COMPLEX STRUCTURES ON PARTIAL COMPACTIFICATIONS OF Classifying spaces D / Γ OF HODGE STRUCTURES

Sampei Usui（Osaka University）

§1．Preliminaries．

We recall first the definition of a（polarized）Hodge structure of weight w ．Fix a free \mathbf{Z}－module $H_{\mathbf{Z}}$ of finite rank．Set $H_{\mathbf{Q}}:=\mathbf{Q} \otimes H_{\mathbf{Z}}, H=H_{\mathbf{R}}:=\mathbf{R} \otimes H_{\mathbf{Z}}$ and $H_{\mathbf{C}}:=\mathbf{C} \otimes H_{\mathbf{Z}}$, whose complex conjugation is denoted by σ ．Let w be an integer．A Hodge structure of weight w on $H_{\mathbf{C}}$ is a decomposition

$$
\begin{equation*}
H_{\mathbf{C}}=\bigoplus_{p+q=w} H^{p, q} \quad \text { with } \quad \sigma H^{p, q}=H^{q, p} \tag{1.1}
\end{equation*}
$$

$F^{p}:=\bigoplus_{p^{\prime} \geq p} H^{p^{\prime}, q^{\prime}}$ is called a Hodge filtration，and $H^{p, q}$ is recovered by $H^{p, q}=F^{p} \cap \sigma F^{q}$ ． The integers

$$
\begin{equation*}
h^{p, q}:=\operatorname{dim} H^{p, q} \tag{1.2}
\end{equation*}
$$

are called the Hodge numbers．
A polarization S for a Hodge structure（1．1）of weight w is a non－degenerate bilinear form on $H_{\mathbf{Q}}$ ，symmetric if w is even and skew－symmetric if w is odd，such that its \mathbf{C}－bilinear extension，denoted also by S ，satisfies

$$
\begin{align*}
& S\left(H^{p, q}, \sigma H^{p^{\prime}, q^{\prime}}\right)=0 \quad \text { unless } \quad(p, q)=\left(p^{\prime}, q^{\prime}\right), \tag{1.3}\\
& i^{p-q} S(v, \sigma v)>0 \quad \text { for all } \quad 0 \neq v \in H^{p, q}
\end{align*}
$$

For fixed S and $\left\{h^{p, q}\right\}$ ，the classifying space D for Hodge structures and its＇compact dual＇\check{D} are defined by

$$
\begin{align*}
& \check{D}:=\left\{\left\{H^{p, q}\right\} \mid \text { Hodge structure on } H_{\mathbf{C}} \text { with } \operatorname{dim} H^{p, q}=h^{p, q},\right. \\
& \text { satisfying the first condition in }(1.3)\}, \tag{1.4}\\
& D:=\left\{\left\{H^{p, q}\right\} \in \dot{D} \mid \text { satisfying also the second condition in }(1.3)\right\} .
\end{align*}
$$

These are homogeneous spaces under the natural actions of the groups

$$
\begin{equation*}
G_{\mathbf{C}}:=\operatorname{Aut}\left(H_{\mathbf{C}}, S\right), \quad G=G_{\mathbf{R}}:=\left\{g \in G_{\mathbf{C}} \mid g H_{\mathbf{R}}=H_{\mathbf{R}}\right\} \tag{1.5}
\end{equation*}
$$

respectively．Taking a reference point $r \in D$ ，one obtains identifications

$$
\begin{equation*}
\check{D} \simeq G_{\mathbf{C}} / I_{\mathbf{C}, r}, \quad D \simeq G / I_{r} \tag{1.6}
\end{equation*}
$$

where $I_{\mathrm{C}, r}$ and I_{r} are the isotropy subgroups of $G_{\mathbf{C}}$ and of G at $r \in D$ ，respectively．It is a direct consequence of the definition that

$$
G \simeq\left\{\begin{array} { l }
{ O (2 h , k) , } \tag{1.7}\\
{ \operatorname { S p } (2 h , \mathbf { R }) , }
\end{array} \quad I _ { r } \simeq \left\{\begin{array}{l}
U\left(h^{w, 0}\right) \times \cdots \times U\left(h^{t+1, t-\mathbf{1}}\right) \times O\left(h^{t, t}\right) \quad \text { if } w=2 t, \\
U\left(h^{w, 0}\right) \times \cdots \times U\left(h^{t+1, t}\right) \text { if } w=2 t+1,
\end{array}\right.\right.
$$

where $k:=\sum_{|j| \leq[t / 2]} h^{t+2 j, t-2 j}$ and $h:=(\operatorname{dim} H-k) / 2$ if $w=2 t$, and $h:=\operatorname{dim} H / 2$ if $w=2 t+1$. It is an important observation that I_{r} is compact, but not maximal compact in general. Hence D is a symmetric domain of Hermitian type if and only if

$$
\begin{array}{ll}
w=2 t+1 ; & h^{p, q}=0 \text { unless } p=t+1, t . \\
w=2 t ; & h^{p, q}=1 \text { for } p=t+1, t-1, h^{t, t} \text { is arbitrary, } \\
& h^{p, q}=0 \text { otherwise } ; \text { or } \tag{1.8}\\
& h^{p, q}=1 \text { for } p=t+a, t+a-1, t-a+1, t-a \\
& \text { for some } a \geq 2, h^{p, q}=0 \text { otherwise. }
\end{array}
$$

We denote

$$
\begin{equation*}
\Gamma:=\left\{g \in G \mid g H_{\mathbf{Z}}=H_{\mathbf{Z}}\right\} . \tag{1.9}
\end{equation*}
$$

Then Γ acts on D properly discontinuously because the isotropy subgroup I_{r} is compact and Γ is discrete in G.

A reference Hodge structure $r=\left\{H_{r}^{p, q}\right\} \in D$ induces a Hodge structure of weight 0 on the Lie algebra $g_{C}:=\operatorname{Lie} G_{C}$ by

$$
\begin{equation*}
\mathfrak{g}_{\mathrm{C}}^{s,-s}:=\left\{X \in \mathfrak{g}_{\mathrm{C}} \mid X H_{r}^{p, q} \subset H_{r}^{p+s, q-s} \text { for all } p, q\right\} . \tag{1.10}
\end{equation*}
$$

One can define the associated Cartan involution θ_{r} on Lie $G:=\mathfrak{g}$ induced by

$$
\begin{equation*}
\theta_{r}(X):=\sum_{s}(-1)^{s} X^{s,-s} \text { for } X=\sum_{s}(-1)^{s} X^{s,-s} \in g_{\mathbf{C}}=\bigoplus_{s} g_{\mathbf{C}}^{s,-s} . \tag{1.11}
\end{equation*}
$$

We take the standard generators for the Lie algebras $\mathfrak{s l}_{2}(\mathbf{R})$ and $\mathfrak{s u}(1,1)$ which are related by the Cayley transformation $\operatorname{Ad} c_{1}$, where

$$
c_{1}:=\exp \left(\frac{\pi i}{4}\left(\begin{array}{ll}
0 & 1 \tag{1.12}\\
1 & 0
\end{array}\right)\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right),
$$

as follows:

$$
\begin{align*}
& \begin{array}{cccc}
\boldsymbol{s l}_{2}(\mathbf{R}) & \ni & \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),
\end{array}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \tag{1.13}\\
& \boldsymbol{s u}(1,1) \quad \ni \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \frac{1}{2}\left(\begin{array}{cc}
-i & 1 \\
1 & i
\end{array}\right), \quad \frac{1}{2}\left(\begin{array}{cc}
i & 1 \\
1 & -i
\end{array}\right) .
\end{align*}
$$

Remark(1.14). $i \in \mathfrak{h}:=$ (upper-half plane) $\simeq \mathrm{SL}_{2}(\mathbf{R}) / U(1)$ corresponds to a Hodge structure $\mathbf{C}^{2}=H_{i}^{1,0} \oplus H_{i}^{0,1}$ with $H^{1,0}=\mathbf{C}\binom{i}{1}$. The Hodge structure on $\mathfrak{g}_{1 \mathbf{C}}:=$ $\mathbf{s l}_{2}(\mathbf{C})$ induced by $i \in \mathfrak{h}$ coincides with the canonical decomposition by the standard 'H-element' $\frac{1}{2}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ (cf., e.g., [Sa, II. §7]):
$\mathfrak{g}_{1 \mathbf{C}}=\mathfrak{g}_{1 \mathbf{C}}^{1,-1}+\mathfrak{g}_{1 \mathrm{C}}^{0,0}+\mathfrak{g}_{1 \mathrm{C}}^{-1,1}=\mathfrak{p}_{-}+\mathbf{k}_{\mathbf{C}}+\mathfrak{p}_{+}=\mathbf{C} \frac{1}{2}\left(\begin{array}{cc}i & 1 \\ 1 & -i\end{array}\right)+\mathbf{C}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)+\mathbf{C} \frac{1}{2}\left(\begin{array}{cc}-i & 1 \\ 1 & i\end{array}\right)$.
From now on, we assume that $w>0$ and all Hodge structures of weight w satisfy $H^{p, q}=0$ unless $p, q \geq 0$.

