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COMPLEX STRUCTURES ON PARTIAL COMPACTIFICATIONS
OF CLASSIFYING SPACES D/T' OF HODGE STRUCTURES

Sampei Usui (Osaka University)

§1. Preliminaries.

We recall first the definition of a (polarized) Hodge structure of weight w. Fix a free
Z-module Hz of finite rank. Set Hq := Q® Hz, H = Hr := R@ Hz and Hc .= C® Hz,
whose complex conjugation is denotéd by ¢. Let w be an integer. A Hodge structure of
wetght w on Hg is a decomposition

(1.1) Hc= @ HP® with oHPI =HP,

ptg=uw

FP o= @,,,)p H?9' is called a Hodge filtration, and HP? is recovered by H?? = FPNgF9.
The integers

(1.2) BP9 = dim HP*

are called the Hodge numbers.

A polarization S for a Hodge structure (1.1) of weight w is a non-degenerate bilinear
form on Hq, symmetric if w is even and skew-symmetric if w is odd, such that its C-bilinear
extension, denoted also by 5, satisfies

S(H™,cH" 7)) =0 unless (p.q)=(p.q),

(1.3)
t?795(,0v) >0 forall 0#ve HPY.

For fixed S and {/AP9}, the classifying space D for Hodge structures and its ‘compact
dual’ D are defined by

D := {{HP7} | Hodge structure on Hg with dim H?? = h?9,
(1.4) satisfying the first condition in (1.3)},
D := {{HP"} € D| satisfying also the second condition in (1.3)}.

These are homogeneous spaces under the natural actions of the groups
(1.5) Ggc := Aut(Hg,S), G =Ggr :={g9 € GclgHr = Hr},
respectively. Taking a reference point r € D, one obtains identifications
(1.6) D~Gg/lc,, D=~G/I,,

where Ic, and I, are the isotropy subgroups of G¢ and of G at r € D, respectively. It is
a direct consequence of the definition that

O(2h,k), I ~ { UhY?) x - x UL x O(RYY) if w = 28,

1.7 G~
(.7) { Sp(2h, R), UhY?) x - x UMY fw=2t+1,
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where k := 3 ;1< RP%% and h i= (dim H - £)/2 if w = 2¢, and h := dim H/2 if
w = 2t + 1. It is an important observation that I, is compact, but not maximal compact
in general. Hence D is a symmetric domain of Hermitian type if and only if
w=2t+1; A" =0 unless p=1t+1,t.
w = 2¢; RP?=1forp=t41,¢t-1, h"" is arbitrary,
(1.8) hP% = () otherwise; or
hPP=1forp=t+a,t+a—-1,t—a+1l,t—a
for some a > 2, h”% = 0 otherwise.
We denote
(1.9) I'={g€G|gHz = Hz}.
Then I acts on D properly discontinuously because the isotropy subgroup I, is compact
and I is discrete in G.

A reference Hodge structure r = {HP7} € D induces a Hodge structure of weight 0 on
the Lie algebra gc := LieG¢e by

(1.10) 88 " ={X € gc | XHP'? C HF**1™* for all p, q}.

One can define the associated Cartan involution 6, on Lie G := g induced by
(1.11) 0.(X) = Z(_l)axs,wa for X = Z(_l)aXa,—s €ac = @98—3-
.| s B

We take the standard generators for the Lie algebras sl;(R) and su(1,1) which are
related by the Cayley transformation Adc,, where

' T [0 1 1 /1 ¢
42) ameo(5(10)) =50 ):
as follows:
1 0 0 1 00
sh(R) 3 (0 ~1>’ (0 0)’ (1 0)’

(1.13) Ade | ! i !

s s (09 (2 )12
Remark(1.14). ¢ € b := (upper-half plane) ~ SLy(R)/U(1) corresponds to a Hodge
structure C? = Hg’o & H?’] with H' = C (i) The Hodge structure on g)c :=
51(C) induced by 7 € b coincides with the canonical decomposition by the standard

‘ ) 0 1
H-element’ 1 (_1 0> (cf., e.g., [Sa, IL §7]):

- - 1747 1 0 -1 1/-7 1

1,-1 0,0 L1 _ !

fic=gic toctoc =p-ttctps = CE (1 —-i)+c (z 0 >+C§ ( 1 i>'
From now on, we assume that w > 0 and all Hodge structures of weight w satisfy

HP"9 = 0 unless p, ¢ > 0.
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Definition(1.15) (cf. {Sc, p.258]). An SLj-representation p : SLy(R) — G is horizon-
tal at r = {HP?} € D if p, <% <_11 :)) € g5 (see (1.10)). When this is a case, we
call the pair (p,r) an SLy-orbit.

Remark(1.16). It is clear that (p,r) is an SLy-orbit if and only if p, : s[(R) — gisa
morphism of Hodge structures of type (0,0) with respect to the Hodge structures induced
by ¢ € U and r € D, respectively. A horizontal SLy-representation p induces an equivariant

horizontal map p: P! — D with p(:) = r:

SLy(C) —£— Ge

! !

P —" D
This is a generalization to the present context of the notion of ‘(H,)-homomorphism’ in

the case of symmetric domains of Hermitian type (cf., e.g., (Sa, II. (8.5), III. §1]).

