
Semialgebraic description of TeichmUller space

              Yohei Komori
Research Institute for Mathematical Sciences
    Kyoto University, Kyoto 606, Japan

                      Abstract

  We give a concrete semialgebraic description of TeichmUller space
Tg of the closed surface group Fg of genus g() 2). We also show the
connectivity and contractibility of Tg from a view point of SL2(R)-
representations of rg .

1 Introduction

Teichmli11er space Tg of compact Riemann surfaces of genus g(2 2) is the
moduli space of marked Riemann surfaces of genus g. Thanks to the uni-
formization theorem due to Klein, Koebe and Poincar6, any compact Rie-
mann surface of genus g() 2) can be obtained as the quotient space G N H
where H is the upper half plane and G is a cocompact Fuchsian group i.e.,
a cocompact discrete subgroup of PSL2(R). And as an abstract group , G
is isomorphic to the surface group rg which has the following presentation

                              g
         rg := Åqori,fii,''',ag,figl ll(ai•6i •a,: i•fii i) = id.År .

                             t=1

From this view point, Tg can be considered as the deformation space of a
Fuchsian group which is isomorphic to rg and this is called Fricke moduli
studied by Fricke himself and more precisely by Keen ([F],[K]).

   In this article, we consider this Fricke moduli from a view point of
SL2(R)-representationsofthe surface group rg. We treat Tg as the PGL2(R)-
adjoint quotient of the set of discrete and faithful PSL2(R)-representations

of rg

       T, = {r, . PSL2(R) : discreteandfaithful}IPGL2(R)
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where a discrete and faithful PSL2(R)-representation of rg means a group
homomorphism from rg to PSL2(R) which is injective and the image of
rg is a discrete subgroup of PSL2(R). Because any Fuchsian group which
is isomorphic te rg can be lifted te SL2(R) (IPa],[S-S]), we can start from

"em(Tg,SL2(R)) tke set ef SL2(R)-representaticns of rg. ARd Tg caR
be ceRsidered as tke set ef characters ef discrete axd faitkful SL2(R)-
represeRtatioRs of rg.

   From this view point , we can get a real algebraic structure on Tg as
follows. By using the presentation of rg, Hom(rg, SL2(R)) can be embeded
into the product space SL2(R)2g as the real algebraic subset R(r) which is
called the space of repmesentations ([C-S],[Go],[M-S]) . The adjoint action of

PGL2(R) on R(r) induces the action on R[R(r)] the affine coordinate ring
of R(r) and put R[R(D]PGL2(R) the ring of invariants under this action.

Let X(r) be a real algebraic set whese aMne coordinate riRg is isemerphic
to R[R(r)]PGL2ÅqRÅr . Theft Tg caR be realized as a semi&lgebraic sabset

ef X(r). Hence Tg i$ deftked by ftRltely maRy polykemlal eqgaliS}es aRd
iReqgalities eR -\(T). Th}s coRstructioR is essential}y due to Helling [He],

and later Cu}ler-Shalen [C-S] and Morgan-ShaleR [M-S] made this process
more clear and by using this procedure, Brumfiel described the real spectrum
compactification of Tg [Br].

   Our theme of this paper is to study the semialgebraic structure of Tg and

we mainly consider the fo11owing two things. First we describe the defining
equations of Tg on X(r) by using 6g-6 polynomial inequalities explicitly
(Theorem 3.2, 4.2 ). This problem is related to the constructlon ef the
global ceerdiRates of [irg by use of small Rumber of traces of elemeBts gf
Fgckslag greups whic}"s st"dled deep}y by KeeR ([K]) akd recently by Okai
aRd ekumgra ([Ok],[Oll,[e2]) by usiRg hyperbolic geometry oR H aRd the
argument of the fundamentai polygons of Fuch$ian groups. Our treatment
in this paper is rather algebraic. The second is that from a real algebraic
viewpoint, we also show the well known fact that Tg is a 6g-6 dimensional
cell (Theorem 3.1, 4.1.) which was proved by Teichmil11er himself by use of
his theory of quadratic differentials and quasi-conformal mappings.

   The remainder of this paper is organized as follows. Section 2 deals
with the construction of Teichmtiller space Tg following Culler-Shalen [C-S]

aRd Mergaft-ShaleR (M-S]. The description of definiRg ineqttalit}es aRd cell

strgctgfe ef Tg are skowR ik SecS!gR 3 aRd 4. IR $ectiek 3 we tregt tke case
of geRlls g = 2 aRd in sectlok 4 , g l}r 3 cases are di$cu$$ed.
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2 Construction of Teichmil11er space as a semial-
gebraic set

In this sectioR we review the constructioR of Ireichmifller space followiRg
[c-s],iM-s],[sa].

2.1 ThespaceofSL2(R)-representationsefthesurfacegroup
     r

Letg }) 2 be fixed. We define the (closed) surface group of genusg by the
following presentation

                                    g
           r= rg :xe Åq ai,6i,•••,ag,Bg 1 n[dvi,fii] = id. År

                                    t :1
whefe lai,&] := c\i•Si-a,-• i•S,: i.

   By "$iRg t}}is pre$GxtatloR, we ca# eff}bed ffom(r,SL2(R)) the set of
SL2(R)-represeRtatloms ef r iRte the preduct space SL2(R)2g and let R(r)

denote the image of "om(r,SL2(R))

        Hom(r,SL2(R)) - R(r)cSL2(R)29.
                     p H (p(ai),p(fii),•••,p(dvg),p(Pg))

   We identify R(r) and Hom(r, SL2(R)). In the following we also identify
a representation p and the image (Ai, Bi,•••, Ag, Bg) ff SL2(R)2g of the sys-

tem of geRerators {ai,5i,•••,ag,Bg} of r uRder p. R(r) ls a rea} algebraic

set aRd we calkhis She space of SL2(R)-representations ef r. jl'GL2(R)
acts eR R(r) frem rlgkt

                R(r) x PGL2(R) - R( r)
                          (p,P) " P--ip.l,.

We remark that although we use the system of generators {ai , fii , • • • , ag , Pg }

of r to define R(r),the real algebraic structure of R(r) does not depend on

this system of generators. In fact if we choose another system of generators
of r consisting of N elements and embed Hom(r, SL2(R)) into the product
space SL2(R)N ,we get alt another real algebr'aic set but it i$ caRonically

lsemorphlc to R(r).