Definition(1.15) (cf. [Sc, p.258]). An SL_{2}-representation $\rho: \mathrm{SL}_{2}(\mathbf{R}) \rightarrow G$ is horizontal at $r=\left\{H_{r}^{p, q}\right\} \in D$ if $\rho_{*}\left(\frac{1}{2}\left(\begin{array}{cc}-i & 1 \\ 1 & i\end{array}\right)\right) \in \mathfrak{g}_{\mathbf{C}}^{-1,1}$ (see (1.10)). When this is a case, we call the pair (ρ, r) an $S L_{2}$-orbit.

Remark(1.16). It is clear that (ρ, r) is an SL_{2}-orbit if and only if $\rho_{*}: \mathfrak{S l}_{2}(\mathbf{R}) \rightarrow \mathfrak{g}$ is a morphism of Hodge structures of type $(0,0)$ with respect to the Hodge structures induced by $i \in U$ and $r \in D$, respectively. A horizontal SL_{2}-representation ρ induces an equivariant horizontal map $\tilde{\rho}: \mathbf{P}^{1} \rightarrow \check{D}$ with $\widetilde{\rho}(i)=r$:

This is a generalization to the present context of the notion of ' $\left(\mathrm{H}_{1}\right)$-homomorphism' in the case of symmetric domains of Hermitian type (cf., e.g., [Sa, II. (8.5), III. §1]).

Let (ρ, r) be an SL_{2}-orbit and $\tilde{\rho}: \mathbf{P}^{1} \rightarrow \check{D}$ the associated horizontal equivariant map. We set

$$
Y:=\rho_{*}\left(\begin{array}{cc}
1 & 0 \tag{1.17}\\
0 & -1
\end{array}\right), N_{+}:=\rho_{*}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), N_{-}:=\rho_{*}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), c:=\rho\left(c_{1}\right) .
$$

We denote by $H(Y ; \lambda)$ the λ-eigen space of the action of Y on H, and set

$$
\begin{equation*}
W(Y)_{w-j}:=\bigoplus_{\lambda \geq j} H(Y ; \lambda) \tag{1.18}
\end{equation*}
$$

Lemma(1.19). Let (ρ, r) be an $S L_{2}$-orbit. Then, in the above notation, $\lim _{\operatorname{Im} z \rightarrow \infty}$ $\exp \left(-z N_{+}\right) \cdot \tilde{\rho}(z)=c^{-1} \cdot r \in \tilde{D}$. The corresponding filtration, denoted by F_{∞}, together with $W(Y)$, determines the limiting S-polarized split mixed Hodge structure.

Proof. $\tilde{\rho}(z)=\tilde{\rho}(i+(z-i))=\tilde{\rho}\left(\exp \left((z-i) \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right) \cdot i\right)=\exp \left((z-i) \cdot N_{+}\right) \cdot r$, hence $\exp \left(-z N_{+}\right) \cdot \tilde{\rho}(z)=\exp \left(-i N_{+}\right) \cdot r=\tilde{\rho}\left(\exp \left(-i\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right) \cdot i\right)=\tilde{\rho}(0)$. On the other hand, $c^{-1} \cdot r=\tilde{\rho}\left(c_{1}^{-1} \cdot i\right)=\tilde{\rho}(0)$.

The second assertion follows from [$\mathrm{Sc},(6,16)]$ and $[\mathrm{U},(2.11)$, see also(2.12)]. (N, L in [Sc, (6.16)] correspond to N_{+}, N_{-}in our present notation, respectively.)
§2. Line bundles $L(W)$.
Let W_{w-1} be a subspace of $H_{\mathbf{Q}}$ defined over \mathbf{Q} which is isotropic with respect to S, i.e., $S(u, v)=0$ for all $u, v \in W_{w-1}$. We assume throughout this paper that

$$
\operatorname{dim} W_{w-1}= \begin{cases}1 & \text { if } w \text { is odd } \tag{2.1}\\ 2 & \text { if } w \text { is even }\end{cases}
$$

Let $W_{\boldsymbol{w}}$ be the anihilator of W_{w-1} in $H_{\mathbf{Q}}$ with respect to S. Then we have a filtration W of $H_{\mathbf{Q}}$:

$$
\begin{equation*}
0 \subset W_{w-1} \subset W_{w} \subset W_{w+1}:=H_{\mathbf{Q}} \tag{2.2}
\end{equation*}
$$

By abuse of notation, we also use W for the filtrations induced on $H=H_{\mathbf{R}}, H_{\mathbf{C}}$ if it does not lead any confusion. Note that (-1$)^{w-1}$-symmetric bilinear forms on W_{w-1}, form a one dimensional vector space.

We define subgroups of G :

$$
\begin{align*}
& N(W):=\left\{g \in G \mid g W_{j}=W_{j} \text { for all } j\right\}^{\circ}, \\
& U(W): \text { the unipotent radical of } N(W), \tag{2.3}\\
& C(W): \text { the center of } U(W),
\end{align*}
$$

where $\left\}^{\circ}\right.$ means the connected component containing 1 . The induced sub- and subquotient groups of Γ are denoted by

$$
\begin{equation*}
\Gamma_{W}:=\Gamma \cap N(W), U(W)_{\mathbf{z}}:=\Gamma \cap U(W), C(W)_{\mathbf{z}}:=\Gamma \cap C(W), \bar{\Gamma}_{W}:=\Gamma_{W} / C(W)_{\mathbf{z}} \tag{2.4}
\end{equation*}
$$

Definition(2.5). $N \in \mathfrak{c}:=\operatorname{Lie} C(W)$ is positive if $N \in \mathbf{R}_{>0} \cdot N_{+}$for some $S L_{2}$-orbit (ρ, r) with $W(Y)=W$ (cf. (1.17), (1.18)).

Lemma(2.6). (i) $\operatorname{dim} C(W)=1$.
(ii) $C(W)$ is a normal subgroup of $N(W)$, and $\operatorname{Ad}(g) X=\operatorname{det}\left(g \mid W_{w-1}\right) X$ for $g \in$ $N(W), X \in \mathfrak{c}=\operatorname{Lie} C(W)$.
(iii) Let $r \in D$ be a reference point. Then $C(W)_{\mathbf{C}}$ acts on $D(W):=C(W)_{\mathbf{C}} \cdot D$ freely.

Proof. Since we assume (2.1), (i) is obvious in the case of odd w. In order to examine (i) in the case of even w, we choose a \mathbf{Q}-basis of $H_{\mathbf{Q}}$ according to the filtration W so that the polarization form S is represented by a matrix $S=\operatorname{aritidiagonal}(J, \Delta, J)$, where $J:=$ antidiagonal $(1, \cdots, 1)$ of rank $\geq 2, \Delta:= \pm I$. In this basis, any $X \in \mathfrak{c}$ represented by a matrix

$$
X=\left(\begin{array}{ccc}
0 & 0 & A \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text {, where } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { is a } 2 \times 2 \text { matrix }
$$

From ${ }^{t} X S+S X=0$, we can derive $d=-a, b=c=0$ elementarily. This completes the proof of (i).

By using the above basis, (ii) can be also verified elementarily.
Let N be a positive basis of c. Since N is nilpotent, $v: \mathbf{C} \simeq C(W)_{\mathbf{C}} \rightarrow D(W) \subset \dot{D}$, $z \mapsto \exp (z N)$, is an algebraic morphism. ν is not a constant map, because the isotropy subgroup I_{r} of G at r is compact hence it does not contain a unipotent subgroup $C(W) \simeq$ \mathbf{R}. It follows that ν is quasi-finite. If $\nu\left(z_{1}\right)=\nu\left(z_{2}\right), z_{1}, z_{2} \in \mathbf{C}$, then $\exp \left(\left(z_{1}-z_{2}\right) N\right) \cdot r=r$ and so $\mathbf{Z}\left(z_{1}-z_{2}\right) \subset \nu^{-1}(r)$, which occurs only if $z_{1}=z_{2}$. This completes the proof.