Let (p,r) be an SL,-orbit and 5 : P! — D the associated horizontal equivariant map.
We set

1 0 0 1 0 0
(1.17) Y:=p,<0 _1),N+:=p,(0 0),N_:=p,,<1 0),c:=p(c1).

We denote by H(Y'; A) the A-eigen spa_ée of the action of Y on H, and set
(1.18) W(Y )u-j = P H(Y; ).
A5

Lemma(1.19). Let (p,r) _be an SL,-orbit. Then, in the above notation, limjy, ;.o
exp(—2zN;) - p(z) = ¢! -r € D. The corresponding filtration, denoted by Feoo, together
with W(Y'), determines the limiting S-polarized split mixed Hodge structure.

Proof. 7e) = pti-+ (= =) = (e (e =)+ (§ ) 1) =emllz =) N2

hence exp(—2Ny) - p(z) = exp(—iN4) - r = E(exp (—i <8 é)) . i) = p(0). On the
other hand, ¢7 - r = p(cy? - ¢) = p(0).

The second assertion follows from [Sc, (6,16)] and [U, (2.11), see also(2.12)}. (N, L in
[Sc, (8.16)] correspond to N4, N_ in our present notation, respectively.) O

§2. Line bundles L(W).

Let W,,_; be a subspace of Hq defined over Q which 1s isotropic with respect to 5, i.e.,
S{u,v) =0 for all u,v € W,,_,. We assume throughout this paper that

1 if wis odd,

2 if w is even.

(2.1) dimW,_; = {
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Let W,, be the anihilator of W,,_; in Hq with respect to 5. Then we have a filtration W
Of HQ:

(2.2) 0 C Wu'—l C Ww C Wu.+] = HQ

By abuse of notation, we also use W for the filtrations induced on H = Hgr, H¢ if it does
not lead any confusion. Note that (—1)*~!-symmetric bilinear forms on W,_;, form a one
dimensional vector space.

We define subgroups of G:

NW):={g€G|gW; =W,forall j}°,
(2.3) U(W): the unipotent radical of N{W),
C(W): the center of U(W),

where { }° means the connected component containing 1. The induced sub- and sub-
quotient groups of I are denoted by

(2.4) Tw = TAN(W), U(W)z := TNU(W), C(W)z := TNC(W), T := Tw/C(W)z.

Definition(2.5). N € ¢ := Lie C(W) is positive if N € R~q - N, for some SL;-orbit
(pyr) with W(Y) =W (cf. (1.17), (1.18)).

Lemma(2.6). (i) dimC(W) = 1.

(ii) C(W) is a normal subgroup of N(W), and Ad(g)X = det(g|Wy-_1)X for g €
N(W), X € c =LieC(W).

(iif) Let r € D be a reference point. Then C{W )¢ acts on D(W) := C(W)c - D freely.

Proof. Since we assume (2.1), (i) is obvious in the case of odd w. In order to examine
(1) in the case of even w, we choose a Q-basis of Hq according to the filtration W so that
the polarization form S is represented by a matrix S = antidiagonal(J, A, J), where J :=
antidiagonal(1l,---,1) of rank > 2, A := +I. In this basis, any X € ¢ represented by a

matrix
0 0 A b
X=10 0 0 ,whereA:(a d) is a 2 x 2 matrix.
000 ¢

From ‘XS + SX = 0, we can derive d = —a,b = ¢ = 0 elementarily. This completes the
proof of (i).

By using the above basis, (ii) can be also verified elementarily.

Let N be a positive basis of ¢. Since N is nilpotent, v : C =~ C(W)ec — D(W) C D,
z — exp(zN), is an algebraic morphism. v is not a constant map, because the isotropy
subgroup I, of G at r is compact hence it does not contain a unipotent subgroup C(W) ~
R. It follows that v is quasi-finite. If v(2,) = v(z23), 21, 23 € C, then exp((z; —29)N)r =1
and so Z(z; — z2) C v~ !{r), which occurs only if z; = z;. This completes the proof. O
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By Lemma (2.6.ii1), the quotient D(W)' := D(W)/C(W )¢ is a complex manifold and
that the principal C(W)g-bundle D(W) — D(W)' is a complex affine bundle. Starting
from this affine bundle, we shall construct a complex line bundle L(W) — D(W)' in the
following way. Take a quotient bundle

(2.7) D(W)/C(W)z — D(W).

Set T(W) := C(W)c/C(W)z. Using the positive generator N of Lie C(W )z, we have an
identification T(W) 5 C*, exp(zN) — exp(2wiz). Let C* C C be the natural embedding.
We denote by

(2.8) 7 : L(W):=(D(W)/C(W)z) x® C* = D(WY)

the complex line bundle associated to the principal C*-bundle (2.7).

Proposition(2.9). The action of T'w on the C*-bundlc (2.7) extends to the action
on the complex line bundle (2.8), which commutes with the action of T(W). 'y acts
properly discontinuously on D(W)' and hence on L(W). '

Proof. The first part follows easily from (2.6.11) and an observation: det(y|Wy.;) =1
forall vy € I'w.

