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Introduction

We study the group SU3(L) acting on the projective plane PL2. Here L is
a quadratic extension of some complete non-archimedean local field K. We
vieuw SU3(L) as an algebraic group defined over K. Let Y be the analytic
space consisting of the points x E PL2 which are stable for every maximal

K-split torus T in G(K) = SU3(L). We construct a pure G(K)-invariant
aMnoid covering of Y. The components of the reduction of Y with respect
to this covering are all proper. This is equivalent to giving a formal scheme
X over the ring KO of the integers in K with generic fibre XXK = Y and
with as its closed fibre the reduction of Y.
   The number of orbits of SU3(L) on the set of components of the reduction
of Y is not finite. In particular the quotient Ylr is not proper for a discrete

co-compact subgroup r c SU3(L).

l Some Background Information

1.1 RealSymmetricSpaces
Let G be a connected seTnisimple non-compact linear algebraic group defined
over the field of real numbers R. Let CMaX be a maximal compact subgroup
of G(R). The maximal compact subgroups of G(R) are al1 conjugated. The
spmmetric space belonging to G(R) is the spaÅíe G(R)/CMaX.

- 58-

代数幾何学シンポジウム記録

1993年度   pp.58-76

1



   Let X be a projective homogeneous variety for G(C), where C denotes
the field of complex numbers. So X = G(C)IP(C), where P(C) c G(C) is
a parabolic subgroup. Let C be a compact subgroup of G(R). Then the space
Y := G(R)/C is called a flag domain fer G(R) if there exists an embedding
Y - X, forscme X as above, sgch that Y is aR epek analytical sitbspace.
   A symmetric space i$ called hermitign if it is also a fiag dgmaiR, i.e.

embeddable in some projeetive homogeiteous variety. Next we state some
properties that are usefu1 for defining p-adic symmetric spaÅíes.

   A fiag domain is an open G(R)-orbit Y c X me G(C)/P(C) such that
every discrete cocompact subgroup r c G(R) acts discontinuously on Y and
Y/r is a compact complex analytical space.
   If Y is a hermitian symmetric space then the parabolic subgroup P(C) c
G(C) is a maximal parabolic subgroup.
   Let r c G(R) be a discrete subgroup with finite co-vo}ume
(i.e. veg(G(R)lr) Åq oo) ec}d let Y be a hermitiax symmetric space. Then
there exists a compactification gf Y!r such that the eompactificatioR is a
projective algebraic vare'ety . In particular when r c G(R) is co-compact then

Ylr itself is a projective variety. For fiag domains which are not symmetric
spaces, Y/r is not an algebraic variety in general.

1.2 Definition of p-adic Symmetric Spaces

Let K ) (?p be a finite extension of the field ef p-adic numbers Qp. Let G
be aR gbsgl#teiy simply conneeteci semisimpge ginear algebraic grevp defiRed

over K. Let X = GIP be a projectiye hemegeneeus van'ety and P c G a
parabolic subgromp. Let r c G(K) be a discrete co-cempact subgronp.
   A p-adic analytical space Y is called a symmetric space for G(K) if it
satisfies the following four conditions:

   1) Y is an open G(K)-invariant subspace of some projective homogeneous
variety X == GIP.
   2) Y/r can be compactified to some proper analytical variety Z
   3) P is a maximal paxabolic subgroup
   4) Z is (the analytifieation of) aR algebraic variety.

   CekditieRs 1 and 2 togethe! defike p-adic fiag domaiRs. There exist p-
adic fiag domaiRs satisfying cokdition 3. For example oke kas the fiag do-
mains for SL.(K) which are contained in the Grassmann variety Gr(i,n)
if g.c.d.(i,n) = 1. There exist p-adic fiag domains satisfying condition
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4. In this case the flag domain Y c G/P is a flag domain for SL.(K)
and one has a SL.-equivariaRt projectioit g : G!P H P"-i such that
Y = gwwi(stn-i), where ft.wwi denotes Drinfeld`$ symmetric $pace Pft-i-{K-

rational hyperplanes}.

