O00000000000O0
199300 pp.58-76

P-adic Symmetric Spaces:
The Unitary Group acting on the
Projective Plane

Harm Voskuil, Tohoku University, Sendai, Japan.

Introduction

We study the group SUs(L) acting on the projective plane P?. Here L is
a quadratic extension of some complete non-archimedean local field K. We
vieuw SU3(L) as an algebraic group defined over K. Let Y be the analytic
space consisting of the points z € P? which are stable for every maximal
K-split torus T in G(K) = SUj3(L). We construct a pure G(K)-invariant
affinoid covering of Y. The components of the reduction of Y with respect
to this covering are all proper. This is equivalent to giving a formal scheme
X over the ring K° of the integers in K with generic fibre Y ® K = Y and
with as its closed fibre the reduction of Y.

The number of orbits of SU3(L) on the set of components of the reduction
of Y is not finite. In particular the quotient Y/T" is not proper for a discrete
co-compact subgroup I' C SU;(L).

1 Some Background Information

1.1 Real Symmetric Spaces

Let G be a connected semisimple non-compact linear algebraic group defined
over the field of real numbers R. Let C™% be a mazimal compact subgroup
of G(R). The maximal compact subgroups of G(R) are all conjugated. The
symmetric space belonging to G(R) is the space G(R)/C™*.



Let X be a projective homogeneous variety for G(C), where C denotes
the field of complex numbers. So X = G(C)/P(C), where P(C) C G(C) is
a parabolic subgroup. Let C be a compact subgroup of G(R). Then the space
Y := G(R)/C is called a flag domain for G(R) if there exists an embedding
Y — X, for some X as above, such that Y is an open analytical subspace.

A symmetric space is called hermatian if it is also a flag domain, i.e.
embeddable in some projective homogeneous variety. Next we state some
properties that are useful for defining p-adic symmetric spaces.

A flag domain is an open G(R)-orbit Y C X = G(C)/P(C) such that
every discrete cocompact subgroup I' C G(R) acts discontinuously on Y and
Y/T is a compact complez analytical space .

If Y is a hermitian symmetric space then the parabolic subgroup P(C) C
G(C) is a mazimal parabolic subgroup.

Let I' C G(R) be a discrete subgroup with finite co-volume
(i.e. vol(G(R)/T) < o0) and let Y be a hermitian symmetric space. Then
there exists a compactification of Y/T" such that the compactification is a
projective algebraic variety . In particular when I' C G(R) is co-compact then
Y/T itself is a projective variety. For flag domains which are not symmetric
spaces, Y/I" is not an algebraic variety in general.

1.2 Definition of p-adic Symmetric Spaces

Let K D @, be a finite extension of the field of p-adic numbers @,. Let G
be an absolutely simply connected semisimple linear algebraic group defined
over K. Let X = G/P be a projective homogeneous variety and P C G a
parabolic subgroup. Let I' C G(K) be a discrete co-compact subgroup.

A p-adic analytical space Y is called a symmetric space for G(K) if it
satisfies the following four conditions:

1) Y is an open G(K)-invariant subspace of some projective homogeneous
variety X = G/P.

2) Y/T can be compactified to some proper analytical variety Z

3) P is a maximal parabolic subgroup

4) Z is (the analytification of) an algebraic variety.

Conditions 1 and 2 together define p-adic flag domains. There exist p-
adic flag domains satisfying condition 3. For example one has the flag do-
mains for SL,(K) which are contained in the Grassmann variety Gr(z,n)
if g.cd.(i,n) = 1. There exist p-adic flag domains satisfying condition
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4. In this case the flag domain Y C G/P is a flag domain for SL,(K)
and one has a SL,-equivariant projection ¢ : G/P + P""! such that
Y = ¢~}(Q,_,), where Q,_, denotes Drinfeld‘s symmetric space Py '-{K-
rational hyperplanes}.