In order to prove the second part, we use the C*-bundle (2.7). Given a compact subset
A' ¢ D(W). Put A := 77 '(A'). Take a neighborhood V, of a € AN (D/C(W)z)
satisfying that the closure V, is compact and contained in D/C(W)z. Then {n(V,)|a €
AN(D/C(W)z)} is an open covering of A’ and so we can choose a finite subset {n(V,,)|1 <
i < n} which covers A'. Sct V = J; i, N(W)' - V,,, where

(2.10) N(W)' = {g € N(W)| det(g|Ww-1) = 1}.
Then, by construction, we see that V' C D/C(W)z, (V) D A’ and that the restriction
m:V — D(WY) is a proper map. Since 'w C N(W)! whose action preserves the fiber
coordinate of (2.8), we see that

{7€T—‘w!7-A'ﬂA’#m} = {7€Tw}7~(AﬂV)ﬂ(AﬂV) %@}
The latter set is finite because the action of Tw on D/ C(W)z is properly discontinuous
and ANV C D/C(W)z is a compact subset. This proves that I'y acts on D(W)' properly

discontinuously. The assertion on the action on L(W) follows from this easily. O

§3. Boundary components B(W,p).
Let {hP7} be a set of Hodge numbers in (1.2). For a filiration W in (2.2), we set

(3.1) nyi= grl¥ ;.

We recall a definition in [U, (2.15)}:
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Definition(3.2). A set p= {pg‘b} of non-negative integers is called a set of primitive
Hodge numbers belonging to {h?%,n,} if it satisfles the following conditions.
(0) The indices a, b and X are non-negative integrers satisfying a + b =w — A.
. b
(1) Catomwn Py =nx—nayg forall A
(ii) p3* = p%* for all a, b, A.
(iii) At =t o P T T Docag, P forall s, t with s+t = w.

Under the assumption (2.1), only the following sets of primitive Hodge nembers are
possible.
(3.3) Case w = 2t + 1. The possibility is unique.
p'=1,
ab Rt —1 fa=1t+1,t,
P = heb otherwise.

Case w = 2t. There are t + 1 possible cases.
(3.4) Foreachs=w,w~1,---,t+1,

sw—3-1 w—s—1,9
Py = P1 =1,
b Rt —1 fa=s+1,s,w—s w—-s—1,
o = .
pat otherwise.

(3.5) For s =t,

1,41 t—1,t

p =p =1,

het -1 fa=t+1,t-1,
ppt =4 hot—2 ifa=t,

ha-t otherwise.

Definition(3.6). Given a filtration W in (2.2) and a set p = {p';’b} of primitive Hodge
numbers belonging to {h?'?,ny}, the corresponding boundary component is a classifying
space of the gradedly polarized mixed Hodge structures on W ,Hc: B = B(W,p) :=
{F|Fis a filtration on W, Hc satisfying the condition (3.7) below}.

(3.7) gr¥F (resp. gr¥¥_ | F) is a Hodge structure of weight w (resp. w — 1) with Hodge
type {pg'b} (resp. {p;'b}) and polarized by the bilinear form induced by S on gr'’ F' (resp.
positive (—1)*~!-symmetric bilinear forms on Wy,_1).

We consider polarization forms on W, are equivalent if they differ only by a positive
multiplicative constant.

Proposition(3.8). There is an N(W)-equivariant embedding B(W,p) — D(WY)'.

Proof. We shall first construct a map ¢ : B — D', where B := B(W,p), D' .= D(W)".
Let F € B. In the present case, the weight length is one, hence we have the Hodge-Deligne
decomposition

WoHe =@ Pyt Pyt i=F*noF*nW,_\Hc,
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where the summation is taken over a + b= w — A, A = 0, 1. We want to extend this to
an S-polarized split mixed Hodge structure on He uniquely up to modulo C(W)c-action.
Setting Py ¢ := ®a.b Poa‘b, we have a splitting over R of W, _1Hc C W,Hc. In case
w = 2t + 1, our assertion follows immediately from the fact that P_; ¢ := Pi*;”“ should

be perpendicular to Py ¢ with respect to S. Similarly, in case w = 2t, P_; ¢ := P*11¥ ™" ¢

P*7***1 is distinguished up to modulo C(W)g-action by the same condition, where s is

S, W~ g—

the integer satisfying p; ' = 1 in the given set of primitive Hodge numbers. Moreover,
the summands P*?1™™® (a = s, w — s — 1) are distinguished up to modulo C(W)c-
action by the condition that Pf;q’w—a should be perpendicular to Pla’w—u_1 + Ple'wﬁa
with respect to S. Now let PY"**" in case w = 2t + 1 and P*TV¥~°, P> i
case w = 2t be representatives among the above constructions. These deta determine a
splitting Py @ Py @ P_; over R of the filtration W,,_, C W,, C W41, where Py := W,,_;,
Py := Py,cNH (A=0,-1). This, in turn determines a real semi-simple element ¥ € g
so that Py is the A-eigen space of Y. On the other hand, the nilpotent element N is
determined as the positive generator of Lie C(W)z. Since [Y,N} = 2N by construction,
we have a representation p : SLy(R) — G (not necessarily rational). Transforming the
P;’b by the Cayley element c = p(cy) 1n (1.17), we get the Hodge-(Z, X1) decomposition:
& Q;’H)‘ =@ cP;’b. Then we know that H™Y := @, Q%7 determines an element r € D
where p 1s horizontal (see {U, (3.4) and its proof]). We now define a map

(3.9) p:B—>D by FoCW)gr
Next we define a map
(3.10) Y:9p(B)= DB by ecxp(zN) - Fe— FNnW,Hc.