1.3 A Construction of p-adic Flag Domains
There is a construction giving flag domains for groups G as above (See [vdPV]
and IVol). The construction works as follows:

   Take an ample line bundle L on a projective homogeneous variety X.
Take a G-linearization of this line bundle L. This induces a T-linearization
of Åí. Kere T C G is a maximai K-split tergs. Let XS(T, L) deRete the set
of points which are stable for T with respect for this T-linearization. Let
X"S(T, Åí) denote the set gf $emi$table poiRts. CIrheR the set Y := figffGÅqK) g '

XS(T,L) consisting of the points stable for all mazximal K--split tori in G
is a flag domain for G(K) if XS(T,L) ur XSS(T,L). The only symmetric
spaces one finds this way are Drikfeld`s symmeuic spaces Pft-i-{ K-ratienal

hyperplanes} for SL.(K)•
   The fiag dem&iRs Y cRe fikds this way all have the pTopefty that Ylr is
proper for any discrete co-compact subgroup r c G(K). Furthermore if the
complement of the set of stable points XS(T, L) in X has codimeRsion larger
than or equal to two in X then Y/r has no meromorphic functions except for

the constants. This makes it somehow interesting to study the cases where
cedif?z(X - XS(T, Åí)) = ! eveR when the sets of stable and semistable peikts

are not the same.

1.4 Rigid Analytic Geometry
Since p-adic analytic geometry is not so well knowfi it is probably a good
idea to say a little bit about it. For more information on the subject we refer

to IFvdPl gxd [BGR].
   The basic building blocks of p-adic analytic geometry are afiinoid spaces,

They are somewhat like aMne spaces in algebralc geometry. The basie ex-
ample of an aMnoid space is the p-adic unit ball Bn := {(xi,••-,xn) G
(Kai9)nllxil -Åq. 1}!Gal(Kaig/K), where K"ig denotes the algebraic closure of

K. Assocated with B. is a ring of power series convergiRg ok B. . Itis the afii-
noid algebra T. := K Åq xi, . . . , xn År:= {Åí aax7i • ' ' xX" I limlal-+ co laa l = O}•
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Now B. is the set of mantmal ideals of T.. General aMnoid algebras are of
the form T./I, where l C T. is ari ideal. So general aMnoid spaces are of
the form Sp(T.II) = {x ff B.IVf E I, f(x) = O}.
   Let A be an aranoid algebra and let Sp(A) be the correspeRding aMnoid
spaÅíe. Fer f E AL aRd x G Sp(A) we deRete by f(x) the image cf f iR AIx.
Since Al$ is a fuite exteksio= ef K at}d K is complete, the valgatioR l I of

K exteRds uniquely to a valuatioR of Alx. Hence lf(x)l is well defued. On
A we have a (semi-)norm, called the spectral (semi-?norm ll ll defined by
IIfll := sup.EsptA) lf(x)1• The spectral semi-norm i$ a norm if there are no

nilpotent elements l O in A.
   Let KO denote the ring of integers of K, i.e. KO : : {x E KIlxl S 1}. Let

AO c A denote the KO-module AO := {f E AIIIfll K 1} and let AOO c AO
be the KO-module AOO : : {f E AIIIfll S 1}. We call A := AO/AOO the
reductien cf A aRd spec(A) the Tedptction ef Sp(AL). One has a reduetion map

R : Sp(A) . Spec(A). The image R(m) of a maximal ideal m c A is the
maximal ideai (mAAe)IAee.
   Let z E K be a non-zero element such that I7rl Åq l and let A be the
athnoid algebra A: :KÅq zi,...,i. År /I, where I is some ideal of
KÅq zi,...,zn År. Then one has:
AO = lim-AO/TSAO : lim."(KO[zi,...,z.]II)/rS(KO[xi,...,z.]/I). The for-
mal afiine scheme Spf(AO) c spec(KO[zi, ..., z.]/I is the subspace defined by

the ideal generated by T. The map Spf(AO) . Spf(KO) has Spf(AO)XK
as its generic fibre and spee(A) as its closed fibre. The closed points in the

gexeric fibre cerrespend to the peigts ef the aMgeid space Sp(A) a3}d the
cle$ed fibre cerrespoRds with the redgcticR spec(A) ef Sp(A). SiRce tke re-
daction A of A is reduced this gives us a correspendaRce betweeR aMnoid
spaces Sp(A) over K and reduced formal aMne spaces Spf(AO) over KO.
   Next we define a pure aflinoid covering of a rigid analytic space X. A
pure atfinoid covering {X"•}jeJ is a covering of X by affinoid spaces Xi•, ]' E J

such that:
   1)for each 1' E J, Xti intersects only a finite number of Xi
   2)if X]•nXi i Åë then there exists an open affine subvariety Ai2• in the
reductieR Xj ef Xj such that XiAXj = Ri i(Ai3•) and is aR-epeR aMneid
subspaÅíe gf Xj with Ai3• as its redgctieR. Here Rs• : X3t . Xj deketes the

reductieR map.
   A pure aMnoid eovering of X is a covering of X $uch thatthe reductioms
of the afiinoid spaces glue together nicely, In particular we can glue the for-
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mal afline schemes associated with the aflinoid spaces together into a formal
scheme with as its gege!ic fibre the aualytic $pace X acd as its closed fibre
the reduction of X with respect to this covering.
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2 A Pure Affinoid Covering

2.1

Let L c K be aR algebraic exteRsigR ef degree 2 axd let - deRcte the
geRefater ef the Galeis grogp Gag(LIK). Ipthis paragraph we lgek &t SU(L)
'aÅíting on the prejective homogeReous variety PL2. The unitary form is given
by xith + x2gi + xogo w.r.t. a basis eo, ei, e2 of PL2.