1.3 A Construction of p-adic Flag Domains

There is a construction giving flag domains for groups G as above (See [vdPV]
and [Vo]). The construction works as follows:

Take an ample line bundle £ on a projective homogeneous variety X.
Take a G-linearization of this line bundle £. This induces a T-linearization
of L. Here T C G is a maximal K-split torus. Let X*(T, L) denote the set
of points which are stable for T with respect for this T-linearization. Let
X*(T, L) denote the set of semistable points. Then the set Y := Nyeqx) g-
X*(T, L) consisting of the points stable for all maximal K-split tori in G
is a flag domain for G(K) if X*(T,L) = X*(T,L). The only symmetric
spaces one finds this way are Drinfeld‘s symmetric spaces Py~ !-{ K-rational
hyperplanes} for SL,(K).

The flag domains Y one finds this way all have the property that Y/T" is
proper for any discrete co-compact subgroup I' C G(K). Furthermore if the
complement of the set of stable points X*(T, £) in X has codimension larger
than or equal to two in X then Y/I" has no meromorphic functions except for
the constants. This makes it somehow interesting to study the cases where
codim(X — X*(T, L)) = 1 even when the sets of stable and semistable points
are not the same.

1.4 Rigid Analytic Geometry

Since p-adic analytic geometry is not so well known it is probably a good
idea to say a little bit about it. For more information on the subject we refer
to [FvdP] and [BGR].

The basic building blocks of p-adic analytic geometry are affinoid spaces.
They are somewhat like affine spaces in algebraic geometry. The basic ex-
ample of an affinoid space is the p-adic unit ball B, = {(z1,...,2,) €
(K®9)"||z;| € 1}/Gal(K*/K), where K%9 denotes the algebraic closure of
K. Assocated with B,, is aring of power series converging on B,,. It is the affi-
noid algebra T, := K < z1,...,2, >:= {T aa2]" -+ 22| lim}g|meo0 |@a] = 0}.
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Now B, is the set of mazimal ideals of T,,. General affinoid algebras are of
the form T, /I, where I C T, is an ideal. So general affinoid spaces are of
the form Sp(T,/I) = {z € B,|Vf € I, f(z) = 0}.

Let A be an affinoid algebra and let Sp(A) be the corresponding affinoid
space. For f € A and z € Sp(A) we denote by f(z) the image of f in A/z.
Since A/z is a finite extension of K and K is complete, the valuation | | of
K extends uniquely to a valuation of A/z. Hence |f(z)| is well defined. On
A we have a (semi-)norm, called the spectral (semi-)norm || || defined by
| /Il := sup,espa)|f(z)]. The spectral semi-norm is a norm if there are no
nilpotent elements # 0 in A.

Let K° denote the ring of integers of K, i.e. K*:= {z € K||z] < 1}. Let
A® C A denote the K%module A° := {f € A|||f|| < 1} and let A% c A°
be the K°%module A := {f € A|||f]| < 1}. We call A4 := A°/A% the
reduction of A and spec(A) the reduction of Sp(A). One has a reduction map
R : Sp(A) — Spec(A). The image R(m) of a maximal ideal m C A is the
maximal ideal (m ) A%)/A%.

Let 7 € K be a non-zero element such that |7] < 1 and let A be the

affinoid algebra A := K < z1,...,2, > /I, where I is some ideal of
K < z,...,2z, >. Then one has:
AY = lim_ A%/7* A = lim_ (K2, ..., z.)/I)/7*(K®[21, ..., za)/I). The for-
mal affine scheme Spf(A°) C spec(K°[z1, ..., 2,] /I is the subspace defined by
the ideal generated by 7. The map Spf(A°%) — Spf(K®) has Spf(A”) @ K
as its generic fibre and spec(A) as its closed fibre. The closed points in the
generic fibre correspond to the points of the affinoid space Sp(A) and the
closed fibre corresponds with the reduction spec(A) of Sp(A). Since the re-
duction A of A is reduced this gives us a correspondance between affinoid
spaces Sp(A) over K and reduced formal affine spaces Spf(A°) over K°.

Next we define a pure affinoid covering of a rigid analytic space X. A
pure affinoid covering { X, };es is a covering of X by affinoid spaces X, j € J
such that:

1)for each j € J, X, intersects only a finite number of X;

2)if X; N X; # 0 then there exists an open affine subvariety A;; in the
reduction X'j of X such that X;NX; = Rj_l(A,-j) and is an_open affinoid
subspace of X; with A;; as its reduction. Here R; : X; — X denotes the
reduction map.

