Semialgebraic description of Teichmüller space

Yohei Komori
Research Institute for Mathematical Sciences
Kyoto University，Kyoto 606，Japan

Abstract

We give a concrete semialgebraic description of Teichmüller space T_{g} of the closed surface group Γ_{g} of genus $g(\geq 2)$ ．We also show the connectivity and contractibility of T_{g} from a view point of $S L_{2}(\mathbf{R})$－ representations of Γ_{g} ．

1 Introduction

Teichmüller space T_{g} of compact Riemann surfaces of genus $g(\geq 2)$ is the moduli space of marked Riemann surfaces of genus g ．Thanks to the uni－ formization theorem due to Klein，Koebe and Poincaré，any compact Rie－ mann surface of genus $g(\geq 2)$ can be obtained as the quotient space $G \backslash \mathbf{H}$ where \mathbf{H} is the upper half plane and G is a cocompact Fuchsian group i．e．， a cocompact discrete subgroup of $P S L_{2}(\mathbf{R})$ ．And as an abstract group， G is isomorphic to the surface group Γ_{g} which has the following presentation

$$
\Gamma_{g}:=\left\langle\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g} \mid \prod_{i=1}^{g}\left(\alpha_{i} \cdot \beta_{i} \cdot \alpha_{i}^{-1} \cdot \beta_{i}^{-1}\right)=i d .\right\rangle
$$

From this view point，T_{g} can be considered as the deformation space of a Fuchsian group which is isomorphic to Γ_{g} and this is called Fricke moduli studied by Fricke himself and more precisely by Keen（ $[\mathrm{F}],[\mathrm{K}]$ ）．

In this article，we consider this Fricke moduli from a view point of $S L_{2}(\mathbf{R})$－representations of the surface group Γ_{g} ．We treat T_{g} as the $P G L_{2}(\mathbf{R})$－ adjoint quotient of the set of discrete and faithful $P S L_{2}(\mathbf{R})$－representations of Γ_{g}

$$
T_{g}=\left\{\Gamma_{g} \rightarrow P S L_{2}(\mathbf{R}): \text { discrete and faithful }\right\} / P G L_{2}(\mathbf{R})
$$

where a discrete and faithful $P S L_{2}(\mathbf{R})$-representation of Γ_{g} means a group homomorphism from Γ_{g} to $P S L_{2}(\mathbf{R})$ which is injective and the image of Γ_{g} is a discrete subgroup of $P S L_{2}(\mathbf{R})$. Because any Fuchsian group which is isomorphic to Γ_{g} can be lifted to $S L_{2}(\mathbf{R})$ ($\left.[\mathrm{Pa}],[\mathrm{S}-\mathrm{S}]\right)$, we can start from $\operatorname{Hom}\left(\Gamma_{g}, S L_{2}(\mathbf{R})\right)$ the set of $S L_{2}(\mathbf{R})$-representations of Γ_{g}. And T_{g} can be considered as the set of characters of discrete and faithful $S L_{2}(\mathbf{R})$ representations of Γ_{g}.

From this view point, we can get a real algebraic structure on T_{g} as follows. By using the presentation of $\Gamma_{g}, \operatorname{Hom}\left(\Gamma_{g}, S L_{2}(\mathbf{R})\right)$ can be embeded into the product space $S L_{2}(\mathbf{R})^{2 g}$ as the real algebraic subset $R(\Gamma)$ which is called the space of representations ([C-S],[Go],[M-S]). The adjoint action of $P G L_{2}(\mathbf{R})$ on $R(\Gamma)$ induces the action on $\mathbf{R}[R(\Gamma)]$ the affine coordinate ring of $R(\Gamma)$ and put $\mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})}$ the ring of invariants under this action. Let $X(\Gamma)$ be a real algebraic set whose affine coordinate ring is isomorphic to $\mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})}$. Then T_{g} can be realized as a semialgebraic subset of $X(\Gamma)$. Hence T_{g} is defined by finitely many polynomial equalities and inequalities on $X(\Gamma)$. This construction is essentially due to Helling [He], and later Culler-Shalen [C-S] and Morgan-Shalen [M-S] made this process more clear and by using this procedure, Brumfiel described the real spectrum compactification of T_{g} [Br$]$.

Our theme of this paper is to study the semialgebraic structure of T_{g} and we mainly consider the following two things. First we describe the defining equations of T_{g} on $X(\Gamma)$ by using $6 \mathrm{~g}-6$ polynomial inequalities explicitly (Theorem 3.2, 4.2). This problem is related to the construction of the global coordinates of T_{g} by use of small number of traces of elements of Fuchsian groups which is studied deeply by Keen ([K]) and recently by Okai and Okumura ([Ok], $[\mathrm{O} 1],[\mathrm{O} 2]$) by using hyperbolic geometry on H and the argument of the fundamental polygons of Fuchsian groups. Our treatment in this paper is rather algebraic. The second is that from a real algebraic viewpoint, we also show the well known fact that T_{g} is a $6 \mathrm{~g}-6$ dimensional cell (Theorem 3.1, 4.1.) which was proved by Teichmüller himself by use of his theory of quadratic differentials and quasi-conformal mappings.

The remainder of this paper is organized as follows. Section 2 deals with the construction of Teichmüller space T_{g} following Culler-Shalen [C-S] and Morgan-Shalen [M-S]. The description of defining inequalities and cell structure of T_{g} are shown in Section 3 and 4 . In section 3 we treat the case of genus $g=2$ and in section $4, g \geq 3$ cases are discussed.

2 Construction of Teichmüller space as a semialgebraic set

In this section we review the construction of Teichmüller space following $[\mathrm{C}-\mathrm{S}],[\mathrm{M}-\mathrm{S}],[\mathrm{Sa}]$.

2.1 The space of $S L_{2}(\mathbf{R})$-representations of the surface group Γ

Let $g \geq 2$ be fixed. We define the (closed) surface group of genus g by the following presentation

$$
\Gamma=\Gamma_{g}:=\left\langle\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g} \mid \prod_{i=1}^{g}\left[\alpha_{i}, \beta_{i}\right]=i d .\right\rangle
$$

where $\left[\alpha_{i}, \beta_{i}\right]:=\alpha_{i} \cdot \beta_{i} \cdot \alpha_{i}^{-1} \cdot \beta_{i}^{-1}$.
By using this presentation, we can embed $\operatorname{Hom}\left(\Gamma, S L_{2}(\mathbf{R})\right)$ the set of $S L_{2}(\mathbf{R})$-representations of Γ into the product space $S L_{2}(\mathbf{R})^{2 g}$ and let $R(\Gamma)$ denote the image of $\operatorname{Hom}\left(\Gamma, S L_{2}(\mathbf{R})\right)$

$$
\begin{aligned}
\operatorname{Hom}\left(\Gamma, S L_{2}(\mathbf{R})\right) & \rightarrow R(\Gamma) \subset S L_{2}(\mathbf{R})^{2 g} \\
\rho & \mapsto\left(\rho\left(\alpha_{1}\right), \rho\left(\beta_{1}\right), \cdots, \rho\left(\alpha_{g}\right), \rho\left(\beta_{g}\right)\right)
\end{aligned}
$$

We identify $R(\Gamma)$ and $\operatorname{Hom}\left(\Gamma, S L_{2}(\mathbf{R})\right)$. In the following we also identify a representation ρ and the image $\left(A_{1}, B_{1}, \cdots, A_{g}, B_{g}\right) \in S L_{2}(\mathbf{R})^{2 g}$ of the system of generators $\left\{\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g}\right\}$ of Γ under $\rho . R(\Gamma)$ is a real algebraic set and we call this the space of $S L_{2}(\mathbf{R})$-representations of $\Gamma . P G L_{2}(\mathbf{R})$ acts on $R(\Gamma)$ from right

$$
\begin{aligned}
R(\Gamma) \times P G L_{2}(\mathbf{R}) & \longrightarrow R(\Gamma) \\
(\rho, P) & \mapsto
\end{aligned} P^{-1} \rho P .
$$

We remark that although we use the system of generators $\left\{\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g}\right\}$ of Γ to define $R(\Gamma)$, the real algebraic structure of $R(\Gamma)$ does not depend on this system of generators. In fact if we choose another system of generators of Γ consisting of N elements and embed $\operatorname{Hom}\left(\Gamma, S L_{2}(\mathbf{R})\right)$ into the product space $S L_{2}(\mathbf{R})^{N}$, we get an another real algebraic set but it is canonically isomorphic to $R(\Gamma)$.

Next we consider the following subset of $R(\Gamma)$

$$
R^{\prime}(\Gamma):=\{\rho \in R(\Gamma) \mid \rho \text { is non abelian and irreducible }\}
$$

where a representation ρ is non abelian if $\rho(\Gamma)$ is a non abelian subgroup of $S L_{2}(\mathbf{R})$ and ρ is irreducible if $\rho(\Gamma)$ acts on \mathbf{R}^{2} without non trivial invariant subspace. Hence if ρ is not irreducible (i.e., reducible) then there exists $P \in P G L_{2}(\mathbf{R})$ such that $P^{-1} \rho(\Gamma) P$ consists of upper triangular matrices, hence in particular $\rho(\Gamma)$ is solvable. We remark that the action of $P G L_{2}(\mathbf{R})$ on $R(\Gamma)$ preserves $R^{\prime}(\Gamma)$. Next lemma is useful for the study of $R^{\prime}(\Gamma)$.

Lemma 2.1 For $\rho \in R^{\prime}(\Gamma)$, there exist $g, h \in \Gamma$ such that $\rho(g)$ is a hyperbolic matrix i.e., $|\operatorname{tr}(\rho(g))|>2$ and $\rho(h)$ has no common fixed points of $\rho(g)$. In other words there exists $P \in P G L_{2}(\mathbf{R})$ such that

$$
\begin{aligned}
P^{-1} \rho(g) P & =\left(\begin{array}{ll}
\lambda & 0 \\
0 & \frac{1}{\lambda}
\end{array}\right) \quad(\lambda \neq \pm 1) \\
P^{-1} \rho(h) P & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(b \cdot c \neq 0)
\end{aligned}
$$

We have another characterization of $R^{\prime}(\Gamma)$.

Proposition 2.1

$$
\begin{aligned}
R^{\prime}(\Gamma) & =\{\rho \in R(\Gamma) \mid \operatorname{tr}(\rho([a, b])) \neq 2 \text { for some } a, b \in \Gamma\} \\
& =R(\Gamma)-\bigcap_{a, b \in \Gamma}\{\rho \in R(\Gamma) \mid \operatorname{tr}(\rho([a, b]))=2\}
\end{aligned}
$$

(Proof.)
(\Rightarrow) Take $g, h \in \Gamma$ which satisfy the conditions of Lemma 2.1. Then $\operatorname{tr}([\rho(g), \rho(h)]) \neq 2$.
(\Leftarrow) If $\rho(\Gamma)$ is abelian, $[\rho(a), \rho(b)]=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ for any $a, b \in \Gamma$. If $\rho(\Gamma)$ has a non trivial invariant subspace, there exists $P \in P G L_{2}(\mathbf{R})$ such that any element of $P^{-1} \rho(\Gamma) P$ is an upper triangular matrix, hence $\operatorname{tr}([\rho(a), \rho(b)])=2$ for any $a, b \in \Gamma$.