   We vieuw SU3 as a group defined over K, i.e. G(K) = SU3(L). Now
G(K) acts on a variety .5lr defined over K such that .XlrXL consists of two

connected components each isomorphic to PL2. The Galois group Gal(L/K)
permutes the two components. We take one connected component X 2 PL2.
   A maximal K-split torus T c G has the form diag(1,t, t--i). Let us look
at the usual G-linearizatioxx of O(1). The set ef stable points XS(T, O(l)) is

givek by x!x2 7E e. The set ef semistable pgiRts XSS(T, O(1)) ccksists ef the

points x with $ix2 pt 0 or xe l e. Note that the complement of the set of
$table points has cedimension 1 in PL2. It consists ef the two lines given by

xi =O and x2 =O.
   Let Y := ngEsu,(L)g•XS(T, O(1)) be the set of points stable for every
maximal K-split torus in G(K). We construct a pure G(K)- invariant afinoid

Åëovering of Y.

2.2 TheBuildingefSU3(L)
In this case the Bruhat-Tits buildikg B is a tree. It cak be defiged by llsing
Le-submodules of PL2, where Le deRetes the riRg of iutegers ef the field L.
Actually they are equivalence classes of submodules of a vector spaÅíe V ! L3

with P(V) ! PL2. Two modules Mi and M2 are equivalent if and only if there

exists aA E L" such that Mi = AM2•
   There are two types of vertices in the building. One type of vertices
correspond to the SU3(L)-images of the LO-module Åq eo, ei, e2 År. The other
vertices correspond to the SU3(L) images of the LO-module Åq eo,Tei,e2 År.
Here x i$ a geRerater of the maximal ideal of LO. Two vertices of the building

are jeined by ax edge if and egly if they are the SU3(L)-image gf the edge
jeiRiRg the vertices Åq eg,ei,e2 År axd Åq eg,gei,e2 År.

   Note that the vertex Åq eo,Tei,e2 År has a degenerated unitary form on
it when reduced modulo 7r, In particular we could also have represented this
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vertex of the building by the dual LO-module Åq eo, ei, T-ie2 År. So the choice

ef modules is not ttnique.

   The stabilizers in SU3(L) of the modules are the maximal parahoric (i.e.
maximal compaÅít) subgroups ef SU3(L). To each maximal K-split torus
T c SU3(L) belongs an apartment in the building. The vertices of the
apartment belonging to T correspond to the modules that have an Le-basis
such that T acts diagonally w.r.t. this basis.

   The $hape of the building depends on wether the extension L ) K is
ramified or not. One has:

q3+1 q+1

q+1 q

if L ) K is unramified

                               if L ) K is yamified
                           1
                 . vertex corTespeRding to a degeRerated modu}e
   Here q is the number of elements in the residue field of K.
   IR P2 there ase also Le-submodules that do Rgt correspeRd with vertices

of the building. They are the modules Åq eo,r"ei,rMe2 År with ln+ml År 1.
They cerrespoxd with segmeRts cf the bgildigg. A finite segmentS : = [Si , S2]

in the building B is the smalle$t connected part of the building containing the

two peints Si aRd S2 ef the bRildikg. Sg a fiRke segmeRt is a path jginiRg twe

points Si and S2 and is contained in any apairtment that contains both Si
aRd S2. Ak infinite segmentwill be either ak apartmekt or a ha}f-apartment
in the building. We have the following lemma:

2.3 Lemma
LetM be the LO-module M =Åq eo,rr"ei,7rMe2 År with ln+ml År 1. Then the
stabilizer PM in SU3(L) of M is the stabiliier Ps of the segment S 1'oining
the two vertices in B corresponding to the modules Åq eo, r"ei, 7r'"+ie2 År and

Åq eo,T-MÅÄiei,TMe2 År ifn+m År 1 and to the modulesÅq eo,T-Mei,rM+ie2 År
and Åq eo,T"+iei, 7r-"e2 År if n + m Åq 1.

