is rather small, and rigid geometry is a systematic study of ” limit of
blowing ups along a subvariety”, so the analogue of infinite repetition method.

Here we give some relations with Zariski’s theory of abstract Riemann spaces,
and applications to etale cohomology theory. The author apologizes to those whose
contributions he does not properly acknowledge due to his incomplete understand-

ing,.
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Basic properties

In the following we consider coherent ( = quasi-compact and quasi-separated) for-
mal schemes which subject to one of the following conditions:

type n } X is a Noetherian formal scheme.

type v ) X is finitely generated over a complete valuation ring V with a-adic topol-
ogy for some a € V.

By C we denote the category of coherent formal schemes ( the morphisms between

them are coherent (quasi-compact and quasi-separated)). The most basic example
is A = V{{X}}, the ring of a-adic convergent power series( V =Z,,a=por V =
Cl[t]], a = t). Put K= the fraction field of V, Cf = the completion of the algebraic
closure of I{. For any element f(X)in Ag, = A®vCy (the tensor product is the
topological one) we can make substitution X — « with « € D(Cg) = {8 € C
, 18] € 1}. So we want to attach A, as the ring of analytic functions to the
closed unit disk D(Cf). Since the ring Ag, is integral, the unit disk should be
connected, but for the natural topology of D(C) this is false. Tate defined a class
of finite coverings, and considered only coverings which are refined by this class.
If we calculate my with this topology we get the expected answer. The class of
coverings considered by Tate is obtained from an open covering of a formal scheme
which is a proper modification of Spf A. We define the class of proper modification,
called admissible blowing ups, as follows:
Let 7 be an ideal of definition. When X = Spf A is affine, T = I - Oy, the blow
up X' of X along T is just the formal completion of the blowing up of Spec A
along I . In general X' is defined by patching. When X is the p-adic completion
of some p-adic scheme Y, admissible blowing up means the (formal completion of )
blowing up with a center whose support is concentrated in p = 0. So the following
definition, due to Raynaud, will be suited for our purpose:

Definition (Raynaud)[Ray 2].
The category R of coherent rigid-analytic spaces is the quotient category of C
by making all admissible blowing ups into isomorphisms, i.e.

Homgz(X,Y) = lim Hom(X', Y).
X'eBx

For X € C, X viewed as an object of R is denoted by X" or X°". X is called a
formal model of X *".

Note that we can fix a base if necessary. For example, in case of type v), it might
be natural to work over the valuation ring V. Though this definition seems to be
a global one, i.e. there are no a priori patching properties, but it indeed does. The
equivalence with the classical Tate rigid-spaces is shown in [BL].

Riemann space associated with a rigid space.
Let X = X°" is a coherent rigid space. Then the projective limit

<X >= lim X
—
X'eBx

in the category of local ringed spaces exists. The topological space is quasi-compact.
We call it the Zariski-Riemann space associated to X'. The projection < X >— X
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is called the specialization map and written as sp = spy. The structural sheaf Ox
yields ~ :

Ox = li_l'nHom(I"O,y, Ox)
which is local ringed. This Ox is the structural sheaf in rigid geometry ((classical
) rigid geometry is a Q-theory, i.e. invert I). Oy is the (canonical ) model of Oy.

In the followings we sometimes call the topology, or rather the Grothendieck
topology associated to the topological space, admissible, to make it compatible
with the classical terminology. The category R, with the admissible topology, is
called large admissible site.

Note that the model sheaf Oy itself gives a local ringed space structure. I wonder
why people had not used this Zariski-Riemann space until now. (Berthelot told me
that the approach was written in a letter of Deligne to Berkovich. It is quite likely
that such an idea came from Gabber, since he studied such a limit , for example,
see [V] p.194 .) The author was lead to the idea by the necessity to define a fixed
point set in rigid geometry.

As in the Zariski case, each point z of < A’ > corresponds to a valuation ring V,
which is henselian along I = the inverse image of T, i.e. z is considered as the image
of the closed point of Spf V.. The local ring A = @x,, has the following property:
B = Oy, = A[1/{I\{0}}] is a noetherian henselian local ring, whose residue field
K, is the quotient field of V,, A = the inverse image of V, by the reduction map B —
K,.

Conversely, any morphism Spf V — X ( V is a valuation ring ) lifts uniquely to
any admissible blowing ups by the valuative criterion, so the image of the closed
point of V' define a point z. ‘

For the rigid-analytic structural sheaf, it can be proved that any coherent Oy
module has a formal model. But the model sheaf itself has a meaning, which has
been treated in algebraic geometry. Let Z be a quasi-excellent normal scheme, YV
a closed subscheme containing the singular points of Z. Then put X = Z|y, the
completion along Y, and X = X", Then

Rq(spx).('jx = ng

holds if we accept all kinds of Hironaka resolutions. Here 7 : Z — Z is a resolu-
tion of Z. Without resolution, it seems hard to show the finite generation of this
cohomology group. The proof is easy, so omitted here. To define more general
rigid spaces, which is inevitable if one treats GAGA-functor, the following lemma
is necessary:

Lemma.
For a coherent rigid space X, the presheaf Y — Homgz(Y,X) on the large
admissible site R, is a sheaf.