   Next we ceRsider the followiBg subset of R(r)

        R'(r) :me {p ff R(r) l p is non abelian and irreducible}
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where a representation p is non abelian if p(r) is a non abelian subgroup of
SL2(R) and p is irreducible ifp(r) acts on R2 without non trivial invariant
subspace. Hence if p is not irreducible (i.e., reducible) then there exists

P E PGL2(R) such that P'ip(r)P consists of upper triangular matrices,
hence in particular p(r) is solvable. We remark that the action of PGL2(R)
on R(r) preserves R'(r). Next lemma is usefu1 for the study of R'(r).

Lemma 2.1 Forp E R'(D, there exist g,h E r such that p(g) is a hyper-
botic matrix i.e., [tr(p(g))1 År 2 and p(h) has no common fixed points ofp(g).

In other words there exists P E PGL2(R) such that

P-'p(g)P

P-ip(h)P

-

- (
A

o

a
c

?•)

2)

(A 7E Å}1)

(b •cl o). o

   We have another characterization of R'(T).

Proposition 2.1

       R'(r) = {p E R(r) 1 tr(p([a, b] )) l 2 for some a,b E r}

             = R(r) - A {p E R(r) l tr(p([a,b])) = 2}.

                       a,bEr

( Proof. )

(=År) Take g,h E r which satisfy the conditions of Lemma 2.1. Then
tr([p(g),p(h)]) f 2.
                              Ii oN
(Åq.) Ifp(r) is abelian, [p(a),p(b)] = k o i ]                                      for any a,b E I]. If p(r) has a

non trivial invariant subspace, there exists P E PGL2(R) such that any el-
ement of P-ip(r)P is an upper triangular matrix, hence tr([p(a),p(b)]) = 2

for any a,bE r. D

Corollary 2.1 R'(r) is open in R(r). O

We can say more about R'(r).

Proposition 2.2 R'(r) has the structure ofa 6g-3 dimensional realanalytic

manifold. O

   Because the action of PGL2(R) on R'(r) is proper and without fixed
points ( see [Gu] Section 9 ), we have the following result.
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Proposition 2.3 The quotient space R'(r)IPGL2(R) has the structure of
a 6g-6 dimensional real analytic manifold such that the naturalprojection

                     R'(r) - R'(r)/PGL2(R)

is a real analytie principalPGL2(R)-bundle. O

   Next we define the subset Ro(D of R(r) by

          Ro(r) := {pE R(T)lp is discrete and faithful} (1)

where a representation p is discrete if p(r) is a discrete subgroup of SL2(R)

and p is faithful if p is injective. We remark that the action of PGL2(R) on
R(r) preserves Ro(r). Then another characterization of Ro(r) is

Proposition 2.4

     Ro(r) = {pE R(F) lpiscocompact, discrete andfai,thfttl} (2)

            = {pEl{r(r)lpistotallyhyperbolic} (3)

where a representation p is cocompact if the quotient space p(r) N SL2(R)

is compact with respect to the quotient topology, and p is called totally
hyperbolic ifp(h) is hyperbolic for any h(7E identity) E I".

( Proof. )

(1) =År (2) The fundamental group of a surface p(r) XH is isomorphic to the

surface group r, hence p(r) N H is compact.
(2) =År (3) Because p(r) is discrete, any elliptic element ofp(r) is finite order.

But r is torsion free, p(r) has no elliptic elements. Moreover if p(r) has a

parabolic element, then p(r)XH has a cusp. But p(r) NH is compact, p(r)
has no parabolic elements.
(3) =År (1) Faithfulness is immediate. Discreteness follows from Nielsen's

theorem (see [Si] P.33 Theorem 3). O

Proposition 2.5 Ro(r) is open and closed in R(r).

(Proof.) N?Ve give a sketch of the proof. We recall the JÅërgensen's inequalities

[JÅë]:

    For any p E R(r) p is contained in Ro(r) if and only if

              ltr([p(g),p(h)]) - 21 + ltr(p(h))2 - 41 ) 1
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for any pair g, h G r with gh y6 hg.

   These inequalities are closed conditions of Ro(r) in R(r).
   The opeRnes$ ef Re(T) Åql R(r) follew$ from the Rext t}ieorem due to
WeSl {Wl:
   If G is a connected Lie group and r is a discrete group, then the set of
cocompact, discrete and faithful representations from r to G is open in the

set of all representations from r to G. 0

   Next we recall the Rotion$ ef a semia}gebraic set. LGt V be a real al-
gebraic set with its affine coordinate ring R[V] i.e., the ring of polynomial

functions on V. A subset S of V is called a semialgebraic subset of V if
there exist finitely many polynomial functions on V fi, gi,, ••• gi.(,) G
R[V](i-- l, ••-,t) sttc}} that ScaR be writteR as

            i
       S = U { x E V I fi (x) = O, gi, (x) År O, ••• gim, ,)(z') År O }.

           i.-..1

   FTom t}}e above {leflnitioR, any reai algebraic set ls a semlalgebTa,ic set.

Moreever lt is kkowR tkat aky com}ected compeReRt of a semla,lge5raic set
(with respect to Euclidean topology) is also a semialgebraic set and the
number of connected components of a semialgebraic set is finite ( see [B-C-
R] Theorem 2.4.5 ).

Cerollary 2.2 Re(r) cgnsi$ts of .flRitely many eennected compaRents of
R(r), henee Rb(r) is a semialge5raic subset of R(r). :

   The relation between R'(r) and Ro(r) is

Proposition 2.6 Ro(r) c R'(r).

(Preof.) Fer p ff ,Re(r) becau$e tke surface group I' is Ron abeliaR afid R is

injective, p is non abelian. Al$o because r is not solvable, p is irreducible.

rm

Corollary
manifeld.

2.3 Re(r)

g
has the struet#re of a

2.2 The space of characters

As we have seen in subsection 2.1
algebr&ic set. Let R[R(r)l be lts

6g-3 dimeRsiona l regl anagytie

 of r

that R(r) has the structure of a real
aMRe coordiR&te riag i.e., tke i'ing of
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polynomial functions on R(r). Then the action of PGL2(R) on R(r) induces
the action of PGL2(R) on R[R(r)]

PGL2(R)xR[R(r)] - R[R(r)]
          (P,f(p)) H f(P-ipP)

and let R[R(r)]PGL2(R) be the ring of invariants of this action. For example

the function rh E R[R(D] (h E r) on R(r) defined by

Th(p) := tr(p(h))

for p E R(r) is an element of R[R(r)]PGL2(R). In fact R[R(r)]PGL2(R) is

generated by rh (h E r) and is a finitely generated R-subalgebra of R[R(r)]
( see [He],[Ho],[Pr] ).