Proof: Let M be M =Åq eg, 7r"ei,7rMe2 År and let u$ assume that n+m År 1.
Let Mi :=Åq eo,riei,T-ie2 År and Ni :=Åq eo,Tiei,7r-i+ie2 År. Then M =
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- m+1 -m+1 n MiA n Ni. Hence the stabilizer PM ofthe module M contains the

          -m" -mÅÄ1group H := n PM,n n PN,. Clearly the group H also stabilizes the
          i-wwn-1 ih-n
segment S joining the vertices corresponding to the modules N. and N-.+!
in the bllilding. Fgrthermere PM contains an elemekt w which permutes
'T"ei and TMe2 and maps eo to -eo. This element w maps the module AI. to
N-.+i and vice versa. Therefore w is also contained in Ps. It is easy to see

that both Ps agd PM are gegefated by H and w. Therefore Ps == PM. The
proof for the case when n + m Åq 1 is similar.

2.4 A Pure Affineid Ceverikg for XS(T,O(1))

Each polyhedron A in the picture below defines an aflinoid space. The union
of the$e aMRoid spaÅíes gives a pure aSl}neid coveriRg of X"(T,e(1)). The
aMRoid spaces XA,A associated with the polyhedra A in the picture are as
follows:

If A is one of the infinite polyhedra theR ene has
XA,A::{x E ,F'lllx2"l ff{ llX:•,l s; lrr2"-i,liXI}?,l ff{; lx-"l} or

XA,A :rm {x E PL2117r2"+il rE{ liXs, l s 17r2"1, ltX:}k-, l s 17r-"I}

If A is a triangle then one has
XA,A : : {x E PL211xnl :E{l liX:-,l ff{I IK"ww",lxnl sl lsX,l s{ i#"-il,liX;}t-,l s{; lx2"whil} or

XA,A :me {x E PL211Tnl s{ lfX:t-,1 s; l7rnwwil,l7rnl f{ IIX3g-,1 s{ 17r"-il,llXI}i}-,l }ir 17r2nbeil}.

If XA,A is one of the squares then
XA,A :me {x E ,F'ZUxnl s{ liX;kL,I sl lfnwwil,lxMl f{ ltX;{}•,l f{;; iTm-il}, withn---m ;}it g.

  The scaJing in the picture below is logarithmic.
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/llXIit-,l ITI

   IT-il

lr-21

lT2l 1fX,1

1T21

ITI

1

IT-il

IT-21

      llX:•ol- IT-21 17r-il 1 l7rl lr2I
   The vertices ofthe polyhedra correspond to LO-modules Åq eo, rnei, TMe2 År

with n + m 2 --1. In particular the triangles correspond with three mod-
ules that define a charnber in the building. They are SU3(L)-images of:
Åq eo,ei,e2 År, Åq eo,rei,e2 År, Åq eo,ei,T-ie2 År. The infinite polyhedra cor-

respond with two modules that together also define a chamber. They are
SU3(L)-images of: Åq eo,ei,e2 År and Åq eo,Tei,e2 År or of Åq eo,ei,e2 År
and Åq eo,r-iei,e2 År. The squares correspond to four modules. They
are: Åq eo,r"el,rMe2 År, Åq eo,T"+iei,TMe2 År, Åq eo,r"ebrM+ie2 År, Åq
eo,T"+iei,TM+ie2 År. Where n+m }r O.
   To each polyhedron A we associate the compact subgroup PA of SU3(L)
that leaves the modules associated with A invariant. So we have PA = n PM,
where M is in the set of modules corresponding with the vertices of the
polyhedron A. In particular to the triangles and the infinite polyhedra we
associate the stabilizer of a chamber (i.e. edge) of the building. The modules

associated with the squares correspond al1 with segments in the building.
These segments are contained in the longest segment. The stabilizer of the
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longest segment permutes the other segments corresponding with the mod-
ules associated with vertices of the square. Therefore we associate to the
square a subgroup of the stabilizer of this longest segment. It is the group

denoted by H in the proof of the previous lemma.
   One easily proofs the following:

2.5 Lemma
1)For the finite polyhedra A we have for all x E XA,A:
lgk,;i-(x)l s{ 1, Vg E PA, i = o, 1,2.

2)17ror the infinite polyhedra A we have for all x E XA,A:
lg;I,FS(x)1 Åq- 1, i= 1,2. 19:i':?geS!•,., l S 1, Vg E PA

2.6 A Pure Aflinoid Covering of Y
Let XA,A denote the aMnoid space associated with a polyhedron A and
apartment A. Then XX := ngEp. XA,gA = figEp.g' XA,A C XA,A iS an
open aMnoid subspace. It follows from the lemma above that XA is obtained

by taking the inverse image of the reduction map of an open subset of the
reduction of XA,A•
  Let PB denote the set of polyhedra associated with the building. To get a
pure aMnoid covering {XAIA E IPB} ofY we take open aMnoid subspaces XA
in XA. If A is a triangle or an infinite polyhedron then we take XA :-- XX.