A pure affinoid covering of X is a covering of X such that the reductions
of the affinoid spaces glue together nicely. In particular we can glue the for-
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mal affine schemes associated with the affinoid spaces together into a formal
scheme with as its generic fibre the analytic space X and as its closed fibre
the reduction of X with respect to this covering.

—62—



2 A Pure Affinoid Covering
2.1

Let L C K be an algebraic extension of degree 2 and let ~ denote the
generator of the Galois group Gal(L/K). In this paragraph we look at SU(L)
acting on the projective homogeneous variety PZ. The unitary form is given
by z1% + T2%1 + Zofo W.I.t. a basis eg, e, ey of P7.

We vieuw SUj as a group defined over K, i.e. G(K) = SUs(L). Now
G(K) acts on a variety X defined over K such that X @ L consists of two
connected components each isomorphic to PZ. The Galois group Gal(L/K)
permutes the two components. We take one connected component X 22 PZ.

A maximal K-split torus T C G has the form diag(1,t,f7!). Let us look
at the usual G-linearization of O(1). The set of stable points X*(T,O(1)) is
given by 1,75 # 0. The set of semistable points X**(T, (1)) consists of the
points z with z;z5 # 0 or zg # 0. Note that the complement of the set of
stable points has codimension 1 in PZ. It consists of the two lines given by
r; =0and zo, = 0.

Let Y := Nyesuvyry 9 - X°(T,0(1)) be the set of points stable for every
maximal K-split torus in G(K). We construct a pure G(K)- invariant affinoid
covering of Y.

2.2 The Building of SU;3(L)

In this case the Bruhat-Tits building B is a tree. It can be defined by using
LY%-submodules of P?, where L° denotes the ring of integers of the field L.
Actually they are equivalence classes of submodules of a vector space V & L3
with P(V) 2 P?. Two modules M; and M, are equivalent if and only if there
exists a A € L* such that M; = AM,.

There are two types of vertices in the building. One type of vertices
correspond to the SUs(L)-images of the L%-module < ey, €1, €2 >. The other
vertices correspond to the SU;(L) images of the L%-module < ey, e, e2 >.
Here 7 is a generator of the maximal ideal of L°. Two vertices of the building
are joined by an edge if and only if they are the SU3(L)-image of the edge
joining the vertices < eg, €1, €2 > and < eg, we, €2 >.

Note that the vertex < eg, mej,eo > has a degenerated unitary form on
it when reduced modulo 7. In particular we could also have represented this
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vertex of the building by the dual L%-module < ey, e;, 7"1es >. So the choice
of modules is not unique.

The stabilizers in SU3(L) of the modules are the mazimal parahoric (i.e.
maximal compact) subgroups of SU3(L). To each maximal K-split torus
T C SUs(L) belongs an apartment in the building. The vertices of the
apartment belonging to T correspond to the modules that have an L%-basis
such that T acts diagonally w.r.t. this basis.

The shape of the building depends on wether the extension L O K is
ramified or not. One has:

¢+1 g+1
if L O K is unramified

> < if L O K is ramified
qg+1 qg+1

e vertex corresponding to a degenerated module

Here ¢ is the number of elements in the residue field of K.

In P? there are also L%-submodules that do not correspond with vertices
of the building. They are the modules < ey, 7"e;, 7™es > with |n + m| > 1.
They correspond with segments of the building. A finite segment S := [S), So)
in the building B is the smallest connected part of the building containing the
two points S; and S of the building. So a finite segment is a path joining two
points S; and S2 and is contained in any apartment that contains both S
and S3. An infinite segment will be either an apartment or a half-apartment
in the building. We have the following lemma:

2.3 Lemma

Let M be the L-module M =< eg,n"e;, 7™ez > with |n + m| > 1. Then the
stabilizer Py in SU3(L) of M is the stabilizer Ps of the segment S joining
the two vertices in B corresponding to the modules < e, 71, 7" ley > and
< eg,m™He), 7™y > ifn+m > 1 and to the modules < ey, 1" ™e;, T ey >
and < ey, 7" e, m ey > ifn+m<1.