Since it exhibits the local nature of our rigid geometry, I give the outline of the
proof. Take a formal model X of X. Assume we are given a covering {U;}ier of Y,
and f; : Ui = X with (%) : filu.ntg; = filu,r;. By the quasi-compactness of Y, we
may assume that I{; are coherent and the covering is finite. For a suitable formal
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model Y of YV, we may assume that U; is obtained as sp'“l(Ui), U; C Y is quasi-
compact open subformal scheme. Here we have used that any admissible blowing up
of an open subformal scheme extends to the whole. Using this property again, we
may assume that f; (i € I ) are defined over Y, i.e. come from formal morphisms
F; : U; = X. We want to patch these local formal morphismns. By (*), for each
(i,7) € I x I, we have an admissible blowing up my; : Uy — Uiy of Uy = U; N U;
defined by finitely gencrated ideal Zi; such that Fify,, - mi; = Fjlu,, -mi;. We extend

these Z;; on Us; to Y, say I;;, and blow up the product Mijerxi Lij: ¥ = Y.
Then, on each Uy, Y dominates 0,3- and hence F; s patch together on Y. By the
construction, the rigid morphisin defined by the glued formal morphism is the one
we wanted.

Definition.

A sheaf F on the big admissible site R is called a rigid space if the following
conditions are satisfied:

a) There is a morphism Y = 1, Y: — F (Y; arc coherent representable sheaves
) which Is surjective.

b) Both projections pr; : Y xx Y — Y (i = 1,2) are represented by open
imimersions.

c¢) F Is quasi-compact if one can take quasi-compact Y in b).

d) F is quasi-separated if the diagonal 7 — F x F Is quasi-compact.

We can show that if a rigid space in the above sense is quasi-compact and quasi-
separated, then it is a representable sheaf, so the terminology ” coherent rigid
space ” is compatible.  Assume F is a quasi-scparated rigid space. Then it is
written as F = U_U}.H X; where &; is coherent , J is directed and all transition
maps &; — Ay are i)f)(‘,n immersions. The definition has been used for a long time.
For the construction of GAGA-functor for non-separated schemes quasi-separated
spaces are not sufficient.

As an application of rigid-geometric idea, let me mention the following elemen-
tary example:

Flattening theorem of Gruson-Raynaud [GR].

Let f : X — S be a finitely presented morphism, with S coherent (=quasi-
compact and quasi-separated ). Asswme f is flat over a coherent open set U C S.
Then there is an admissible blow up S — § such that the strict transform of f (
kill torsions after taking the fiber product ) is Hat and finitely presented.

There is a principle to prove this kind of statement:

Principle.

Assume we have a canonical global procedure, an clement of a cofinal subset Ag
of all admissible blowing ups of § to achicve a property P. Assumec the following
properties are satisfied:

a) P is of finite presentation.

b) The truth of P(S§’) for S’ € As implies the truth of P(S") for all §" € Ag
dominating S'.

¢) P is satisfied at all stalks Ox.. of the model sheaf,

Then P is satisfied after some blowing up in A .

—143-



RIGID GEOMETRY AND IT’S APPLICATIONS

I explain this in case of flattening. Let S\U = V(Z) with Z finitely generated.

Ags is the set of Z-admissible blowing ups, for which the total transform of 7 is
invertible. P(S’) is : The strict transform of X xS’ is flat and finitely presented
over S'.
a) follows from the finite presentation assumption of the strict transform. b) is
clear. For c), take a point of the Zariski-Riemann space < & >. Then the local
ring 4 = @x,, has the property mentioned before. To prove the flattening in
this case, using the flatness of X x s Spec A over (Z\{0})"'A , we are reduced to
the valuation ring case. i.e. prove the claim restricted to ”curves” passing V(I).
In the valuation ring case (”curve case”) there is no need to blow up, and strict
transform just means that killing torsions. But note that we need to check the
finite presentation of the result, i.e.

Lemma. N
For a finitely generated ideal I of V[X] , the saturation I = {f € V[X]; af €
I for some a € V\{0}} is finitely generated.

The proof of this lemma is not so easy, but I leave it as an exercise.

So the claim is true locally on < X >, since we have the finite presentation
property. The quasi-compactness of < A > implies the existence of a finite cov-
ering, which admit models with the desired flattening property. The patching is
unnecessary, i.e. it is automatically satisfied since we have a canonical global pro-
cedure to achieve the flattening, and once the flattening is achieved, we have it for
all admissible blow up in Bg dominating the model.

Note that our proof applics in casc of formal schemes too [Fu 3]. Another proof
is found in [BL}].

In June 1992, M. Spivakovsky claimed that he proved the canonical resolution
of singularities for quasi-excellent schemes. The pattern is similar to the above toy
model, but there is no finite presentation property in this resolution case. It is still
not clear whether his form of local uniformization is really true or not.

Sometimes we want to use just "usual curves ” i.e. Spec of a discrete valuation
ring rather than general valuations. Sometimes it is possible. This is plausible,
since the general valuation rings does not have any good finiteness conditions. (The
value group such as Z"™ with the lexicographic order is good, but even these are not
enough sometimes. ) Another "toy model ” is given by Gabber’s extension theorem
of locally free sheaves, which played an important role in Vieweg’s semipositivity
of the direct image of the dualizing sheaves. The structure of locally frce module
with respect to O is used: it can be proved that such a module come from some
formal model.
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Separation

Here we give the explanation of a notion which was unclear in the classical theory.
Let X be a coherent rigid space. For a point z €< X > with associated valuation
ring Vz, the point of A which corresponds to the height one valuation of K, is
denoted by y = sep(z) and called the maximal generalization of = (y corresponds
to the minimal prime ideal containing an ideal of definition). Let [X] be the subset
of < X > consisting of height one points. Then we give [X] the quotient topology
by surjection sep :< X >— [X] ( caution: the section corresponding to the natural
inclusion [X] =< X > is not continuous). This space [X] has an advantage that it
is much nearer to our topological intuition. For example