   Let X(r) be a real algebraic set whose affine coordinate ring R[X(r)]
is isomorphic to R[R(r)]PGL2(R). And let Ih E R[X(r)] correspond to
rh E R[R(r)]PGL2(R). Then R[X(r)] is generated by Ih (h E r) as R-

algebra. The injection

R[.\(r)] z R[R(r)]PGL2(R) c- R[R(r)]

induces the polynomial mapping

t : R(r) . x(r).

Because R[R(r)]PGL2(R) is generated by Th (h E r), for a representation

p E R(r),t(p) can be considered as the character x, ofp

xp:r - R
    h F-+ tr(p(h))= rh(p)

Therefore the image t(R(D) c X(r) of R(D under the mappingtcan be
considered as the set of characters of SL2(R)-representations of r. We call

X(r) the space of characters ofr.

   Moreover any element ofX(r)-t(R(r)) cari be considered as a character
of SU(2)-representation of r and to explain this we need to review briefly the

theory of SL2(C)-representations of r following [C-S] and [M-S]. Let Rc(r)

be the set of SL2(C)-representations of r, then Rc(r) has the structure
of a complex algebraic set and let C[Rc(r)] be its affine• coordinate ring.
PGL2(C) acts on Rc(r) and also on C[Rc(r)]. Put C[Rc(r)]PGL2(C) the
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ring of invariants of this action and let Xc(r) be a complex algebraic set
whose affine coordinate ring C[Xc(r)] is isomorphic to CIRc(r)]PGL2(C).

Then the injection

             c[xc(r)] or- c[Rc(r)]PGL2(C) - c[Rc(r)]

induces the polynomial map

                      tc : Rc(r) - xc(r)

which is surjective. Since Rc(r),tc and Xc(r) are all defined over Q, we
can consider XR(r) the set of real valued points of Xc(D. Then we can con-
sider XR(r) as the set of real valued characters of SL2(C)-representations

of r and it is known that any element of XR(r) is either a character of
SL2(R) or SU(2)-representation of r ([M-S] Proposition 3.1.1 ).

   If we consider the polynomial function trh E C[Rc(r)] (h E r) on
Rc(r) defined by
                        trh(p) := tr(p(h))

for p E Rc(r) , then trh is an element of C[Rc(r)]PGL2(C) and write the

corresponding element of C[Xc(r)] also by trh for the sake of simplicity.

Then after regarding R(r) as the set of real valued points of Rc(r),there
is a natural surjective homomorphism from R[XR(r)] the affine coordinate
ring of XR(r) to R[X(r)]

                     R[XR(r)] - R[X(r)]
                           trh H Ih .

Therefore there is a canonical injection from X(r) to XR(r), Hence any
element of X(T) is either cotained in t(R(r)) or can be considered as a
character of SU(2)-representation of r.

   We define the following subsets of X(r)

        X'(F) := t(R'(r))

         U(r) := {x E X(r) l I[.,b]()c) i! 2 for some a,b E F}

               = X(r) - n {x E X(r) l I[.,b] (x) = 2}.

                         a,bEr

Then U(r) is open in X(r). By Proposition 2.1 t-i(X'(r)) = R'(r) and
xt(r) c u(r).
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Proposition 2.7 X'(r) is opueri in U(r). Jlence X'(r) is open in X(r).

(Proef.) I)et V(II') be the set of cliaracters of SU(2)-represeRtatloRs of I".

As SU(2) is cempa,ct Y(r) ls cerepact in XR(r). Hei}ce U(r) = XS(r) u
(U(r)nV(r)) and (U(r)nV(r)) is compact in U(r). Therefore it is enough
to show that X'(1")n(U(r)nV(r)) = di. For p E R'(r), by lemma 2.1 there
exists g E r with ltr(p(g))l xe lx,(g)1 År 2. 0n the other hand for any
SU(2)-representatioR ep of I"

              ltr("(h))i : ix,(h)l f{l 2 for any hE I'.

[t"herefore X'(I') n (U(F) n V(I")) = ip. O

   Next we wi}l s}}ow t}ia,t tke restrlctleR of t}}e mappii}g S to R'(r)

                       t : R'(r) . x'(r)

is a principal ,PGL2(R)--bundle. By Proposition 2.3 it is enough to show
that X'(rÅr ls the PGL2(R) adjo}i}t quotient of R'(T). For this pm'pose we
need te prep&re twe lemma,s wkick are SL2(R) verslcft ef t}}e resitlts }R [C-S]

and [M-S].

llemma 2.2 ( see IC-S7 Propositionl.5.2? Forpi,p2 E .ll'(r), we assume
that t(pD = t(p2) , in other words they have the same eharacter xp, = xip,.
The?} tkere is I' E PGL2(R) s#ch thEt p2 = P-"ipijP. g

Lemma 2.3 (see IM-S7 Lemma 3.1.7? Fora subset U ofX'(r), we assume
that t-i(U) is open in R'(r) hence open in R(r). Then U is open in X'(r)

hence in X(r). ma

   By the previous lemmaAs we coi}clude tkat

Proposition 2.8 t : R'(r) --- X'(r) can be considered as the guotient mapu

of R'(r) under the action ofPGL2(R) i.e.,

                   XfÅqr) -ww Rt(r)11E}GL2(R).

Therefore by Proposition .oj..S t : R'(r) - X'(r) is a principai PGL2(R)-

bundle. a
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   Define the closed subset Xo(r) of X(D by

       X,(r) := {x G X(r) l IIlo,h](x) - 21 + ilh(x)2 --- 41 ) 1

                           for g,h E r with gh pt hg}.

TheR tke preef ef Prepo$kiexx 2.5 implies t(Re(r)) c Xe(r).

Proposition 2.9 1. Xo(r) = t(Re(r)).

  2. Xo(r) is open in X'(r) henee open in X(r),

  3. t-i(xo(r)) = Ro(r).

(Proof.) 1. Any representation of T to SL2(C) is discrete and faithful if
and only if it satisfies JÅërgensen's inequalities which we have seen in the

proof of Propositien 2.5. But there are no discrete and faithful SUÅq2)-
represeptatioi}$ of r beca#se SU(2) i$ compact aftd r is aR ii}fa}ite grollp.