This is well-defined. Indeed, if exp(z'N) - F' = exp(z/N) - F then F' = ¢- F for g =
exp({z — 2')N). Since W,, = I{er N, we see that g|W,, is identity and so

FNnWy,Hg =g - FNW,Hc = g FNW,He)=FNW,Hc.

We claim now that ¢ is identity. Indeed, let F € B and F,, the Hodge filtration
associated to the S-polarized split mixed Hodge structure {P:‘b la+b=w-A A=
1, 0, -1} constructed above. Then the filtration F} corresponding to r € D is F, = cF
by definition. On the other hand, cF, = exp(iN) - Fi,, in the present situation. This
follows immediately from an observation that the restriction p(SL2(C))|P', where P’ :=
pplwma g pawmetl g 1=tincasew =2t+1,and a—1=s, w—s~1in case w = 2t,
yields a 2-dimensional irreducible representation of SL2(C) hence we have ¢ = \/Li exp(iN)
on PE’]‘U—‘H-I»

It is obvious that 3 i1s N(W)-equivariant. [J

Let (p,7) be an SLy-orbit, ¥ in (1.17), and W = W(Y) in (1.18). We assume that W
is defined over Q. We denote

(3.11) Gy:={g€G|gYg ' =Y}
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In the notation of (2.8), we set
(3.12) 7= (r mod C(W)gz) € L(W), b:=n=(F) e D(W)"

Then, by (1.19), we have cFoo = F; = exp(iN4) - Foo, and hence b € B = B(W, p) under
the identification of (3.8).

Proposition(3.13). In the above situation, we have the following.

(1) The orbits Gy - b C N(W)-b = B C D(W)' are complex submanifolds, where
B = B(W,p).

(i) ((C(W)YxGy) 1)~ = Gy -b and (N(W)-r)~ — B are punctured disc bundles
contained in the line bundle (2.8). (Gy - )~ — Gy - b is the family of all SL,-orbits
corresponding to the pair (Y, p), and (N(W)-r)~ — B is the family of all nilpotent orbits
corresponding to the pair (W, p).

(iif) N(W)-r is open in D if and only if D is a Hermitian symmetric domain.

Proof. We first claim that
dimg N(W)/I, N N(W) = 2dime N(W)c/Ic, N N(W)c,
(3.14) dimg (C(W) x Gy)/I. N (C(W) x Gy)
= 2dimc(C(W)ec % Gy,c)/Ic N (C(W)c x Gy,c),

where I, and I, are the isotropy subgroups at r of G and of G¢, respectively. (3.14) can
be verified elementarily by the dimension count of the corresponding Lie algebras using
bases of He according to the mixed Hodge-(Y, Ni) decomposition of (p,7) (cf. [U, §2]),
hence we left it to the reader. Similarly, we can verify elementarily that N(W) acts on
B transitively and so we omit this verification. (3.14) shows that orbit N(W) - r (resp.
(C(W)xGy)-r)isopenin N(W)c r (resp. (C(W)c xGy,c)-r) in the Hausdorff topology
and the latter is a closed complex submanifold of D = G¢ - r, hence the former induces
a complex submanifold (N(W) - 7)™ (resp. (C(W) x Gy)-r)~) of D(W)/C(W)z. From
this we know that the interior of the closure of (N(W)- 7)™~ (resp. ((C(W)x Gy)-7)™)in
L(W), denoted by

(3.15) N =N(W,p) (resp. S =S(Y,p)),

is a complex submanifold and so the intersection of A (resp. S) with the zero section of
the line bundle (2.8) is a complex submanifold of the zero section. Via the projection, we
get the assertion ().

Now the first part of (i1) follows from (2.6.ii) and the observations that N(W) =
N(W)lexp(RY) (for N(W)!, see (2.10)), exp(iyN, ) - r = exp(log(y + 1)}/2Y) - r, and

det(exp(log(y + 1)V )|[Wy_1) =y +1> 0 <= ™2™ < ™.

~

As for the second part of (i), the assertion on the family (Gy -r)~ — Gy - b follows from
[U, (8.16.ii1)]. Let g-r € N(W)-r and Fy.; the corresponding Hodge filtration. Then, by
(2.6.11),

(3.16) exp(iyNy)g - v = gexp(tydet(¢ ™ Wy _1)Ny) - 7
= gexp(log(y det(g7 ' |Wy—y) +'1)1/2Y) -r€D fory>0.



On the other hand, applying the argument at the end of the proof of Proposition (3.8)
to the Hodge-(Z, X 1) decomposition and the mixed Hodge-(Y, N4 ) decomposition Hg =

@Q:’H’\ = @P;’b associated to (p,7r) (cf. [U, §2]), we see that, for P’ := Pla—l'w_a +
Pz,lw—aﬁ-l

NiQ¥Y ™ CNycP' =N, P CP =cP.
It follows that Ny F? C F?~! and hence Ny FZ | C Fg' by (2.6.1i). Therefore exp(CN,)g-
r is a nilpotent orbit in the direction of (W, p). Conversely, let (N, F), F € D, be a
nilpotent orbit, i.e., Ny F¢ C F%~! and exp(ityN4)-F € D for y > 0. Then, by [Sc,
(6.16)], (W, F) is an S-polarized mixed Hodge structure. If (W, F') has mixed Hodge type
p then this determines a point of B by F N W, Hg hence, by (3.8) and the first part of
(ii), we have exp(tyNy) - F € N(W)-r for y > 0. This completes the proof of (ii).