Proposition.
[X] is a compact Hausdorff space. Basis of closed sets is {sep(U)}, U a quasi-
compact open subset ( sep~!(sep(U)) = U, where™ denotes the closure ).

holds. Especially there is ample supply of R-valued functions on [X]. Dually, a
basis of open sets is obtained as follows : First we define the notion of tubes. For
a model X' of X and a closed set C of X’ Tc = (sp~!(C))'" ( int denotes the
interior ), is called the tube of C. In fact, tube of C is defined as li_n}n sp~ 1 (U,),
where U, is the open set of the blowing up by (Z¢)" + I where the inverse image
of 7 generates the exceptional divisor. T¢ is the complement of sp~*(X'\ C). For
a tube T = T¢, sep™' sep(T) = T holds, and hence sep(T') is an open set of [X],
which is not compact in general. Images of tubes form a basis of open sets in [X].
For most colhiomological questions both topological space give the same answer:

Proposition.

For a sheaf F on < X >, Risep.F = 0 if ¢ > 0. For a sheaf G on [X],
sepysep 1 G =G. '

The proposition includes HY(U,F) = HY(U,Flu) ( = HY([U],G) ) for a sheaf
F = sep~!(G) on U. Note that this does not apply to coherent sheaves. This is
quite important in the theory of overconvergent isocrystals of Berthelot.
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§2. Comparison Theorems in rigid etale cohomology

Here fundamental comparison theorems for rigid-etale cohomology are discussed.
The origin for the study of rigid-etale theory is Drinfeld’s work on p-adic upper half
plane [D]. Most results here has an application for the study of modular varieties.
The results, with many overlaps, are obtained by Berkovich for his analytic spaces
(not rigid analytic one ) over height one valuation fields. The relation between both
approaches will be discussed elsewhere.

We want to discuss etale cohomologies of rigid-analytic spaces. It is sometimes
more convenient to use a variant of rigid-geometry, defined for henselian schemes
instead of formal schemes. For the affine case it is defined as follows. We take an
affine henselian couple (S, D) = (Spec A,I): D C S is a closed subscheme with’
7o(S' x5 D) = mo(S’') for any finite S-scheme S'(hensel lemma). As an example,
if S is Ip-adically complete, (S, D) is a henselian couple. Then to each open set
DN D(f) = Spec A[1/f)/I[1/f], f € A, we attach the hensclization of A[1/f]
with respect to I{1/f]. This defines a presheaf of rings on D. This is in fact a
sheaf, and defines a local ringed space Sph A, called the henselian spectrum of A
(as a topological space it is D, like a formal spectrum). General henselian schemes
are defined by patching. See [Cox], [Gre|, [KRP] for the details. We fix an affine
henselian (or formal ) couple (S, D). Put U = §\ D. We consider rigid geometry
over S, i.e. rigid geometry over the henselian scheme attached to S. Of course we
can work with formal schemes. Note on GAG A -functors: For a locally of finite type
scheme Xy over U, there is a GAGA-functor which associates a general rigid space
X% to Xy (X7 is not necessarily quasi-compact, nor quasi-separated): Here are
examnples.

a) For Xy proper over U, (Xy)™ = (X")™9( resp. (Xf)™). Here X is a
relative compactification of Xy over S, the existence assured by Nagata. Especially
the associated rigid space is quasi-compact ( and separated ) in this case.

b) In general (Xy)™f is not quasi-compact, as in the complex analytic case.
(A1) is an example. It is the complement of co}}? in (P},)™). This is associated
with a locally of finite type formal ( or henselian ) scheme over S. ¢) GAGA-functor
is generalized to the case of relative schemes of locally of finite presentation over a
rigid space.
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Rigid-etale topos

For simplicity I restrict to coherent spaces.

Definition.
a) A morphism f : X — Y Is rigid-etale if it is flat and neat (in/y =0).
b) For a rigid space X we define the rigid etale site of X' the category of etale

spaces over X, where covering is etale surjective. The associated topos is denoted
by Xet'

For a coherent rigid space X’ the rigid-etale topos is coherent.

Categorical equivalence.

Let X be a henselian scheme which is good. Then consider the rigid henselian
space X = X9 At the same time one can complete a lienselian scheme, so we
have a rigid-analytic space X*" = (X)™%9. There is a natural geometric morphism

(X)ee — At

since the completion of etale morphism is again etale, and surjections are preserved.
Then the above geometric morphism gives a categorical equivalence.

It suffices to prove it for the etale site. We may restrict to coherent spaces. To
show the fully-faithfulness one uses Elkik’s approximation theorem [El] and some
deformation theoretical argument to show morphisms are discrete. ( The rigidity
implies that an approximating morphism is actually the desired onc.) For the
essential surjectivity one can use Elkik’s theorem in the affine case, since one can
patch local pieces together by the fully-faithfulness. An important consequence is
as follows:

Corollary.

Let (A;, I)icr be an inductive system of goc_)d rings, A; I;-adically complete.
Then @ieI(SpfAi)gf is equivalent to (Sph A).,?, where 4 = li—n)lielAi’ which is
henselian along I = l_i_rI}I,‘. Here the projective limit is the 2-projective limit of

toposes defined in SGA 4 .