Corollary 2.1 $R^{\prime}(\Gamma)$ is open in $R(\Gamma)$.
We can say more about $R^{\prime}(\Gamma)$.
Proposition 2.2 $R^{\prime}(\Gamma)$ has the structure of a $6 g$-3 dimensional real analytic manifold.

Because the action of $P G L_{2}(\mathbf{R})$ on $R^{\prime}(\Gamma)$ is proper and without fixed points (see [Gu] Section 9), we have the following result.

Proposition 2.3 The quotient space $R^{\prime}(\Gamma) / P G L_{2}(\mathbf{R})$ has the structure of a 6g-6 dimensional real analytic manifold such that the natural projection

$$
R^{\prime}(\Gamma) \rightarrow R^{\prime}(\Gamma) / P G L_{2}(\mathbf{R})
$$

is a real analytic principal $P G L_{2}(\mathbf{R})$-bundle.
Next we define the subset $R_{0}(\Gamma)$ of $R(\Gamma)$ by

$$
\begin{equation*}
R_{0}(\Gamma):=\{\rho \in R(\Gamma) \mid \rho \text { is discrete and faithful }\} \tag{1}
\end{equation*}
$$

where a representation ρ is discrete if $\rho(\Gamma)$ is a discrete subgroup of $S L_{2}(\mathbf{R})$ and ρ is faithful if ρ is injective. We remark that the action of $P G L_{2}(\mathbf{R})$ on $R(\Gamma)$ preserves $R_{0}(\Gamma)$. Then another characterization of $R_{0}(\Gamma)$ is

Proposition 2.4

$$
\begin{align*}
R_{0}(\Gamma) & =\{\rho \in R(\Gamma) \mid \rho \text { is cocompact, discrete and faithful }\} \tag{2}\\
& =\{\rho \in R(\Gamma) \mid \rho \text { is totally hyperbolic }\} \tag{3}
\end{align*}
$$

where a representation ρ is cocompact if the quotient space $\rho(\Gamma) \backslash S L_{2}(\mathbf{R})$ is compact with respect to the quotient topology, and ρ is called totally hyperbolic if $\rho(h)$ is hyperbolic for any $h(\neq$ identity $) \in \Gamma$.
(Proof.)
(1) \Rightarrow (2) The fundamental group of a surface $\rho(\Gamma) \backslash \mathbf{H}$ is isomorphic to the surface group Γ, hence $\rho(\Gamma) \backslash \mathrm{H}$ is compact.
(2) \Rightarrow (3) Because $\rho(\Gamma)$ is discrete, any elliptic element of $\rho(\Gamma)$ is finite order. But Γ is torsion free, $\rho(\Gamma)$ has no elliptic elements. Moreover if $\rho(\Gamma)$ has a parabolic element, then $\rho(\Gamma) \backslash \mathbf{H}$ has a cusp. But $\rho(\Gamma) \backslash \mathbf{H}$ is compact, $\rho(\Gamma)$ has no parabolic elements.
(3) \Rightarrow (1) Faithfulness is immediate. Discreteness follows from Nielsen's theorem (see [Si] P. 33 Theorem 3).

Proposition 2.5 $R_{0}(\Gamma)$ is open and closed in $R(\Gamma)$.
(Proof.) We give a sketch of the proof. We recall the Jørgensen's inequalities [Jø]:

For any $\rho \in R(\Gamma) \rho$ is contained in $R_{0}(\Gamma)$ if and only if

$$
|\operatorname{tr}([\rho(g), \rho(h)])-2|+\left|\operatorname{tr}(\rho(h))^{2}-4\right| \geq 1
$$

for any pair $g, h \in \Gamma$ with $g h \neq h g$.
These inequalities are closed conditions of $R_{0}(\Gamma)$ in $R(\Gamma)$.
The openness of $R_{0}(\Gamma) \subset R(\Gamma)$ follows from the next theorem due to Weil [W]:

If G is a connected Lie group and Γ is a discrete group, then the set of cocompact, discrete and faithful representations from Γ to G is open in the set of all representations from Γ to G.

Next we recall the notions of a semialgebraic set. Let V be a real algebraic set with its affine coordinate ring $\mathbf{R}[\mathrm{V}]$ i.e., the ring of polynomial functions on V. A subset S of V is called a semialgebraic subset of V if there exist finitely many polynomial functions on $\mathrm{V} f_{i}, g_{i_{1}}, \cdots g_{i_{m(i)}} \in$ $\mathbf{R}[V](i=1, \cdots, l)$ such that S can be written as

$$
S=\bigcup_{i=1}^{l}\left\{x \in V \mid f_{i}(x)=0, g_{i_{1}}(x)>0, \cdots g_{i_{m(i)}}(x)>0\right\}
$$

From the above definition, any real algebraic set is a semialgebraic set. Moreover it is known that any connected component of a semialgebraic set (with respect to Euclidean topology) is also a semialgebraic set and the number of connected components of a semialgebraic set is finite (see [B-CR] Theorem 2.4.5).

Corollary $2.2 R_{0}(\Gamma)$ consists of finitely many connected components of $R(\Gamma)$, hence $R_{0}(\Gamma)$ is a semialgebraic subset of $R(\Gamma)$.

The relation between $R^{\prime}(\Gamma)$ and $R_{0}(\Gamma)$ is
Proposition $2.6 R_{0}(\Gamma) \subset R^{\prime}(\Gamma)$.
(Proof.) For $\rho \in R_{0}(\Gamma)$ because the surface group Γ is non abelian and ρ is injective, ρ is non abelian. Also because Γ is not solvable, ρ is irreducible.

Corollary 2.3 $R_{0}(\Gamma)$ has the structure of a $6 g-3$ dimensional real analytic manifold.

2.2 The space of characters of Γ

As we have seen in subsection 2.1 that $R(\Gamma)$ has the structure of a real algebraic set. Let $\mathrm{R}[R(\Gamma)]$ be its affine coordinate ring i.e., the ring of
polynomial functions on $R(\Gamma)$. Then the action of $P G L_{2}(\mathbf{R})$ on $R(\Gamma)$ induces the action of $P G L_{2}(\mathbf{R})$ on $\mathbf{R}[R(\mathrm{\Gamma})]$

$$
\left.\begin{array}{rl}
P G L_{2}(\mathbf{R}) \times \mathbf{R}[R(\Gamma)] & \rightarrow \\
(P, f(R(\Gamma)] \\
(P, f(\rho)) & \mapsto
\end{array}\right) f\left(P^{-1} \rho P\right), ~ l
$$

and let $\mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})}$ be the ring of invariants of this action. For example the function $\tau_{h} \in \mathbf{R}[R(\Gamma)](h \in \Gamma)$ on $R(\Gamma)$ defined by

$$
\tau_{h}(\rho):=\operatorname{tr}(\rho(h))
$$

for $\rho \in R(\Gamma)$ is an element of $\mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})}$. In fact $\mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})}$ is generated by $\tau_{h}(h \in \Gamma)$ and is a finitely generated \mathbf{R}-subalgebra of $\mathbf{R}[R(\Gamma)]$ (see $[\mathrm{He}],[\mathrm{Ho}],[\mathrm{Pr}]$).

Let $X(\Gamma)$ be a real algebraic set whose affine coordinate ring $\mathbf{R}[X(\Gamma)]$ is isomorphic to $\mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})}$. And let $I_{h} \in \mathbf{R}[X(\Gamma)]$ correspond to $\tau_{h} \in \mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})}$. Then $\mathbf{R}[X(\Gamma)]$ is generated by $I_{h}(h \in \Gamma)$ as \mathbf{R} algebra. The injection

$$
\mathbf{R}[X(\Gamma)] \cong \mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})} \hookrightarrow \mathbf{R}[R(\Gamma)]
$$

induces the polynomial mapping

$$
t: R(\Gamma) \rightarrow X(\Gamma) .
$$

Because $\mathbf{R}[R(\Gamma)]^{P G L_{2}(\mathbf{R})}$ is generated by $\tau_{h}(h \in \Gamma)$, for a representation $\rho \in R(\Gamma), t(\rho)$ can be considered as the character χ_{ρ} of ρ

$$
\begin{aligned}
\chi_{\rho}: \Gamma & \rightarrow \mathbf{R} \\
h & \mapsto \operatorname{tr}(\rho(h))=\tau_{h}(\rho)
\end{aligned}
$$

Therefore the image $t(R(\Gamma)) \subset X(\Gamma)$ of $R(\Gamma)$ under the mapping t can be considered as the set of characters of $S L_{2}(\mathbf{R})$-representations of Γ. We call $X(\Gamma)$ the space of characters of Γ.

Moreover any element of $X(\Gamma)-t(R(\Gamma))$ can be considered as a character of $S U(2)$-representation of Γ and to explain this we need to review briefly the theory of $S L_{2}(\mathbf{C})$-representations of Γ following [C-S] and [M-S]. Let $R_{\mathbf{C}}(\Gamma)$ be the set of $S L_{2}(\mathbf{C})$-representations of Γ, then $R_{\mathbf{C}}(\Gamma)$ has the structure of a complex algebraic set and let $\mathrm{C}\left[R_{\mathrm{C}}(\Gamma)\right]$ be its affine coordinate ring. $P G L_{2}(\mathbf{C})$ acts on $R_{\mathbf{C}}(\Gamma)$ and also on $\mathbf{C}\left[R_{\mathbf{C}}(\Gamma)\right]$. Put $\mathbf{C}\left[R_{\mathbf{C}}(\Gamma)\right]^{P G L_{2}(\mathbf{C})}$ the
ring of invariants of this action and let $X_{\mathbf{C}}(\Gamma)$ be a complex algebraic set whose affine coordinate ring $\mathbf{C}\left[X_{\mathbf{C}}(\Gamma)\right]$ is isomorphic to $\mathbf{C}\left[R_{\mathbf{C}}(\Gamma)\right]^{P G L_{2}(\mathbf{C})}$. Then the injection

$$
\mathbf{C}\left[X_{\mathbf{C}}(\Gamma)\right] \cong \mathbf{C}\left[R_{\mathbf{C}}(\Gamma)\right]^{P G L_{2}(\mathbf{C})} \hookrightarrow \mathbf{C}\left[R_{\mathbf{C}}(\Gamma)\right]
$$

induces the polynomial map

$$
t_{\mathbf{C}}: R_{\mathbf{C}}(\Gamma) \rightarrow X_{\mathbf{C}}(\Gamma)
$$

which is surjective. Since $R_{C}(\Gamma), t_{\mathbf{C}}$ and $X_{\mathbf{C}}(\Gamma)$ are all defined over \mathbf{Q}, we can consider $X_{\mathbf{R}}(\Gamma)$ the set of real valued points of $X_{\mathbf{C}}(\Gamma)$. Then we can consider $X_{\mathbf{R}}(\Gamma)$ as the set of real valued characters of $S L_{2}(\mathbf{C})$-representations of Γ and it is known that any element of $X_{\mathbf{R}}(\Gamma)$ is either a character of $S L_{2}(\mathbf{R})$ or $S U(2)$-representation of Γ ([M-S] Proposition 3.1.1).