KeRce Xg(r) c t(R(r)) axxd lt fellows th&t Xe(r) = t(Rc(r)).
   2. Re(r) c R'(r) implies Xo(r) c X'(r). Because Rg(r) is open iii
R(r) and t : R'(V) --, X'(r) is an open map by Propositien 2.3, Xo(r) is
open in X'(r).
   3. It is immediate from lemma 2.2. 0

Corollary 2.4 Xo(r) is open and ctosed in X(r). Therefore Xo(r) consists
of finitely many connected components of X(r) hence it is a semialgebraic
subset of X(r). o

Corellary 2.5 t : Rg(r) ----" Xg(r) f,s agse c principai PGL2(R)-b{mdle.
HeRce Xe(r) egn be censidered as the PGL2(R) adyoint guetient of Re(r)
i.e., Xo(T) = Ro(r)/PGL2(R). =

   We summarize the results of this subsection as the following diagram.

          R(r) ) R'(r) ) Ro(r)
           tl S t PGL2(R,) bttndle
          X(r) ) X'(D ) X,(r) =Ro(r)!PGL2(R)

2.3 TherelatienbetweeRSL2(R)-aRdPSL2(R)-represeRtatiens
     ef r

Next we coRsider the relation betweeR SL2(R)- and ,PSL2(R)-represeRtations
of the surface group r.
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   The group Hom(r,Z12Z)( or (Z12Z)2g) acts on R(r) as follows.
For any pa E Hom(r,Z!2Z) and p E R(r) , we define the representation
pa •pE R(r) by

               it ' p(h) := Lt(h) • p(h) ( for all h E I').

Proposition 2.10 (IPa7,IS-S7? Let C : r - PSL2(R) be a discrete and
faithful PSL2(R) repnesentation. Suppose Ai,Bi E SL2(R) (i = 1, •••,g)
denote any representatives of C(ai),6(6i) E PSL2(R). Then

                     tg.,[A,,B,]-(6 ?)

In other words, C can always be liifted to a representationp E Ro(r) and the
set of all liflings ofC is equal to the Hom(r,Z12Z) orbit ofp in Ro(r).

                               SL2(R)
                           p                           / tproj'.
                        r S PSL2(R)

(Proof.) We briefly review what Seppala and Sorvali showed in their paper
[s-s].

   Let 6 be a discrete and faithful PSL2(R) representation. Suppose Ai, Bi E
SL2(R) (i = 1, • • • ,g) denote any representatives of 6(ai),C(rsi) E PSL2(R ).

Then they showed that

                    tr([Ai,Bi]) Åq -2 (i =1,•••,g)

          tr([Ai,Bi]•••[Aj,Bj]) Åq -2 (j'=2,•••,g-1).

In particular

                             tr([Ag,Bg]) Åq -2

                tr([Ai,Bi]'''[Ag-i,Bg.i]) Åq '2•

We may suppose that [Ai,Bi]•••[Ag-i,Bg-i],is a diagonal matrix. Then
[Ag,Bg] must be also diagonal, hence the above inequalities implies the
conclusion. O

Corollary 2.6 1. Hom(r,Z/2Z) acts on Ro(D and the quotient space
     Hom(r,Z!2Z) N Ro(r) can be considered as the set of discrete and
    faithful PSL2(R)-representations of r.
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  2. Through the mapping t,llom(r,Z12Z) acts also on Xo(r) and the
     guotient space Hom(r, Z/2Z)NXo(r) can be considered as the PGL2(R)-
     ady'eint guotient ef the set ofdiscrete and faithf#g PSL2(R)-representatiens

     of r.
     IVe calt this set Teichmtiller space Tg

              T, := Hom(r,Z12Z)NXo(-
                  = ffom(r,z12z)xRo(r)lpGL2(R).n

   Proposition 2.4 implies Uhl År 2 (for all h(itE identity) G r) on Xo(r)

hence the sign of Ih is constant on each connected component of Xo(r).
This means that "om(r,Z12Z) permutes the set of connected components
of Xe(r) free}y. Thus

Coro}lary 2.7 The quotient map Xo(r) - Tg is an unramified (Z12Z)29 -
covering. Hence by taking (any? lifting of this mapping, we can eonsider
Tg as a finite ttnion ofconneeted companents ofXo(r). Therefore Tg can
be considened as a semialgebraic subset of Xo(r) . D

Cerollary 2.8 if rre(Xe(r)) denotes the Rum5er ofeemaected cempanents
ofXo(r) , the order of flom(r,Z12Z) divides rro(Xo(r)) . Jn particular

                       22g s 7ro(Xo(r)). o

We summarize the resRlt of tki$ sttbsectloR a$ tke followigg diagram.

  llom(r,sL2(R)) = R(F) ) Ro(r)
                       tt s
                     X(T) ) Xo(r) xe Re(r)/I)GL2(R)
                                 i
                                T, xe Hem(r,Z/2Z)NXo(r)

3 SemialgebraicdescriptionofTeichmif11erspace
    Tg ( g = 2 case )

In this section by constructing the global coordinates of Xo(r) , we will show

the connectivity, contractibility and semialgebraic description of Teichmti11er

space T2. For this purpose we neGd to find some semialgebraic subset of X(r)
containiRg Xo(r) whose presentation as a semia}gebraic set and topo}ogical
struct#re are betk slmple. T}}is is S(r) stated iR tke fellowiRg sgbsectioft.
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3.1 Definition of the semialgebraic subset S(r) of X(P)

We define the open semialgebraic subset S(T) of X(r) by

                 s(rÅr := {,\ E x(rM I,, (x) Åq -2}

wkere ei := [ai,?3il me [a2,?321-i E r.

Propositien 3.1 S(r) c X'(r). ffence by Proposition 2.3 t-i(S(r)) 4

S(r) is a PGL2(R)-bundle and we can consider S(r) as the PGL2(R)-
ad]'oint quotient oft"'"i(S(r)) i.e.,

                  S(r) = t-i(S(r))/PGL2(R).

(Proof.) First we show

                  s(r) fi (x(r) - t(R(r))) rm ip.

A$ we liave $eeit in sttb$ectioR 2.2 aRy elemekt of X(r) - t(R(r)) caR be
considered as a character of SU(2)-representation of r, Thus for x E X(r)-
t(R(r))
                     IIh (x)1 f{ 2 for h E I'.

This shows that S(r) c t(R(r)). On the other hand Proposition 2.1 shows
that S(r) c X'(T). m

   Next result is due to Seppala and Servali ([S-S]).

PrepeskleR3.2 Xe(r)cS(r). =

(Proof.) ARy element p :(Ai, Bi,A2,B2) of Ro(r) induces a discrete and
faithful PSL2(R)-representation of r. Hence we have seen in the proof of
Proposition 2.10 that

                       tr([Ai, Bi]) Åq -2.