Proof: Let M be M =< ¢y, 7"ey, 7™es > and let us assume that n+m > 1.
Let M; :=< eg,m'e;,me3 > and N; :=< ey, n'e;, 7 *tleg >. Then M =
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—m+1 ~m+1
N M;N N N;. Hence the stabilizer Pys of the module M contains the
t=n—1 i=n R
—-m+1 —-m+1
group H := (1 Py, N N Ppy,. Clearly the group H also stabilizes the
A :

LE) t=n
segment S joining the vertices corresponding to the modules N, and N_,,4;
in the building. Furthermore P, contains an element w which permutes
7"e; and T™ey and maps ey to —eg. This element w maps the module N, to
N_p41 and vice versa. Therefore w is also contained in Pg. It is easy to see
that both Ps and P, are generated by H and w. Therefore P¢ = Py;. The

proof for the case when n +m < 1 is similar.

2.4 A Pure Affinoid Covering for X*(T,0(1))

Each polyhedron A in the picture below defines an affinoid space. The union
of these affinoid spaces gives a pure affinoid covering of X*(T,O(1)). The
affinoid spaces X 4 associated with the polyhedra A in the picture are as
follows:

If A is one of the infinite polyhedra then one has

Xaa:={z € Pf||n*"| < |Z] < |« | 22| < |77°]} or

Xaa={z € Pl|m**!| < [2] < |« |2 < |77}

If A is a triangle then one has

Xapi= {z € Piim| < 2] < a1 o] < |22] < a1 12 < 2]} o
Xaa:={o € PHn"] < [2] < o) [ < 2] < |77, 2 2 v},

If XA, 4 is one of the squares then
Xaa = {z € P2l|x" < 2] < [x], || < |2 < jxm1]}, with n-m > 0.
The scaling in the picture below is logarithmic.



sz I
! |72
1]
72|
7]
1
1)
N "~

12— =7
Zo

== 1 x| =

The vertices of the polyhedra correspond to L%-modules < eq, 7"e;, 7™ ey >
with n + m > —1. In particular the triangles correspond with three mod-
ules that define a chamber in the building. They are SU3(L)-images of:
< eg,e1,e2 >, < €y, Tey, ep >, < €9, €1, T reg >. The infinite polyhedra cor-
respond with two modules that together also define a chamber. They are
SUsz(L)-images of: < eg,ej,e; > and < ey, mej,ep > or of < ep,e,e2 >
and < eg, 7 le;,es >. The squares correspond to four modules. They
are: < ep,mT"e;,TMey >, < eg, ™" e, m™ey >, < e, ey, ey >, <
eg, 7" tle;, 7™ tley >. Where n +m > 0.

To each polyhedron A we associate the compact subgroup P, of SU3(L)
that leaves the modules associated with A invariant. So we have Po = ) Py,
where M is in the set of modules corresponding with the vertices of the
polyhedron A. In particular to the triangles and the infinite polyhedra we
associate the stabilizer of a chamber (i.e. edge) of the building. The modules
associated with the squares correspond all with segments in the building.
These segments are contained in the longest segment. The stabilizer of the
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longest segment permutes the other segments corresponding with the mod-
ules associated with vertices of the square. Therefore we associate to the
square a subgroup of the stabilizer of this longest segment. It is the group
denoted by H in the proof of the previous lemma.

One easily proofs the following:

2.5 Lemma

1) For the finite polyhedra A we have for allx € Xa 4:
|£2i(z)] <1, Vg € Pa, i=0,1,2.

2)For the infinite polyhedra A we have for all z € Xp 4:
|L2i(2)| <1, i=1,2. |£2C%0| <1, Vg € P

2.6 A Pure Affinoid Covering of Y

Let XA 4 denote the affinoid space associated with a polyhedron A and
apartment A. Then Xg = Ngeps Xaga = Ngeps 9 Xa,a C Xa,a is an
open affinoid subspace. It follows from the lemma above that qux is obtained
by taking the inverse image of the reduction map of an open subset of the
reduction of X4 4.

Let Pg denote the set of polyhedra associated with the building. To get a
pure affinoid covering { Xa|A € Pg} of Y we take open affinoid subspaces X
in Xg. If A is a triangle or an infinite polyhedron then we take X, := X}.