If we consider the polynomial function $t r_{h} \in \mathbf{C}\left[R_{\mathbf{C}}(\Gamma)\right] \quad(h \in \Gamma)$ on $R_{C}(\Gamma)$ defined by

$$
\operatorname{tr}_{h}(\rho):=\operatorname{tr}(\rho(h))
$$

for $\rho \in R_{\mathbf{C}}(\Gamma)$, then $t r_{h}$ is an element of $\mathbf{C}\left[R_{\mathbf{C}}(\Gamma)\right]^{P G L_{2}(\mathrm{C})}$ and write the corresponding element of $\mathrm{C}\left[X_{\mathrm{C}}(\Gamma)\right]$ also by $t r_{h}$ for the sake of simplicity. Then after regarding $R(\Gamma)$ as the set of real valued points of $R_{\mathbf{C}}(\Gamma)$, there is a natural surjective homomorphism from $\mathbf{R}\left[X_{\mathbf{R}}(\Gamma)\right]$ the affine coordinate ring of $X_{\mathbf{R}}(\Gamma)$ to $\mathbf{R}[X(\Gamma)]$

$$
\begin{aligned}
\mathbf{R}\left[X_{\mathbf{R}}(\Gamma)\right] & \rightarrow \mathbf{R}[X(\Gamma)] \\
t r_{h} & \mapsto I_{h} .
\end{aligned}
$$

Therefore there is a canonical injection from $X(\Gamma)$ to $X_{\mathbf{R}}(\Gamma)$. Hence any element of $X(\Gamma)$ is either cotained in $t(R(\Gamma))$ or can be considered as a character of $S U(2)$-representation of Γ.

We define the following subsets of $X(\Gamma)$

$$
\begin{aligned}
X^{\prime}(\Gamma) & :=t\left(R^{\prime}(\Gamma)\right) \\
U(\Gamma) & :=\left\{\chi \in X(\Gamma) \mid I_{[a, b]}(\chi) \neq 2 \text { for some } a, b \in \Gamma\right\} \\
& =X(\Gamma)-\bigcap_{a, b \in \Gamma}\left\{\chi \in X(\Gamma) \mid I_{[a, b]}(\chi)=2\right\}
\end{aligned}
$$

Then $U(\Gamma)$ is open in $X(\Gamma)$. By Proposition $2.1 t^{-1}\left(X^{\prime}(\Gamma)\right)=R^{\prime}(\Gamma)$ and $X^{\prime}(\Gamma) \subset U(\Gamma)$.

Proposition 2.7 $X^{\prime}(\Gamma)$ is open in $U(\Gamma)$. Hence $X^{\prime}(\Gamma)$ is open in $X(\Gamma)$.
(Proof.) Let $V(\Gamma)$ be the set of characters of $S U(2)$-representations of Γ. As $S U(2)$ is compact $V(\Gamma)$ is compact in $X_{\mathbf{R}}(\Gamma)$. Hence $U(\Gamma)=X^{\prime}(\Gamma) \cup$ $(U(\Gamma) \cap V(\Gamma))$ and $(U(\Gamma) \cap V(\Gamma))$ is compact in $U(\Gamma)$. Therefore it is enough to show that $X^{\prime}(\Gamma) \cap(U(\Gamma) \cap V(\Gamma))=\phi$. For $\rho \in R^{\prime}(\Gamma)$, by lemma 2.1 there exists $g \in \Gamma$ with $|\operatorname{tr}(\rho(g))|=\left|\chi_{\rho}(g)\right|>2$. On the other hand for any $S U(2)$-representation η of Γ

$$
|\operatorname{tr}(\eta(h))|=\left|\chi_{\eta}(h)\right| \leq 2 \text { for any } h \in \Gamma .
$$

Therefore $X^{\prime}(\Gamma) \cap(U(\Gamma) \cap V(\Gamma))=\phi$.
Next we will show that the restriction of the mapping t to $R^{\prime}(\Gamma)$

$$
t: R^{\prime}(\Gamma) \rightarrow X^{\prime}(\Gamma)
$$

is a principal $P G L_{2}(\mathbf{R})$-bundle. By Proposition 2.3 it is enough to show that $X^{\prime}(\Gamma)$ is the $P G L_{2}(\mathbf{R})$ adjoint quotient of $R^{\prime}(\Gamma)$. For this purpose we need to prepare two lemmas which are $S L_{2}(R)$ version of the results in [C-S] and [M-S].

Lemma 2.2 (see [C-S] Proposition1.5.2) For $\rho_{1}, \rho_{2} \in R^{\prime}(\Gamma)$, we assume that $t\left(\rho_{1}\right)=t\left(\rho_{2}\right)$, in other words they have the same character $\chi_{\rho_{1}}=\chi_{\rho_{2}}$. Then there is $P \in P G L_{2}(\mathbf{R})$ such that $\rho_{2}=P^{-1} \rho_{1} P$.

Lemma 2.3 (see [M-S] Lemma 3.1.7) For a subset U of $X^{\prime}(\Gamma)$, we assume that $t^{-1}(U)$ is open in $R^{\prime}(\Gamma)$ hence open in $R(\Gamma)$. Then U is open in $X^{\prime}(\Gamma)$ hence in $X(\Gamma)$.

By the previous lemmas we conclude that
Proposition $2.8 t: R^{\prime}(\Gamma) \rightarrow X^{\prime}(\Gamma)$ can be considered as the quotient map of $R^{\prime}(\Gamma)$ under the action of $P G L_{2}(\mathbf{R})$ i.e.,

$$
X^{\prime}(\Gamma)=R^{\prime}(\Gamma) / P G L_{2}(\mathbf{R})
$$

Therefore by Proposition $2.3 t: R^{\prime}(\Gamma) \rightarrow X^{\prime}(\Gamma)$ is a principal $P G L_{2}(\mathbf{R})$ bundle.

Define the closed subset $X_{0}(\Gamma)$ of $X(\Gamma)$ by

$$
\begin{aligned}
X_{0}(\Gamma):=\{\chi \in X(\Gamma) \quad \mid & \left|I_{[g, h]}(\chi)-2\right|+\left|I_{h}(\chi)^{2}-4\right| \geq 1 \\
& \text { for } g, h \in \Gamma \text { with } g h \neq h g\} .
\end{aligned}
$$

Then the proof of Proposition 2.5 implies $t\left(R_{0}(\Gamma)\right) \subset X_{0}(\Gamma)$.
Proposition 2.9 1. $X_{0}(\Gamma)=t\left(R_{0}(\Gamma)\right)$.
2. $X_{0}(\Gamma)$ is open in $X^{\prime}(\Gamma)$ hence open in $X(\Gamma)$.
3. $t^{-1}\left(X_{0}(\Gamma)\right)=R_{0}(\Gamma)$.
(Proof.) 1. Any representation of Γ to $S L_{2}(\mathbf{C})$ is discrete and faithful if and only if it satisfies Jørgensen's inequalities which we have seen in the proof of Proposition 2.5. But there are no discrete and faithful $S U(2)$ representations of Γ because $S U(2)$ is compact and Γ is an infinite group. Hence $X_{0}(\Gamma) \subset t(R(\Gamma))$ and it follows that $X_{0}(\Gamma)=t\left(R_{0}(\Gamma)\right)$.
2. $R_{0}(\Gamma) \subset R^{\prime}(\Gamma)$ implies $X_{0}(\Gamma) \subset X^{\prime}(\Gamma)$. Because $R_{0}(\Gamma)$ is open in $R(\Gamma)$ and $t: R^{\prime}(\Gamma) \rightarrow X^{\prime}(\Gamma)$ is an open map by Proposition 2.3, $X_{0}(\Gamma)$ is open in $X^{\prime}(\Gamma)$.
3. It is immediate from lemma 2.2.

Corollary $2.4 X_{0}(\Gamma)$ is open and closed in $X(\Gamma)$. Therefore $X_{0}(\Gamma)$ consists of finitely many connected components of $X(\Gamma)$ hence it is a semialgebraic subset of $X(\Gamma)$.

Corollary $2.5 t: R_{0}(\Gamma) \rightarrow X_{0}(\Gamma)$ is also a principal $P G L_{2}(\mathbf{R})$-bundle. Hence $X_{0}(\Gamma)$ can be considered as the $P G L_{2}(\mathbf{R})$ adjoint quotient of $R_{0}(\Gamma)$ i.e., $X_{0}(\Gamma)=R_{0}(\Gamma) / P G L_{2}(\mathbf{R})$.

We summarize the results of this subsection as the following diagram.

2.3 The relation between $S L_{2}(\mathbf{R})$ - and $P S L_{2}(\mathbf{R})$-representations of Γ

Next we consider the relation between $S L_{2}(\mathbf{R})$ - and $P S L_{2}(\mathbf{R})$-representations of the surface group Γ.

The group $\operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathbf{Z})\left(\cong(\mathbf{Z} / 2 \mathbf{Z})^{2 g}\right)$ acts on $R(\Gamma)$ as follows. For any $\mu \in \operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathbf{Z})$ and $\rho \in R(\Gamma)$, we define the representation $\mu \cdot \rho \in R(\Gamma)$ by

$$
\mu \cdot \rho(h):=\mu(h) \cdot \rho(h) \quad(\text { for all } h \in \Gamma)
$$

Proposition 2.10 ([Pa],[S-S]) Let $\xi: \Gamma \rightarrow P S L_{2}(\mathbf{R})$ be a discrete and faithful $P S L_{2}(\mathbf{R})$ representation. Suppose $A_{i}, B_{i} \in S L_{2}(\mathbf{R})(i=1, \cdots, g)$ denote any representatives of $\xi\left(\alpha_{i}\right), \xi\left(\beta_{i}\right) \in P S L_{2}(\mathbf{R})$. Then

$$
\prod_{i=1}^{g}\left[A_{i}, B_{i}\right]=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

In other words, ξ can always be lifted to a representation $\rho \in R_{0}(\Gamma)$ and the set of all liftings of ξ is equal to the $\operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathrm{Z})$ orbit of ρ in $R_{0}(\Gamma)$.

$$
\begin{array}{ccc}
& & S L_{2}(\mathbf{R}) \\
& \stackrel{\rho}{\nearrow} & \downarrow \text { proj. } \\
\Gamma & \xrightarrow[G]{\xi} & P S L_{2}(\mathbf{R})
\end{array}
$$

(Proof.) We briefly review what Seppälä and Sorvali showed in their paper [S-S].

