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Variation of Geometric Invariant Theory Quotients
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1. This is a report on a joint work with Yi Hu (University of Michigan). Let G be a
reductive algebraic group acting on a normal irreducible quasi-projective algebraic variety
X, both defined over an algebraically closed field k. Given a G-linearized line bundle L on
X, it defines an open subset of stable points X*(L) C X such that the orbit space X*(L)/G
exists in the category of quasi-projective varieties. A larger set X *°(L) of semi-stable points
allows one to define a quasi-projective variety X**(L)//G which contains X*(L)/G as an
open subset and parametrizes closed orbits of G in X*°(L). It is a projective variety if
X is projective. In this note we want to approach the following fundamental question.
What happens to the quotients X*(L)/G and X**(L)//G when we vary L? Intuitively,
it is clear that all the quotients are birationally isomorphic unless they have different
dimensions. We want to describe precisely the corresponding birational transformations.
This problem is analogous to the problem of the variation of symplectic reductions of a
symplectic manifold M with respect to an action of a compact Lie group I{. Recall that
if K x M — M is a Hamiltonian action with the moment map & : M — Lie(K)*, then
for any point p € ®(M), the orbit space ®~1(K - p)/K is the symplectic reduction of M
by K with respect to the point p. If K is a torus, M = X with the symplectic form
defined by the Chern form of L, and K acts on X via the restriction of an algebraic
action of its complexification T, then the choice of a rational point p € ®(X') corresponds
to the choice of a T-linearization on L, and the symplectic reduction ¥, = @~ *(p)/I is
isomorphic to the GIT quotient X **(L)//T. It turns out in this case that if we let p vary in
a connected component F of the set of regular values of the moment map, the symplectic
reductions Y, are all diffeomorphic to the same manifold Yr. However if we let p cross
a wall separating one connected component from another, the reduction Y, undergoes a



very special surgery which is similar to a birational transformation known as a flip. This
was shown in a work of V. Guillemin and S. Sternberg [GS]. In a purely algebraic setting
this was proven independently (and about the same time) by M. Brion and C. Procesi
[BP] (cf. also [Hu]). It turns out that one can define a canonical morphism of algebraic
varieties 7g ¢r 1 Yg — Ygr, where G and G' are open faces of some F' as above with G’
contained in the closure of G. If G' is not contained in the boundary of ®(X), then =g ¢
is a birational morphism whose fibers are fibration towers of weighted projective spaces.

2. . Let L be a G-linearized ample line bundle on a quasi-projective normal algebraic
variety X. We say that L is G-effective if there exists s € I'(X, L™)® for some n > 0 such
that X, = {z € X : s(z) # 0} is non-empty and affine. It follows from the definition of
semi-stable points that a G-linearized bundle L is G-effective if and only if X**(L) # 0.
Let Pic®(X) denote the group of isomorphism classes of G-linearized line bundle. The
image of the canonical forgetting homomorphism Pic®(X) — Pic(X) is a subgroup of
finite index and its kernel is a finitely generated abelian group isomorphic to the group of
characters X(G) = Homy(G,G ) of G if X is projective(cf.[KKV ]). Let Pic®(X), be
the subset of Pic®(X) which consists of isomorphism classes of G-effective linearized line
bundles. Obviously it is a semigroup in Pic®(X).

Definition 1. The moment cone C¢(X) of (X, G) is the closed convex cone in Pic®(X)gr
spanned by the image of Pic®(X ), in Pic“(X).

In most applications Pic(X) is finitely generated so that C®(X) is a closed convex
cone in a finite-dimensional vector space. If X is projective we can replace PicX by the
Neron-Severi group NS(X') by using the fact that X**(L) = X**(L’) if L and L' are ample
G-linearized line bundles which arc algebraically equivalent ([MF], p. 48).