Since the above ring A is not I-adically complete in general ( completion does
not commute with inductive limit ), the above equivalence gives the only way to
calculate the limit of cohomology groups, especially calculation of fibers. This is
the technical advantage of the introduction of henselian schemes. Moreover if we
regard an affine formal scheme X = Spf A as a henselian scheme, 1.e. X =SphA
with natural morphism X — X as ringed spaces, the induced geometric morphism
XI9 — XI}Y is a categorical equivalence so the "local” cohomological property of
rigid analytic spaces is deduced from that of hensel schemes.
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GAGA and comparison for cohomology
Let (S, D) be an affine hensclian couple, Xy a finite type scheme over U. Then one
has a geometric morphism ‘

€ (Xu)e! = Xex
defined as follows: For an etale scheme Y over Xy, one associates Y. Since
GAGA-functor is left exact, and surjections are preserved, a morphism of sites is
defined and gives €. By the definition, €*F = F™9 for a representable sheaf F on
X ( we have used that F™ is a sheaf on (Xy)5;’). By abuse of notation we write
Fr3 = ¢*F for a sheaf F on (Xy)... Note that the morphism € is not coherent,
i.e. some quasi-compact object ( such as an open set of Xy ) is pulled back to a
non-quasi compact object.

Theorem.
For a torsion abelian sheaf F on (Xy)er, the canonical map

HI(Xy, F) =~ H(Xu)"9, FT)
is an isomorphism. The equivalence also holds in the non-abelian coefficient case,
i.e. ind-finite stacks.

This especially includes Gabber’s formal vs algebraic comparison theorem. The
above theorem itself was claimed by Gabber in early 80’s.

To deduce this form of comparison from the following form, Gabber’s affine
analogue of proper base change theorem [Ga] i1s used (if (S, D) is local, we do
not have to use it). For the application to etale cohomology of schemes, see [Fu].
Espccially regular base change theorem, conjectured in SGA4, is proved there (this
is also a consequence of Popescu-Ogoma-Spivakovsky smoothing theorem).

Corollary ( Comparison theorem in proper case).
For f: X — Y, proper morphism between finite type schemes over U, and a
torsion abelian sheaf F on X, the comparison morphism

(RILF)™ = RI(f79). 7

is an isomorphism. Especially, for F constructible , RY(f™9),F™9 is again (alge-
braically) constructible (non-abelian version is also true),

There is another (more primitive ) version which includes nearby cycles. We will
state the claim, with a brief indication of the proof. X a scheme, : : Y — X a
closed subscheme with U = X \Y. j: U — X. Let Ty x = Xey, X' = (Xhy)rs.
(It is the analogue of (deleted) tubular neighborhood of ¥ in X). For any etale
sheaf F on U one associates, by a patching argument, an object of Ty, x which we
write as F™9 (7 restriction of F to the tubular neighborhood). Note that there is
a geometric morphism ax : Ty, x — Y, (’ fibration over Y ).

Theorem.
For a torsion abelian sheaf F on U, there is an isomorphism

i*Rj,F ~ R(ax),F™.

If we apply this claim to a finite type scheme over a trait ( or the integral closure
of it in a geometric generic point ), one knows that rigid-etale cohorhology in the
quasi compact case is just the hypercohomology of the ncarby cycles:
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Corollary.

Let V be a height one valuation ring, with separably closed quotient field K =
V[1/a]. Let X be a finitely presented scheme over V, or X = Spf A, A a good ring
of type v) which is finitely presented over V. Let F be a torsion sheaf on Xk, or
a torsion sheaf on Spec A[l/a]. Then

RL((X)9, F™9) = RT(X,,1*Rj,F)

holds. Herei: X, =X xy (V/\/a) = X (ori:Spec A xy (V/y/a) — Spec A in
the affine formal case) and j : Xiy — X (or j : Spec Ay — Spec A in the affine
formal case).

The above mentioned comparison theorem follows from this theorem, using the
Gabber’s affine analogue of proper base change theorem. Let me give a brief outline
of the proof. The underlying idea is quite topological. Put Z = lim X, (Bx

— X'€Bx

is the set of admissible blowing ups ( in the scheme sense), T¢7} = liLnX'eB,\- (X' x

Y)ee ( Ty)x is the analogue of tubular neighborhood of Y). The limit is taken as

toposes. Then U,, e A T)‘ﬁ;‘l(. is a localization diagram ( U is an ” open set”
and T*"" is a "closed set” of Z.) Using proper base change for usual schemes (here
F torsion is used), one shows that RA,(:*" ™ Rj*™ F) = 1*Rj,F ( f: T*"" — Y,,).
So we want to do a comparison on T;ﬁ;‘;,.

In fact, there is a morphism = : Ty, x — T;,f;‘l{, (" inclusion of deleted tubular

neighborhood” ) such that R, Fm9 = ¢*""*R;*""F ( this formula is valid for any
sheaf!). The construction is canonical. To calculate the fibers, one needs to treat a
limit argument, so we take here an advantage of henselian version, not formal one.

In the non-proper case, i.e. f is of finite type but not assumed proper, the
comparison is not true unless we restrict to constructible coefficients, torsion prime
to residual characteristic of §. (Since the analytic topos involved is not coherent
in this case, one can not use limit argument to deduce general torsion coefficient
case. This is the same as C-case.) Though the author thinks that comparison
is always true for finite type morphism between quasi-excellent schemes, the only
known result, which is free from resolution of singularities, is the following height
one case ( a corresponding result for Berkovich type analytic spaces is obtained
earlier in [Be]).

Comparison theorem in the non-proper case.
Let V be a height one valuation ring, with separably closed quotient field K.
f: X — Y morphism between finite type schemes over I{. Then

(RFF)T = RI(f79).F 70
is an isomorphism for F constructible sheaf, torsion prime to residual characteristics

of V.

This is proved by a new variant of Deligne’s technique in SGA 41/2 [Th. de
Finitude] , without establishing Poincaré duality. This geometric argument, more
direct, reduces the claim for open immersions ( evidently the most difficult case
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} to a special case, i.e. open immersion of relative smooth curves over a smooth
base . Moreover one can impose good conditions, such as smoothness and tameness
of F. In this case one can make an explicit calculation. Of course the finitude
in the proper case, which is already stated, is used. The details will be published
elsewhere.