This implies the conclusion. B

Corollary 3.1 Above argume7}ts show the folto2fling diagram. B

            R(r) ) R2(r) ) t-i(s(r)) ) Rc("

             ts iii            x(r) ) xt(r) D s(r) D xo(r)
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3.2 Topological structure ofS(r)

In this subsection, by constructing the global coordinates of S(r), we will
show that S(T) consists of 24 Å~ 2 connected components each one of which

is a 6 dimensional cell. For this purpose we need some preliminaries.
   We define the polynomial mapping f from X(T) to R6. For any
X E X(r)

       f()() := (Iai()(), II3i ()(), Iaipi ()(), Ia2()(), Ix32 (X), Icr2B2 (X))'

By the definition of Ih (h E r) , for any ,o E R(r)

           fot(p) = (tr(p(ai)), tr(p(fii)),•••,tr(p(a262)))•

                         R(r)
                               fot
                          tl x
                         x(r) L R6

We writethe coordinates (xi,x2,x3,yi,y2,y3) of R6 by (x"',y-) forthe
sake of simplicity. Next we define the polynomial function K(x,y,z) on
R3 by
                K(x,y, z) := x2 + y2 + z2 - xyz - 2.

Easy calculation shows the following lemma ([F],[G]).

Lemma 3.1 1. For any A,B E SL2(R)

                  K(tr(A),tr(B),tr(AB))= tr([A,B]).

  2. If (x, y, z) E R3 satisfies K( a',y, z) Åq -2 , then

               lxl År 2, lyl År 2, lzl År2 andx•y•zÅr O. o

   In particular if we put

               V. = {(i, y-') E R6 l K(x') = K( y-) Åq -2}

then from the definition of S(r), f(S(r)) c V-. In fact we will see in
Proposition 3.3 that f(S(r)) = V-.
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              V- ..-2U ..-2(2+r-z2) Åro.

Hence the next mapping is homeomorphic and consequently W, is a2
dimensional cell.

                   Wr Y R Å~ {Z ERIZÅr 2}•
               (X,Y,Z) F-. (U,Z)

As Uft Wr Å~ Wr Å~ {r ER1 rÅq -2}, U is a5 dimensional cell and by
Lemma 3.1.2
                     V- = ll or(U). o
                         tyE(Z12Z)4

   Next lemma can be shown directly by calculation but it is a key lemma
for the whole story of this section.

Lemma 3.3 Let (A,B) E SL2(R)2 be a pair ofhyperbolic matrices (i.e.
Itr(A)l År 2 and ltr(B)l År 2 ? which satisfies the following condition

               [A,B]=(a ?, ) (AÅq-i) i)

Lemma 3.2 V- c R6 consists of 24 connected components each one of
which is a 5 dimensional cell. More precisely, put U := V. n {(x"', y-') E
R61xi År O, yi ÅrO(i= 1,2)} and define the action of (Z12Z)4 on R6
by the change ofsigns of the coordinates xi and yi(i= 1,2 ). Then U is
a 5 dimensional cell and V- can be written as

             V- = H 7(U) (dis]'oint union ).
                   -)fE(Z/2Z)4

(Proof.? For r Åq -2 put

      W, := {(x,y, z) E R3 1 K(x, y, z) = r, xÅr O, yÅr O, iÅr O}

and u := x - y, v := x + y for (x, y, z) E W.. Then by Lemma 3.1.2

                   z+2 4
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If we put (x,y,z) :me
there exists a constant

A=

B=

(tr(A),tr(B),tr(AB)), then rc(x,y,z) Åq -2 and
k E R' := R- {O} such that A,B can be written as

 ( Xi.il.X t{cxtfii:i7'., x.2-i} )

    rt+:;Y S{SÅÄTZ- mbXY}
kst+(iA,+-i)l(i:illlA+2i)lxy A}1Y

k G R" and (x,y, z) E R3 with

 (A,B) E SL2(R)2
   kE R' aRd (x,y,z) E R3

••• 2)

Conve rsely for any K(x, y, z) Åq -2, define
AÅq-1 byA+l: (A,B)ESL2(R)2
defined by the condition 2? satisfies l) (tr(A),tr(B), tr(AB)).
   Because the pair defined by the above condition 2] is
unig2tegy determined byi utth K(x, y, g) Åq -2, {ve
wriSe gS Rs
              (A, B) = (A(x, y, z, k), B(x, y, x, k)). ll

Now we can show the main result of this subsection.

Proposition 3.3 S(r) consists of
of which is a 6 dimensional cetl.

24 Å~2 connected eomponents each one

(Proof.? First, we deime the mapping V

             $ : t-i(s(r)) - R' Å~ V- Å~PGL2(R).

For afiy p= (Ai,Bi,A2,B2) E t-i(S(r)), we fust d}agofia.llze [.4i,Bi].
More presisely, by using Lemma 3.3, we caR choose "l) ff PGL2(R) uniquely
such that by use of the notations in Lemma 3.3, (PAiP-i,PBiP-i) (i =
1,2) can be written as

  PAiP-' = A(tr(AD,tr(Bi),tr(AiBi),1)
  PBiP-' = B(tr(Ai),tr(Bi),tr(AiBi),1)
  PA2P-i = ( -.e.l 6)A(sr(A2),tr(B2),tr(A2B2),k')(? -el )

  PB2il]'-i = ( Pl g)B(t?(A2),t?(B?),trÅqA2B2),L-)(? -fil )
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where k E R' is some constant. We define the mapping W by

              w : t-i(s(r)) . R' Å~ V- Å~ PGL2(R)

                        p H (k, fot(p), P) .

Lemmk 3.3 tel}s tkat $ is bijective aRd alse komeomerp}}lc. From tl}e
deftRltlog, $ is PGL2(R)-eqllivari&i* l}eftce lt k}ditce$ t}}e }}emeemeypliism

Åë from S(r) to R'Å~V- as fol}ows.

                t-i(s(r)) g R* Å~ V. Å~ PGL2(R)

                      t.L tproj.
                          Åë                    s(r) bl R' x v-

Moreover by Lemma 3.2, R' Å~ V- consists of 24 Å~ 2 connected componeRts

eack oi}e of w}}lck is a 6 dlmei}sienal ce}}. B

3.3 Cell structure of Telchm"ller space T2

Next we consider the conditions which characterize the connected compo-
nents of Xo(r) in S(r), By the definition of Åë in the proofofProposition
3.3, the first component k' of e can be considered as a function on S(r).

Proposition 3.4 Suppose U c S(r) be a connected component on which
thefunctionI.,•I.,•k is negative. Then there exists xi E U such that x is
net contained in Xo(r). Becattse Xo(r) consists offinitely many connected
compeneRts ef X(r) by Cereiiary .9..4 this mean$ that Xo(T) fi U = ip .