Let ξ be a discrete and faithful $P S L_{2}(\mathbf{R})$ representation. Suppose $A_{i}, B_{i} \in$ $S L_{2}(\mathbf{R})(i=1, \cdots, g)$ denote any representatives of $\xi\left(\alpha_{i}\right), \xi\left(\beta_{i}\right) \in P S L_{2}(\mathbf{R})$. Then they showed that

$$
\begin{aligned}
\operatorname{tr}\left(\left[A_{i}, B_{i}\right]\right) & <-2(i=1, \cdots, g) \\
\operatorname{tr}\left(\left[A_{1}, B_{1}\right] \cdots\left[A_{j}, B_{j}\right]\right) & <-2(j=2, \cdots, g-1) .
\end{aligned}
$$

In particular

$$
\begin{aligned}
\operatorname{tr}\left(\left[A_{g}, B_{g}\right]\right) & <-2 \\
\operatorname{tr}\left(\left[A_{1}, B_{1}\right] \cdots\left[A_{g-1}, B_{g-1}\right]\right) & <-2 .
\end{aligned}
$$

We may suppose that $\left[A_{1}, B_{1}\right] \cdots\left[A_{g-1}, B_{g-1}\right]$ is a diagonal matrix. Then $\left[A_{g}, B_{g}\right]$ must be also diagonal, hence the above inequalities implies the conclusion.

Corollary 2.6 1. $\operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathrm{Z})$ acts on $R_{0}(\Gamma)$ and the quotient space $\operatorname{Hom}(\Gamma, \mathrm{Z} / 2 \mathrm{Z}) \backslash R_{0}(\Gamma)$ can be considered as the set of discrete and faithful $P S L_{2}(\mathbf{R})$-representations of Γ.
2. Through the mapping $t, \operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathbf{Z})$ acts also on $X_{0}(\Gamma)$ and the quotient space H om $(\Gamma, \mathbf{Z} / 2 \mathbf{Z}) \backslash X_{0}(\Gamma)$ can be considered as the $P G L_{2}(\mathbf{R})$ adjoint quotient of the set of discrete and faithful PS $L_{2}(\mathbf{R})$-representations of Γ.
We call this set Teichmüller space T_{g}

$$
\begin{aligned}
T_{g} & :=H o m(\Gamma, \mathbf{Z} / 2 \mathbf{Z}) \backslash X_{0}(\Gamma) \\
& =H o m(\Gamma, \mathbf{Z} / 2 \mathbf{Z}) \backslash R_{0}(\Gamma) / P G L_{2}(\mathbf{R}) .
\end{aligned}
$$

Proposition 2.4 implies $\left|I_{h}\right|>2($ for all $h(\neq$ identity $) \in \Gamma)$ on $X_{0}(\Gamma)$ hence the sign of I_{h} is constant on each connected component of $X_{0}(\Gamma)$. This means that $\operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathbf{Z})$ permutes the set of connected components of $X_{0}(\Gamma)$ freely. Thus

Corollary 2.7 The quotient map $X_{0}(\Gamma) \rightarrow T_{g}$ is an unramified $(\mathbf{Z} / 2 \mathbf{Z})^{2 g}$ covering. Hence by taking (any) lifting of this mapping, we can consider T_{g} as a finite union of connected components of $X_{0}(\Gamma)$. Therefore T_{g} can be considered as a semialgebraic subset of $X_{0}(\Gamma)$.

Corollary 2.8 If $\pi_{0}\left(X_{0}(\Gamma)\right)$ denotes the number of connected components of $X_{0}(\Gamma)$, the order of $H o m(\Gamma, \mathbf{Z} / 2 \mathbf{Z})$ divides $\pi_{0}\left(X_{0}(\Gamma)\right)$. In particular

$$
2^{2 g} \leq \pi_{0}\left(X_{0}(\Gamma)\right) .
$$

We summarize the result of this subsection as the following diagram.

$$
\begin{array}{rllll}
\operatorname{Hom}\left(\Gamma, S L_{2}(\mathbf{R})\right)= & R(\Gamma) & \supset & R_{0}(\Gamma) \\
t \downarrow & & \downarrow \\
& X(\Gamma) & \supset & X_{0}(\Gamma) & = \\
& & \downarrow \\
& & T_{g}(\Gamma) / P G L_{2}(\mathbf{R}) \\
& & =\operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathbf{Z}) \backslash X_{0}(\Gamma)
\end{array}
$$

3 Semialgebraic description of Teichmüller space T_{g} ($g=2$ case)

In this section by constructing the global coordinates of $X_{0}(\Gamma)$, we will show the connectivity, contractibility and semialgebraic description of Teichmüller space T_{2}. For this purpose we need to find some semialgebraic subset of $X(\Gamma)$ containing $X_{0}(\Gamma)$ whose presentation as a semialgebraic set and topological structure are both simple. This is $S(\Gamma)$ stated in the following subsection.

3.1 Definition of the semialgebraic subset $S(\Gamma)$ of $X(\Gamma)$

We define the open semialgebraic subset $S(\Gamma)$ of $X(\Gamma)$ by

$$
S(\Gamma):=\left\{\chi \in X(\Gamma) \mid I_{c_{1}}(\chi)<-2\right\}
$$

where $c_{1}:=\left[\alpha_{1}, \beta_{1}\right]=\left[\alpha_{2}, \beta_{2}\right]^{-1} \in \Gamma$.
Proposition 3.1 $S(\Gamma) \subset X^{\prime}(\Gamma)$. Hence by Proposition $2.3 t^{-1}(S(\Gamma)) \xrightarrow{t}$ $S(\Gamma)$ is a $P G L_{2}(\mathbf{R})$-bundle and we can consider $S(\Gamma)$ as the $P G L_{2}(\mathbf{R})$ adjoint quotient of $t^{-1}(S(\Gamma))$ i.e.,

$$
S(\Gamma)=t^{-1}(S(\Gamma)) / P G L_{2}(\mathbf{R}) .
$$

(Proof.) First we show

$$
S(\Gamma) \cap(X(\Gamma)-t(R(\Gamma)))=\phi .
$$

As we have seen in subsection 2.2 any element of $X(\Gamma)-t(R(\Gamma))$ can be considered as a character of $\mathrm{SU}(2)$-representation of Γ. Thus for $\chi \in X(\Gamma)-$ $t(R(\Gamma))$

$$
\left|I_{h}(\chi)\right| \leq 2 \quad \text { for } h \in \Gamma \text {. }
$$

This shows that $S(\Gamma) \subset t(R(\Gamma))$. On the other hand Proposition 2.1 shows that $S(\Gamma) \subset X^{\prime}(\Gamma)$.

Next result is due to Seppälä and Sorvali ([S-S]).
Proposition 3.2 $X_{0}(\Gamma) \subset S(\Gamma)$.
(Proof.) Any element $\rho=\left(A_{1}, B_{1}, A_{2}, B_{2}\right)$ of $R_{0}(\Gamma)$ induces a discrete and faithful $P S L_{2}(\mathbf{R})$-representation of Γ. Hence we have seen in the proof of Proposition 2.10 that

$$
\operatorname{tr}\left(\left[A_{1}, B_{1}\right]\right)<-2 .
$$

This implies the conclusion.
Corollary 3.1 Above arguments show the following diagram.

3.2 Topological structure of $S(\Gamma)$

In this subsection, by constructing the global coordinates of $S(\Gamma)$, we will show that $S(\Gamma)$ consists of $2^{4} \times 2$ connected components each one of which is a 6 dimensional cell. For this purpose we need some preliminaries.

We define the polynomial mapping f from $X(\Gamma)$ to \mathbf{R}^{6}. For any $\chi \in X(\Gamma)$

$$
f(\chi):=\left(I_{\alpha_{1}}(\chi), I_{\beta_{1}}(\chi), I_{\alpha_{1} \beta_{1}}(\chi), I_{\alpha_{2}}(\chi), I_{\beta_{2}}(\chi), I_{\alpha_{2} \beta_{2}}(\chi)\right)
$$

By the definition of $I_{h}(h \in \Gamma)$, for any $\rho \in R(\Gamma)$

$$
\begin{gathered}
f \circ t(\rho)=\left(\operatorname{tr}\left(\rho\left(\alpha_{1}\right)\right), \operatorname{tr}\left(\rho\left(\beta_{1}\right)\right), \cdots, \operatorname{tr}\left(\rho\left(\alpha_{2} \beta_{2}\right)\right)\right) . \\
R(\Gamma) \\
t \downarrow \stackrel{f \circ t}{\searrow} \\
X(\Gamma) \xrightarrow{f} \mathbf{R}^{6}
\end{gathered}
$$

We write the coordinates $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$ of \mathbf{R}^{6} by (\vec{x}, \vec{y}) for the sake of simplicity. Next we define the polynomial function $\kappa(x, y, z)$ on \mathbf{R}^{3} by

$$
\kappa(x, y, z):=x^{2}+y^{2}+z^{2}-x y z-2 .
$$

Easy calculation shows the following lemma ($[\mathrm{F}],[\mathrm{G}]$).
Lemma 3.1 1. For any $A, B \in S L_{2}(\mathbf{R})$

$$
\kappa(\operatorname{tr}(A), \operatorname{tr}(B), \operatorname{tr}(A B))=\operatorname{tr}([A, B])
$$

2. If $(x, y, z) \in \mathbf{R}^{3}$ satisfies $\kappa(x, y, z)<-2$, then

$$
|x|>2,|y|>2,|z|>2 \text { and } x \cdot y \cdot z>0
$$

In particular if we put

$$
V_{-}=\left\{(\vec{x}, \vec{y}) \in \mathbf{R}^{6} \mid \kappa(\vec{x})=\kappa(\vec{y})<-2\right\}
$$

then from the definition of $S(\Gamma), f(S(\Gamma)) \subset V_{-}$. In fact we will see in Proposition 3.3 that $f(S(\Gamma))=V_{-}$.