By Lemma (2.6.iii), the quotient $D(W)^{\prime}:=D(W) / C(W)_{\mathbf{C}}$ is a complex manifold and that the principal $C(W)_{\text {c -bundle }} D(W) \rightarrow D(W)^{\prime}$ is a complex affine bundle. Starting from this affine bundle, we shall construct a complex line bundle $L(W) \rightarrow D(W)^{\prime}$ in the following way. Take a quotient bundle

$$
\begin{equation*}
D(W) / C(W)_{z} \rightarrow D(W)^{\prime} \tag{2.7}
\end{equation*}
$$

Set $T(W):=C(W)_{\mathbf{C}} / C(W)_{\mathbf{z}}$. Using the positive generator N of Lie $C(W)_{\mathbf{z}}$, we have an identification $T(W) \xrightarrow{\simeq} \mathbf{C}^{*}, \exp (z N) \mapsto \exp (2 \pi i z)$. Let $\mathbf{C}^{*} \subset \mathbf{C}$ be the natural embedding. We denote by

$$
\begin{equation*}
\pi: L(W):=\left(D(W) / C(W)_{\mathbf{z}}\right) \times{ }^{\mathbf{C}} \mathbf{C}^{*} \rightarrow D(W)^{\prime} \tag{2.8}
\end{equation*}
$$

the complex line bundle associated to the principal C^{*}-bundle (2.7).
Proposition(2.9). The action of $\bar{\Gamma}_{W}$ on the \mathbf{C}^{*}-bundlc (2.7) extends to the action on the complex line bundle (2.8), which commutes with the action of $T(W) . \bar{\Gamma}_{W}$ acts properly discontinuously on $D(W)^{t}$ and hence on $L(W)$.

Proof. The first part follows easily from (2.6.ii) and an observation: $\operatorname{det}\left(\gamma \mid W_{w-1}\right)=1$ for all $\gamma \in \Gamma_{W}$.

In order to prove the second part, we use the \mathbf{C}^{*}-bundle (2.7). Given a compact subset $A^{\prime} \subset D(W)^{\prime}$. Put $A:=\pi^{-1}\left(A^{\prime}\right)$. Take a neighborhood V_{a} of $a \in A \cap(D / C(W) z)$ satisfying that the closure \bar{V}_{a} is compact and contained in $D / C(W)_{\mathbf{z}}$. Then $\left\{\pi\left(V_{a}\right) \mid a \in\right.$ $\left.A \cap\left(D / C(W)_{\mathbf{Z}}\right)\right\}$ is an open covering of A^{\prime} and so we can choose a finite subset $\left\{\pi\left(V_{a_{i}}\right) \mid 1 \leq\right.$ $i \leq n\}$ which covers A^{\prime}. Set $V:=\bigcup_{1 \leq i \leq n} N(W)^{1} \cdot \bar{V}_{a_{i}}$, where

$$
\begin{equation*}
N(W)^{1}:=\left\{g \in N(W) \mid \operatorname{det}\left(g \mid W_{w-1}\right)=1\right\} . \tag{2.10}
\end{equation*}
$$

Then, by construction, we see that $V \subset D / C(W)_{\mathbf{Z}}, \pi(V) \supset A^{\prime}$ and that the restriction $\pi: V \rightarrow D(W)^{\prime}$ is a proper map. Since $\Gamma_{W} \subset N(W)^{1}$ whose action preserves the fiber coordinate of (2.8), we see that

$$
\left\{\gamma \in \bar{\Gamma}_{W} \mid \gamma \cdot A^{\prime} \cap A^{\prime} \neq \emptyset\right\}=\left\{\gamma \in \bar{\Gamma}_{W} \mid \gamma \cdot(A \cap V) \cap(A \cap V) \neq \emptyset\right\}
$$

The latter set is finite because the action of $\bar{\Gamma}_{W}$ on $D / C(W)_{\mathrm{z}}$ is properly discontinuous and $A \cap V \subset D / C(W)_{\mathbf{z}}$ is a compact subset. This proves that $\bar{\Gamma}_{W}$ acts on $D(W)^{\prime}$ properly discontinuously. The assertion on the action on $L(W)$ follows from this easily.

§3. Boundary components $B(W, p)$.

Let $\left\{h^{p, q}\right\}$ be a set of Hodge numbers in (1.2). For a filtration W in (2.2), we set

$$
\begin{equation*}
n_{\lambda}:=\operatorname{gr}_{w-\lambda}^{\mathscr{W}} . \tag{3.1}
\end{equation*}
$$

We recall a definition in $[U,(2.15)]$:

Definition(3.2). A set $p=\left\{p_{\lambda}^{a, b}\right\}$ of non-negative integers is called a set of primitive Hodge numbers belonging to $\left\{h^{p, q}, n_{\lambda}\right\}$ if it satisfies the following conditions.
(0) The indices a, b and λ are non-negative integrers satisfying $a+b=w-\lambda$.
(i) $\sum_{a+b=w-\lambda} p_{\lambda}^{a, b}=n_{\lambda}-n_{\lambda+2}$ for all λ.
(ii) $p_{\lambda}^{b, a}=p_{\lambda}^{a, b}$ for all a, b, λ.
(iii) $h^{s, t}=h^{s+1, t-1}-\sum_{0 \leq \lambda \leq t-1} p_{\lambda}^{s+1, t-1-\lambda}+\sum_{0 \leq \lambda \leq s} p_{\lambda}^{s-\lambda, t}$ for all s, t with $s+t=w$.

Under the assumption (2.1), only the following sets of primitive Hodge nembers are possible.
(3.3) Case $w=2 t+1$. The possibility is unique.

$$
\begin{aligned}
& p_{1}^{t, t}=1 \\
& p_{0}^{a, b}= \begin{cases}h^{a, b}-1 & \text { if } a=t+1, t, \\
h^{a, b} & \text { otherwise } .\end{cases}
\end{aligned}
$$

Case $w=2 t$. There are $t+1$ possible cases.
(3.4) For each $s=w, w-1, \cdots, t+1$,

$$
\begin{aligned}
& p_{1}^{s, w-s-1}=p_{1}^{w-s-1, s}=1, \\
& p_{0}^{a, b}= \begin{cases}h^{a, b}-1 & \text { if } a=s+1, s, w-s, w-s-1, \\
h^{a, b} & \text { otherwise } .\end{cases}
\end{aligned}
$$

(3.5) For $s=t$,

$$
\begin{aligned}
& p_{1}^{t, t-1}=p_{1}^{t-1, t}=1, \\
& p_{0}^{a, b}= \begin{cases}h^{a, b}-1 & \text { if } a=t+1, t-1, \\
h^{a, b}-2 & \text { if } a=t, \\
h^{a, b} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Definition(3.6). Given a filtration W in (2.2) and a set $p=\left\{p_{\lambda}^{a, b}\right\}$ of primitive Hodge numbers belonging to $\left\{h^{p, q}, n_{\lambda}\right\}$, the corresponding boundary component is a classifying space of the gradedly polarized mixed Hodge structures on $W_{w} H_{\mathrm{C}}: B=B(W, p):=$ $\left\{F \mid F\right.$ is a filtration on $W_{w} H_{C}$ satisfying the condition (3.7) below $\}$.
(3.7) $\mathrm{gr}_{w}^{W} F\left(\right.$ resp. $\mathrm{gr}_{w-1}^{W} F$) is a Hodge structure of weight w (resp. $w-1$) with Hodge type $\left\{p_{0}^{a, b}\right\}$ (resp. $\left\{p_{1}^{a, b}\right\}$) and polarized by the bilinear form induced by S on $\mathrm{gr}_{w}^{W} F$ (resp. positive $(-1)^{w-1}$-symmetric bilinear forms on W_{w-1}).

We consider polarization forms on W_{w-1} are equivalent if they differ only by a positive multiplicative constant.

Proposition(3.8). There is an $N(W)$-equivariant embedding $B(W, p) \hookrightarrow D(W)^{\prime}$.
Proof. We shall first construct a map $\varphi: B \rightarrow D^{\prime}$, where $B:=B(W, p), D^{\prime}:=D(W)^{\prime}$. Let $F \in B$. In the present case, the weight length is one, hence we have the Hodge-Deligne decomposition

$$
W_{w} H_{\mathbf{C}}=\bigoplus P_{\lambda}^{a, b}, \quad P_{\lambda}^{a, b}:=F^{a} \cap \sigma F^{b} \cap W_{w-\lambda} H_{\mathbf{C}}
$$

