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Recent Results on Moduli of Abelian Surfaces
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In the last few years, several people have been considering the moduli of abelain
surfaces with non-principal polarisations (and often a bit more structure). I intend to

explain in some detail what has been done, and why, and to descibe some open problems.

1. Abelian varieties and polarisations.

For the sake of completeness, and because there has been some work on moduli of higher-
dimensional abelian varieties with non-principal polarisations, I shall not restrict myself to
surfaces until I have to. We shall, in fact, almost always work over the complex numbers,
and accordingly I shall describe things from the point of view of complex manifolds.

A complez torus is a quotient X = C/A of the g-dimensional vector space C? by a
lattice A of rank 2g: thus A = Z?Y and X is a compact complex manifold of dimension g.
In general X is not an algebraic variety. The well-known Appel-Humbert theorem, which
can be found in any book on abelian varieties (for instance [M] or [LB]), gives a necessary
and sufficient condition for X to be algebraic: there should exist a Hermitian form H on
C9 which is positive definite and takes integer values on A. If such a form exists then X is
said to be an abelian variety and H is called a polarisation. The terminology is justified by
the fact that “polarisation” in this sense coincides with the usual sense of “polarisation”
in algebraic geometry: there is a one-to-one correspondence between such Hermitian forms
and ample line bundles on X.

With respect to a suitable Z-basis for A, the imaginary part E = Im H of H (which

is, of course, an alternating bilinear form) has matrix
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for some diagonal n X n matrix D = diag(dy,...,d,). The d; can be chosen to be positive
integers such that d;|d;4;; subject to that, they are determined uniquely by the polarisa-
tion. The polarisation is said to be of type (dy,...,dy), or to be a (dy,...,dy)-polarisation.
A principal polarisation is a polarisation of type (1,...,1).

For practical purposes we may assume that d; = 1. If £ is an ample line bundle
determining a polarisation of type (di,...,d,), then the polarisation given by £®% is of
type (ady,...,ady), so to assume d; = 1 is just to take the smallest ample line bundle in
the ray in Pic X®R generated by the polarisation.

Principally polarised abelian varieties have attracted most attention, not least because
the Jacobian of a curve is an abelian variety that comes with a natural principal polari-
sation. However, non-principal polarisations do also arise naturally, for instance on Prym

varieties.

2. An example: Horrocks-Mumford surfaces.

The Horrocks-Mumford bundle (see [HM]), which we shall denote by F, is probably the
most famous vector bundle in the world. It is a rank 2 bundle on P* with many beautiful
properties. The beautiful property of the Horrocks-Mumford bundle that we are interested
in is this one: if s € I'(F) is a general section then the zero set of s is an abelian surface
X,CP*%, and O(1) is a (1, 5)-polarisation. Every abelian surface in P* arises in this way,
and a (1, 5)-polarisation on an abelian surface is always very ample and embeds the abelian
surface in P*.

Suppose p is an odd prime and X is a (1, p)-polarised abelian surface with dual abelian
variety X. The polarisation induces a map X — X. The kernel of this map is a vector
space over the finite field F,, which inherits an alternating form from E. A level structure
is a choice of symplectic basis for this kernel.

In the case of Horrocks-Mumford surfaces, the section s determines a level structure
on X,, which arises because X, is invariant under the action of the Heisenberg group on
F. It follows that an open subset of PT'(F) = P® parametrises (1,5)-polarised abelian

surfaces with a level structure.



3. Moduli spaces.

Henceforth we consider abelian surfaces with a (1,%)-polarisation for some integer ¢t. One
expects a family of abelian surfaces with extra structure to be parametrised by a Siegel
modular threefold (unless the structure is such that its existence imposes conditions on
the abelian surface, in which case other moduli spaces such as Hilbert modular surfaces
arise). By a Siegel modular threefold we mean a quotient of the Siegel upper half-plane of
degree 2 by an arithmetic subgroup of Sp(4, Q). The following case, which generalises the
case of Horrocks-Mumford surfaces, has attracted much attention.

Let A; , be the moduli space of (1, p)-polarised abelian surfaces with a level structure,

where p is an odd prime. The Siegel upper half-plane is
S, ={Ze€My(C)2="2ImZ >0}

and Sp(4, Q) acts, as usual, by fractional linear transformations: that is, if y = (é‘ g) €
Sp(4,Q) then v: Z+— (AZ + B)(CZ + D)~'. We put
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which is obviously an arithmetic subgroup. Then 4,, = p, p\Sz. (Strictly speaking,
Apis I"l,p\Sz’ where F’l’p is a subgroup of Sp(4, Q) conjugate to I'; p, but this makes no
difference and it is convenient to work with a subgroup of Sp(4, Z) if possible.) Similarly, if
fil‘p is the moduli space of (1, p)-polarised abelian surfaces (no level structure this time),

and
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(we can’t stay inside Sp(4, Q) now), then /il,p = f‘l’p\SZ.

A, , is a quasi-projective variety, but it is non-compact and, since I'; , has torsion no
matter how large p is, it is singular. There is a natural compactification of A; ,, the Satake
compactification, but it is quite badly singular: it is better to compactify toroidally (adding
divisors), and in fact in this case there is a natural choice of such a compactification. The

toroidal compactification Aj , has only finite quotient singularities. It is studied in detail



(along with the corresponding degenerations) by Hulek, Kahn and Weintraub in their
recent book [HKW1] and the singularities are described in [HKW2].