Lemma 3.2 $V_{-} \subset \mathbf{R}^{6}$ consists of 2^{4} connected components each one of which is a 5 dimensional cell. More precisely, put $U:=V_{-} \cap\{(\vec{x}, \vec{y}) \in$ $\left.\mathbf{R}^{6} \mid x_{i}>0, y_{i}>0(i=1,2)\right\}$ and define the action of $(\mathbf{Z} / 2 \mathbf{Z})^{4}$ on \mathbf{R}^{6} by the change of signs of the coordinates x_{i} and $y_{i}(i=1,2)$. Then U is a 5 dimensional cell and V_{-}can be written as

$$
V_{-}=\coprod_{\gamma \in(\mathbf{Z} / 2 \mathbf{Z})^{4}} \gamma(U)(\text { disjoint union }) .
$$

(Proof.) For $r<-2$ put

$$
W_{r}:=\left\{(x, y, z) \in \mathbf{R}^{3} \mid \kappa(x, y, z)=r, x>0, y>0, z>0\right\}
$$

and $u:=x-y, v:=x+y$ for $(x, y, z) \in W_{r}$. Then by Lemma 3.1.2

$$
v=\sqrt{\frac{z+2}{z-2} u^{2}-\frac{4}{z-2}\left(2+r-z^{2}\right)}>0 .
$$

Hence the next mapping is homeomorphic and consequently W_{r} is a 2 dimensional cell.

$$
\begin{aligned}
W_{r} & \simeq \mathbf{R} \times\{z \in \mathbf{R} \mid z>2\} \\
(x, y, z) & \mapsto(u, z)
\end{aligned}
$$

As $U \simeq W_{r} \times W_{r} \times\{r \in \mathbf{R} \mid r<-2\}, \quad \mathrm{U}$ is a 5 dimensional cell and by Lemma 3.1.2

$$
V_{-}=\coprod_{\gamma \in(\mathbf{Z} / 2 \mathbf{Z})^{4}} \gamma(U)
$$

Next lemma can be shown directly by calculation but it is a key lemma for the whole story of this section.

Lemma 3.3 Let $(A, B) \in S L_{2}(\mathbf{R})^{2}$ be a pair of hyperbolic matrices (i.e. $|\operatorname{tr}(A)|>2$ and $|\operatorname{tr}(B)|>2)$ which satisfies the following condition

$$
\left.[A, B]=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \frac{1}{\lambda}
\end{array}\right) \quad(\lambda<-1) . \cdots 1\right)
$$

If we put $(x, y, z):=(\operatorname{tr}(A), \operatorname{tr}(B), \operatorname{tr}(A B))$, then $\kappa(x, y, z)<-2$ and there exists a constant $k \in \mathbf{R}^{*}:=\mathbf{R}-\{0\}$ such that A, B can be written as

$$
\begin{align*}
& A=\left(\begin{array}{cc}
\frac{\lambda}{\lambda+1} x & \frac{1}{k}\left\{\frac{\lambda}{(\lambda+1)^{2}} x^{2}-1\right\} \\
k & \frac{1}{\lambda+1} x
\end{array}\right) \\
& B=\left(\begin{array}{cc}
\frac{1}{\lambda+1} y & \frac{1}{k}\left\{\frac{1}{\lambda+1} z-\frac{\lambda}{(\lambda+1)^{2}} x y\right\} \\
\frac{\frac{\lambda}{(\lambda+1)^{2}} y^{2}-1}{\left(\frac{\lambda}{\lambda+1} z-\frac{\lambda}{(\lambda+1)^{2}} x y\right.} & \frac{\lambda}{\lambda+1} y
\end{array}\right)
\end{align*}
$$

Conversely for any $k \in \mathbf{R}^{*}$ and $(x, y, z) \in \mathbf{R}^{3}$ with $\kappa(x, y, z)<-2$, define $\lambda<-1$ by $\lambda+\frac{1}{\lambda}=\kappa(x, y, z)$. Then the pair of matrices $(A, B) \in S L_{2}(\mathbf{R})^{2}$ defined by the condition 2) satisfies 1) and $(x, y, z)=(\operatorname{tr}(A), \operatorname{tr}(B), \operatorname{tr}(A B))$.

Because the pair $(A, B) \in S L_{2}(\mathbf{R})^{2}$ defined by the above condition 2) is uniquely determined by $k \in \mathbf{R}^{*}$ and $(x, y, z) \in \mathbf{R}^{3}$ with $\kappa(x, y, z)<-2$, we write it as

$$
(A, B)=(A(x, y, z, k), B(x, y, z, k))
$$

Now we can show the main result of this subsection.
Proposition 3.3 $S(\Gamma)$ consists of $2^{4} \times 2$ connected components each one of which is a 6 dimensional cell.
(Proof.) First, we define the mapping Ψ

$$
\Psi: t^{-1}(S(\Gamma)) \rightarrow \mathbf{R}^{*} \times V_{-} \times P G L_{2}(\mathbf{R})
$$

For any $\rho=\left(A_{1}, B_{1}, A_{2}, B_{2}\right) \in t^{-1}(S(\Gamma))$, we first diagonalize $\left[A_{1}, B_{1}\right]$. More presisely, by using Lemma 3.3, we can choose $P \in P G L_{2}(\mathbf{R})$ uniquely such that by use of the notations in Lemma 3.3, $\left(P A_{i} P^{-1}, P B_{i} P^{-1}\right)(i=$ 1,2) can be written as

$$
\begin{aligned}
P A_{1} P^{-1} & =A\left(\operatorname{tr}\left(A_{1}\right), \operatorname{tr}\left(B_{1}\right), \operatorname{tr}\left(A_{1} B_{1}\right), 1\right) \\
P B_{1} P^{-1} & =B\left(\operatorname{tr}\left(A_{1}\right), \operatorname{tr}\left(B_{1}\right), \operatorname{tr}\left(A_{1} B_{1}\right), 1\right) \\
P A_{2} P^{-1} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) A\left(\operatorname{tr}\left(A_{2}\right), \operatorname{tr}\left(B_{2}\right), \operatorname{tr}\left(A_{2} B_{2}\right), k\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
P B_{2} P^{-1} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) B\left(\operatorname{tr}\left(A_{2}\right), \operatorname{tr}\left(B_{2}\right), \operatorname{tr}\left(A_{2} B_{2}\right), k\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

where $k \in \mathbf{R}^{*}$ is some constant. We define the mapping Ψ by

$$
\begin{aligned}
\Psi: t^{-1}(S(\Gamma)) & \rightarrow \mathbf{R}^{*} \times V_{-} \times P G L_{2}(\mathbf{R}) \\
\rho & \mapsto(k, f \circ t(\rho), P)
\end{aligned}
$$

Lemma 3.3 tells that Ψ is bijective and also homeomorphic. From the definition, Ψ is $P G L_{2}(\mathbf{R})$-equivariant, hence it induces the homeomorphism Φ from $S(\Gamma)$ to $\mathbf{R}^{*} \times V_{-}$as follows.

$$
\begin{aligned}
& t^{-1}(S(\Gamma)) \stackrel{\Psi}{\simeq} \mathbf{R}^{*} \times V_{-} \times P G L_{2}(\mathbf{R}) \\
& t \downarrow \downarrow \text { proj } . \\
& S(\Gamma) \stackrel{\Phi}{\simeq} \mathbf{R}^{*} \times V_{-}
\end{aligned}
$$

Moreover by Lemma 3.2, $\mathbf{R}^{*} \times V_{-}$consists of $2^{4} \times 2$ connected components each one of which is a 6 dimensional cell.

3.3 Cell structure of Teichmüller space T_{2}

Next we consider the conditions which characterize the connected components of $X_{0}(\Gamma)$ in $S(\Gamma)$. By the definition of Φ in the proof of Proposition 3.3, the first component k of Φ can be considered as a function on $S(\Gamma)$.

Proposition 3.4 Suppose $U \subset S(\Gamma)$ be a connected component on which the function $I_{\alpha_{1}} \cdot I_{\alpha_{2}} \cdot k$ is negative. Then there exists $\chi \in U$ such that χ is not contained in $X_{0}(\Gamma)$. Because $X_{0}(\Gamma)$ consists of finitely many connected components of $X(\Gamma)$ by Corollary 2.4 this means that $X_{0}(\Gamma) \cap U=\phi$.
(Proof.) First we remark that on a connected component U of $S(\Gamma)$, the signs of the functions $I_{\alpha_{1}}, I_{\alpha_{2}}$, and k are constant. We consider $(\vec{x}, \vec{y}) \in V_{-}$ satisfying $\left|x_{i}\right|=\left|y_{i}\right|=4 \quad(i=1,2,3)$. Then there are 2^{4} points of V_{-} satisfing this condition. By use of the surjectivity of $\left.f\right|_{U}: U \rightarrow V_{-}$, take $\rho=\left(A_{1}, B_{1}, A_{2}, B_{2}\right) \in t^{-1}(S(\Gamma))$ with $t(\rho) \in U$ and $f \circ t(\rho)=(\vec{x}, \vec{y})$. If $I_{\alpha_{1}}(t(\rho)) \cdot I_{\alpha_{2}}(t(\rho))=\operatorname{tr}\left(A_{1}\right) \cdot \operatorname{tr}\left(A_{2}\right)=16>0$, then by using the presentation of $\rho=\left(A_{1}, B_{1}, A_{2}, B_{2}\right)$ in the proof of Proposition 3.3, $\operatorname{tr}\left(A_{1} A_{2}\right)=-2-k-\frac{4}{k}$ where we write $k(\rho)$ by k for the sake of simplicity. Hence if $k(\rho)=k=-2$ (i.e., $I_{\alpha_{1}}: I_{\alpha_{2}} \cdot k<0$ on U), then $\operatorname{tr}\left(A_{1} A_{2}\right)=2$ and this means that $A_{1} A_{2} \in S L_{2}(\mathbf{R})$ is a parabolic matrix, thus $t(\rho)$ is not contained in $X_{0}(\Gamma)$. Similar argument holds for the case $I_{\alpha_{1}}(\rho) \cdot I_{\alpha_{2}}(\rho)=\operatorname{tr}\left(A_{1}\right) \cdot \operatorname{tr}\left(A_{2}\right)=-16<0$.

From the above proof, There are 16 connected components of $S(\Gamma)$ on which the function $I_{\alpha_{1}} \cdot I_{\alpha_{2}} \cdot k$ is negative. Hence the number of connected components of $X_{0}(\Gamma), \pi_{0}\left(X_{0}(\Gamma)\right)$ is less than or equal to 16 . On the other hand, as the argument in subsection 2.4 implies $\pi_{0}\left(X_{0}(\Gamma)\right) \geq 16$, we get the following result.

Theorem 3.1 $\pi_{0}\left(X_{0}(\Gamma)\right)=16$. Thus Teichmüller space T_{2}

$$
T_{2}=\operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathbf{Z}) \backslash X_{0}(\Gamma)
$$

is connected and by Proposition 3.3, it is a 6 dimensional cell in particular contractible.