where the summation is taken over $a+b=w-\lambda, \lambda=0,1$. We want to extend this to an S-polarized split mixed Hodge structure on H_{C} uniquely up to modulo $C(W)_{\mathbf{C}}$-action. Setting $P_{0, \mathbf{C}}:=\bigoplus_{a, b} P_{0}^{a, b}$, we have a splitting over \mathbf{R} of $W_{w-1} H_{\mathbf{C}} \subset W_{w} H_{\mathbf{C}}$. In case $w=2 t+1$, our assertion follows immediately from the fact that $P_{-1, \mathrm{C}}:=P_{-1}^{t+1, t+1}$ should be perpendicular to $P_{0, \mathrm{C}}$ with respect to S. Similarly, in case $w=2 t, P_{-1, \mathrm{C}}:=P_{-1}^{s+1, w-s}+$ $P_{-1}^{w-s, s+1}$ is distinguished up to modulo $C(W)_{C}$-action by the same condition, where s is the integer satisfying $p_{1}^{s, w-s-1}=1$ in the given set of primitive Hodge numbers. Moreover, the summands $P_{-1}^{a+1, w-a}(a=s, w-s-1)$ are distinguished up to modulo $C(W) \mathbf{C}^{-}$ action by the condition that $P_{-1}^{a+1, w-a}$ should be perpendicular to $P_{1}^{a, w-a-1}+P_{-1}^{a+1, w-a}$ with respect to S. Now let $P_{-1}^{t+1, t+1}$ in case $w=2 t+1$ and $P_{-1}^{s+1, w-s}, P_{-1}^{u,-s, s+1}$ in case $w=2 t$ be representatives among the above constructions. These deta determine a splitting $P_{1} \oplus P_{0} \oplus P_{-1}$ over \mathbf{R} of the filtration $W_{w-1} \subset W_{w} \subset W_{w+1}$, where $P_{1}:=W_{w-1}$, $P_{\lambda}:=P_{\lambda, \mathrm{C}} \cap H(\lambda=0,-1)$. This, in turn determines a real semi-simple element $Y \in \mathrm{~g}$ so that P_{λ} is the λ-eigen space of Y. On the other hand, the nilpotent element N is determined as the positive generator of $\operatorname{Lie} C(W)_{\mathbf{z}}$. Since $[Y, N]=2 N$ by construction, we have a representation $\rho: \mathrm{SL}_{2}(\mathbf{R}) \rightarrow G$ (not necessarily rational). Transforming the $P_{\lambda}^{a, b}$ by the Cayley element $c=\rho\left(c_{1}\right)$ in (1.17), we get the Hodge- $\left(Z, X_{ \pm}\right)$decomposition: $\bigoplus Q_{\lambda}^{a, b+\lambda}:=\bigoplus c P_{\lambda}^{a, b}$. Then we know that $H^{p, q}:=\bigoplus_{\lambda} Q_{\lambda}^{p, q}$ determines an element $r \in D$ where ρ is horizontal (see [$\mathrm{U},(3.4)$ and its proof]). We now define a map

$$
\begin{equation*}
\varphi: B \rightarrow D^{\prime} \quad \text { by } \quad F \mapsto C(W)_{\mathbf{C}} \cdot r . \tag{3.9}
\end{equation*}
$$

Next we define a map

$$
\begin{equation*}
\psi: \varphi(B) \rightarrow B \quad \text { by } \quad \exp (z N) \cdot F \mapsto F \cap W_{w} H_{\mathbf{C}} . \tag{3.10}
\end{equation*}
$$

This is well-defined. Indeed, if $\exp \left(z^{\prime} N\right) \cdot F^{\prime}=\exp (z N) \cdot F$ then $F^{t}=g \cdot F$ for $g:=$ $\exp \left(\left(z-z^{\prime}\right) N\right)$. Since $W_{u}=\operatorname{Ker} N$, we see that $g \mid W_{w}$ is identity and so

$$
F^{\prime} \cap W_{w} H_{\mathbf{C}}=g \cdot F \cap W_{w} H_{\mathbf{C}}=g\left(F \cap W_{w} H_{\mathbf{C}}\right)=F \cap W_{w} H_{\mathbf{C}}
$$

We claim now that $\psi \varphi$ is identity. Indeed, let $F \in B$ and F_{∞} the Hodge filtration associated to the S-polarized split mixed Hodge structure $\left\{P_{\lambda}^{a, b} \mid a+b=w-\lambda, \lambda=\right.$ $1,0,-1\}$ constructed above. Then the filtration F_{r} corresponding to $r \in D$ is $F_{r}=c F_{\infty}$ by definition. On the other hand, $c F_{\infty}=\exp (i N) \cdot F_{\infty}$ in the present situation. This follows immediately from an observation that the restriction $\rho\left(\mathrm{SL}_{2}(\mathbf{C})\right) \mid P^{\prime}$, where $P^{\prime}:=$ $P_{1}^{a-1, w-a}+P_{-1}^{a, w-a+1}, a-1=t$ in case $w=2 t+1$, and $a-1=s, w-s-1$ in case $w=2 t$, yields a 2-dimensional irreducible representation of $\mathrm{SL}_{2}(\mathbf{C})$ hence we have $c=\frac{1}{\sqrt{2}} \exp (i N)$ on $P_{-1}^{a, w-a+1}$.

It is obvious that ψ is $N(W)$-equivariant.
Let (ρ, r) be an SL_{2}-orbit, Y in (1.17), and $W=W(Y)$ in (1.18). We assume that W is defined over \mathbf{Q}. We denote

$$
\begin{equation*}
G_{Y}:=\left\{g \in G \mid g Y^{-1}=Y\right\} . \tag{3.11}
\end{equation*}
$$

In the notation of (2.8), we set

$$
\begin{equation*}
\tilde{r}:=\left(r \bmod C(W)_{\mathbf{z}}\right) \in L(W), \quad b:=\pi(\tilde{r}) \in D(W)^{\prime} . \tag{3.12}
\end{equation*}
$$

Then, by (1.19), we have $c F_{\infty}=F_{r}=\exp \left(i N_{+}\right) \cdot F_{\infty}$, and hence $b \in B=B(W, p)$ under the identification of (3.8).

Proposition(3.13). In the above situation, we have the following.
(i) The orbits $G_{Y} \cdot b \subset N(W) \cdot b=B \subset D(W)^{\prime}$ are complex submanifolds, where $B=B(W, p)$.
(ii) $\left(\left(C(W) \rtimes G_{Y}\right) \cdot r\right)^{\sim} \rightarrow G_{Y} \cdot b$ and $(N(W) \cdot r)^{\sim} \rightarrow B$ are punctured disc bundles contained in the line bundle (2.8). $\left(G_{Y} \cdot r\right)^{\sim} \rightarrow G_{Y} \cdot b$ is the family of all $S L_{2}$-orbits corresponding to the pair (Y, p), and $(N(W) \cdot r)^{\sim} \rightarrow B$ is the family of all nilpotent orbits corresponding to the pair (W, p).
(iii) $N(W) \cdot r$ is open in D if and only if D is a Hermitian symmetric domain.

Proof. We first claim that

$$
\begin{align*}
& \operatorname{dim}_{\mathbf{R}} N(W) / I_{r} \cap N(W)=2 \operatorname{dim}_{\mathbf{C}} N(W)_{\mathbf{C}} / I_{\mathbf{C}, r} \cap N(W)_{\mathbf{C}} \\
& \operatorname{dim}_{\mathbf{R}}\left(C(W) \rtimes G_{Y}\right) / I_{r} \cap\left(C(W) \rtimes G_{Y}\right) \tag{3.14}\\
& \quad=2 \operatorname{dim}_{\mathbf{C}}\left(C(W)_{\mathbf{C}} \rtimes G_{Y, \mathbf{C}}\right) / I_{\mathbf{C}, r} \cap\left(C(W)_{\mathbf{C}} \rtimes G_{Y, \mathbf{C}}\right),
\end{align*}
$$

where I_{r} and $I_{\mathbf{C}, r}$ are the isotropy subgroups at r of G and of $G_{\mathbf{C}}$, respectively. (3.14) can be verified elementarily by the dimension count of the corresponding Lie algebras using bases of H_{C} according to the mixed Hodge-($Y, N_{ \pm}$) decomposition of (ρ, r) (cf. [U, §2]), hence we left it to the reader. Similarly, we can verify elementarily that $N(W)$ acts on B transitively and so we omit this verification. (3.14) shows that orbit $N(W) \cdot r$ (resp. $\left.\left(C(W) \rtimes G_{Y}\right) \cdot r\right)$ is open in $N(W)_{\mathbf{C}} \cdot r$ (resp. $\left.\left(C(W)_{\mathbf{C}} \rtimes G_{Y, \mathbf{C}}\right) \cdot r\right)$ in the Hausdorff topology and the latter is a closed complex submanifold of $\mathscr{D}=G_{\mathbf{C}} \cdot r$, hence the former induces a complex submanifold $(N(W) \cdot r)^{\sim}\left(\operatorname{resp} .\left(\left(C(W) \times G_{Y}\right) \cdot r\right)^{\sim}\right)$ of $D(W) / C(W)_{\mathbf{z}}$. From this we know that the interior of the closure of $(N(W) \cdot r)^{\sim}\left(\right.$ resp. $\left.\left(\left(C(W) \rtimes G_{Y}\right) \cdot r\right)^{\sim}\right)$ in $L(W)$, denoted by

$$
\begin{equation*}
\mathcal{N}=\mathcal{N}(W, p) \quad(\text { resp. } \mathcal{S}=\mathcal{S}(Y, p)) \tag{3.15}
\end{equation*}
$$

is a complex submanifold and so the intersection of \mathcal{N} (resp. \mathcal{S}) with the zero section of the line bundle (2.8) is a complex submanifold of the zero section. Via the projection, we get the assertion (i).