Using the comparison theorems, it is easy to sce the comparison for @, RHom,
f*, f, fr. The claim for f' follows from the smooth case. For the Poincaré duality
in this case, using all the results I mentioned already, there are no serious difficulties
except various compatibility of trace maps. Berkovich has announced such results
already for his analytic spaces.

£3. Lefschetz-Verdier trace formula and a Deligne’s conjecture

In any cohomology theory where G-operations ( f*, fi, f., f, RHom, ®r) are avail-
able, there is a trace formula for a correspondence. This forinalisin was established
by Verdier. In the topological case we get the original Lefschetz formula.

The formula expresses the global trace as a sum of local terms, which depend only
on a neighborhood near the fixed point set. Essentially we express the global trace
as the intersection number of the diagonal and the correspondence. Though the
formula holds quite generally, the explicit caleulation of the local terins is painful,
even in the classical case, if we take general sheaves as the coefficient. Goresky-
MacPherson [GM] found such a good class of correspondences, called weakly hy-
perbolic, and they showed that there is a fairly good formula in this case. ( Espe-
cially they applied it to Hecke correspondences of arithmetic quotient of symmetric
space. But the computation was done in the real category and we do not know their
method applies to the minimal compactification of Baily-Borel type. ) Since they
use Lefschetz-Verdier formula for subanalytic spaces, even in the complex analytic
case, so an abstract formulation of their method which is valid in any characteristic
seemed difficult.

On the other hand, in characteristic positive, Deligne conjectured the following:
First fix notations:

Let (X,Y,a) be a triplet with X, ¥ proper varieties over & = Spec Fq, a:Y —
X x X a correspondence. Put a; = pr;-a where pr; denotes the i-th projection.
We assume the triplet is defined over F, so that we can compose a with a power
of (geometric } Frobenius. ( We take the following choice to define the direction
of composition: A morphism f : X — X is considered as a correspondence with
the second projection = id. So (Fr"-a); = Fr"-ay, (Fr"-a); = a3. Forn > 0
we take a complex I € D¢ (X, A) ( ctf= constructible and finite tor dimension,
A=1Z/0", Z;, Qg with £ invertible on X), with a cohomological correspondence
¢ € coh.cor(Fr"-a, K) = HO(Y,d' (DK ®Y K))( DK = RHom(K,I(x) is the
Verdier dual ). Then the cohomological correspondence define the global trace

Lef(Fr" -a, ') = Tracea (Fr" -a, R[(X, K))

(this is an abuse of notation, since the homomorphism induced on the cohomology
depend on c). Note that RI is a perfect complex of A modules, so the trace is
well-defined. Deligne’s conjecture mecans
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Conjecture.
For n sufficiently big ( which depends only on the correspondence) , we have

Lef(Fr" a, I\’) = EDEWO(FL\' Fr" -a) naive. IOCD(Frn -a, I{)

where naive.locp means the naive local term around D. As an important (and
characteristic ) property, this term vanishes if the fiber of I{ over a,(D) = as(D)
is zero.

Note that this conjecture implies a kind of Lefschetz formula for open varieties:

To see this, assume that X is a compactification of U (7 : U — X), U is
stable under the given correspondence «, and ap|y is finite. Take a complex K
over U with a cohomological correspondence ¢y over U. Then by a formalism of
cohomological correspondences, cy extends uniquely to a correspondence for jiif.
Applying the Deligne’s conjecture, we will have that the trace on RT (U, K) is the
sum of naive local terms along the fixed point set inside U, since any contribution
from the infinity vanishes (§1/{{q,(p) = 0 for D C X\U). This, with an additional
assumption that K is a A-smooth sheaf, is the original version of the conjecture.
In the followings we will restrict our attention to this case.

dimX = 1 case follows from [Il]. dimX = 2 and I = F is a smooth sheaf
with finite monodromy, a weaker version of the conjecture (the equality holds but
the coincidence of each local term is not shown) is due to Zink{Z]. When U is
smooth, admits a smooth compactification with normal crossing complement, and
F tame smooth sheaf, Pink {P] and Shpiz [Sh] proved independently the conjecture.
Morcover Pink reduced the general case to this special case, using full force of
Hironaka resolution.

The reason why we seek for this kind of trace formula in the non-proper case is
explained by the necessity in the Langlands correspondence [FK], [La]. To establish
a reciprocity law, it is nececssary to compare Arthur-Selberg trace formula and
Lefschetz-Verdier trace formula for modular varieties.

A brief dictionary is as follows:

A reductive group G and it’s adelized group & modular variety M corresponding
to G

Arthur-Selberg (invariant , or non-invariant) trace formula & Lefschetz-Verdier
trace formula

Test function f = [], f: on the adelic group G(A) with specific properties
at two places v and oo & a sheaf F on M, determined by fo and a (linear
combination of )Hecke correspondence(s) determined by f***° composed with a
special correspondence determined by f,.

Simple version of the trace formula ( Kazhdan type, i.e. f,, a spherical function,
corresponds to a High power of Frobenius by the Satake transform ) < Deligne’s
conjecture for the above data for a reduction of modular varieties. ( In general, we
should compare stabilized trace formula (still conjectural ) and the global trace on
the intersection cohomology group.) 4

How to prove the conjecture?