   Now take A to be a square. Let M.,t :=Åq eo,rSei,rte2 År, s = n,n+ 1,
t = m,m+ 1 be the modules assocciated with A• Let HA := ncEsM.,. Pc
whenever the segment SM.,. is not a vertex. If SM.,. is a vertex S we take
                                                    *-HA : = Ps. Let us for g E HA denote by fg the function fg(x) := 9:-ltiÅÄi:kE!Z. (x).

Here the xi are the standard coordinates associated with the basis ei, i =
o,1,2. 0ur definition of Xlk is such that any x E XIk satisfies:

IT"+m+21 f{ lf,(x)l S IT"+Ml for all g E HA with g(SA) = SA•
A point x E XA also satisfies:

V(g E HA)lf,(x)l s{ Ir"'Ml .

Now we can define XA for squares:
XA := {x E XAIIf,(x)l = lr"+Ml for all g E HA with g(SA)nSA =: SM.,m}•
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2.7 Theorem
The afi7noid spaces XA form a pure affnoid covering of
Y : figGsu,(" g ' X"(T, O(1)).

The companents of the reduction ofY with respect to this covering are proper.
The cempaRent$ of the red#ctien cofTespaRd 1-1 with the SU3(L)-images of
the LO-modules Åq eo,T"ei,TMe2 År with n+m 2 -1.

Prooft The purity of the covering {XAIA E CPB} will be proved in the next
paragraph. Alse the fact that tke cevering gives ail of Y will be proved in
paragraph 3.
   The preof that the componeRts ef the rednctiell are preper is e$sentially
the same as in [vdPV]. The fact that the components correspond with mod-
llle$ as givefi abeve is clear from the ceRstructioR.

2.8 Remark
The SU3(L) orbits of the cempeitents ef the reduction are represented by the

modules Åq eo,ei,r"e2 År, n ) -1.
   If A is a triangie and A' is an infinite polyhedron such that both determine

the same chamber (i.e. edge) in the building, then Xc : = XA UXA, is also
an affinoid space. The covering {Xc, XAIC a chamber, A a square } is again

pure. The components of the reduction of Y with respect to this covering
corrrespond with the SU3(L) images of the modules Åq eo,T"ei,TMe2 År, n +

mÅrg.
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3 Torus Invariants

3.1

In this pasagraph we study the terus invariaRts in some detail. ']rhis will
enable us to complete the proof of theorem 2.7.

   We fix a chamber Cg ix a fixed apaftemeRt Ac. There is a maximal K-
split torus To associated to Ao. We have basis eo,ei,e2 of J'Z such that To

acts diagonally and the hermitian form has the standard form. We take as
Co the chamber defined by the Lo-modules Åq eo,ei, e2 År and Åq eo,rei,e2 År-
Forxe Xs(To,O(1)) we define: rg(x) :-- lg:i:l,ge!., (x)l

Fer x G X = PL2 we defifie r(x) as follews:

               -*r(x) := infgEG(K) lg:i#",g"Z., (x)l if x ff XS(To,O(1)) and

r(x) == e if this is Rot the case.

For the chamber Co ff Ao we define the fo11owing analytic space:
Zc,,A, :xe {x G PL2117rl f{ IiX;e-, (x)l S 1}•

We take for g E SU3(L) Zgc,,gA, := g(Zc,,A,). Note that Zc,,A, is not an
aMnoid space. The union UcEA Zc,A = XS(T,O(1)) where T is the torus
beleRging tg AL.

3.2

r(x)

  Prepesitien

= O o -(g E G(K))g"xig'x2(x) : O

Prooft The -ts part is trivial. So let us assume that r(x) = O. IfxÅë
X"(Tg,O(1)) theR we cim Åíake g me id., se we may assgme Åíhat this is Rot
the case. Take a sequence gi E G(K) such that rg,(x) . O for i - oo. If
rg,(x) ex O for someithen there is nothing to prove anymore, so we assume
that rg,(x) 7eE e for a}l i. Let Ci be the chamber with x E Zc,,g,A,. [l7here

are two possibilities. Either there is a bounded subset of the building B that

coRtaiRs iRfinigely maRy Ci er there dees get exist such a sxbset. We treat
both cases separately.