Now the first part of (ii) follows from (2.6.ii) and the observations that $N(W)=$ $N(W)^{1} \exp (\mathbf{R} Y)\left(\right.$ for $N(W)^{1}$, see (2.10)), $\exp \left(i y N_{+}\right) \cdot r=\exp \left(\log (y+1)^{1 / 2} Y\right) \cdot r$, and

$$
\operatorname{det}\left(\exp \left(\log (y+1)^{1 / 2} Y\right) \mid W_{w-1}\right)=y+1>0 \Longleftrightarrow e^{-2 \pi y}<e^{2 \pi} .
$$

As for the second part of (ii), the assertion on the family $\left(G_{Y} \cdot r\right)^{\sim} \rightarrow G_{Y} \cdot b$ follows from [U, (3.16.iii)]. Let $g \cdot r \in N(W) \cdot r$ and $F_{g \cdot r}$ the corresponding Hodge filtration. Then, by (2.6.ii),

$$
\begin{align*}
& \exp \left(i y N_{+}\right) g \cdot r=g \exp \left(i y \operatorname{det}\left(g^{-1} \mid W_{w-1}\right) N_{+}\right) \cdot r \tag{3.16}\\
& =g \exp \left(\log \left(y \operatorname{det}\left(g^{-1} \mid W_{w-1}\right)+1\right)^{1 / 2} Y\right) \cdot r \in D \quad \text { for } y>0 .
\end{align*}
$$

On the other hand, applying the argument at the end of the proof of Proposition (3.8) to the Hodge- $\left(Z, X_{ \pm}\right)$decomposition and the mixed $\operatorname{Hodge}-\left(Y, N_{ \pm}\right)$decomposition $H_{\mathbf{C}}=$ $\bigoplus Q_{\lambda}^{a, b+\lambda}=\bigoplus P_{\lambda}^{a, b}$ associated to $(\rho, r)(c f .[\mathrm{U}, \S 2])$, we see that, for $P^{\prime}:=P_{1}^{a-1, w-a}+$ $P_{-1}^{a, w-a+1}$,

$$
N_{+} Q_{-1}^{a, w-a} \subset N_{+} c P^{\prime}=N_{+} P^{\prime} \subset P^{\prime}=c P^{\prime} .
$$

It follows that $N_{+} F_{r}^{a} \subset F_{r}^{a-1}$ and hence $N_{+} F_{g \cdot r}^{a} \subset F_{g \cdot r}^{a-1}$ by (2.6.ii). Therefore $\exp \left(\mathbf{C} N_{+}\right) g$. r is a nilpotent orbit in the direction of (W, p). Conversely, let $\left(N_{+}, F\right), F \in \check{D}$, be a nilpotent orbit, i.e., $N_{+} F^{a} \subset F^{a-1}$ and $\exp \left(i y N_{+}\right) \cdot F \in D$ for $y \gg 0$. Then, by [Sc, (6.16)], (W, F) is an S-polarized mixed Hodge structure. If (W, F) has mixed Hodge type p then this determines a point of B by $F \cap W_{w} H_{\mathrm{C}}$ hence, by (3.8) and the first part of (ii), we have $\exp \left(i y N_{+}\right) \cdot F \in N(W) \cdot r$ for $y \gg 0$. This completes the proof of (ii).

In order to prove (iii), we shall compute $\operatorname{dim} D-\operatorname{dim} N(W) \cdot r$. Let K be a maximal compact subgroup of G containing the isotropy subgroup $I_{r}, G=R T K$ an Iwasawa decomposition.

Case $w=2 t+1$, i.e., (3.3). We see that

$$
\begin{aligned}
& G=\operatorname{Sp}(2 h, \mathbf{R}), \quad K \simeq U(h), \quad I_{r} \simeq U\left(h^{w, 0}\right) \times \cdots \times U\left(h^{t+1, t}\right), \\
& K_{Y} \simeq U(h-1), \quad I_{r, Y}:=I_{r} \cap G_{Y} \simeq U\left(h^{w, 0}\right) \times \cdots \times U\left(h^{t+2, t-1}\right) \times U\left(h^{t+1, t}-1\right)
\end{aligned}
$$

Hence
$\operatorname{dim} D-\operatorname{dim} N(W) \cdot r=\operatorname{dim} G / I_{r}-\operatorname{dim} N(W) / I_{r, Y}=\operatorname{dim} K / I_{r}-\operatorname{dim} K_{Y} / I_{r, Y}$

$$
=h^{2}-(h-1)^{2}-\left(h^{t+1, t}\right)^{2}+\left(h^{t+1, t}-1\right)^{2}=2\left(h-h^{t+1, t}\right) .
$$

This is zero if and only if $h=h^{t+1, t}$, that is, $K=I_{r}$.
Case $w=2 t$. We see that

$$
\begin{aligned}
& G=O(2 h, k), \quad K \simeq O(2 h) \times O(k) \\
& I_{r} \simeq U\left(h^{w, 0}\right) \times \cdots \times U\left(h^{t+1, t-1}\right) \times O\left(h^{t, t}\right), \\
& K_{Y} \simeq O(2 h-2) \times O(k-2) \times O(2)
\end{aligned}
$$

According to the subcases (3.4), (3.5), $I_{r, Y}$ is isomorphic, respectively, to
$U\left(h^{w, 0}\right) \times \cdots \times U\left(h^{s+1, w-s-1}-1\right) \times U\left(h^{s, w-s}-1\right) \times \cdots \times U\left(h^{t+1, t-1}\right) \times O\left(h^{1, t}\right) \times U(1)$, $U\left(h^{w, 0}\right) \times \cdots \times U\left(h^{t+1, t-1}-1\right) \times O\left(h^{t, t}-2\right) \times U(1)$.
As before, we can compute $\operatorname{dim} D-\operatorname{dim} N(W) \cdot r$ to obtain

$$
\begin{aligned}
& 2\left(2 h+k-h^{s+1, w-s-1}-h^{s, w-s}-2\right) \quad \text { in case }(3.4), \\
& 2\left(2 h+k-h^{t+1, t-1}-h^{t, t}-1\right) \quad \text { in case }(3.5) .
\end{aligned}
$$

These are zero if and only if

$$
\begin{aligned}
& h=h^{s+1, w-s-1}\left(\text { or } h^{s, w-s}\right)=1, \quad k=2 h^{s, w-s}\left(\text { or } 2 h^{s+1, w-s-1}\right)=2 \quad \text { in case (3.4) }, \\
& h=h^{t+1, t-1}=1, \quad k=h^{t, t} \text { in case (3.5). }
\end{aligned}
$$

Hence, $\operatorname{dim} D=\operatorname{dim} N(W) \cdot r$ if and only if $K=I_{r}$. This completes the proof of the proposition.

We denote
(3.17)

$$
\widetilde{D}_{W, p}:=D / C(W) \mathbf{z} \cup \mathcal{N}(W, p) \subset L(W), \widetilde{D}_{W}:=\bigcup_{p} \widetilde{D}_{W, p} \subset L(W), \widetilde{D}:=\bigsqcup_{W} \widetilde{D}_{W}
$$

where the unions are taken over all sets p of primitive Hodge numbers belonging to $\left\{n_{\lambda}, h^{p, q}\right\}$ and all rational S-isotropic filtrations W of $H_{\mathbf{Q}}$ in (2.2) satisfying (2.1).
§4. Construction of partial compactifications $\overline{D / \Gamma}$.
We recall first the partial compactification $D^{* *} / \Gamma$ of Cattani-Kaplan in [CK] and its generalization into arbitrary weight [U , Appendix] whithin our present use. Under the assumption (2.1), the disjoint union $D^{* *}$ of all rational boundary components and the disjoint union D^{*} of all rational boundary bundles, both in the sense of [CK], coincide and it is defined by

$$
\begin{equation*}
D^{*}:=D \sqcup\left(\bigsqcup_{W, p} F(W, p)\right), \quad F(W, p):=\left\{\mathrm{gr}^{W} F \mid F \in B(W, p)\right\}, \tag{4.1}
\end{equation*}
$$

where W and p run over all rational S-isotropic filtrations (2.2) of $H_{\mathbf{Q}}$ satisfying the condition (2.1) and all sets of primitive Hodge numbers, respectively, and $B(W, p)$ is a boundary component in the sense of (3.6).

In order to introduce the Satake topology on D^{*}, we choose a maximal \mathbf{Q}-split Cartan subalgebra \mathfrak{t} of \mathfrak{g} and a Cartan decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ with $\mathfrak{p} \supset \mathfrak{t}$. Let $\Phi \subset \mathfrak{t}^{*}$ be the Q-root system, $\Phi^{+} \subset \Phi$ the positive root system with respect to some lexicographical
 $T:=\exp t$ and K is the maximal compact subgroup of G with Lie $K=\mathfrak{e}$.