Now take A to be a square. Let M, :=< ey, m%¢;,mles >, s = n,n + 1,
t = m,m + 1 be the modules assocciated with A. Let Ha := Nges,, .. Fc
whenever the segment Sy, . is not a vertex. If Sy, . is a vertex S we take
Hp := Ps. Let us for g € Hp denote by f,; the function f () := 9;:—‘%%53(3:)
Here the z; are the standard coordinates associated with the basis ¢;, ¢ =
0,1,2. Our definition of Xfx is such that any z € Xfx satisfies:
|7ntm2| < | fo(x)] < |7™F™| for all g € Ha with g(Sa) = Sa.

A point z € X also satisfies:

V(g € Ha)lfy(2)] < 5™ .

Now we can define X for squares:

Xa = {.’L‘ € X&”fg(l‘)' = |ﬂ.n+m| for all g € Hp with g(SA)nSA = SM..,m}-
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2.7 Theorem

The affinoid spaces Xa form a pure affinoid covering of

Y =Ngesvyy 9 X (T, 0(1)).

The components of the reduction of Y with respect to this covering are proper.
The components of the reduction correspond 1-1 with the SU3(L)-images of
the L%-modules < ey, m"e;, m™ey > with n +m > —1.

Proof: The purity of the covering {Xa|A € Pg} will be proved in the next
paragraph. Also the fact that the covering gives all of Y will be proved in
paragraph 3.

The proof that the components of the reduction are proper is essentially
the same as in [vdPV]. The fact that the components correspond with mod-
ules as given above is clear from the construction.

2.8 Remark

The SU3(L) orbits of the components of the reduction are represented by the
modules < ey, e;,7"ey >, n > —1.

If A is a triangle and A’ is an infinite polyhedron such that both determine
the same chamber (i.e. edge) in the building, then X := XA |J Xa- is also
an affinoid space. The covering {X¢, Xa|C a chamber, A a square } is again
pure. The components of the reduction of Y with respect to this covering
correspond with the SU3(L) images of the modules < ey, 7"e;, 7™es >, n +
m 2> 0.
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3 Torus Invariants

3.1

In this paragraph we study the torus invariants in some detail. This will
enable us to complete the proof of theorem 2.7.

We fix a chamber Cj in a fixed apartement Ag. There is a maximal K-
split torus Ty associated to Ag. We have basis e, €, ez of P? such that Ty
acts diagonally and the hermitian form has the standard form. We take as
Co the chamber defined by the Ly-modules < ey, e;,e2 > and < ey, ey, e3 >.
For z € X*(Ty,O(1)) we define: ry(x) := |9%£—;f-’—(a:)]

For £ € X = P} we define r(z) as follows:

() = infgeqk) f%f;ﬂ(a:)l if z € X*(Tp,0(1)) and

r(z) = 0 if this is not the case.

For the chamber Cy € Ay we define the following analytic space:

Zowae = {z € PHin| < [2(2)| < 1}.

We take for g € SU3(L) Zycy 04, = 9(Zcy,4,)- Note that Zg, 4, is not an
affinoid space. The union Ugey Zc,a = X°(T,0O(1)) where T is the torus
belonging to A.

3.2 Proposition
r(z) =0 <= (g € G(K))g*z19*z2(z) =0

Proof: The <= part is trivial. So let us assume that r(z) = 0. If z ¢
X*(Tp,O(1)) then we can take g = id., so we may assume that this is not
the case. Take a sequence ¢g; € G(K) such that rg(z) — 0 for ¢ — oco. If
74;(x) = 0 for some ¢ then there is nothing to prove anymore, so we assume
that r,(z) # 0 for all i. Let C; be the chamber with z € Z¢, 4,4,. There
are two possibilities. Either there is a bounded subset of the building B that
contains infinitely many C; or there does not exist such a subset. We treat
both cases separately.