We must formulate the form of trace formula which yields the desired result.
The idea that such trace formula in rigid geometry will be effective came from
Gabber. Let V be a height one valuation ring, with separably closed quotient field.
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n = Spec I its generic point, S = Spec V, 7 the generic point, and s the closed
point.
For f: X — S, a morphism of finite type, put ix : X, = X, jx : X5 - X.
Take K in D(X;,A), a correspondence a : ¥ — X xg X, and a cohomological
correspondence ¢ € coh. cor(a,, I) lifting a,.

Assume X is proper. X = (X™)"9 (resp. Y = (Y?)9 ). the rigid space
associated with X ( resp. f’). For a correspondence a : Y = X xs X, a: )Y —
X x5 X the associated correspondence in the rigid-category.

Definition.
We say a is contracting near D C mg(Fixay) if the following conditions are
satisfied:
a) There are quasi-compact open sets U C X,V C Y with V C a7 {(U) N oy (U),
ay : V — U is proper.
b) There Is a continuous function ¢ :< U >— R satisfying
$(c) =0 & z € (az(D))"™.
¢-ar(y) < ¢-azy) ifye<V >, y¢ D™

First we need to introduce such a continuous function ¢ on non-Hausdorff space.
It factors through the separated quotient [X], and the compactness of this space
makes it easier to construct such ¢.

We assume that the coefficient ring is A = ¥4, Z;, Q.

Theorem.
Let (X,Y,a) be a triplet over V, K a constructible A-sheaf on X;. If a is
contracting near D and K|,,(py = 0 then the local term of K along D is zero.

The theorem is proved without using Hironaka resolution. For the application
to Deligne’s conjecture, let me mention the followings:

Corollary.

K = separable closure of F ((t)). Assume the triplet (X,Y, a) is defined over
Fg, y € FixFr" -a, a, is finite near y, of degree d. If ¢™ > d then a is contracting
near y, and hence the local term is equal to the naive local term {(by universal local
acyclicity due to Deligne, local term remains unchanged by extension of the base
field, so it is equal to the local term over F). Especially Deligne’s conjecture is true
if the second projection Is finite (note that Grothendieck’s trace formula for a power
of Frobenius is the consequence of our result. I do not know if it has been known
that the cach term of his formula is equal to the local term of Lefschetz-Verdier
formula).

Put z = ay(y). Locally we embed X into the unit disk D with coordinate
(Th,...,Tn), ¢ — 0. Take a continuous function d : X — R, which is sup;{|T;|}
("distance from 0”). Then Fr™ makes the distance smaller, d(Fr™(p)) < d(p)? . On
the other hand, a; ', since ay is assumed finite of degree d at z, makes it bigger,
like d(p)!/?. Finally Fr" aja;' makes d smaller than ( constant times of ) d¢" /¢
By our assumption that ¢* > d, we know that « = Fr™ -a is contracting near y.

As is clear from the argument, Frobenius makes a distance smaller and smaller,
which is the essence of Frobenius. ( It is possible to show the following: If a

rigid space A’ is defined over F,, there is a distance d on [X] which satisfies
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d(Fr(p), Fr(p")) < C - d(p,p')?, where C is a positive constant.) Though the special
case of Deligne’s conjecture in case of a, finite is sufficient in most applications,
in the final version of [Fu 2] the author plans to treat the general case with the
affirmative answer.

We will examine a method of getting a trace formula for weakly contracting
correspondences of complex analytic varieties.

Let X be a compact complex analytic manifold, f : X - X a morphism, K €
D%(X, C) has a cohomological correspondence lifting f, ie. f*K ~ K. = € X,
and assume this is 1solated for simplicity.

Definition.
f is weakly contracting near v Iiff
a) z has a decreasing neighborhood Uy DU, D ... DU, D ..., N U, = {z}.
b) f(U,) CUnyr, U, subanalytic.

In this case, we prove that the local term at x is the naive local term, i.e. the
trace of the endomorphism f, : I; — K, induced on fiber at z. By a general
formalism, we may assume N, = 0.

Claim.
a) (Local Lefschetz formula) loc, K = Tracec(fly,, Klg,)-
b) (Continuity) 11_11} HY(U,,K|g,) = H%(z,K,) = 0, where transition maps are

restrictions.

a) is proved using the 6-operations for subanalytic and subanalytic constructible

sheaves (Lefschetz formula for (Us, flg, ,I¥]g,))- b) holds quite generally for the
projective system of compact Hausdorff spaces.
By the claim, it is natural to guess the local term is zero, since for big n the global
trace on cohomologies will vanish ( the cohomology itself tends to zero). But this
is not true ( consider a rotation around a point). So the contracting assumption is
necessary.

We put V, = HQ(UH,K|U"). V. is a finite dimensional vector space. Since

flo, factors into Up 5 Ungy 5 Un. We put B = HI(f'), Bn : Vags — Va,
Yn = HI(f"), vn : Vo — Vaqy ( restriction map). an, = H¥(f|g ). So we have a
system of finite dimensional vector spaces V(i € N), 1_15} V; = 0 (limit taken with
13

respect to yn, @y = Bn - Yu = Yno1 - Pu-1.
Lemma.

For an inductive system of finite dimensional vector spaces {V,}nen with tran-
sition maps v, : Vo — V.41, assune we are given 8, : Vg — Vo, o = B ¥n
which satisfy an41 = Yn—1 - fn—1. Then if the inductive limit of {V,}nen is zero,

Trace(ay,) = 0 Vn.