Let $\mathfrak{t}^{+}:=\left\{A \in \mathfrak{t} \mid \alpha(A)>0\right.$ for all $\left.\alpha \in \Phi^{+}\right\}$be the Weyl chamber. We denote by \mathcal{A} the set of all rational admissible elements in the closure $\overline{\mathfrak{t}^{+}}$of \mathfrak{t}^{+}in \mathfrak{t}. Then we see, by construction, that \mathcal{A} is finite and a set of complete representatives of all $G_{\mathbf{Q}}$-conjugacy classes of rational admissible elements. Under the assumption (2.1), \mathcal{A} consists of the single element $Y:=\operatorname{diagonal}\left(1_{s}, 0, \cdots, 0,-1_{s}\right)$, where $s=1$ if w is odd and $s=2$ if w is even. Let $W(Y)$ be the weight filtration associated to Y in (1.18). For each set $p=\left\{p_{\lambda}^{a, b}\right\}$ of primitive Hodge numbers, we take a reference point $r_{p} \in D$ lying over $[K] \in G / K$, via some fixed projection $D \rightarrow G / K$, such that (Y, r_{p}) is an admissible pair of type p. This is possible by [U, (3.16.ii)]. We set

$$
\begin{align*}
\widetilde{r}_{p} & :=\left(r_{p} \bmod C(W(Y)) \mathbf{z}\right) \in L(W(Y)), \tag{4.2}\\
b_{p} & :=\pi\left(\widetilde{r}_{p}\right) \in B(W(Y), p), \quad \bar{b}_{p}:=\mathrm{gr}^{W(Y)}\left(b_{p}\right) \in F(W(Y), p) .
\end{align*}
$$

The Satake topology $\tau^{\Gamma}\left(D^{*}\right)$ on D^{*} relative to Γ in $[\mathrm{CK}]$ is introduced in the following process (i)-(iii):
(i) An open Siegel set subject to the Iwasawa decomposition $G=R T K$ is a subset $\mathfrak{S}:=\omega T_{\mu} K$ of G, where ω is a relatively compact open neighborhood of 1 in $R, \mu>0$ and $T_{\mu}:=\left\{t \in T \mid e^{\alpha}(t)>\mu\right.$ for all $\left.\alpha \in \Phi^{+}\right\}$. An extended Siegel set in D^{*} is a subset
$\mathfrak{S}^{*}:=\bigcup_{p}\left(\mathfrak{S} \cdot r_{p} \cup(\mathfrak{S} \cap N(W(Y))) \cdot \bar{b}_{p}\right)$. For suitable choices of ω and μ, there exists a finite subset E of $G_{\mathbf{Q}}$ satisfying $\Gamma E \mathfrak{S} \cdot r_{p}=D$ and $\Gamma_{W(Y)}(E \cap N(W(Y)))(\mathbb{S} \cap N(W(Y))) \cdot \bar{b}_{p}=$ $F(W(Y), p)$ for all p. Then, as [CK, (4.28)], $\Omega^{*}:=E \mathfrak{S}^{*}$ is a $\Gamma-f u n d a m e n t a l$ set in D^{*}, i.e, satisfies the following two conditions.

$$
\begin{equation*}
\Gamma \Omega^{*}=D^{*} \tag{4.3}
\end{equation*}
$$

(4.4) There exist finitely many $\gamma_{\nu} \in \Gamma$ such that, if $\gamma \in \Gamma, \gamma \Omega^{*} \cap \Omega^{*} \neq \emptyset$, then the actions of γ and γ_{ν} coincide on $\Omega^{*} \cap \gamma^{-1} \Omega^{*}$ for some ν.
(ii) A topology $\tau\left(\mathfrak{S}^{*}\right)$ on \mathfrak{S}^{*} is defined so that a basis of open sets is given by open subsets of $\mathfrak{S} \cdot r_{p}(\subset D)$ in the natural topology together with subsets

$$
\begin{equation*}
\left(U_{\lambda} V \cdot r_{p} \cup U \cdot \vec{b}_{p}\right) \cap \mathbb{S}^{*} \tag{4.5}
\end{equation*}
$$

for all p, where U runs over the pull-backs via the projection $N\left(W\left(Y^{*}\right)\right) \rightarrow F\left(W\left(Y^{\prime}\right), p\right)$, $g \mapsto g \cdot \bar{b}_{p}$, of all open sets in $F(W(Y), p)$ in the natural topology, λ is a positive real number, $U_{\lambda}:=\left\{g \in U \mid e^{\alpha}(g)>\lambda\right.$ for all $\alpha \in \Phi$ with $\left.\alpha(Y)>0\right\}, V$ runs over neighborhoods of 1 in K. The topology $\tau\left(\Omega^{*}\right)$ on Ω^{*} is induced from $\tau\left(\mathbb{S}^{*}\right)$ in the following way: the system of neighborhoods of $x \in \Omega^{*}$ consists of all subsets $\mathcal{U} \subset \Omega^{*}$ satisfying the condition that, if $x \in e \mathfrak{S}^{*}$ with $e \in E$, then $e^{-1} \mathcal{U} \cap \mathfrak{S}^{*}$ is a $\tau\left(\mathfrak{S}^{*}\right)$-neighborhood of $e^{-1} x \in \mathfrak{S}^{*}$. Then, as [CK, (4.32)], the topology $\tau\left(\Omega^{*}\right)$ has the following property.
(4.6) $\tau\left(\Omega^{*}\right)$ is Hausdorff and the action of $\gamma \in \Gamma$ is continuous in $\tau\left(\Omega^{*}\right)$ in the following sense: let $x \in \Omega^{*}$; if $\gamma x \in \Omega^{*}$, then for any $\tau\left(\Omega^{*}\right)$-neighborhood \mathcal{U}^{\prime} of γx there exists a $\tau\left(\Omega^{*}\right)$-neighborhood \mathcal{U} of x such that $\gamma \mathcal{U} \cap \Omega^{*} \subset \mathcal{U}^{\prime}$; if $\gamma x \notin \Omega^{*}$, then there cxists a $\tau\left(\Omega^{*}\right)$ neighborhood \mathcal{U} of x such that $\gamma \mathcal{U} \cap \Omega^{*}=\emptyset$.
(iii) By virtue of (4.3), (4.4) and (4.6), [Sa, Theorem $\left.1^{\prime}\right]$ can be applied to obtain a Satake topology $\tau^{\Gamma}\left(D^{*}\right)$ (uniquely determined) with the following four properties.
(4.7.1) $\tau^{\Gamma}\left(D^{*}\right)$ induces $\tau\left(\Omega^{*}\right)$ (and also $\tau\left(\mathfrak{S}^{*}\right)$).
(4.7.2) The action of Γ on D^{*} is continuous.
(4.7.3) If $\Gamma x \cap \Gamma x^{\prime}=$ with $x, x^{\prime} \in D^{*}$, then there exist $\tau^{\Gamma}\left(D^{*}\right)$-neighborhoods \mathcal{U} of x and \mathcal{U}^{\prime} of x^{\prime} such that $\Gamma \mathcal{U} \cap \Gamma \mathcal{U}^{\prime}=\emptyset$.
(4.7.4) For each $x \in D^{*}$, there exists a fundamental system $\{\mathcal{U}\}$ of $\tau^{\Gamma}\left(D^{*}\right)$-neighborhoods of x such that $\gamma \mathcal{U}=\mathcal{U}$ for $\gamma \in \Gamma_{x}, \gamma \mathcal{U} \cap \mathcal{U}=\emptyset$ for $\gamma \notin \Gamma_{x}$, where Γ_{x} is the isotropy subgroup of Γ at x.

In [CK], they use a closed Siegel set in stead of an open one. In both cases the arguments are parallel. In $[\mathrm{CK}, \S 5]$, they show that the Satake topology $\tau^{\Gamma}\left(D^{*}\right)$ is independent of choices of the following things: $\mathfrak{t}, \Phi^{+}, K, r_{p}, \Gamma, \mathfrak{S}, E$. As Looijenga has pointed out to the author, the induced topology on D^{*} / Γ is not locally compact in general (cf. [CK, (4.36.i)]).

Definition(4.8). In the notation of (3.17), a Satake topology $\tau(\widetilde{D})$ on \widetilde{D} is defined in the following way.
(i) We first define a topology $\tau\left(D \sqcup B(W(Y))\right.$), where $B(W(Y)):=\bigsqcup_{p} B(W(Y), p)$. On D, this topology coincides with the natural one. At a boundary point $x \in B(W(Y))$, a fundamental system of neighborhoods is givn by

$$
U_{\lambda} V \cdot r_{p} \sqcup U \cdot b_{p},
$$

where U runs over the pull-backs via the projection $N(W(Y)) \rightarrow B(W(Y)), g \mapsto g \cdot b_{p}$, of all neighborhoods of x in $B(W(Y)$) in the natural topology, λ is a positive real number, $U_{\lambda}:=\left\{g \in U \mid e^{\alpha}(g)>\lambda\right.$ for all $\alpha \in \Phi$ with $\left.\alpha(Y)>0\right\}, V$ runs over neighborhoods of 1 in K.
(ii) We extend $\tau(D \sqcup B(W(Y)))$ to $\tau\left(\bigsqcup_{W}(D \sqcup B(W))\right)$, where W runs over all rational S-isotropic filtrations (2.2) of $H_{\mathbf{Q}}$ satisfying the condition (2.1), so that the action of $G_{\mathbf{Q}}$ is continuous on the latter.
(iii) $\tau(\widetilde{D})$ is the topology induced from $\tau\left(\bigsqcup_{W}(D \sqcup B(W))\right)$.