(Preof.? First we remark tl}at e# a cem}ected corapo#ei}t U ef S(r), tke
signs oftlie fuRctiofts I.,, I.,, an{i R) are coRstant. We coiislder (x-", y") E V-

satisfying lxil = Iyil : 4 (i = 1, 2, 3). Then there are 24 poi nts of V.

satisfing this condition. By use of the surjectivity of flu : U . V-, take
p = (Ai, Bi, A2, B2) e twwi(S(T)) with t(p) G U and fo t(p) = (x-, y-').

If Icr,(t(p))'Ia,(t(p)) = tr(Ai)•tr(A2) = 16 År O, then by using the
presentation of p ex (Ai,Bi,A2,B2) in the proof of Proposition 3.3,
tr(Ai242) = -2 - k - f where we write k(p) by k for the sake of sim-

plicity. Hei}ce }f k(p) = k -- -2 (i.e.,I.,;Iop •kÅqO pR U), theR
tr(AiA2) = 2 aiid this meaRs tk&t 24i?El2 E SL2(R) is a parabellc raatrix,
thgs t(p) ls kot contaiRed ii} Xc(r). Similar argume}?t l}o}ds for Åíhe.c&se

I. (p) • I.,Åqp) = tr(AD •tr(A2) = -16 Åq e. M
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   From the above proof, There are 16 connected components of S(r) on
which the function Ia,•Ia,•k is negative. Hence the number of connected
components of Xo(r), To(Xo(r)) is less than or equal to 16. 0n the other
hand, as the argument in subsection 2.4 implies To(Xo(r)) 2 16, we get
the following result.

Theorem3.1 To(Xo(r))=16. Thus Teichmtillerspace T2

                   T2 = Hom(r,Z12Z) N Xo(T)

is connected and by Proposition S.3, it is a 6 dimensional celt in particutar

contractible. a

3.4 Semialgebraic structure of TeichmUIIer space T2

Previous argument shows the following presentation of Xo(r) as a subset
of x(r)

    Xo(r) = {)cES(I")lIa,(x)'Ia2(x)'k()c)ÅrO}
           = {)L! E X(r) l Ic, Åq -2 and I.,(x) • I.,(x) •k(A'L) ÅrO }

where ci = [ai,fii] E T . This presentation induces the following semialge-

braic description of Xo(r) in X(r) .

Theorem 3.2 Xo(r) can be written as a semialgebraic subset of X(r)
as follows

    Xo(r) = {)( E X(r) I Ic,(x) Åq -2, (ICi fl,)(+x)2i.{ct(ixcr,)2(Xi) År 2 }.

This means that for any representation p = (Ai,Bi,A2,B2) E R(r), p is
a discrete and faithful SL2(R) -representation of r ifand only if

                          (tr([Ai, Bi]) + 2) • tr(AiA2)
       tr([Ai,Bi]) Åq -2 and                                                 År 2.
                                tr(Ai)•tr(A2)

(Proof.) For any p = (Ai,Bi,A2,B2) E t-'(S(r)), by calculating
tr(AiA2)

                            2tr(Ai)•tr(A2)           k(p)2 + (tr(AiA2) -                                         )k(p)+
                            tr([Ai, Bi]) + 2
                  tr(Ai )2                                   tr(A2)2
                                             -1)=O.            +(                            -i)(
               tr([Ai, Bi]) + 2                                tr( [Ai, Bi ]) + 2
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Considering this as the quadratiÅë equation on k(p) , the coustant term is po$-

itive, hence the sign of k(p) and the sign of the coeMcient of the linear term

of tkis eggatieR are opposke eac}} et}}er. Hekce for p = (Ai,Bi,242,B2) G
t-i(s(r)) ,

                           (tr([Ai, Bi]) + 2) • tr(AiA2)
    tr(Ai) • tr(A2) • k(p) År O Q                                                   År2.D
                                 tr(Ai) • tr(A2)

Remark Becau$e each ceimected compeRent of Xe(r) is sep&rated by
tke actiefi of ffem(r,Z!2Z) i.e., the slgii cofidMeRs ef the f"RctioR$
Iewi,Is,,Ia, and Irs,, therefore adding these 4 conditions, we can get the
semialgebraic description of T2 by use of 6 polynomia,1 inequalities ( see

Corollary 2.7 ), O

4 SemialgebraicdescriptionefTeichm"llerspace
    T, (g Årwa 3 case )

In this section, sve assume g ) 3 . We show the coBnectivity, coi]tractibility

aftd $emialgebraic descylptloi} of Teickmgller $pace Tg follewliig tl}e simllar

}ines iR section 3.

4.1 Definition of the semialgebraic subset S(I") of X(r)

We defiRe the epek semlalgebyaic sub$et S(r) of X(" by

        S(I'):xe {xEX(r) I I,,(J)()Åq --2 (i -- 1,•••,g)

                           Id,(x) Åq -2 (j' = 2,•••,y -- 2)}

where ei := [(tei,,8i] E r and d2' : : cic2 ••• e]'•

   Simllar ex'guraekts gf l';epositigR 3.l aikd 3.2 sligw

Proposition 4.1 S(r) c X'(r). Hence by Proposition 2,s , t-i(S(r)) -k

S(r) is a PGL2(R)-bundle and we can eonsider S(r) as the PGL2(R)-
ad2'oint quotient oft-i(S(r)) i.e.,

                 s(r) ,twwi(s(r))IPGL2(•RÅr• ]

Proposition 4.2 Xo(r) c S(r), O

   Moreover if a representation p = (Ai,Bi,•••,Ag,Bg) is contained in
Re(r), the represeiitatloR p]' := (A2',B3',A3'",BG'+i,''',A3'-i,B3'-" (2' -ww

2,•••,g) is well defiked gkd a3se aft elepaept gf Rg(r), heRce we kave
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Corollary 4.1 JFor ,\ E Xo(r), Ic,c,,,(x) Åq -2 (i = 2,''',9)
ass#me tkat cgÅÄi = ci. =

Cerellary 4.2 Abeve arguments shew the fottewing diagram. n

            R(r) ) Rf(r) ) t-i(s(r)) ) Ro(r)

             t; liS            X(r) D Xi(1") D S(r) D Xo(r)

zvhere we

4.2 Topological structure ofS(D

In this subsection, by constructing the global coordinates of S(1"), we will
sl}ow that S(r) coi}sists of 229 Å~ 22g-3 connected components each oiie of

which is a 6g-6 dimensional cell. For this purpose we need some preliminar--
ies.