3.4 Semialgebraic structure of Teichmüller space T_{2}

Previous argument shows the following presentation of $X_{0}(\Gamma)$ as a subset of $X(\Gamma)$

$$
\begin{aligned}
X_{0}(\Gamma) & =\left\{\chi \in S(\Gamma) \mid I_{\alpha_{1}}(\chi) \cdot I_{\alpha_{2}}(\chi) \cdot k(\chi)>0\right\} \\
& =\left\{\chi \in X(\Gamma) \mid I_{c_{1}}<-2 \text { and } I_{\alpha_{1}}(\chi) \cdot I_{\alpha_{2}}(\chi) \cdot k(\chi)>0\right\}
\end{aligned}
$$

where $c_{1}=\left[\alpha_{1}, \beta_{1}\right] \in \Gamma$. This presentation induces the following semialgebraic description of $X_{0}(\Gamma)$ in $X(\Gamma)$.

Theorem 3.2 $X_{0}(\Gamma)$ can be written as a semialgebraic subset of $X(\Gamma)$ as follows

$$
X_{0}(\Gamma)=\left\{\chi \in X(\Gamma) \mid I_{c_{1}}(\chi)<-2, \frac{\left(I_{c_{1}}(\chi)+2\right) \cdot I_{\alpha_{1} \alpha_{2}}(\chi)}{I_{\alpha_{1}}(\chi) \cdot I_{\alpha_{2}}(\chi)}>2\right\} .
$$

This means that for any representation $\rho=\left(A_{1}, B_{1}, A_{2}, B_{2}\right) \in R(\Gamma), \quad \rho$ is a discrete and faithful $S L_{2}(\mathbf{R})$-representation of Γ if and only if

$$
\operatorname{tr}\left(\left[A_{1}, B_{1}\right]\right)<-2 \text { and } \frac{\left(\operatorname{tr}\left(\left[A_{1}, B_{1}\right]\right)+2\right) \cdot \operatorname{tr}\left(A_{1} A_{2}\right)}{\operatorname{tr}\left(A_{1}\right) \cdot \operatorname{tr}\left(A_{2}\right)}>2 .
$$

(Proof.) For any $\rho=\left(A_{1}, B_{1}, A_{2}, B_{2}\right) \in t^{-1}(S(\Gamma))$, by calculating $\operatorname{tr}\left(A_{1} A_{2}\right)$

$$
\begin{aligned}
& k(\rho)^{2}+\left(\operatorname{tr}\left(A_{1} A_{2}\right)-\frac{2 \operatorname{tr}\left(A_{1}\right) \cdot \operatorname{tr}\left(A_{2}\right)}{\operatorname{tr}\left(\left[A_{1}, B_{1}\right]\right)+2}\right) k(\rho)+ \\
& \quad+\left(\frac{\operatorname{tr}\left(A_{1}\right)^{2}}{\operatorname{tr}\left(\left[A_{1}, B_{1}\right]\right)+2}-1\right)\left(\frac{\operatorname{tr}\left(A_{2}\right)^{2}}{\operatorname{tr}\left(\left[A_{1}, B_{1}\right]\right)+2}-1\right)=0 .
\end{aligned}
$$

Considering this as the quadratic equation on $k(\rho)$, the constant term is positive, hence the sign of $k(\rho)$ and the sign of the coefficient of the linear term of this equation are opposite each other. Hence for $\rho=\left(A_{1}, B_{1}, A_{2}, B_{2}\right) \in$ $t^{-1}(S(\Gamma))$,

$$
\operatorname{tr}\left(A_{1}\right) \cdot \operatorname{tr}\left(A_{2}\right) \cdot k(\rho)>0 \Leftrightarrow \frac{\left(\operatorname{tr}\left(\left[A_{1}, B_{1}\right]\right)+2\right) \cdot \operatorname{tr}\left(A_{1} A_{2}\right)}{\operatorname{tr}\left(A_{1}\right) \cdot \operatorname{tr}\left(A_{2}\right)}>2
$$

Remark Because each connected component of $X_{0}(\Gamma)$ is separated by the action of $\operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathbf{Z})$ i.e., the sign conditions of the functions $I_{\alpha_{1}}, I_{\beta_{1}}, I_{\alpha_{2}}$ and $I_{\beta_{2}}$, therefore adding these 4 conditions, we can get the semialgebraic description of T_{2} by use of 6 polynomial inequalities (see Corollary 2.7).

4 Semialgebraic description of Teichmüller space T_{g} ($g \geq 3$ case)

In this section, we assume $g \geq 3$. We show the connectivity, contractibility and semialgebraic description of Teichmüller space T_{g} following the similar lines in section 3.

4.1 Definition of the semialgebraic subset $S(\Gamma)$ of $X(\Gamma)$

We define the open semialgebraic subset $S(\Gamma)$ of $X(\Gamma)$ by

$$
\begin{array}{ll}
S(\Gamma):=\{\chi \in X(\Gamma) \quad \mid & I_{c_{i}}(\chi)<-2(i=1, \cdots, g) \\
& \left.I_{d_{j}}(\chi)<-2(j=2, \cdots, g-2)\right\}
\end{array}
$$

where $c_{i}:=\left[\alpha_{i}, \beta_{i}\right] \in \Gamma$ and $d_{j}:=c_{1} c_{2} \cdots c_{j}$.
Similar arguments of Proposition 3.1 and 3.2 show
Proposition $4.1 S(\Gamma) \subset X^{\prime}(\Gamma)$. Hence by Proposition 2.3, $t^{-1}(S(\Gamma)) \xrightarrow{t}$ $S(\Gamma)$ is a $P G L_{2}(\mathbf{R})$-bundle and we can consider $S(\Gamma)$ as the $P G L_{2}(\mathbf{R})$ adjoint quotient of $t^{-1}(S(\Gamma))$ i.e.,

$$
S(\Gamma)=t^{-1}(S(\Gamma)) / P G L_{2}(\mathbf{R})
$$

Proposition $4.2 X_{0}(\Gamma) \subset S(\Gamma)$.
Moreover if a representation $\rho=\left(A_{1}, B_{1}, \cdots, A_{g}, B_{g}\right)$ is contained in $R_{0}(\Gamma)$, the representation $\rho_{j}:=\left(A_{j}, B_{j}, A_{j+1}, B_{j+1}, \cdots, A_{j-1}, B_{j-1}\right)(j=$ $2, \cdots, g)$ is well defined and also an element of $R_{0}(\Gamma)$, hence we have

Corollary 4.1 For $\chi \in X_{0}(\Gamma), I_{c_{1} c_{i+1}}(\chi)<-2 \quad(i=2, \cdots, g)$ where we assume that $c_{g+1}=c_{1}$.

Corollary 4.2 Above arguments show the following diagram.

4.2 Topological structure of $S(\Gamma)$

In this subsection, by constructing the global coordinates of $S(\Gamma)$, we will show that $S(\Gamma)$ consists of $2^{2 g} \times 2^{2 g-3}$ connected components each one of which is a 6 g - 6 dimensional cell. For this purpose we need some preliminaries.

First we define the polynomial mapping from $X(\Gamma)$ to $\mathbf{R}^{3 g}$ by

$$
f(\chi):=\left(I_{\alpha_{1}}(\chi), I_{\beta_{1}}(\chi), I_{\alpha_{1} \beta_{1}}(\chi), \cdots, I_{\alpha_{g}}(\chi), I_{\beta_{g}}(\chi), I_{\alpha_{g} \beta_{g}}(\chi)\right)
$$

for $\chi \in X(\Gamma)$.

$$
\begin{array}{ccc}
R(\Gamma) & & \\
t \downarrow & \stackrel{f o t}{\searrow} & \\
X(\Gamma) & \xrightarrow{f} & \mathbf{R}^{3 g}
\end{array}
$$

Let $\left(\overrightarrow{x_{1}}, \cdots, \overrightarrow{x_{g}}\right)$ denote the coordinates ($x_{11}, x_{12}, x_{13}, \cdots, x_{g 1}, x_{g 2}, x_{g 3}$) of $\mathbf{R}^{3 g}$. We define the semialgebraic subset V_{-}by

$$
V_{-}:=\left\{\left(\overrightarrow{x_{1}}, \cdots, \overrightarrow{x_{g}}\right) \in \mathbf{R}^{3 g} \mid \kappa\left(\overrightarrow{x_{i}}\right)<-2(i=1, \cdots, g)\right\}
$$

where $\kappa(x, y, z)$ is the polynomial function on \mathbf{R}^{3} defined in subsection 3.2. Then from the definition of $S(\Gamma), f(S(\Gamma)) \subset V_{-}$. In fact we will see in the proof of Proposition 4.3 that $f(S(\Gamma))=V_{-}$.

We can prove the next lemma by the same argument in Lemma 3.2.
Lemma 4.1 $V_{-} \subset \mathbf{R}^{3 g}$ consists of $2^{2 g}$ connected components each one of which is a $3 g$ dimensional cell. More precisely, put

$$
U:=V_{-} \cap\left\{\left(\overrightarrow{x_{1}}, \cdots, \overrightarrow{x_{g}}\right) \in \mathbf{R}^{3 g} \mid x_{i j}>0 \quad(i=1, \cdots, g j=1,2)\right\}
$$

and define the action of $(\mathbf{Z} / 2 \mathbf{Z})^{2 g}$ on $\mathbf{R}^{3 g}$ by the change of signs of $x_{i j}(i=1, \cdots, g j=1,2)$. Then U is a $3 g$ dimensional cell and V_{-}can be written as

$$
V_{-}=\coprod_{\gamma \in(\mathbf{Z} / 2 \mathbf{Z})^{2 g}} \gamma(U) \text { (disjoint union). }
$$

Next lemma which is shown by elementary calculation is a key lemma in this section.