   FiTst we assume that there i$ a bouaded subset F c B that contains
infinitely many chambers Ci. Since F contains only finitely many chambers
there is at least one chamber C ff F such that Ci = C for infinitely many
indices i. We itow restrict o"rselves te the indnite sequence gi with Ci = C.
After replacing each gi in this sequence by gigi-i (and x by gi(x)) if necessary,
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we may assume that all the gi are contained in the Iwahori subgroup Pc.
Since Pc is compact the gi converge to an element g E Pc. Clearly we have
g'xlg'x2 = O.
   Next we assume that there is no bounded area in the building B containing

infinitely many chambers Ci. Let Hj, ]' -- 1,...,s denote the connected
components of B - Ci . There is at least one Hj containing infinitely many

Ci. We choose one such component Hj and denote it by H.
   We take the subsequence of gi such that Ci is contained in H. We look
at the apartements Ai determined by the gi. If Ci is contained in infinitely

many of them then we are done, since we can restrict ourselves to these
and assume that the gi are contained in Pc,. Then again we find a g with
g'xlg"x2 = O.
   So we may assume that Ci is contained in only finitely many of the Ai.
We now take the subsequence of gi with Ci E H and Ci not in Ai if i År 1.
Without loss of generality we may assume that Ci = Co and that Ai = Ao.
   Using lemma 3.4 below we have a gi E G(K) with giAo == giAo and
fNi,ni E Pc, such that g,'• xi = cin:• xj and g,'• x2 = c2i•'xj and ci,c2 E L" with

lci • c21 2 1. Since al1 Ai c H either j' = 1 for al1 i or ]' = 2 for all i. we
                       -r* -.-assume that ]'  = 2. Since 1;gil:IS;r. :l,gr;i(x)1 = 1 we can take gi = gi.

   There are infinitely many indices i such that 1}i/i::i(x)l S 1 or infinitely

                                            tmany such that 1{f;fi,:(x)1 S 1. Let us assume that the first is the case. Then

                iwe take the sequence of ni with 11ii/f;. X.2, (x)1 S 1. Since 14'l;!fi (x)l is bounded we

                             'have that rh,(x) . O. Since hi E Pc, the sequence converges to an element
h in Pc, with rh(x) = O. This completes the proof.

3.3 Corollary
Y := ngEsu,(L) g' XS(To,O(1)) == {x E X = P,21r(x) 7E O}

Proof If x E XS(To,O(1)) then there exists an element g E SU3(L) with
rg(x) = O if and only if there exists a maximal K-split torus T c G(K) =
SU3(L) with x Åë XS(T, O(1)). Now the corollary follows directly from the
proposition above.

- 70-

13



3.4 Lemma
LetA be an apartment net ccntaining Cg. Assume that the distance d(Cg, A) =
n. Then there estst f,hE Rc, and an elementgE G(K) with gAg =:A such
that g"xi = cih"xJ•, g'x2 = c2f'xj for some j' G {1,2} and ci,c2 E L" such
that Ici•c21 = IT--"ww"j1. Here si rm O and s2 :1. The index 2` depends only

on the apartement A.

Prooft Let H denote the path joining Ce with A. It coRsists of the chambers
Co,Ci,•••,C., with CinCi+i y6 Åë, C.nA pt Åë and C....inA = O. Let S
be the vertex S := HAA. There are exactly two apartments Ai,A2 in the
building that contain Cc and have a half apartment in common with both
Ag agd AL. Beth coktainthe path H.
   Since Pc, act$ transitively olt the apartments containing Ce there are hi
in Pc, such that hix4o = Ai, i ny-- 1,2. The choice of the hi is such that either

ei or e2 is fixed by both hi. Let us assume that it is ei.

   The Le-module assocciated to the vertex S is
M: : hi(Åq eg,xMe2,#-Me2 År), i ww- l,2 if n =: 2m -l aRd
M :me hi(Åq eo,TM+iei,r-Me2 År), i == 1,2 if n me 2m.

Therefore we have:
M :Åq hi(eo),TM(+i)hi(ei),T-Mhi(e2) År=Åq hi(eo),TM(+i)ei,r-Mhi(e2) År,

i= 1, 2.