First we assume that there is a bounded subset F C B that contains
infinitely many chambers C;. Since F' contains only finitely many chambers
there is at least one chamber C € F such that C; = C for infinitely many
indices . We now restrict ourselves to the infinite sequence g; with C; = C.
After replacing each g; in this sequence by g;g7* (and z by g;(z)) if necessary,
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we may assume that all the g; are contained in the Iwahori subgroup Pc.
Since Pc is compact the g; converge to an element g € Pc. Clearly we have
g'z19722 = 0.

Next we assume that there is no bounded area in the building B containing
infinitely many chambers C;. Let H;, j = 1,...,s denote the connected
components of B — C;. There is at least one H; containing infinitely many
C;. We choose one such component H; and denote it by H.

We take the subsequence of g; such that C; is contained in H. We look
at the apartements A; determined by the g;. If C) is contained in infinitely
many of them then we are done, since we can restrict ourselves to these
and assume that the g; are contained in Pg,. Then again we find a g with
g*r19%*T9 = 0.

So we may assume that C) is contained in only finitely many of the A;.
We now take the subsequence of ¢g; with C; € H and Cj not in A; if 1 > 1.
Without loss of generality we may assume that Cy = Cy and that A; = Ay.

Using lemma 3.4 below we have a §; € G(K) with §;4¢ = g:Ao and
f,, h € P¢, such that gfz, = clh zj and §jzy = ch z; and c;,co € L* with
le1 - co] > 1. Slnce a.ll A; C H either j =1forall zor j = 2 for all . we

;I_g|72(x | =1 we can take g; = §;.

There are infinitely many indices ¢ such that |h =2 (a:)| < 1 or infinitely
f T2

)| < 1. Let us assume that the first is the case. Then

we take the sequence of h; with |h I’( )| < 1. Since | —(z)] is bounded we

have that 7 (z) — 0. Since k; € Pco the sequence converges to an element
h in Pg, with r4(z) = 0. This completes the proof.
3.3 Corollary

Y 1= Ngesvyry 9 X°(To,0(1)) = {z € X = Pf|r(z) # 0}
Proof: If £ € X*(Ty,O(1)) then there exists an element g € SUs(L) with
r4(z) = 0 if and only if there exists a maximal K-split torus T C G(K) =

SU3(L) with z ¢ X°(T,0(1)). Now the corollary follows directly from the
proposition above.
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3.4 Lemma

Let A be an apartment not containing Cy. Assume that the distance d(Cy, A) =
n. Then there ezist f,h € Pg, and an element g € G(K) with gAy = A such
that g*z, = c1h*zj, g*zo = cof*z; for some j € {1,2} and c1,¢cy € L™ such
that |c; - co| = |7~ ""%|. Here sy = 0 and s, = 1. The index j depends only
on the apartement A.

Proof: Let H denote the path joining Cy with A. It consists of the chambers
Co, C1,y...,Cn, with CiNCiz1 # 0, C,NA # B and C,.;NA =0. Let S
be the vertex S := H( A. There are exactly two apartments A;, A in the
building that contain C, and have a half apartment in common with both
Ag and A. Both contain the path H.

Since Pg, acts transitively on the apartments containing Cy there are h;
in Pg, such that h;Ag = A;, i = 1,2. The choice of the h; is such that either
€1 or ey is fixed by both h;. Let us assume that it is e;.

The Lg-module assocciated to the vertex S is
M = hy(< eg,m™e1, 7 ™ex >), i = 1,2 if n =2m — 1 and
M := hi(< eg, 7™ tle;, 7 Mey >), 1 =1,2if n = 2m.

Therefore we have:

M =< h,-(eo),7r"‘(+1)h,~(el),7r“’"h,'(62) >=< h,’(e(}),ﬂm(+l)€1, 7l'_mh,'(€2) >,
1=1,2.

Since S € A and e is not fixed by the torus belonging to A we have:

M =< hi(eg), 7 ™hi(ea), 7" ™ha(ea) >=< fo, 7™ f1, 7™ f2 >

Here f; := hi(e2), 1 = 1,2 and f; is a suitable representative of h1(e2)* N ha(ea)*

and therefore satisfies hjz; = hjz; = 0. Furthermore hiz,(f1) = h3z,(f2) =
0. After multiplying the f; with suitable units in L* the hermitian form has
w.r.t. the basis fo,7 ™ f;, 7™ fo the following shape y192 + yoth + Yoo if
n = 2m—1 and 7(y1 72+ ¥221) + Yoo if n = 2m. Here y; = c;h}xr1, 4,5 = 1,2,
i # j with ¢; € L* satisfying |¢;| = |[77™|.