It is easy to see that the Satake topology $\tau(\widetilde{D})$ is well-defined, and we can prove similarly as in [CK, §5] that $\tau(\tilde{D})$ is independent of the choices of $\mathfrak{t}, \Phi^{+}, K, r_{p}$.

Lemma(4.9). The restriction of $\tau(\widetilde{D})$ to $\mathcal{N}(W, p)$ coincides with the natural topology on it for every W and p, where $\mathcal{N}(W, p)$ is in (3.15).

Proof. The assertion follows immediately by Definition(4.8) and (3.16) for the SL_{2}-orbit (ρ, r_{p}) corresponding to the admissible pair (Y, r_{p}).

Problem(4.10). Compare the topology $\tau\left(\widetilde{D}_{W}\right)$ with the natural one on $\widetilde{D}_{W} \subset L(W)$.
Lemma(4.11). The natural map $f: \tilde{D} \rightarrow D^{*} / \Gamma$ is continuous in the Satake topologies.
Proof. Set $W=W(Y)$. By Definition(4.8) and [CK, (5.7)] and its generalization, it is enough to show that, in the notation of (3.17), the natural map

$$
\begin{equation*}
f_{W, p}: \widetilde{D}_{W, p} \rightarrow D^{*} / C(W)_{\mathbf{z}} \tag{4.12}
\end{equation*}
$$

is continuous in the Satake topologies for any p.
It is obvious that $f_{W, p}$ is continuous on $D / C(W)_{\mathbf{z}}$. Let $x \in B(W, p)$ and \bar{x} its image in $F(W, p)$. Note that a fundamental system of $\tau\left(D^{*}\right)$-neighborhoods of $\bar{x} \in D^{*}$ is given by the following sets (cf. [CK, (4.31)], [Sa, Proof of Theorem 1']):

$$
\begin{equation*}
\mathcal{U}=\Gamma_{\bar{x}}\left(\bigcup_{g \in \Gamma \in, g \mathscr{S}^{*} \ni \bar{x}} g\left(\tau\left(\mathfrak{S}^{*}\right) \text {-neighborhood of } g^{-1} \bar{x} \in \mathbb{S}^{*}\right) .\right. \tag{4.13}
\end{equation*}
$$

Hence, in order to prove the continuity of $f_{W, p}$, it is enough to show that, on $\tilde{D}_{W, p}$, the topology $\tau_{1}\left(\widetilde{D}_{W, p}\right)$, similarly defined as the topology $\tau\left(D^{*} / C(W)_{\mathbf{Z}}\right)$ on $D^{*} / C(W)_{\mathbf{z}}$ induced by $\tau^{\Gamma}\left(D^{*}\right)$, coincides with the topology $\tau\left(\widetilde{D}_{W, p}\right)$ induced by $\tau(\widetilde{D})$.

We many assume that the Siegel set \mathfrak{S} and a finite subset $E \subset G_{\mathbf{Q}}$ satisfy $C(W)_{\mathbf{z}} \mathfrak{S} \supset$ $C(W)$ and $\Gamma_{W}(E \cap N(W))(\mathbb{S} \cap N(W)) \cdot b_{p}=B(W, p)$ for all p. Set $\mathfrak{S}_{W}:=\mathfrak{S} \cap N(W)$, $r:=r_{p}$ and $b:=b_{p}$. Since $\mathfrak{S}_{W} \exp \left(\mathbf{R}_{>0} \cdot Y\right)=\mathfrak{S}_{W},\left(\mathfrak{S}_{W} \cdot r\right)^{\sim} \sqcup \mathfrak{S}_{W} \cdot b$ is an open subset of
$\mathcal{N}:=\mathcal{N}(W, p)$ in the natural topology. It follows that the topology $\tau_{1}\left(\left(\mathfrak{S}_{W} \cdot r\right)^{\sim} \cup \mathfrak{S}_{w} \cdot b\right)$, induced from $\tau_{1}\left(\mathfrak{S}_{W} \cdot r \sqcup \mathfrak{S}_{W} \cdot b\right)$ which is similarly defined as $\tau\left(\mathfrak{S}^{*}\right)$, coincides with the natural topology on $\left(\mathfrak{S}_{W} \cdot r\right)^{\sim} \sqcup \mathfrak{S}_{W} \cdot b \subset \mathcal{N}$. Since the action of $N(W)$ on \mathcal{N} is continuous in the natural topology, the topology $\tau_{1}(\mathcal{N})$, similarly defined as $\tau\left(D^{*} / C(W)_{\mathbf{z}}\right)$, coincides with the natural topology on \mathcal{N} by (4.13). Evidently the multiplication by $g \in N(W)$ from the left to $U_{\lambda} V$ in (4.5) does not impose any effect on the neighborhood V of 1 in K. Thus we get $\tau_{1}\left(\widetilde{D}_{W, p}\right)=\tau\left(\widetilde{D}_{W, p}\right)$.

Corollary(4.14). For any $x \in B(W, p)$, there exists a Satake neighborhood \mathcal{U}_{x} of x in \widetilde{D} such that the Γ-equivalence and Γ_{W}-equivalence coincide on $\mathcal{U}_{x} \cap D / C(W)_{\mathbf{z}}$.

Proof. By the lemma, this follows immediately from (4.7.4).
Lemma(4.15). In the Satake topology, the action of $\bar{\Gamma}_{W}$ on \widetilde{D}_{W} is properly discontinuous, hence the Γ_{W}-equivalence relation is closed on \tilde{D}_{W}.

Proof. Let $x \in B(W, p)$, and $\bar{x} \in F(W, p)$ its image. Let $\mathcal{U}_{\bar{x}}$ be a Satake neighborhood of $\bar{x} \in D^{*}$ satisfying the condition (4.7.4). By Lemma (4.11), we can take a Satake neighborhood $\mathcal{U}_{x}=\left(U_{\lambda} V \cdot r_{p}\right)^{\sim} \cup U \cdot b_{p}$ of $x \in \widetilde{D}_{W, p}$ contained in $f_{W, p}^{-1}\left(\mathcal{U}_{\bar{x}} \bmod C(W)_{\mathbf{Z}}\right)$. By Proposition (2.9), we may assume that $\left\{\gamma \in \bar{\Gamma}_{W} \mid \gamma U \cdot b_{p} \cap U \cdot b_{p} \neq \emptyset\right\}$ is finite. Since $F(W, p)=B(W, p) / U(W)$, where $U(W)$ is in $(2,3)$, we see that the isotropy subgroup $\Gamma_{\bar{x}}$ at \bar{x} is equal to $U(W)_{\mathbf{z}} \rtimes \Gamma_{x}$.

For $\gamma \in U(W)_{\mathbf{Z}}$, we claim that $\gamma \mathcal{U}_{x} \cap \mathcal{U}_{x} \neq \emptyset$ if and only if $\gamma U \cdot b_{p} \cap U \cdot b_{p} \neq \emptyset$. To see this, notice that $\gamma \mathcal{U}_{x} \cap \mathcal{U}_{x} \neq \emptyset$ is equivalent to

$$
\gamma\left(U_{\lambda} V \cdot r_{p}\right)^{\sim} \cap\left(U_{\lambda} V \cdot r_{p}\right)^{\sim} \neq \emptyset, \quad \text { or } \quad \gamma U \cdot b_{p} \cap U \cdot b_{p} \neq \emptyset .
$$

The former implies $\gamma U_{\lambda} V \cap U_{\lambda} V I_{r_{p}} \neq \emptyset$, hence, by the uniqueness of the Iwasawa decomposition, we have $\gamma U_{\lambda} \cap U_{\lambda} \neq \emptyset$, and so $\gamma U \cdot b_{p} \cap U \cdot b_{p} \neq \emptyset$ as desired. This proves the 'only if' part. The converse is obvious.

Thus we see $\left\{\gamma \in \bar{\Gamma}_{W} \mid \gamma \mathcal{U}_{x} \cap \mathcal{U}_{x} \neq \emptyset\right\}=\left\{\gamma \in \bar{\Gamma}_{\bar{x}} \mid \gamma \mathcal{U}_{x} \cap \mathcal{U}_{x} \neq \emptyset\right\}=\left\{\gamma \in \bar{\Gamma}_{W} \mid \gamma U \cdot b_{p} \cap\right.$ $\left.U \cdot b_{p} \neq \emptyset\right\}$, which is finite. This proves the lemma.