Since S E A aRd ei is Rct fixed by the torus beloRgikg to A we kave:
M =Åq hi(eo),T-Mhl(e2),T-Mh2(e2) År=Åq fo, rdMfi,T-Mf2 År
Here fi := hi(e2), i -ww- 1,2 and fo is asuitable representative ofhi(e2)Å} n h2(e2)Å}

and therefore satisfies hrxi = hixi = O. Furthermore hTxi(A) == h5xi(fe) =
e. After multiplying the fi with sgitable uRits in L' She hermitiaR form has

w.r.t. the basis fe,7r'MA,x-Mfe the following shape yiY2 + y2gi + yeZke if
n = 2m - 1 and T( yi g2 + y2 Yi ) + yo 9o if n = 2m. Here yi =: ci h;• xi, i, 2' --wh- 1, 2,

i 7E j with ci E L' satisfying led xe lr-Ml.

   If n = 2m then g E G(K) defined by g(ei) = T-Mfi, i = 1,2 and
g(ee) == fe satisfie$ tke lemma. If n = 2m - 1 theR we can take ak eleraeRt
g given by g(ei) : 7r-MA, g(e2) : 7r-M-if2, g(eg) = fo.

   When both hi fix e2 the proof is similar.
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3.5 Lemma
ijx G XA,gA, a#d r,(x) xe r(x) 7S e then x E XA.
In particular tve have Y (: UA XA.

Preef; It i$ suMcieRt te preef the }emma for tke case gAg = Ag• Ifx G XA,A,
then we have for all h e PA Itt{li?. (x)1 S 1, i d- 1,2. The minimality of

rid(x) # O implies that rh(x) 2 1 for all h G PA. 'III'herefore lth{;?il (x)1 : 1 for

all h ff PA. HeRce $ E XA.
  The second statement in the iemma follows from the fact that when x E Y
one has r(x) pt O. Therefore we can find an apartment A = gAo with
rg(x) rm r(x). Now x E XA,A for some polyhedroR A. Hence x E XA.

3.6 llemma
x E XA, A E gALG, lg;.illSiizg;g.,Si., (x)l fill 1 = x ff Yi

Prooft Let us first assume that the polyhedron is either an infinite poly-
hedroA er a triaxxgle. Therefefe A determiRes a chambef C E gAe. It is
suMcient to prove the lemma for the case where C = Co and gAo = Ao.
  Since x E XA we have ILt!;lii? (x)l = 1, i = 1,2 for al1 h E Pc,. So for

all apartmegts hAg with h E Pc, we have rh(x) == l. Usikg lemraa 3.4 we
easily conclude that for the apartments gAo that do not contain Co we have
r,(x) llr 1. So for all gG SU3(L) we have r,(x) }r 1. Hence xE Y.
  Let us Rgw assllme that A is a $quaye. Thek gRe of the modxle$ as$ociated
to A has to be of form M :=Åq eo,r"ei,rrwne2 År. Therefore the group HA
as defined in section 2.6 is HA = ,Ps, where S is the vertex corresponding to

the medule M. Now x G XA has the property that for a}l g E Ps oRe has
i7r21 S lf,(x)i S 1. Here f, is as defined in section 2.6. Now nsing lemma 3.4

one concludes that r(x) pt O. Therefore x ff Y.

3.7

On the apartment Ao we take a coordinate function y which has en the vertex
cerrespending with the medule Åq ee,K"ei,xMe2 År, n+ m rm O, 1 the v&lue
n- m. We define a map gA, : X"(To,e(1)) . Ao by
gA, (x) = p O v( IXIIt, (x)) = sl (p)
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Here v is the additive valuation of L, normalized in such a way that v(T) = 1.

Note that {oA,(t•x) :t•gA,(x) fort ff Tg. This fuRctigx gA, caaRot be
extended to the set of semistable points. However we can also associate to
each stable point a segment in the building. We can also do this for semistable

  .pomts.
   To each point x G XS(To,O(1)) with xo l O we associate the fo11owing
'segmeRt iR Ag: S.,A, : = Ipi,p2], where the pi are determiRed by 2v(iXsk, (x)) rm

y(pi) and 2v(diX,(x)) :y(p2). If xo =O then we take S.,A, :=: Ao. Note that
Sx,A, is a pgikt if aRd oRly if lll;?iik.,(x).i me l. If xg 7t! e theR it follows from

fXlk,•fXig, me iX:, that gA,(x) is exactly in the middle of S.,A,.