In order to prove (iii), we shall compute dim D — dim N(W) - r. Let K be a maximal
compact subgroup of G containing the isotropy subgroup I,, G = RTK an Iwasawa
decomposition.

Case w =2t + 1, 1.e., (3.3). We see that

G =Sp(2h,R), K ~U(h), I, ~U(R™") x --- x U(htt1),
Ky ~Uh—-1), Ly : =L, NGy ~UR™?) x .- x URFE1) x U(ATH - 1)
Hence
dimD - dim N(W)-r =dim G/, —dim N(W)/I,y =dim K/I, —dim Ky /I,y
= B2 = (h— 1)? — (R 4 (R 1)2 = 9(h — R,
This is zero if and only if A = h**1? that is, K = I,..
Case w = 2t. We see that
G = O(2h,k), K ~ O(2h) x O(k),
L~ U(RY?) x -+ x U(ATH1) 5 O(AMY),
Ky ~ O(2h — 2) x O(k — 2) x O(2),
According to the subcases (3.4), (3.5), I,y is isomorphic, respectively, to
UR¥?) x - x U(R*T =7 1) x U(R¥™™* = 1) x --- x U(A'TV71) x O(RM) x U(1),
Uh* ) x « -+ x U(RM*171 — 1) x O(hY! — 2) x U(1).
As before, we can compute dim D — dim N(W} - r to obtain
202k + k — Aot Teml _ pows _9Y) in case (3.4),
2(2h +k — RV —RBE 1) in case (3.5).
These are zero if and only if
h = hothw=e=l (or B39 = 1) k= 2A"™7? (or 2R°TV¥ 771} =2 in case (3.4),
h= A1 =1 k=A% in case (3.5).

Hence, dim D = dim N(W) - r if and only if K = I,. This completes the proof of the
proposition. O
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We denote

(3.17) Dw, := D/C(W)z UN(W,p) C L(W), Dw :=| JDw, c L(W), D :=| | Dw,
P w

where the unions are taken over all sets p of primitive Hodge numbers belonging to
{nx, h??} and all rational S-isotropic filtrations W of Hq in (2.2) satisfying (2.1).

84. Construction of partial compactifications D/I.

We recall first the partial compactification D**/I" of Cattani-Kaplan in [CK] and its
generalization into arbitrary weight {U, Appendix] whithin our present use. Under the
assumption (2.1), the disjoint union D** of all rationel boundary components and the
disjoint union D* of all rational boundary bundles, both in the sense of [CK], coincide and
it is defined by

(4.1) D*:=DU(| | F(W,p)), F(W,p):= {gr" F|F € B(W,p)},
W.p

where W and p run over all rational S-isotropic filtrations (2.2) of Hq satisfying the
condition (2.1) and all sets of primitive Hodge numbers, respectively, and B(W,p) is a
boundary component in the sense of (3.6).

In order to introduce the Satake topology on D*, we choose a maximal Q-split Cartan
subalgebra t of g and a Cartan decomposition g = €+ p with p D t. Let & C t* be the
Q-root system, @+ C & the positive root system with respect to some lexicographical
order in t*. Let G = RTK be the Iwasawa decomposition, where R := exp(3_ co+ fo )
T :=expt and K is the maximal compact subgroup of G with Lie i = &.

Let t* := {A € t|a(A4) > 0 for all « € ®*} be the Weyl chamber. We denote by A
the set of all rational admissible elements in the closure t+ of t* in t. Then we sce, by
construction, that A is finite and a set of complete representatives of all Gg-conjugacy
classes of rational admissible elements. Under the assumption (2.1), A consists of the
single element Y := diagonal(1,,0,---,0,-1,), where s = 1 if w 1s odd and s = 2 if w is
even. Let W(Y') be the weight filtration associated to ¥ in (1.18). For each set p = {p';’b}
of primitive Hodge numbers, we take a reference point r, € D lying over [K] € G/K, via
some fixed projection D — G/K, such that (Y,r,) is an admissible pair of type p. This is
possible by [U, (3.16.i1)]. We set

(4.2) rp :=(rp mod C(W(Y))z) € L(W(Y)),
by :=n(7,) € BOW(Y),p), b, =gt Y)(b,) € F(W(Y),p).
The Satake topology 77 (D*) on D* relative to I' in [CK] is introduced in the following
process (1)-(iii):
(i) An open Siegel set subject to the Iwasawa decomposition G = RTK is a subset

6 := wTL,K of G, where w is a relatively compact open neighborhood of 1 in R, p > 0
and T, := {t € T'|e®(t) > pfor all @ € ®%}. An extended Siegel set in D* is a subset
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&* =, (& -r,U(ENN(W(Y))) -by). For suitable choices of w and p, there exists a finite
subset E of Gq satisfying TEG -1, = D and I'w(yy(ENN(W(Y)))(SNN(W(Y))) b, =
F(W(Y),p) for all p. Then, as [CK, (4.28)], Q@* := EG* is a I'-fundamental set in D*, i.e,
satisfies the following two conditions.

(4.3) r'Q* = D*.

{4.4) There ezist finitely many v, € I' such that, if y € T, yQ*NQ* # B, then the actions
of v and 7, coincide on Q* Ny~1Q* for some v.