   First we define the poiynomial mapping f from X(r) to R3g by

      f(X) := (Iai(X), JPi(X), Ieq rsi (X),''',fag(X), IPg(X), la,Pg(XX))

for .y ff X(r).

                         R(r)
                               fot
                          ti Xx,
                        x(r) 4 R3g

   Let (x-'1,•••,x-g) denote the coordiRates (2'il}Xl2,Xl3,''',Xgl,Z'g2,Xg3)
of R3g . We define the semialgebraic subset V. by

        V- := {(x-'i,''',x-g')G R39 l K(x"i)Åq -2 (i= 1,•••,g)}

where K(x,y,z) is the polynomial function on R3 defined in sub$ection
3.2. Tliell from the defailt}ofi of S(", f(S(r)) c V-. hi fa,ct we will see in

the praof of Proposition 4.3 that f(S(T)) = V-.

   We can prove the next Iemma by the same argument in Lemma 3,2.

Lemma 4.1 Vww c R3g eonsists of 22g connected companents each one
of which is a 3g dimeRsionag cetl. Mere preciseSy, p#t

     U:= V- g{(x3,•••,x-,) ff R3g l xi,• Årg (i -- l,•••,g ]' = 1,2)}
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and define the action of (Z/2Z)2g on R39 by the change of signs of
xij (i = 1,••-,g ]' = 1,2). Then U is a 3g dimensional ceU an(l V- ean be

wrttten as
              V- == H ry(U) (disjoint union).o
                  1ff(Z12Z)2g

   Next lemma whlck ls showii by elementary calcttlatioR is a key }emma ii}

this section.

Lemma 4.2 f. Fgr a pair ofhyperbolic matrices (Ci,C2) G SL2(R)2,
     assume that Ci is diagonat

                       C,-(g :, ) (nyÅq-i)

     Ifthe traces of Ci,C2 and CiC2 satisfy

     x ;= tr(C" Åq -2, y := tr(C2) Åq -2 and z := tr(CiC2) Åq -2 •••1)

     then there exists mE R' such that C2 can be written asfollows.

              c,=( s{,{,\,-ntZny-`'"t;)Yi.-, ww i} ,,,n,-z-,. ) .2)

     Conversely , for (my eonstant mE R" and (x',y,i) E R3 with
    xÅq -2,yÅq -2 andgÅq -2, if we p#t gÅq -1 u?ith ??+k me x
     and define Ci xx (g 2t ) and C2 by the condition ,oj.?, then

    (x,y,x) : (tr(CD,tr(C2),tr(CiC2)) as the eondiSien f]. We write
    C2 defined by the condition 2? by C(x,y,z,m),

  2. Moreoverfor such a pair (Ci,C2) G SL2(R)2, we can diagonalixe
    CiC2 and C2 by using ihefotieu;ing matrgces I',q E SL2(R).

                P:me ( r"2.-i l!n epz- TR nz::rll}anZ: iq2-i År

                     N mn(g -l} {g -l){r -l} i
     where T Åq -1 with T+ÅÄ : x = t7' (Ci C2) ah(l Ci C2 = P ( 6 9t ) P-i

                (? :xe ( n2wwi l- ,jz- nzryltCSI-i2-i År

                     X mÅqn -1)• (n -l)(C -l) /
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    where CÅq -1 with C+}=y=tr(C2) and C2 = (? ( Co Ot ) (?-i.

    In the foliowiRg we u;rite these i' gRd q by P(x,y, i, m] and {?(x,y,z, fn?. M

Proposition 4.3 S(r) consists of 22g Å~ 22g-3 connected components
each one of which is a 6g-6 dimensional cell.

(PrboS] We comstruct the mappiRg $

w : t'i(s(r)) -of v- Å~ {w e R i w Åq -2}g-3 Å~(R' )g-3 Å~ (R" )g Å~ pGL2(R)

as fo11ows.

  For p=(Ai,Bi,•••,A,,B,)Et-'(S(r)), put

     (x-i,ii•,xT2,) := fot(p) E V- ( 2vhere x-'i := (xi!,x'i2,xi3))

            (p'i := [Ai,Bi] (i=1,•••,g)

            ui := tr(Ci) :K(x-'i) (i --- 1,•••,g)

            Dk := Ci ••• Ck (k = l, •••,g - 1)

            wk := tr( Pk) (k- = 1, •••s- l).

We remark that

                        Dl = Cl

                        Wl = Ul
                      Wg-1 = Ug.

  Because of the definition of S(r)

               2gi Åq -2, sc2 Åq -2, and w2 Åq -2.

Lemma 4.2.1 shows that there exists R E PGL2(R) uniquely such that

       RciRwwi = ( nei ltl., ) (gi Åq -i with ni + l,lr = wi)

       RC2Rwwi = C(wi,2t2,2g2,l)•

Then by Lemma 4,2.2 there exists Pi = P(wi,u2,w2,1) such that

     Rp2R-1 xe pi ( 'l3 gt ) pfi (?}2 Åq -l with lp + l)- = w2).

- l22-

22



  Similarly because

           w2 Åq -2, u3 Åq -2, and w3 Åq -2

Lemma 4.2.1 shews that tl}ere exists & ce#st&i}t mi E R' sllck that

          RC3R-1 = PlC(w2, tt3, w3,m1)Pl-1

and by Lemma 4.2.2 there exists ,P2 = P(w2,u3, w3,mi) such that

  .RD3R-i ex: Pi P2 ( 'li) ;,l, ) P2-i,Pii (n3 Åq -1 with "3 + lti = w3).

  inductively, for ]' = 2,+••,g - i, becattse

          wj.i Åq -2, 2g Åq -2, an(l zvj Åq -2

Lemrna 4.2 shows

    R cj R -l rm Pl ••• Pj -2 C(wj -1, uJ, wj, mj-2)Pj -l2 i•t Pl-l

    RD,R-i : p,•••p,-,(Z3 15tl.)Pi-i, •P,-i

where m3--2 G R' with mc -ww 1 , Pj-i = P(u?j-i, nj•,wj,m?•-2) wkli
po = (6 ?) and nj Åq --i with oj + l• = wj,

  Moreover .RCgR-i can be writteft as

RCgR-"i
 = Pi ''' -Pg -2 ( E}1 6 ) ( eqo-'i iltl r, ) ( ? veol ) Pg--;2 ''' Pi'i'

  Oft tl}e other hai}d by Lemma 3.3

             .R)AiRnyi = A(x-i,ki)
             RBiRnyi = B(x'i,ki)

for seme ki E R* w}}ere we wrlte A(xii,xn,x23,k" 5y A(x-,"i,kD . By
Lemma 4.2.2 there exist (?2 = q(wi,u2,t"2,1) and k2 E R' such that