   We can also associate a segment to the semi--stable points whieh are
non-stable. These segments are either haif-apartments or apartments. If
x = (xo,xi,O) with xo,xi pt O then Sx,A, := lime.o Sx(e),A,, where x(e) me
(xfi,xi,e). Fer x = (xg,e, x2) with xe,x2 ptf e we take Sx,A, : = lim6..o Sx(E),Ao

where x(6) = (xo,6,x2). For x = (1,O, O) we take S.,A, := Ao. For a general
apartmeRt A me gAg and x ff XSS(gTgg-i,O(1)) we take Sx,A : : g(Sg-iÅqx),A,)•

   We can also associate to each module m = Åq eo,T"ei,TMe2 År a segment
SM,A, :xe Sx,A,, where x is the point x rm (1,7rne!,rMe2). Note that SM {II

SM,A,, where SM is the segment defined in seetioR 2.2. Generally the$e
segments are not equal! For instance if we take a module M with n + m rm
1 theR SM is the vereex S cofrespokdikg tg this modgle. Whereas SM,A,
consists of the two chambers contained in Ao that contain the vertex S.
   Let Z := AgEsg,(wg• XSS(Te,O(1)) and let Z+ be the sllbspace Z+ :rm
                            "*{x E Zi if rg(x) = r(x) then IS:Liti&giE;}.. (x)i f{ 1}. For x E Z+ we can also

define a segment S. in the building independent of the apartment. To do
this we need a lemma.

3.8 Lemma
Letx G Z+ and assume that S.,gA, is net a point. Then there exists an
apartment A such that S.,gA, c S.,A and S.,A is maximal.

Preeft Take a chamber C in the building such that CA S.,gA, centaiRs at
least two points. Now we look at the segments S.,fgA, with f E Pc. From
the compaÅítkess of the gyoup Pc k fellows that we caR fikd at least eke
maximal segment Sx,fgA, containing Sx,gAo•
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3.9

Let us define for x E Z+ the set of apartments which contain a maocimal
. segment for X:
.M(x) := {AIA is an apartment with S.,A maximal and not a point }.
Furthermore we define Sx := nAEM(x) Sx,A•
We have for x E Z+ the following lemma:

3.10 Lemma
A E M(x) if and only if S. c A.

Proof We fix a chamber C as follows. Take an apartment A in M(x). If
x E Y we take C such that gA(x) E C. If x ÅëY then we only demand
that C E S.. Now one applies lemma 3.4 to the chamber C. After some
calculations which we omit here, the lemma follows.

Some more calculation yields the following:

3.11 Proposition
Letx E Z+ andA E M(x). Suppose S.,A = [pi,p2], where we allowpi = Å}oo
for (half-?apartments. Let Ci E A be the chamber with pi E Ci and such that
Ci nS.,A contains at least t2vo points. Ifpi = Å}oo we do not define Ci. ij Ci

is defined and Ci n S.,A contains a vertex Si corresponding uiith a degenerated
module satisfying 2• ly(pi) - y(Si)1 S ly(pi) - y(p2)1 then we take qi := Si.
Otherwise we take gi := pi. Then S. is the segment [qi,q2]•

3.12 Lemma
xE x.nz+ o si g s. g sA+

Proof Since x E Z+ the polyhedron A has to be a square. For a square we
define SA+ := SA and Si as being the segment SM. Here M is the module
associated with A that gives the shortest segment. Again the proof consists
of explicit calculations that we omit.
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3.13 Lemma
IfxE XA,A andxÅëY thenx fi( XA.

Proof Ifx E Z -Y then the lemma follows from the lemmas 3.6 and 3.12.
If x gZ Z then one easily calculates that x Åë XA.

3.14 Proposition
The covering {XAIA E 1ÅrB} is pure and UA XA = Y•

Prooft From lemmas 3.5 and 3.13 one easily derives that UA XA == Y. So
we have only to show that the covering is pure.
   Let us fix a polyhedron A. Let us assume that XA nXA, 7! O. If there
exists an apartment A such that both A and A' are polyhedra associated to
A. Then we must have AnA' l O. This gives us a finite number of A'. If
there does not exist such an apartment A then at least one of the polyhedra
A and A' has to be a square. If both are squares then it follows from lemma
3.12 that one has SA+ n SK, = SE = SE,. Again this gives us a finite number

of A'. If one of the polyhedra is not a square then this polyhedron determines
a chamber C in the building. Clearly we must have that Cn SA l O if A' is
not a square. The other case is similar. Again we get a finite number of A'.
   Next we have to show that if XA A XAt 7E Åë the intersection has property

2 of the definition given in section 1.4. If both A and A' are polyhedra
associated to some apartment A then this follows directly from the fact that

the intersection of XA,A and XA,,A has this property. If there is no such
apartment A then one has, if both A and A' are squares, XA n XAt = {x E
YISx == SA- --- SE,}. Therefore also in this case the intersection has the
required property. The other case is more or less similar and we leave it to
the reader.
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