Lemma 4.2 1. For a pair of hyperbolic matrices $\left(C_{\mathbf{1}}, C_{2}\right) \in S L_{2}(\mathbf{R})^{2}$, assume that C_{1} is diagonal

$$
C_{1}=\left(\begin{array}{cc}
\eta & 0 \\
0 & \frac{1}{\eta}
\end{array}\right)(\eta<-1)
$$

If the traces of C_{1}, C_{2} and $C_{1} C_{2}$ satisfy

$$
\left.x:=\operatorname{tr}\left(C_{1}\right)<-2, y:=\operatorname{tr}\left(C_{2}\right)<-2 \text { and } z:=\operatorname{tr}\left(C_{1} C_{2}\right)<-2 \cdots 1\right)
$$

then there exists $m \in \mathbf{R}^{*}$ such that C_{2} can be written as follows.

$$
\left.C_{2}=\left(\begin{array}{cc}
\frac{\eta z-y}{\eta^{2}-1} & m \\
\frac{1}{m}\left\{\frac{\eta(\eta y-z)(\eta z-y)}{\left(\eta^{2}-1\right)^{2}}-1\right\} & \frac{\eta(\eta y-z)}{\eta^{2}-1}
\end{array}\right) \cdots 2\right)
$$

Conversely, for any constant $m \in \mathbf{R}^{*}$ and $(x, y, z) \in \mathbf{R}^{3}$ with $x<-2, y<-2$ and $z<-2$, if we put $\eta<-1$ with $\eta+\frac{1}{\eta}=x$ and define $C_{1}=\left(\begin{array}{cc}\eta & 0 \\ 0 & \frac{1}{\eta}\end{array}\right)$ and C_{2} by the condition 2), then $(x, y, z)=\left(\operatorname{tr}\left(C_{1}\right), \operatorname{tr}\left(C_{2}\right), \operatorname{tr}\left(C_{1} C_{2}\right)\right)$ as the condition 1). We write C_{2} defined by the condition 2) by $C(x, y, z, m)$.
2. Moreover for such a pair $\left(C_{1}, C_{2}\right) \in S L_{2}(\mathbf{R})^{2}$, we can diagonalize $C_{1} C_{2}$ and C_{2} by using the following matrices $P, Q \in S L_{2}(\mathbf{R})$.

$$
P:=\left(\begin{array}{cc}
1 & -\frac{m \tau \eta}{\tau^{2}-1} \\
\frac{\tau\left(\eta^{2}-1\right)-\eta(\eta z-y)}{m \eta\left(\eta^{2}-1\right)} & \frac{\tau \eta(\eta z-y)-\left(\eta^{2}-1\right)}{\left(\eta^{2}-1\right)\left(\tau^{2}-1\right)}
\end{array}\right)
$$

where $\tau<-1$ with $\tau+\frac{1}{\tau}=z=\operatorname{tr}\left(C_{1} C_{2}\right)$ aind $C_{1} C_{2}=P\left(\begin{array}{cc}\tau & 0 \\ 0 & \frac{1}{\tau}\end{array}\right) P^{-1}$.

$$
Q:=\left(\begin{array}{cc}
1 & -\frac{m \xi}{\xi^{2}-1} \\
\frac{\xi\left(\eta^{2}-1\right)-(\eta z-y)}{m\left(\eta^{2}-1\right)} & \frac{\xi(\eta z-y)-\left(\eta^{2}-1\right)}{\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)}
\end{array}\right)
$$

where $\xi<-1$ with $\xi+\frac{1}{\xi}=y=\operatorname{tr}\left(C_{2}\right) \quad$ and $C_{2}=Q\left(\begin{array}{cc}\xi & 0 \\ 0 & \frac{1}{\xi}\end{array}\right) Q^{-1}$.
In the following we write these P and Q by $P(x, y, z, m)$ and $Q(x, y, z, m)$.
Proposition 4.3 $S(\Gamma)$ consists of $2^{2 g} \times 2^{2 g-3}$ connected components each one of which is a 6g-6 dimensional cell.
(Proof.) We construct the mapping Ψ
$\Psi: t^{-1}(S(\Gamma)) \rightarrow V_{-} \times\{w \in \mathbf{R} \mid w<-2\}^{g-3} \times\left(\mathbf{R}^{*}\right)^{g-3} \times\left(\mathbf{R}^{*}\right)^{g} \times P G L_{2}(\mathbf{R})$
as follows.
For $\rho=\left(A_{1}, B_{1}, \cdots, A_{g}, B_{g}\right) \in t^{-1}(S(\Gamma))$, put

$$
\begin{aligned}
\left(\overrightarrow{x_{1}}, \cdots, \overrightarrow{x_{g}}\right) & :=f \circ t(\rho) \in V_{-}\left(\text {where } \overrightarrow{x_{i}}:=\left(x_{i 1}, x_{i 2}, x_{i 3}\right)\right) \\
C_{i} & :=\left[A_{i}, B_{i}\right](i=1, \cdots, g) \\
u_{i} & :=\operatorname{tr}\left(C_{i}\right)=\kappa\left(\overrightarrow{x_{i}}\right)(i=1, \cdots, g) \\
D_{k} & :=C_{1} \cdots C_{k}(k=1, \cdots, g-1) \\
w_{k} & :=\operatorname{tr}\left(D_{k}\right)(k=1, \cdots, g-1) .
\end{aligned}
$$

We remark that

$$
\begin{aligned}
D_{1} & =C_{1} \\
w_{1} & =u_{1} \\
w_{g-1} & =u_{g}
\end{aligned}
$$

Because of the definition of $S(\Gamma)$

$$
w_{1}<-2, u_{2}<-2, \text { and } w_{2}<-2
$$

Lemma 4.2 .1 shows that there exists $R \in P G L_{2}(\mathbf{R})$ uniquely such that

$$
\begin{aligned}
& R C_{1} R^{-1}=\left(\begin{array}{cc}
\eta_{1} & 0 \\
0 & \frac{1}{\eta_{1}}
\end{array}\right)\left(\eta_{1}<-1 \text { with } \eta_{1}+\frac{1}{\eta_{1}}=w_{1}\right) \\
& R C_{2} R^{-1}=C\left(w_{1}, u_{2}, w_{2}, 1\right) .
\end{aligned}
$$

Then by Lemma 4.2 .2 there exists $P_{1}=P\left(w_{1}, u_{2}, w_{2}, 1\right)$ such that

$$
R D_{2} R^{-1}=P_{1}\left(\begin{array}{cc}
\eta_{2} & 0 \\
0 & \frac{1}{\eta_{2}}
\end{array}\right) P_{1}^{-1}\left(\eta_{2}<-1 \text { with } \eta_{2}+\frac{1}{\eta_{2}}=w_{2}\right) .
$$

Similarly because

$$
w_{2}<-2, u_{3}<-2, \text { and } w_{3}<-2
$$

Lemma 4.2.1 shows that there exists a constant $m_{1} \in \mathbf{R}^{*}$ such that

$$
R C_{3} R^{-1}=P_{1} C\left(w_{2}, u_{3}, w_{3}, m_{1}\right) P_{1}^{-1}
$$

and by Lemma 4.2.2 there exists $P_{2}=P\left(w_{2}, u_{3}, w_{3}, m_{1}\right)$ such that

$$
R D_{3} R^{-1}=P_{1} P_{2}\left(\begin{array}{cc}
\eta_{3} & 0 \\
0 & \frac{1}{\eta_{3}}
\end{array}\right) P_{2}^{-1} P_{1}^{-1}\left(\eta_{3}<-1 \text { with } \eta_{3}+\frac{1}{\eta_{3}}=w_{3}\right)
$$

Inductively, for $j=2, \cdots, g-1$, because

$$
w_{j-1}<-2, u_{j}<-2, \text { and } w_{j}<-2
$$

Lemma 4.2 shows

$$
\begin{aligned}
R C_{j} R^{-1} & =P_{1} \cdots P_{j-2} C\left(w_{j-1}, u_{j}, w_{j}, m_{j-2}\right) P_{j-2}^{-1} \cdots P_{1}^{-1} \\
R D_{j} R^{-1} & =P_{1} \cdots P_{j-1}\left(\begin{array}{cc}
\eta_{j} & 0 \\
0 & \frac{1}{\eta_{j}}
\end{array}\right) P_{j-1}^{-1} \cdots P_{1}^{-1}
\end{aligned}
$$

where $m_{j-2} \in \mathbf{R}^{*}$ with $m_{0}=1, P_{j-1}=P\left(w_{j-1}, u_{j}, w_{j}, m_{j-2}\right)$ with $P_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\eta_{j}<-1$ with $\eta_{j}+\frac{1}{\eta_{j}}=w_{j}$.

Moreover $R C_{g} R^{-1}$ can be written as

$$
R C_{g} R^{-1}=P_{1} \cdots P_{g-2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
\eta_{g-1} & 0 \\
0 & \frac{1}{\eta_{g-1}}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) P_{g-2}^{-1} \cdots P_{1}^{-1}
$$

On the other hand by Lemma 3.3

$$
\begin{aligned}
& R A_{1} R^{-1}=A\left(\overrightarrow{x_{1}}, k_{1}\right) \\
& R B_{1} R^{-1}=B\left(\overrightarrow{x_{1}}, k_{1}\right)
\end{aligned}
$$

for some $k_{1} \in \mathbf{R}^{*}$ where we write $A\left(x_{11}, x_{12}, x_{13}, k_{1}\right)$ by $A\left(\overrightarrow{x_{1}}, k_{1}\right)$. By Lemma 4.2.2 there exist $Q_{2}=Q\left(w_{1}, u_{2}, w_{2}, 1\right)$ and $k_{2} \in \mathbf{R}^{*}$ such that

$$
\begin{aligned}
& R A_{2} R^{-1}=Q_{2} A\left(\overrightarrow{x_{2}}, k_{2}\right) Q_{2}^{-1} \\
& R B_{2} R^{-1}=Q_{2} B\left(\overrightarrow{x_{2}}, k_{2}\right) Q_{2}^{-1}
\end{aligned}
$$

Inductively, for $j=2, \cdots, g-1$

$$
\begin{aligned}
& R A_{j} R^{-1}=P_{1} \cdots P_{j-2} Q_{j} A\left(\overrightarrow{x_{j}}, k_{j}\right) Q_{j}^{-1} P_{j-2}^{-1} \cdots P_{1}^{-1} \\
& R B_{j} R^{-1}=P_{1} \cdots P_{j-2} Q_{j} B\left(\overrightarrow{x_{j}}, k_{j}\right) Q_{j}^{-1} P_{j-2}^{-1} \cdots P_{1}^{-1}
\end{aligned}
$$

where $Q_{j}=Q\left(w_{j-1}, u_{j}, w_{j}, m_{j-2}\right)$ and $k_{j} \in \mathbf{R}^{*}$. Moreover

$$
\begin{aligned}
& R A_{g} R^{-1}=P_{1} \cdots P_{g-2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) A\left(\overrightarrow{x_{g}}, k_{g}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) P_{g-2}^{-1} \cdots P_{1}^{-1} \\
& R B_{g} R^{-1}=P_{1} \cdots P_{g-2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) B\left(\overrightarrow{x_{g}}, k_{g}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) P_{g-2}^{-1} \cdots P_{1}^{-1}
\end{aligned}
$$

for some $k_{g} \in \mathbf{R}^{*}$. Now we can define the mapping Ψ

$$
\begin{aligned}
t^{-1}(S(\Gamma)) & \xrightarrow{\Psi} V_{-} \times\{w \in \mathbf{R} \mid w<-2\}^{g-3} \times\left(\mathbf{R}^{*}\right)^{g-3} \times\left(\mathbf{R}^{*}\right)^{g} \times P G_{i} L_{2}(\mathbf{R}) \\
\rho & \mapsto\left(f \circ t(\rho), w_{2}, \cdots, w_{g-2}, m_{1}, \cdots, m_{g-3}, k_{1}, \cdots, k_{g}, R\right)
\end{aligned}
$$

Lemma 4.2 shows that this mapping is bijective and homeomorphic. Ψ induces the homeomorphism Φ as follows

$$
\begin{array}{ccc}
t^{-1}(S(\Gamma)) & \stackrel{ \pm}{\simeq} & V_{-} \times\{w \in \mathbf{R} \mid w<-2\}^{g-3} \times\left(\mathbf{R}^{*}\right)^{g-3} \times\left(\mathbf{R}^{*}\right)^{g} \times P G L_{2}(\mathbf{R}) \\
t \downarrow & \downarrow \text { proj. } \\
S(\Gamma) & \stackrel{\Phi}{\simeq} & V_{-} \times\{w \in \mathbf{R} \mid w<-2\}^{g-3} \times\left(\mathbf{R}^{*}\right)^{g-3} \times\left(\mathbf{R}^{*}\right)^{g}
\end{array}
$$

Thus by lemma $4.1 S(\Gamma)$ consists of $2^{2 g} \times 2^{2 g-3}$ connected components each one of which is a $6 \mathrm{~g}-6$ dimensional cell.