In fact, it follows that a, is nilpotent: define an increasing filtration W. on V;
by Wy = Ker(ys+; - Ys+j-1 - ;). By our assumption that the inductive limit is
zero, it follows that W, = V; for s big, and condition ay; = Bm - Ym = Ym=-1*PBm-1
for all m implies that W. is preserved by a. By vo4j-1-; Gr:v with o action is
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identified with a subspace of Ker(7,4;) with a,4; action, and the latter action is
zero from agqj = Bogj* Yot ;-
By the lemma, we have that the trace is zero, and hence the local term is zero.
We analyze the above proof to get the corresponding formula in rigid geometry.
In the above proof, to get an appropriate local version of Lefschetz formula (Claim
a)), we needed to introduce non-analytic subspaces such as U,, and 6-operations
for subanalytic constructible sheaves are used. We need to have an analogue of it
in rigid geometry (without defining "subanalytic spaces” if possible). The rest of
the proof will be rather formal, with Claim b).
For claim a), we even need to think about the definition of the fixed point set. This
was one motivation for defining the Zariski-Riemann space for a rigid space.

Theorem (Topological Lefschetz trace formula).
Let U, C Z,, V, C W, be open sets, U, V the rigid open subspaces defined by
U,, V,, D a connected component of Fix aj.
Assume V C a7 H(U) Nay ' (U) and V N set. Fixa = D™ (here set. Fixa means
the set theoretical fixed point set, i.e. the fixed point set as topological spaces).
Take I € D y(X5, A), equipped with a cohomological correspondence c,, which
lifts a,. Assume a|y : V — U is proper.
Then for D € mo(Fix az)

locp(ag, I{y) = Lef(us|g, , 727 " Riby(IO)| 0, ))-

Here R, (I\) is given the specialization ¢, of ¢, as the cohomological correspon-
dence (discussed later), and Lef means the global trace defined by the correspon-
dence.

Morally, the right hand side (global trace term ) of the topological Lefschetz
formula is equal to

Lef(aly, Ng)

where the cohomology is the rigid-etale cohomology (the author has not verified
it completely). Since I{ is not an analytic subset, the above formula looks like a
Lefschetz formula in topology, so the naming was done, and we will be able to
realize the topological proof in our abstract case using this formula.

For the proof we use the specialization formalism.
For ¢ € coh.cor(ay, Ky) = H(Y,a\(DK; B K;) we have the specialization ¢, €
coh. cor(ay, Rip,(I)). This corresponds to the specialization of a cycle class, and
defined by using the commutativity of the Verdier duality with the nearby cycle
functor.
For the proof of the theorem, it is important to note the specialization formalism is
compatible with the change of the model: If we have another (X’,Y’, a’) dominating
(X,Y, a) with the same generic fiber, the proper push forward of the specialization
with respect to (X', Y, a’) is equal to (X,Y, a).
So we can restrict the specialization correspondence ¢, of Rip,(K) to (Us, Vs, a,lv, ),
and extend it to a correspondence ¢, of Rj,j* R, (1) lifting (U,,V,,a,]p‘). This
extension is possible canonically since az]y, is assumed proper over U,. This is also
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compatible with the change of models.
So we have the expression for the global trace as

Lef = Trace(aslg,, Rjsi"Ro4(I)) = Z p ey (Fix 0, n¥,) locp(aslg,, Rjsj " Ripy(I)).

We use the following lemma:

Lemma. 3
There is a good model (X',Y",a') such that there is no connected component D
of Fix @/, which intersects with V,\ V.

In the proof of the lemma, the quasi-compactness of the Zariski-Riemann space
is used: Since the claim is true on the Zariski-Riemann space by our assumption,
it should be satisfied with some model.

By replacing the original model by the one constructed in the lemma, we may
assume that the there is no fixed point on V, \ V,. So the global trace is rewritten
as

ZDCFEX a,lv,, proper IOCD(GS, RU’/',;(I{))

The last term is equal to T perix a, Jocp(as, I{y), which is equal to locp(ay, I3)
since there is only one connected component by our assumption. The last equality
is checked by formalism of specialization, but intuitively explained as follows: local
terms are some intersection multiplicity, coefficient of c;- A x,, and by specialization
invariance of intersection number the sum should be equal to ¢, - Ay,, which is our
claim. The intersection should be compact to make this argument rigorous. This
is satisfied for our model.

For Claim b), by the continuity of topos cohomology with respect to 2-projective
limit, SGA 4, it is checked in case of torsion coefficient. But note that our proof will
be ineffective for non-integral cocfficient rings ( the above lemma is valid only for a
ficld or integral rings). So we can not prove any statement for A = Z/"Z, n > 2.
This forces us to work with Z; or Q, directly. But for such coefficient, i.e. €-adic
cohomologies, which is a continuous cohomology [Ek}, [Ja] it is not calculated by
injective resolution of sheaves but rather by pro-sheaves. This implies that there
are no general machinery such as SGA 4 and the claim itself is false in general (
in the first version of [Fu 2] this problem, peculiar to -adic case, was unnoticed).
Fortunately, in our case of rigid-ctale cohomology, such continuity result is true in
the necessary cases:

Theorem.

Let X be a proper algebraic variety over I, I{ a height one valuation field which
is algebraically closed, Y a closed subvariety. For an {-adic constructible sheaf K,
¢ invertible in the integer ring of I,

lim H7(Ue,, K™y) = H'(Ye, Kly)
u
holds. Here U runs over all quasi-compact neighborhood of Y9 in X9,

By an introduction of a suitable local version of the statement, we prove it by
a variant of Deligne’s techinique. The claim is reduced to X smooth, ¥ smooth
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divisor and K = 51 F, F a tame smooth sheaf on X \ Y. In this case the claim
follows by a direct calculation. The details will be found in [Fu2].

Since we have claims a), b) in the abstract case, the argument in the classical
case applies, and the calculation of the local terms is done for contracting corre-
spondences.