(ii) A topology 7(6*) on G* is defined so that a basis of open sets is given by open
subsets of & - r,(C D) in the natural topology together with subsets

(4.5) (UAV -rpUU - 5,) N G*

for all p, where U runs over the pull-backs via the projection N(W(Y)) — F(W(Y),p),
g g-Ep, of all open sets in F(W (YY), p) in the natural topology, A is a positive real nuinber,
Uy:={g € Ule*(g) > A for all @ € ® with a(Y) > 0}, V runs over neighborhoods of 1
in K. The topology 7(f2*) on Q* is induced from 7(&*) in the following way: the system
of neighborhoods of z € {2* consists of all subsets I C 2* satisfying the condition that, if
z € ¢6* with e € E, then e”'U N 6" is a 7(6*)-neighborhood of e~z € &*. Then, as
[CK, (4.32)], the topology 7(€2*) has the following property.

(4.6) 7(02*) is Hausdorff and the action of v € T is continuous in 7(Q*) in the following
sense: let x € Q* ; if vz € Q*, then for any 7(Q*)-neighborhood U' of vz there ezists a
7(Q2*)-neighborhood U of v such that LU NQ* C U'; if yx ¢ Q*, then there exists a T(2*)-
neighborhood U of = such that v NQ* = .

(iii) By virtue of (4.3), (4.4) and (4.6), [Sa, Theorem 1’} can be applied to obtain a
Satake topology 77 (D*) (uniquely determined) with the following four propertics.

(4.7.1) 7 (D*) induces T(Q*) (and also 7(&*)).

(4.7.2) The action of T on D* 1s continuous.

(4.7.3) IfTzNTz’ = 0 with z, 2’ € D*, then there ezist TV (D*)-neighborhoods U of x
and U’ of ' such that TU NTU' = 0.

(4.7.4) For each © € D*, there ezists a fundamental system {U} of 77 (D*)-neighbor-
hoods of x such that YU =U for y € Dy, YU NU = & for v ¢ T, where I'; is the isotropy
subgroup of I at z.

In [CK], they use a closed Siegel set in stead of an open one. In both cases the arguments
are parallel. In [CK, §5], they show that the Satake topology 7' (D*) is independent of
choices of the following things: t, ®*, K, rp, I, &, E. As Looijenga has pointed out to
the author, the induced topology on D*/T" is not locally compact in general (c¢f. [CK,
(4.36.1)]).

Definition(4.8). In the notation of (3.17), a Satake topology T(ﬁ) on D is defined in
the following way.
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(i) We first define a topology 7(D U B(W(Y))), where B(W(Y)) = |, BOW(Y),p).
On D, this topology coincides with the natural one. At a boundary pomt TE B(W(Y)),
a fundamental system of neighborhoods is givn by

UV -r,UU - b,

where U runs over the pull-backs via the projection N(W(Y)) - B(W(Y)), g+ g-b,, of
all neighborhoods of z in B(W(Y')) in the natural topology, A is a positive real number,
Us:={g€U|e*(g) > A for all a € ® with a(Y) > 0}, V runs over neighborhoods of 1 in
K.

(ii) We extend 7(DUB(W(Y))) to (|| (DUB(W))), where W runs over all rational
S-isotropic filtrations (2.2) of Hq satisfying the condition (2.1), so that the action of Gq
is continuous on the latter.

(iii) 7(D) is the topology induced from 7(||y, (D U B(W))).

It is easy to see that the Satake topology 7( 5) is well-defined, and we can prove similarly
as in [CK, §5] that 7(D) is independent of the choices of t, ®*, K, r,.

Lemma(4.9). The restriction of (D) to N (W, p) coincides with the natural topology
on it for every W and p, where N (W, p) is in (3.15).

Proof. The assertion follows immediately by Definition(4.8) and (3.16) for the SL;-orbit
(p,7p) corresponding to the admissible pair (Y,r,). O

Problem(4.10). Compare the topology ‘r(ﬁw) with the natural one on Dy C L(W).

Lemma(4.11). The natural map f : D — D* /T is continuous in the Satake topologies.

Proof. Set W = W(Y). By Definition(4.8) and [CK, (5.7)] and its generalization, it is
enough to show that, in the notation of (3.17), the natural map

(4.12) fwp: Dwp — D*/C(W)z

is continuous in the Satake topologies for any p.

It is obvious that fw,, is continuous on D/C(W)z. Let z € B(W,p) and 7 its image in
F(W,p). Note that a fundamental system of 7(D*)-neighborhoods of T € D* is given by
the following sets (cf. [CK, (4.31)], [Sa, Proof of Theorem 1]):

(4.13) U=T= U g(7(6%)-ncighborhood of ¢7'7 € &*).
g€l E, ¢6*3T

Hence, in order to prove the continuity of fw,, it is enough to show that, on 5wyp, the
topology m (pr) similarly defined as the topology 7(D*/C(W)z) on D*/C(W)z induced
by T (D*), coincides with the topology T(DW,,) induced by (D).