If n = 2m then g € G(K) defined by g(e;)) = #™™f;, 1+ = 1,2 and
g(eo) = fo satisfies the lemma. If n = 2m — 1 then we can take an element
g given by g(e1) = 7™ 1, g(es) = 71 f5, g(eo) = fo

When both k; fix ey the proof is similar.
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3.5 Lemma

Ifr € Xp g4, and ry(z) = 1(x) # 0 then z € Xa.
In particular we have Y C Up Xa.-

Proof: It is sufficient to proof the lemma for the case g4g = Ag. If 1 € Xa 4,
then we have for all h € Pa ]%"-l(x)l <1, ¢ = 1,2. The minimality of
ria(z) # 0 implies that r,(z) > 1 for all h € P5. Therefore |-"—;ﬂ(a:)| =1 for
all h € Pa. Hence x € X4, '

The second statement in the lemma follows from the fact that when z € Y
one has r(z) # 0. Therefore we can find an apartment A = gAy with
r4(x) = r(z). Now £ € X 4 for some polyhedron A. Hence z € Xa.

3.6 Lemma
T € Xa, A€ gAg, |=L3(z)|<1=>z€Y.

g*T19" T2
Proof: Let us first assume that the polyhedron is either an infinite poly-
hedron or a triangle. Therefore A determines a chamber C € gAy. It is
sufficient to prove the lemma for the case where C = Cy and gAy = A,.

Since z € X5 we have |EZi(z)| = 1,1 = 1,2 for all h € Pg,. So for
all apartments hAy with h € PC., we have r,(z) = 1. Using lemma 3.4 we
easily conclude that for the apartments gAy that do not contain Cy we have
r¢(z) > 1. So for all g € SU3(L) we have r¢(z) > 1. Hencez € Y.

Let us now assume that A is a square. Then one of the modules associated
to A has to be of form M :=< ey, 7"e;, 7 "es >. Therefore the group Ha
as defined in section 2.6 is Ho = Pg, where S is the vertex corresponding to
the module M. Now x € X, has the property that for all ¢ € Pg one has
|72 < | f4(z)] < 1. Here f, is as defined in section 2.6. Now using lemma 3.4
one concludes that r(z) # 0. Therefore z € Y.

3.7

On the apartment A we take a coordinate function y which has on the vertex
corresponding with the module < ey, 7"e;, 7™es >, n+ m = 0,1 the value
n —m. We define a map ¢4, : X*(To, O(1)) — Ag by

Par(z) =p <= v(Z(z)) = y(p)
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Here v is the additive valuation of L, normalized in such a way that v(7) = 1.
Note that @4,(t-z) = t - @g4,(x) for t € Tp. This function p,4, cannot be
extended to the set of semistable points. However we can also associate to
each stable point a segment in the building. We can also do this for semistable
points.

To each point z € X*(Tp, O(1)) with zp # 0 we associate the following
segment in Ap: Sy, 4, := [P1,p], Where the p; are determined by 2v(3(z)) =
y(p1) and 2v(22(z)) = y(p2). If zo = O then we take S; 4, := Ao. Note that

Sz,4, 1s a point if and only if }f%(a:)] = 1. If g # O then it follows from
.2 = 2 that pg4,(z) is exactly in the middle of S, 4,.

We can also associate a segment to the semi-stable points which are
non-stable. These segments are either half-apartments or apartments. If
z = (x9,%1,0) with zo,z1 # 0 then S, 4, := lime_g Sz(c),4,, Where z(e) =
(zo,x1,€). For x = (x0,0, z2) with xo, T2 # 0 we take S; 4, = lims_0 Sz(s),4,
where z(6) = (2, 6, z2). For z = (1,0, 0) we take S; 4, := Ag. For a general
apartment A = gAg and z € X**(gTog™", O(1)) we take S, 4 := 9(Sg-1(z),40)-

We can also associate to each module m =< eg, 7"e;, 7™e2 > a segment
S, = Sz,a., Where z is the point z = (1,7"e;,m™e;). Note that Sy C
SM,4,, Where Sy is the segment defined in section 2.2. Generally these
segments are not equal! For instance if we take a module M with n + m =
1 then Sps is the vertex S corresponding to this module. Whereas Sy 4,
consists of the two chambers contained in Ag that contain the vertex S.