Example 1. Let G be a complex n-torus which acts linearly on a vector space V and
projectively linearly on the projectivization X = P(V). Then the compact real form T of
T acts symplectically on X with respect to the Fubini-Studi symplectic structure on X.
The image of the associated moment map & : X — R™" is a rational polyhedron equal to
the convex hull of weights of T in V. The representation pg of T on V is defined by a choice
of linearization ¢ on L = Op(y)(1). We have X **(L,09) contains G®~!(0) as the set of
closed orbits ([Ne]). If (L*, o) is an arbitrary linearization on L*, then the corresponding
representation of T is isomorphic to the representation p?k ® x for some character x of
T. This allows one to identify Pic®(X)y with the set {(k,x) € Zyo x Char(T) : 0 €
X + k®(X)}. This identifies CE(X) with {(X\,a) € Ryo x R® : —Aa € ®(X)} which is a
cone over —®(X).

Assume now that X is projective. Let A be a 1-parameter subgroup of G, z be a point
of X and zg = limy_o Az. Then 2, is a fixed point of A. For any L € Pic®(X), X acts on
the fiber L, via a character which can be identified with some integer pZ(z,)). We set
ME(z) = supx u(z,)/| ], where || is a positive-definite I -invariant nerm on the set of
one-parameter subgroups of G, K being a compact form of G (cf. [Ne]). If L is an ample
G-linearized line bundle, the Mumford-Hilbert numerical criterion of stability asserts that
z € X*°(L) (resp. « € X*(L)) if and only if ML(z) < 0 (resp. M%(z) < 0). We extend
the function L — MZ%(z) to I9(X) ® Q by setting M*L(z) = aM¥(z) for any rational
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number a. Then we extend this function by continuity to Pic®(X) ® R.

Definition 2. The zero set H(z) of the function M*(z) in CY(X) for some point z
with stabilizer of positive dimension is called a wall . A connected non-empty component
of CO(X) \ (Uzex H(z)) is called a chamber. We say that H(z) is an interior wall if it
separates two chambers. A face F' is the interior of intersection of a the closures of a finite
set of chambers .

It is easy to see that in the situation of Example 1 the closure of each face F' is a
rational polyhedral cone. This leads to a number of fundamental questions regarding the
cone CY(X) and its faces F (e.g., finiteness of chambers, their structure and etc.).

For any rational point [ € CY(X) we can define the set X **(!) (resp. X*(!)) as being
equal to X**(L) (resp. X*(L)), where the class of L in C¢(X) is rationally proportional
to l.

Proposition 1. Let F be an iterior face. Two rational points | and ' belong to F if and
only if X**(1) = X**(l'). If F is a chamber, then two rational points | and I’ belong to F
if and only if X*(1) = X*(l').

Proof. Easily follows from the Hilbert-Mumford numerical criterion of stability.

Using Proposition 1, we can define chambers and faces in C%(X), where X is not
necessary projective. A face is an equivalence class in NS“(X) with respect to the equiv-
alence relation L ~ L' if and only if X**(L) = X**(L’). A chamber is a face that contains
some L with X**(L) = X*(L).

Proposition 2. Let U be an open G-invariant subset of X, and let CY(X,U) be the
set of all L from CY(X) such that X**(L) is contained in U. Then the natural map
CS(X,U) — CO(U) is surjective. The pre-image of any face in C®(U) is contained in a
face of CY(X).

We let X p be the set X*(I), where [ is a rational point in F. Let 7p : Xp — Yp =
XF/G be the corresponding geometric quotient morphism. For any variety ¥ we denote
by Pic(Y)* (resp.Pic(Y)**) the semi-group of effective (resp. ample) line bundles.

Proposition 3. Let F be a chamber. Assume the following conditions are satisfied:

(i) X is nonsingular;