The reason for restricting attention to the case of an odd prime is that it is then
possible to describe the boundary A7 ,\ A;,p. If the polarisation type is (1,t) and ¢ is not
a prime (t = 2 is a special case anyway) then the boundary has many more components and
the picture becomes extremely complicated, though it is possible to make a special study
of A7, for any ¢ that seems particularly interesting (t = 4, for instance). Some results can
be got by methods that do not require knowledge of the geomnetry of the boundary, but

for most purposes we need some such information.

4. Known results.

We shall try to understand the birational geometry of A;; and A7 .

A. The Kodaira dimension.

It follows from the remarks about the Horrocks-Mumford surfaces, above, that k(A7 ;)
= —oo and indeed that A]; is rational. Recently, Manolache and Schreyer ([MS]) have
shown that A7 ; is rational. They look at the syzygies of abelian surfaces in P® and produce
a birational equivalence between A} ; and a Fano variety of type V33, via polar hexagons,
which is known to be rational by a theorem of Mukali.

In the other direction, Gritsenko ([G]) shows that x(A7 ;) > 0if p > 13 and k(47 ) >
1if p > 29, and Hulek and I proved (in [HS1]) that x(A] ,) = 3 if p > 41. Both these
results are obtained by looking at modular forms for I'y ,, but in rather different ways, as
I will now explain.

If f is a modular form of weight 3k for T'; , then f(Z)(dm A dry A d73)®* (where

[ 7T
Z = Ty 73
desingularisation of A, ,, at least if k is sufficiently divisible. It extends, possibly with

€ §2) gives a k-fold differential form, possibly with some poles, on a

logarithmic poles, to the boundary of a desingularisation of A} ,. In [HS1] the method is
to obtain a large supply of modular forms of high weight (which is easy) and then count
the conditions that the corresponding differential form must satisfy in order to extend
without poles. It turns out that the dimension of the space of modular forms of weight 3k
is about z=p°k* and the number of conditions is about 8p*k?, so if p > 41 we really do get
order k3 pluricanonical forms. In [G], on the other hand, Gritsenko produces cusp forms of
weight 3 for T, (actually for T, ;). This is very difficult to do but the resulting canonical

(not pluricanonical!) form extends automatically to the whole of a desingularisation of



A}, 50 pg(A} ;) > 0. In particular no information about the boundary is needed and it is
therefore possible to get results about most ¢: in some cases where all the prime factors of
t are small (for instance ¢t = 30) the method fails to produce any forms.

In this context we should also note that O’Grady, in [O’G], proved that AI‘pz is of
general type if p > 17.

Nothing at all is known about x(A] ;;) or about x(AJ 3), but it would be astonishing
if A}, were not rational. I suspect, on no evidence whatever, that x(A7 ;) = 3, though it

would be much more fun if it were not.

B. Hodge and Betti numbers.

Let A, be a desingularisation of A} , (there is a fairly obvious choice of desingularisa-
tion to make). It is quite easy to see that the first Betti number b;(A,) is zero. Gritsenko’s
results give lower bounds on h*? and Zintl has calculated the Euler characteristic (and is
calculating the other Chern numbers). The Euler characteristic of A} , is very negative,
so bz is large for large p. Apart from that, nothing is known. I have hopes that b; and b3
can be calculated by reducing mod g and using the Weil conjectures (Lee and Weintraub,
in [LW], carried out such a program for principally polarised abelian surfaces of level 2),
but the technical difficulties are considerable. For small p we might be able to calculate
the Hodge numbers via modular forms, but we would probably only be able to get sharp
enough bounds to do this if some of them vanished, which is unlikely to be the case for

large p.

C. Miscellaneous.

Hulek and I have recently shown, in [HS2], that A, is simply connected. (I believe that
this should be true for most, perhaps even all, Siegel modular varieties, except, obviously,
curves.) This (rather easy) result raises the possibility of A;; (or even, for all we know, A3)
being a Calabi-Yau 3-fold. Zintl’s calculation shows that b3(A} ;) is quite large (about
50), which proves nothing but suggests that A}, is probably not rational (there would
have to be a lot of surfaces that could be contracted and if there were we would expect to
have seen them by now).

The proof that A, is simply connected runs like this: 7;(A;) is a quotient of 'y ;. The
principal congruence subgroup I'(p?), that is, {y € Sp(4,Z) | v = 0(mod p?)}, is contained

in I'; ;, and it follows from a result of Knéller that

I‘(pZ)QKer (¢ : I‘l‘p—wrl(A,,)).

A7 —



The element
1 U
Mo = (0 1 ) ’
1

where U = 0 8 , is also in this kernel: to prove this one finds a loop in ¢(My) and
constructs an explicit null homotopy, contracting the loop via a boundary point. Then it
can be shown by direct calculation that the smallest normal subgroup of I'; , containing
both I'(p?) and My that is invariant under conjugation by f‘l,p is 'y p itself. As Ker¢ has

all these properties, it follows that m(A,) = 1.
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