Let Z := Nyesvyr) 9 - X**(To,O(1)) and let Z* be the subspace Z* :=
{z € Z|] if r,(z) = r(z) then Iﬁ—:ﬁéﬂ(m)] < 1}. For z € Z* we can also
define a segment S, in the building independent of the apartment. To do
this we need a lemma.

3.8 Lemma

Let x € Z* and assume that S, 44, s not a point. Then there erists an
apartment A such that S, ga, C Sz.4 and S; 4 is mazimal.

Proof: Take a chamber C in the building such that C'NS; g4, contains at
least two points. Now we look at the segments S, 5,4, With f € Pz. From
the compactness of the group P it follows that we can find at least one
maximal segment S; s,4, containing S, 4,-
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3.9

Let us define for ¢ € Z* the set of apartments which contain a maximal
_segment for X:

M(z) := {A]A is an apartment with S, 4 maximal and not a point }.
Furthermore we define S; := N 4em(z) Se,A-

We have for z € Z* the following lemma:

3.10 Lemma
A € M(z) if and only if S, C A.

Proof: We fix a chamber C as follows. Take an apartment A in M(z). If
z € Y we take C such that ps(z) € C. If £ € Y then we only demand
that C € S;. Now one applies lemma 3.4 to the chamber C. After some
calculations which we omit here, the lemma follows.

Some more calculation yields the following:

3.11 Proposition

Letz € Z* and A € M(z). Suppose S, o = [p1, 2], where we allow p; = Foo
for (half-)apartments. Let C; € A be the chamber with p; € C; and such that
CiN S:.a contains at least two points. If p; = £oo we do not define C;. If C;
is defined and C; 1 S;,4 contains a verter S; corresponding with a degenerated
module satisfying 2 - |y(p:) — y(Si)| < |y(p1) — y(p2)| then we take ¢; := S;.
Otherwise we take q; := p;. Then S, is the segment [q1, ¢2).

3.12 Lemma

r€XaANZt < S;CS.CSt

Proof: Since r € Z* the polyhedron A has to be a square. For a square we
define St := Sa and S5 as being the segment S). Here M is the module

associated with A that gives the shortest segment. Again the proof consists
of explicit calculations that we omit.
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3.13 Lemma
Ifr€e Xaaandz €Y thenz & Xa.

Proof: If € Z —Y then the lemma follows from the lemmas 3.6 and 3.12.
If x € Z then one easily calculates that x & Xa.

3.14 Proposition
The covering {XalA € Pg} is pure and Up Xa =Y.

Proof: From lemmas 3.5 and 3.13 one easily derives that Uy Xa =Y. So
we have only to show that the covering is pure.

Let us fix a polyhedron A. Let us assume that Xa N Xar # 0. If there
exists an apartment A such that both A and A’ are polyhedra associated to
A. Then we must have AN A’ # (. This gives us a finite number of A’. If
there does not exist such an apartment A then at least one of the polyhedra
A and A’ has to be a square. If both are squares then it follows from lemma
3.12 that one has S} NS, = S5 = Sx,. Again this gives us a finite number
of A’. If one of the polyhedra is not a square then this polyhedron determines
a chamber C in the building. Clearly we must have that C S # 0 if A’ is
not a square. The other case is similar. Again we get a finite number of A'.

Next we have to show that if X5 N Xa: # @ the intersection has property
2 of the definition given in section 1.4. If both A and A’ are polyhedra
associated to some apartment A then this follows directly from the fact that
the intersection of Xa 4 and Xar 4 has this property. If there is no such
apartment A then one has, if both A and A’ are squares, Xao N Xa = {z €
Y|S, = Sx = Sx/}. Therefore also in this case the intersection has the
required property. The other case is more or less similar and we leave it to
the reader.
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