We many assume that the Siegel set & and a finite subset £ C Gq satisfy C(W)z& D
C(W) and Tw(ENNW))SNN(W))-b, = B(W,p) for all p. Set Gy := GNN(W),
r:=r, and b:= b,. Since Sy exp(R50Y) = 6w, (6w -7)~ U Gw b is an open subset of
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N := N(W,p) in the natural topology. It follows that the topology 7 ((Sw - r)~U Gw -b),
induced from 7(Gw - r U Sw - b) which is similarly defined as 7(&*), coincides with the
natural topology on (&w -r)~U Gw -b C N. Since the action of N(W) on A is continuous
in the natural topology, the topology 71 (N), similarly defined as v(D*/C(W)z), coincides
with the natural topology on A by (4.13). Evidently the multiplication by ¢ € N(W)
from the left to UxV in (4.5) does not impose any effect on the neighborhood V of 1in K.
Thus we get Tl(ﬁw,,,) = T(ﬁw,,,). O

Corollary(4.14). For any x € B(W,p), there exists a Satake neighborhood U, of =
in D such that the I'-equivalence and I'w -equivalence coincide on U, N D/C(W )z.

Proof. By the lemma, this follows immediately from (4.7.4). O

Lemma(4.15). In the Satake topology, the action of T'w on Dw is properly discon-
tinuous, hence the 'y -equivalence relation is closed on Dy .

Proof. Let z € B(W,p), and T € F(W,p) its image. Let Uz be a Satake neighborhood
of T € D* satisfying the condition (4.7.4). By Lemma (4.11), we can take a Satake
neighborhood U; = (U\V -1,)~U U - b, of z € BWY’, contained in f@?P(U; mod C(W)z).
By Proposition (2.9), we may assume that {y € Ty |YU - b, N U - b, # 0} is finite. Since
F(W,p) = B(W,p)/U(W), where U(W) is in (2,3), we see that the isotropy subgroup 'z
at T is equal to U(W)z x I';.

For v € U(W)z, we claim that 74, NU; # § if and only if YU - b, N U - b, # 0. To see
this, notice that v, N U, #  is equivalent to

YUV rp) 0 (UAV 1)~ #8, or AU-b,0U -b, # 0.

The former implies YU\V NUAVI,, # 0, hence, by the uniqueness of the Iwasawa decom-
position, we have yUx N Uy # 0, and so yU - b, N U - b, # 0 as desired. This proves the
‘only if’ part. The converse is obvious.

Thus we see {y € Tw [YUs NU; # 0} = {y €Tz |7Uz NU; # 0} = {y €Tw |7U - b, N
U - b, # 0}, which is finite. This proves the lemma. O

Using the Satake neighborhoods I, in (4.14), we now construct our partial compactifi-
cation D /T’ by patching up

pen open

(4.16) Tw U /Tw 5 Tw U, N D/C(W)z)/Tw € DT

for all z € B(W,p), all rational S-isotropic filtrations W of Hq in (2.2) satisfying the
condition (2.1) and all sets p = {p‘;’b} of primitive Hodge numbers belonging to {h?9,ny}.
In the above construction, the W can be taken over a set

(4.17) W := (set of complete representatives of the Gq-orbit of W(Y") mod I'-action),

which is finite by (4.3).
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Theorem(4.18). D/T" with the Satake topology is Hausdorff and carries the complex
structure induced from Dw C L(W) for all W € W.

Proof. By construction, D/I' ~ D/T U{ |ypew , B(W,p)/Tw as point sets. Let A be

the graph of the equivalence relation defined by the projection D — DJT. Notice that
DJT is Hausdorff if and only if the graph A C D x D is closed. To see the closedness of
A, it is enough to show the following: if z;, y; € D, and v; € I’ with y; = vir; satisfy (r;
mod C(W)z) — =z € B(W,p), (y; mod C(W)z) — y € B(W',p') in the Satake topology,
then (z,y) € A.

By Lemma (4.11) and the Hausdorffness of D*/T in [CK, (4.36.1)], the images of  and
y in D*/T’ coincide, hence lie in the same boundary components F(W,p)/T'w of D*/T.
It follows that W' = §W for some é§ € I and p = p’. Replacing y;, y by 6§ 'y;, 671y, it
suffices to prove the assertion in the special case: z, y € B(W, p). We consider a diagram:

Dw,, s prow)z - D*/T
U U
F(W,p) — F(W,p)/rw

Since z, y have the same image in D*/I', their images in F(W,p) C D*/C(W)z differ
by a v € I'w. Again replacing y;, y by v 'yi, v 'y, we may assume that z, y have the
same image T € F(W,p) C D*/C(W)z. Let Uz C D* be a Satake neighborhood of &
satisfying the condition in (4.7.4). Then V := f;vfp(uf/C(W)z) is a Satake open subset of
D(W)/C(W)z U N(W,p) containing «, y. Therefore, z;, y; mod C(W)z € Vifi > 0.
In other words, z;, y; e Uz N D if i > 0. Now y; = ~v;z;, v € [, so, by the assumption on
Uz, we see v; € 'y C 'y for 7 3> 0. Hence the first assertion follows from Lemma (4.15).
The second assertion follows from Corollary (4.14) and Lemma (4.15). O

§5 Extension of period maps.

Let ¢ : A* — D/TI be a period map, i.e., a homolomorphic map with horizontal local
liftings, from the punctured unit disc A*. Let h — A*, z — exp(2xiz), be the universal
cover, ¢ : h — D a lifting of , v € I' an element satisfying p(z + 1) = yp(z) for all z € b,
N the logarithm of the unipotent part of 4, and W(N) the monodromy weight filtration.