4.3 Cell structure of Teichmüller space T_{g}

In the following by using the global coordinate functions of $S(\Gamma)$ constructed in the previous subsection, we consider the conditions which characterize the connected components of $X_{0}(\Gamma)$ in $S(\Gamma)$.

Proposition 4.4 On $X_{0}(\Gamma)$, the component $m_{j}(j=1, \cdots, g-3)$ of the mapping Φ is positive.

This is equivalent to the next proposition for the space of representations.
Proposition 4.5 For $\rho=\left(A_{1}, B_{1}, \cdots, A_{g}, B_{g}\right) \in R_{0}(\Gamma)$, the value $m_{j}(\rho)$ of the component $m_{j}(j=1, \cdots, g-3)$ of the mapping Ψ at ρ is positive.

Proposition 4.6 On $X_{0}(\Gamma)$, the product of components $x_{i 1} \cdot k_{i}$ of the mapping Φ is positive $(i=1, \cdots, g)$.

This is equivalent to the next proposition for the space of representations.
Proposition 4.7 For $\rho=\left(A_{1}, B_{1}, \cdots, A_{g}, B_{g}\right) \in R_{0}(\Gamma)$, the value $x_{i 1}(\rho)$. $k_{i}(\rho)$ of the product of components $x_{i 1}$ and k_{i} of the mapping Ψ at ρ is positive ($i=1, \cdots, g$).

We omit the proof of the above propositions.
Above Propositions show that

$$
X_{0}(\Gamma) \subset\left\{\chi \in S(\Gamma) \mid m_{j}>0(j=1, \cdots, g-3), x_{i 1} k_{i}>0(i=1, \cdots, g)\right\}
$$

hence the number of connected components of $X_{0}(\Gamma), \pi_{0}\left(X_{0}(\Gamma)\right)$ is less than or equal to $2^{2 g}$. On the other hand we have seen in subsection 2.3 that $\pi_{0}\left(X_{0}(\Gamma)\right) \geq 2^{2 g}$. Hence we get the following result.

Theorem $4.1 \pi_{0}\left(X_{0}(\Gamma)\right)=2^{2 g}$. Therefore Teichmüller space T_{g}

$$
T_{g}=\operatorname{Hom}(\Gamma, \mathbf{Z} / 2 \mathbf{Z}) \backslash X_{0}(\Gamma)
$$

is connected and by Proposition 4.3 it is a 6g-6 dimensional cell in particular contractible.

4.4 Semialgebraic structure of Teichmüller space T_{g}

Now $X_{0}(\Gamma)$ can be written as

$$
X_{0}(\Gamma)=\left\{\chi \in S(\Gamma) \mid m_{j}>0(j=1, \cdots, g-3), x_{i 1} k_{i}>0(i=1, \cdots, g)\right\}
$$

In the following we will rewrite the above presentation of $X_{0}(\Gamma)$ by using polynomial inequalities on $I_{h}(h \in \Gamma)$.

Proposition 4.8 For a representation $\rho=\left(A_{1}, B_{1}, \cdots, A_{g}, B_{g}\right) \in t^{-1}(S(\Gamma))$ we write $m_{j}(\rho)(j=1, \cdots, g-3)$ by m_{j} for the sake of simplicity. Then

$$
m_{j}>0(j=1, \cdots, g-3)
$$

if and only if

$$
\begin{aligned}
& \operatorname{tr} D_{j+1}\left(\operatorname{tr} D_{j} \operatorname{tr} D_{j+2}+\operatorname{tr} C_{j+1} \operatorname{tr} C_{j+2}\right)-2\left(\operatorname{tr} D_{j} \operatorname{tr} C_{j+2}+\operatorname{tr} C_{j+1} \operatorname{tr} D_{j+2}\right) \\
& \quad>\left\{\left(\operatorname{tr} D_{j+1}\right)^{2}-4\right\} \operatorname{tr}\left(D_{j} C_{j+2}\right)(j=1, \cdots, g-3)
\end{aligned}
$$

where $C_{i}:=\left[A_{i}, B_{i}\right](i=1, \cdots, g), D_{j}:=C_{1} \cdots C_{j}(j=1, \cdots, g-1)$.

We put

$$
S^{\prime}(\Gamma):=\left\{\chi \in S(\Gamma) \mid m_{j}(\chi)>0(j=1, \cdots, g-3)\right\} .
$$

Proposition 4.9 For $\rho=\left(A_{1}, B_{1}, \cdots, A_{g}, B_{g}\right) \in t^{-1}\left(S^{\prime}(\Gamma)\right)$ we write $x_{i 1}(\rho) \cdot k_{i}(\rho)(i=1, \cdots, g)$ by $x_{i 1} \cdot k_{i}$ for the sake of simplicity. Then

$$
x_{i 1} \cdot k_{i}>0(i=1, \cdots, g)
$$

if and only if

$$
\frac{\operatorname{tr}\left(\left[A_{i}, B_{i}\right]\left[A_{i+1}, B_{i+1}\right]\right)+\operatorname{tr}\left[A_{i+1}, B_{i+1}\right]}{\operatorname{tr}\left[A_{i}, B_{i}\right]+2}<\frac{\operatorname{tr}\left(A_{i}\left[A_{i+1}, B_{i+1}\right]\right)}{\operatorname{tr} A_{i}}
$$

We omit the proof of the above propositions.
Above consideration shows the semialgebraic presentation of $X_{0}(\Gamma)$.
Theorem 4.2 For $\alpha_{i}, \beta_{i} \in \Gamma$, put $c_{i}:=\left[\alpha_{i}, \beta_{i}\right](i=1, \cdots, g)$, and $d_{j}:=c_{1} \cdots c_{j}(j=1, \cdots, g-1)$. Then $\chi \in X(\Gamma)$ is contained in $X_{0}(\Gamma)$ if and only if χ satisfies the following 4g-6 inequalities on $I_{h}(\in \Gamma)$.

$$
\begin{aligned}
& I_{c_{i}}(\chi)<-2 \quad(i=1, \cdots, g), \\
& I_{d_{j}}(\chi)<-2 \quad(j=2, \cdots, g-2), \\
& \frac{I_{c_{k} c_{k+1}}(\chi)+I_{c_{k+1}}(\chi)}{I_{c_{k}}(\chi)+2}<\frac{I_{\alpha_{k} c_{k+1}}(\chi)}{I_{\alpha_{k}}(\chi)} \quad(k=1, \cdots, g), \\
& I_{d_{l+1}}(\chi)\left(I_{d_{l}}(\chi) I_{d_{l+2}}(\chi)+I_{c_{l+1}}(\chi) I_{c_{l+2}}(\chi)\right) \\
& \quad>2\left(I_{d_{l}}(\chi) I_{c_{l+2}}(\chi)+I_{c_{l+1}}(\chi) I_{d_{l+2}}(\chi)\right)+\left(I_{d_{l+1}}(\chi)^{2}-4\right) I_{d_{l} c_{l+2}}(\chi) \\
& \quad(l=1, \cdots, g-3)
\end{aligned}
$$

where we assume that $c_{g+1}=c_{1}$.
By adding $2 g$ inequalities which consist of the sign conditions of $I_{\alpha_{i}}, I_{\beta_{i}} \quad(i=$ $1, \cdots, g$) (see Corollary 2.7), we can also describe T_{g} by $6 g-6$ polynomial inequalities in $X(\Gamma)$.

References

[B-C-R] J.Bochnak, M.Coste and M-F.Roy. Géométrie algébrique réelle , Springer Verlag (1986).
[Br$]$ G.W.Brumfiel. The real spectrum compactification of Teichmüller space, Contem. Math. Vol. 74 (1988),51-75.
[C-S] M.Culler and P.B.Shalen. Varieties of group representations and splitting of 3 manifolds, Ann. of Math. 117 (1983),109-146.
[F] R.Fricke-F.Klein. Vorlesungen uber der Theorie der Automorphen Funktionen, Vol.1, (1897) Teubner,Leipzig.
[Go] W.Goldman. Topological components of spaces of representations, Invent. Math. 93 (1988),557-607.
[Gu] R.C.Gunning. Lectures on vector bundles over Riemann surfaces, (1967) Princeton.
[He] H.Helling. Diskrete Untergruppen von $S L_{2}(\mathbf{R})$, Invent. Math. 17 (1972), 217-229.
[Ho] R.Horowitz. Characters of free groups represented in the two dimensional linear groups, Comm.Pure Appl.Math. 25 (1972),635-649.
[Jø] T.Jørgensen. On discrete groups of Möbius transformations, Amer.J.Math. 98 (1976), 739-749.
[K] L.Keen. On Fricke Moduli, Ann. of Math. Studies 66 (1971),205-224.
[M-S] J.W.Morgan and P.B.Shalen. Valuations,trees and degenerations of hyperbolic structures, Ann. of Math. 120 (1984),401-476.
[Ok] T.Okai. An explicit description of the Teichmüller space as holonomy representations and its applications , Hiroshima Math. J. 22 (1992), 259-271.
[O1] Y.Okumura. On the global real analytic coordinates for Teichmüller spaces, J.Math.Soc.Japan Vol.42,No.1.(1990),91-101.
[O2] Y.Okumura. a note of his talk at KANSUU-RON summer seminar 92' (in Japanese).
[Pa] S.J.Patterson. On the cohomology of Fuchsian groups, Glasgow Math. 16 (1975),123-140.
[Pr] C.Procesi. The Invariant Theory of $n \times n$ Matrices, Adv. in Math. 19 (1976),306-381.
[Sa] K.Saito. The Teichmüller Space and a certain modular function from a view point of group representations, Algebraic Geometry and Related Topics- Proceedings of the International Symposium, Inchoen, Republic of Korea (1992),41-89.
[S-S] M.Seppälä and T.Sorvali. Traces of commutators of Möbius Transformations, Math. Scand. 68 (1991),53-58.
[Si] C.L.Siegel. Topics in complex function theory, Vol. 2 (1971) John Wiley and Sons,Inc.
[W] A.Weil. On discrete subgroups of Lie groups, Ann. of Math. 72 (1960),369-384, Ann. of Math. 75 (1962),578-602.