§4. Grothendieck’s absolute purity conjecture

In the following we discuss the relation between Grothendiek’s absolute purity con-
jecture and Hironaka resolution.

Grothendieck has conjectured the following: X = Spec R, R a strictly hensel
regular local ring, D = V(f) C X a regular divisor. Then for n invertible on X

H(X\D, A)=0

ifi >1, A=2Z/nZ. ( Fori =0, 1 the group is easy to calculate.) Note that the
conjecture is quite essential in the construction of cycle classes on general regular
schemes. Moreover this conjecture implies the following: Assume the dimension
of X is greater than 1. Then Br(X \ s)¢ = 0. Here s denotes the closed point,
Br means the Brauer group ( we can take cohomological Brauer group ) and £ is a
prime invertible on X . ( Gabber announced that he can prove this purity for Brauer
group [Ga 2], but the proof is unfortunately unpublished except dim X < 3.)

First we note the following: Assume the truth of the conjecture in dimension
less than V. Then the truth of the conjecture for any complete local R implies the
general case. Especially we can assume the excellence of R in the study of absolute
purity. By this remark and previous known results, we deduce the following:

Claim.
Absolute purity Is true in the following cases:
a)dimX <2 ([Ga 3] ).
b) X is of equicharacteristic (use relative purity, SGA4 XVI 3.7, over a field).
¢) X is the henselization of a finite type scheme over Z or Z,,, and any prime divisor
of n is bigger compared with the dimension of X ([Thom] ).

We try to explain how this conjecture is related to the birational geometry of X.
In fact, our approach is similar to Hironaka’s proof of ” non-singular implies rational
" in the continuous coeflicient case. In his proof his strong form of resolution of
singularity was used, and we will try to do the same thing in the discrete coefficient
case. But it turns out that the spectral sequence involved are too complicated in
the naive approach, so we will use log-structures of Fontaine-Illusie-Kato to avoid
the difficulty.

The form of embedded resolution we want to use is the following:

For a pair (X, Y) , where X is a quasi-excellent regular scheme and Y is a reduced
normal crossing divisor, we define a good blowing up (X', Y') by X' is the blowing
up of X along D, where D is a regular closed subscheme of X which cross normally
with Y. ( The last condition implies that etale locally we can find a regular param-

eter system {f;}, 1 < j < nsuch that Y is defined by [][~, fi = 0 and D is defined .

by {f; =0, j € J} for a subset J of {1,,..n}. ) Y' = total transform of ¥ ,.q.
We say 7 : (X', Y') = (X, V) is a good modification if 7 is a composition of
good blowing ups. The point is we can control normal crossing divisors.
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Conjecture (Theorem of Hironaka in characteristic 0 [H] ).

Let Cx,y be the category of all good modifications of (X,Y), and Bxy the
category of proper modifications of X which becomes isomorphic outside Y.
Then Cx y is cofinal in By y.

Note that it is even not clear that Cx y is directed. Since any element in By y is
dominated by admissible blowing ups, this conjecture is equivalent to the existence
of a good modification which makes a given admissible ideal invertible.

So the conjecture is a strong form of simplification of coherent ideals, which is
shown by Hironaka in characteristic zero. It is easy to see the validity of conjecture
in dimension 2, but I do not know if it is true in dimension 3.

The implication of the conjecture in rigid gecmetry is the following: We define
the tame part T)‘,“/"}}e of Ty;x = Xrig—et bY

tnme __ : i
TY/X - l‘in }/lag—el
(X", Y€eBx, v

Here we give X' the direct image log-structure from X'\Y’, and Y’ the pullback log-
structure. The limit is taken in the category of toposes. Since Y’ is normal crossing,
the behavior is very good. By the conjecture, we can determine the points of this
tame tubular neighborhood (note that the topos has enough points by Deligne’s
theorem ) .

Lemma.
Let e : T{,‘}’f\"e — T#?{ be the canonical projection (defined using the conjecture

). Then for a point = of T{i}"{, , which corresponds to strictly hensel valuation ring
V = V2h the fiber product T{f}"'{,‘* XTpns (Sph V)*"" is equivalent to (Sph V)!m™e,

So the points above z is unique up to non-canonical isomorphisms, which corre-
sponds to the integral closure of V in the maximal tame extension of the fraction
field of V. Using this structure of points we have

Proposition.
For any torsion abelian sheaf F on T{f}'}e order prime to residual characteristics,
we have

Royo* F = F.
Here o denotes the projectiou from Ty x.

This is just the fiberwise calculation ( « is cohomologically proper), using that
the Galois cohomology of henselian valuation fields without any non-trivial Kummer
extension. (This part is completely the same as one dimensional cases.) Then our
theorem is the following:

Theorem.
The conjecture implies Grothendieck’s absolute purity conjecture.

To see this, we use comparison theorem first.

RE(X\Y, A) = RI(Ty;x, A)
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By the proposition, this is equal to RF(T;,‘;’I’\‘,", A). So we want to calculate this
cohomology. Since the topos 7''*™¢ is defined as a 2-projective limit, we have

HYTYR, A= lim  HY (Y e A)
(X', Y')ECx, ¥

So we conclude by the following lemma:

Lemma. o
For a good modification 7 : (X', Y') = (X, Y)

RrlA = A,

t, oy Vg
where 7' ; },Og‘et — Yiog—ct-

In fact, this i1s a consequence of tlie absolute purity conjecture. To prove the
lemma, we may assume that 7 is a good blowing up. In this case we use proper
base change theorem in log-etale theory, and reduce the claim to equicharacteristic
cases. Especially to the relative purity theorem over a prime field.

The details will be found elsewhere | Geomctric Ramification Theory], in prepa-
ration.
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