Theorem(5.1). (i) Any period map ¢ : A* — D/ from the puncture disc with the
monodromy weight filtration W = W(N) satisfying the condition (2.1) extends holomor-
phically to g : A — D/T.

(i1) For any boundary point € € D/T — D/T, there exists a period map ¢ : A* — D/T
with the property described in (i) and its holomorphic extension @ : A — D/T such that
#(0) = £.

Proof. As the proof is almost analoguous to the one in [CK], we shall write down
the proof as long as it is needed. By the rational version of the SL;-orbit theorem [Sc,
(5.13), (5.19), (5.26)], there exists an SLy-orbit (p,r,) with p defined over Q, such that

P 8 (1)> = N, and satisfies the property (5.2) below. Let ¥ := p, ((1) _01 ) Choose a
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maximal Q-split Cartan subalgebra. t of g containing Y, and a positive root system &1 C t*
for the adjoint action of t on g satisfying that any root o with a(Y) > 0 belongs to ®*.
Set R := exp(} ,cq+ 8a) and T := expt. Then the centralizer of T in G is a product
TM with M Q-anisotropic, and P := RTM is a minimal Q-parabolic subgroup of G. Let
K be the maximal compact subgroup of G corresponding to the Cartan involution 6,
determined by the reference point r, as in (1.11). Then G = PK = RTMI, and we have
the following:

(5.2) There exist functions r(z,y), t(z,y), m(z,y) and k(z, y) defined and real analytic
on a domain {z +iy € § | y > B} for some B and taking values in groups R, T', M and I,
respectively, such that

(5.2.1) @z +iy) = r(z, )tz yymlz, y)k(z,9) -5

(5.2.2) Asy — +oo, the functions converge

r(z,y) — exp(zN)r(oo), exp(logy /Y )t(z,y) — 1, m(z,y) — 1, k(z,y) — 1,
uniformly in z, where r(c0) € exp b with v := Im(adg N) N Ker(adyNV).

By [CK, (6.4)], we see expb C U(W). (Since N2 = 0 in the present case, the proof
is easier.) ¢ factors through A* — D/C(W)z, denoted also by ¢, by an abuse of the
notation. We now claim

(5.3) lim;_g(t) = r(c0) - b, € D/C(W)z UN(W,p) in the Satake topology, where
b, € B(W,p) is induced from r, as in (3.12).

In order to set the situation where we have introduced the Satake topology, we choose
a maximal compact subgroup K' of G whose associated Cartan involution acts on t by
multiplication by —1. Then, as in the proof of [U, (3.16.11)], there exists ¢ € Gy such that
K' = (Intg)K. g € Gy splits according to the decomposition G = PK, hence we may
assume moreover ¢ € PN Gy. Set r;, i=g-r, € Dand b;, i=g-b, € B=DB(W,p). We are
thus in the situation after (4.1). Then (5.3) follows if we show

(5.4) in the notation of (4.8), for the pull-back U’ via the projection N(W) — B, h
h - b, of any neighborhood of ¢' := gr(c0) - b, in B, any A > 0 and any neighborhood V'
of 1 in K', there exists 8 > 0 such that ¢ - g(z +2y) € UV’ -rp forally > B and |z| < 1.

Indeed, (5.4) implies ¢(z + iy) € ¢~ 'U V' -rp for all y > B and |z] < 1. It is easy
to see that this, in turn, yields, () € ((g7 U agaAV' - r5)~ for 0 < [t| < €72, where
Ao := min{e*(¢7?) |a € ® with a(Y) > 0}. Since (g7 U )agaV' - 7)™ U (g7 U') - b}, is

P

a Satake neighborhood of g71¢' = r(o0) - b, in D/C(W)z U N (W, p), which can be taken
arbitrarily small, we get (5.3).

Now we shall prove (5.4). Set g = rotomg, 70 € R, to € T and my € M. Then, from
(6.2.1), R<a Pand M C K, we see

9P(z +1y) =r'(z,y)t(z,y)k'(z,y) - 7, where
r'(a:,y) = gr(:v, y)g"lro(t(z,y)m'(a:,y))ro_l(t(.r, y)ml(‘r’y))—l € R,
k'(z,y) :=m'(z,y)gk(z,y)g™" € K,

m'(z,y) = mom(z,y)m;] € M.

15



It follows from (5.2.2) that, as y — +oo, the following converge uniformly in z :
m'(z,y) = 1, r'(z,y) = gexp(aN)r(c0)g™ !, K'(z,y) — 1.

Hence there exists 8 > 0 such that r'(z,y)t(z,y) € U} and ¥'(z,y) € V for all y > 8 and
|z| < 1. (5.4) is proved, and this completes the proof of (i).

In order to prove (ii), we take the lifting ¢ € B(W,p) of £ with W € W (see (4.17)).
Then, by Proposition(3.13.i1), there exists a mlpotent orbit (N, F such that 7r(F) = ¢,
where N is the positive generator of C(I/V)z and F ¢ N(W p). Then for some 3 > 0,
v:{z€ C|Imz> B} - N(W,p) C pr, z ++ exp(zN) - F, is a holomorphic map with
horizontal liftings and, by (4.9), v(2) — ¢ as Im z — +oo. Hence (1) := (projection) o
v((1/2=i)logt +iB) € D/T is the desired period map. O
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