(ii) the complement X — X is of codimension > 2. Then the map L — (7r)9(L|XF) de-
fines an injective map C6(X) — Pic(YF)3. The image of of F is contained in Pic(Yr)g?.
Proof. Since G acts on X with finite isotropy subgroups, the canonical map Pic(YF) —
Pic®(XF), M — w3(M) is injective and its image is a subgroup of finite index [KKV].
This establishes a bijective map from Pic®(X r)r to Pic(Yr)r. By conditions (i) and(ii),
the restriction map Pic®(X) — Pic%(XF) is bijective. This induces a bijection be-
tween Pic“(X)r and Pic(Yr)r. By the projection formula, M & (7p)¢(75(M)). Since
I(X,L)C # {0} if and only if T(Yp, (7F)S(L|XF)) # {0}, we get an injection CY(X) —
Pic(Yp)ﬁ. If L € F, then its restriction to X g 1s ample. Thus some multiple of L descends
to an ample line bundle on Yr. Now all the assertions are proved.
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Example 2. According to D. Cox [Co], any toric variety Yz defined by a simplicial fan &
is isomorphic to a geometric quotient of an open subset U of X = C™ with complement of
codimension > 2 by a complex torus T with the character group Char(T') equal to Pic(Yy).
By [MF], p. 41, if Yz is projective, U = X **(L) = X*(L) for some T-linearized line bundle
L. Therefore U = X for some chamber F in CT(X) and we can apply Proposition 3. In
fact one can show more, namely that the map CT(X) — Pic¢(Yz)% is bijective. Here we
use the fact that the complement of a hypersurface in X is affine. Now each chamber F'
in CT(X) defines a geometric quotient X /T which is a toric variety Yy corresponding to
a fan £’ with the same 1-skeleton as £. The closure F' of the cone F' is ! identified with
the cone of nef d F' and their faces form the Gelfand-Kapranov-Zelevinski decomposition
of the cone CT(X) in the sense of [OP].

3. Main Theorems. We are now ready to state our main results.

Theorem 1. (Variation of quotients). Let G be a reductive algebraic group acting on a
nonsingular projective variety X. Let H be an intcrior face in the cone C%(X) and Iy be
a rational point in H . Let Ft and F~ be two chambers such that there is a straight
path going from one to another and passing through ly. Then there are two birational
morphisms f* : Yp+ = X**(1y)//G and f~ : Yp- — X*°(1y)//G so that if setting Ly to
be (X**(Lg) — X*(Ly))//G, we have

(1) f* and f~ are isomorphisms over the complement to Z;
(ii) over each connected component of Ly, the maps f* are towers of weighted P %*-bundles.

Theorem 2. Assume that any wall is contained in a linear hyperplane. Then the number
of interior faces and walls is finite. Each chamber is a convex polyhedral cone in the interior

of the cone CC(X).

Example 4. Let C be a Riemann surface of genus g, A a line bundle on'C, and (E,¥)
be a pair consisting of a rank 2 vector bundle E on C with determinant A and a section
¥ € T(E)\ {0}. Let o be a positive rational number. A pair (E,¥) is called o-semistable
if for all line bundles L C E, degL < 1/2degE — o if ¥ € ['(L), and degL < 1/2degE + o if
¥ ¢ T(L). In [Th] the moduli space M(o, A) of g-semistable pairs (E, ¥) was constructed
as some GIT quotient of the product X of two projective spaces by the action of SL(N),
N = h%(E). As was observed first by M. Thaddeus (cf. [Re]), different spaces M(a, A)
correspond to choice of different L € CY(X). It is easy to see that C®(X) C R? can be
identified with the cone over the interval [0,1/2(d — 1)]. The chambers F are the cones
over the intervals (max(0,1/2d — a — 1), 1/2d — a), where d =deg(A) and « is an integer
between 0 and 1/2(d—1). The limit quotient is related to the following variety constructed
by A. Bertram [Be]. One embeds the curve C into the space P(H'(C,A™1)) by using the
complete linear system |[A® K¢|. Then starting with blowiﬁg up C, he blows up the proper
transform of the 1-secant variety of C, then the proper transform of the 2-secant variety
and so on. After 1/2(d — 1) steps one obtains a smooth variety ¥ which dominates all
the moduli spaces M(c, A). By the universality property of projective limits, it is mapped
birationally to the limit quotient.

Example 5. One can treat in the same way the moduli spaces of parabolic bundles on a
Riemann surface of genus g (cf. [BH]). For example, if ¢ = 0, we recover the space U(a)
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from [Ba] as GIT quotients in Example 3. The limit quotient in this case coincides with
the Mumford-Knudsen moduli space and provides yet another interesting interpretation of
the Mumford-Knudsen compactification.
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