           RA2R-i = q2A(x-2',g-2){?si
           RB2R'i ur 02B(x-2,k"2)q,-'.
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Inductively, for j' dw- 2,•••,g-1

         R4R-i = Pi•••P,ww2qjA(te-•,'•,k,)Åq?JiPj-i,•-•F,A

         RB,R'i = Pi•••.P,"q,B(x-•',,k,)q-ipi-12•••pri

where qj = Q(wj-i,uj, wj, mj-2) and kj' E R'. Moreover

 RAgR-i xe Pi "F?g-2( wwCl 6)A(x-g',kg)(? -ol)P,:i2'''Pil

 RBgR-1 =Pl'''Pg-2( Pl 6)B(x-"g,kg)(? -ol)P,--12'''Pi-1

for some k"g ff R'. Now we can defuie the mapping pt

t-i (SÅqbÅr -se V- Å~ {.i, E R l 2. Åq -2}g-3 Å~ (R" )9-3 Å~ (R* )9 Å~ PCg L2(R)

       P tw (fOt(P), IV2,''',IVg-2, Ml,''',Mg-3, kl,''',k"g, R) .

Lemma 4.2 sl}ows that this iiriapplng is bljective and homeomorphic. $
induces the homeomorphism Åë as follows

 t-i(s(r)) g v- Å~ {w ff R 1 w Åq -2}g ww3 Å~ (R' )g'3 Å~ (R' )9 Å~ PGL2(R)

   S( i') g V- Å~ {w ERl wÅq p2}g -3 Å~(R* )9 -3 Å~(R* )g .

T}}u$ by }emixa, 4.l S(l") coRslsts of 22g Å~ 22g'3 co}mected ccmpoi}ei#s ekc}}

one of which is a 6g-6 dimensional cell. nm

4.3 Cell structure of Teichmtiller space T,

In the following by using the global coordinate fllnctions of S(r) constructed

iR the previous subsectlofi, we comsSder the eefiditioRs which characterize the

connected components of Xo(r) in S(r).

Proposition4.4 On Xo(r), the component mj (]' = 1,•••,g- 3) of the
mapping Åë ispositive. rm

This is equivalent to the ne.yt proposition for the space of representations.

PreposkleR 4.5 Fer p = (Ai, Bi , • i t , A,, B, ) G R"(r), the value mj (p) of

the eomponent mj• (1' = 1,•-•,g- 3) of the mapping W at p is positive. O
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Proposition 4.6 On Xo(r), the product of components xii • ki of the map-
ping Åë is positive (i = 1,•••,g). O

This is equivalent to the next proposition for the space of representations.

Proposition 4.7 Forp = (Ai,Bi,•••,Ag,Bg) E Ro(r), the value xii(p) •
ki(p) of the product of conzponents xii and ki of the mapping W at p is
positive (i = 1,•••,g). D

We omit the proof of the above propositions.
   Above Propositions show that

 xo(r) c {x E s(r) l mj Åro (]' = 1,-••,g-3), xiiki Åro (i= 1,•••,g)}

hence the number of connected components of Xo(r) , rro(Xo(r)) is less
than or equal to 22g. On the other hand we have seen in subsection 2.3 that

To(Xo(T)) }l 22g, Hence we get the following result.

Theorem 4.1 no(Xo(r))= 22g. Therefore Teichnzt"ller space Tg

                  T, :Hom(F,Z/2Z)N.\o(T)

is connected and by Proposition 4.3 it is a 6g-6 dimensional cell in particular

contractible. O

4.4 Semialgebraic structure of Teichmilller space Tg

Now Xo(F) can be written as

 Xo(r) = {xE S(F) l m,- ÅrO (]' -- 1,•••,g-3), xiiki ÅrO(z' = 1,•••,g)}.

In the following we will rewrite the above presentation of Xo(T) by using
polynomial inequalities on Ih (h E r).

Proposition 4.8 Fora representationp = (Ai,Bi,•••,Ag, Bg) E t-i(S(r))
we write mj'(p) (2' = 1,•••,g-3) by m2• for the sake ofsimplicity. Then

                    mj ÅrO (2' = 1,•••,g- 3')

if and only if

   trD,•+i(trD,•trDj+2 + trCj•+itrC,•+2) - 2(trDj'trC,'+2 + trCj'+itrDj'+2)

    År {(trD,'+i )2 - 4}tr(D,' C,' +2) (]' = 1, • • • ,g - 3)•

where Ci := [Ai,Bi] (i=1,•••,g), Dj := Ci •••Cj (2' = 1,•••,g-1). O

- 125-

25



  We put

         S'(r) := {x E S(r) l mj(x) År O (]' = 1,•••,g - 3)}.

Proposition 4.9 Forp= (Ai,Bi,•••,Ag,Bg) Et-i(S'(r)) we write
xii(p)•ki(p) (i = 1,•••,g) by xii•ki for the sake ofsimplicity. Then

                   xii • ki ÅrO (i = 1,•••,g)

if and onty if

                                     tr(Ai [Ai+i , Bi+i])    tT([Ai, Bi][Ai+i, Bi+i]) + tr[Ai+i, Bi+i]
              tr[Ai, Bi] +2 Åq trAi 'O
We omit the proof of the above propositions.
   Above consideration shows the semialgebraic presentation of Xo(r).

Theorem 4.2 Forai,fii E r, put ci := [ai,fii] (i = 1,•••,g), and
d,' := ci•••c,' (1' = 1,•••,g- 1). Then J\ EX(T) is contained in Xo(r) if
and only ifx satis:fies the follozving 4g-6 inegualities on Ih ( E F) .

     Ici (x) Åq -2 (i = 1,•••,g),

     Id, (X) Åq -2 (j = 2,•••,g - 2),

      ickck+tlft'S.ic3+i(X) Åq iai:i+(k()X) (k- i,•••,g),

     Idt+i(X)(Idt()()Idt+2()() + Ict+i(X)Ici+2(J)())

       År 2(Idt(.rkf)Ict+,( xr) + Ict+, (,ry)Idt+,(x)) + (Id,+, (.y)2 - 4)-Ildict+,(x)

      (l = 1, •••,g - 3)

where we assume that cg+i = ci•
   By adding 2g inequalities which consist ofthe sign conditions ofla,, JB, (i =

1,•••,g) (see Corollary 2.7? , we canalso describe Tg by 6g-6polynomial
inegualities in X(r).D
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