Using the Satake neighborhoods \mathcal{U}_{x} in (4.14), we now construct our partial compactification $\overline{D / \Gamma}$ by patching up

$$
\begin{equation*}
\bar{\Gamma}_{W} \cdot \mathcal{U}_{x} / \bar{\Gamma}_{W} \stackrel{\text { open }}{\supset} \bar{\Gamma}_{W} \cdot\left(\mathcal{U}_{x} \cap D / C(W)_{z}\right) / \bar{\Gamma}_{W} \stackrel{\text { open }}{\subset} D / \Gamma \tag{4.16}
\end{equation*}
$$

for all $x \in B(W, p)$, all rational S-isotropic filtrations W of $H_{\mathbf{Q}}$ in (2.2) satisfying the condition (2.1) and all sets $p=\left\{p_{\lambda}^{a, b}\right\}$ of primitive Hodge numbers belonging to $\left\{h^{p, q}, n_{\lambda}\right\}$. In the above construction, the W can be taken over a set
(4.17) $\mathcal{W}:=\left(\right.$ set of complete representatives of the $G_{\mathbf{Q}}$-orbit of $W(Y) \bmod \Gamma$-action $)$,
which is finite by (4.3).

Theorem(4.18). $\overline{D / \Gamma}$ with the Satake topology is Hausdorff and carries the complex structure induced from $\widetilde{D}_{W} \subset L(W)$ for all $W \in \mathcal{W}$.

Proof. By construction, $\overline{D / \Gamma} \simeq D / \Gamma \sqcup \bigsqcup_{W \in \mathcal{W}, p} B(W, p) / \bar{\Gamma}_{W}$ as point sets. Let Δ be the graph of the equivalence relation defined by the projection $\tilde{D} \rightarrow \overline{D / \Gamma}$. Notice that $\overline{D / \Gamma}$ is Hausdorff if and only if the graph $\Delta \subset \widetilde{D} \times \widetilde{D}$ is closed. To see the closedness of Δ, it is enough to show the following: if $x_{i}, y_{i} \in D$, and $\gamma_{i} \in \Gamma$ with $y_{i}=\gamma_{i} x_{i}$ satisfy (x_{i} $\left.\bmod C(W)_{\mathbf{z}}\right) \rightarrow x \in B(W, p),\left(y_{i} \bmod C(W)_{\mathbf{z}}\right) \rightarrow y \in B\left(W^{\prime}, p^{\prime}\right)$ in the Satake topology, then $(x, y) \in \Delta$.

By Lemma (4.11) and the Hausdorffness of D^{*} / Γ in [CK, (4.36.i)], the images of x and y in D^{*} / Γ coincide, hence lie in the same boundary components $F(W, p) / \Gamma_{W}$ of D^{*} / Γ. It follows that $W^{\prime}=\delta W$ for some $\delta \in \Gamma$ and $p=p^{\prime}$. Replacing y_{i}, y by $\delta^{-1} y_{i}, \delta^{-1} y$, it suffices to prove the assertion in the special case: $x, y \in B(W, p)$. We consider a diagram:

$$
\begin{array}{cccc}
\widetilde{D}_{W, p} \xrightarrow{\int_{\boldsymbol{W}, \mathrm{p}}} D^{*} / C(W)_{\mathbf{z}} & \rightarrow & D^{*} / \Gamma \\
U & & U \\
& F(W, p) & \rightarrow & F(W, p) / \Gamma_{W}
\end{array}
$$

Since x, y have the same image in D^{*} / Γ, their images in $F(W, p) \subset D^{*} / C(W) \mathbf{z}$ differ by a $\gamma \in \Gamma_{W}$. Again replacing y_{i}, y by $\gamma^{-1} y_{i}, \gamma^{-1} y$, we may assume that x, y have the same image $\bar{x} \in F(W, p) \subset D^{*} / C(W)_{z}$. Let $\mathcal{U}_{\bar{x}} \subset D^{*}$ be a Satake neighborhood of \bar{x} satisfying the condition in (4.7.4). Then $\mathcal{V}:=f_{W, p}^{-1}\left(\mathcal{U}_{\bar{x}} / C(W)_{\mathbf{z}}\right)$ is a Satake open subset of $D(W) / C(W)_{\mathrm{z}} \cup \mathcal{N}(W, p)$ containing x, y. Therefore, $x_{i}, y_{i} \bmod C(W)_{\mathrm{z}} \in \mathcal{V}$ if $i \gg 0$. In other words, $x_{i}, y_{i} \in \mathcal{U}_{\bar{x}} \cap D$ if $i \gg 0$. Now $y_{i}=\gamma_{i} x_{i}, \gamma_{i} \in \Gamma$, so, by the assumption on $\mathcal{U}_{\bar{x}}$, we see $\gamma_{i} \in \Gamma_{\bar{x}} \subset \Gamma_{W}$ for $i \gg 0$. Hence the first assertion follows from Lemma (4.15). The second assertion follows from Corollary (4.14) and Lemma (4.15).

§5 Extension of period maps.

Let $\varphi: \Delta^{*} \rightarrow D / \Gamma$ be a period map, i.e., a homolomorphic map with horizontal local liftings, from the punctured unit disc Δ^{*}. Let $\mathfrak{h} \rightarrow \Delta^{*}, z \mapsto \exp (2 \pi i z)$, be the universal cover, $\widetilde{\varphi}: \mathfrak{h} \rightarrow D$ a lifting of $\varphi, \gamma \in \Gamma$ an element satisfying $\widetilde{\varphi}(z+1)=\gamma \widetilde{\varphi}(z)$ for all $z \in \mathfrak{h}$, N the logarithm of the unipotent part of γ, and $W(N)$ the monodromy weight filtration.

Theorem(5.1). (i) Any period map $\varphi: \Delta^{*} \rightarrow D / \Gamma$ from the puncture disc with the monodromy weight filtration $W=W(N)$ satisfying the condition (2.1) extends holomorphically to $\bar{\varphi}: \Delta \rightarrow \overline{D / \Gamma}$.
(ii) For any boundary point $\bar{\xi} \in \overline{D / \Gamma}-D / \Gamma$, there exists a period map $\varphi: \Delta^{*} \rightarrow D / \Gamma$ with the property described in (i) and its holomorphic extension $\bar{\varphi}: \Delta \rightarrow \overline{D / \Gamma}$ such that $\bar{\varphi}(0)=\bar{\xi}$.

Proof. As the proof is almost analoguous to the one in [CK], we shall write down the proof as long as it is needed. By the rational version of the SL_{2}-orbit theorem $[\mathrm{Sc}$, (5.13), (5.19), (5.26)], there exists an SL_{2}-orbit (ρ, r_{p}) with ρ defined over \mathbf{Q}, such that $\rho_{*}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=N$, and satisfies the property (5.2) below. Let $Y:=\rho_{*}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Choose a
maximal \mathbf{Q}-split Cartan subalgebra \mathfrak{t} of \mathfrak{g} containing Y, and a positive root system $\Phi^{+} \subset \mathfrak{t}^{*}$ for the adjoint action of \mathfrak{t} on \mathfrak{g} satisfying that any root α with $\alpha(Y)>0$ belongs to Φ^{+}. Set $R:=\exp \left(\sum_{\alpha \in \Phi+} \mathfrak{g}_{\alpha}\right)$ and $T:=\exp \mathrm{t}$. Then the centralizer of T in G is a product $T M$ with $M \mathbf{Q}$-anisotropic, and $P:=R T M$ is a minimal \mathbf{Q}-parabolic subgroup of G. Let K be the maximal compact subgroup of G corresponding to the Cartan involution $\theta_{r_{P}}$ determined by the reference point r_{p} as in (1.11). Then $G=P K=R T M K$, and we have the following:
(5.2) There exist functions $r(x, y), t(x, y), m(x, y)$ and $k(x, y)$ defined and real analytic on a domain $\{x+i y \in \mathfrak{h} \mid y>\beta\}$ for some β and taking values in groups R, T, M and K, respectively, such that
(5.2.1) $\widetilde{\varphi}(x+i y)=r(x, y) t(x, y) m(x, y) k(x, y) \cdot r_{p}$.
(5.2.2) As $y \rightarrow+\infty$, the functions converge

$$
r(x, y) \rightarrow \exp (x N) r(\infty), \exp \left(\log y^{-1 / 2} Y\right) t(x, y) \rightarrow 1, m(x, y) \rightarrow 1, k(x, y) \rightarrow 1
$$ uniformly in x, where $r(\infty) \in \exp \mathfrak{v}$ with $\mathfrak{v}:=\operatorname{Im}\left(\operatorname{ad}_{\mathfrak{g}} N\right) \cap \operatorname{Ker}\left(\operatorname{ad}_{\mathfrak{b}} N\right)$.

By [CK, (6.4)], we see $\exp \mathfrak{v} \subset U(W)$. (Since $N^{2}=0$ in the present case, the proof is easier.) φ factors through $\Delta^{*} \rightarrow D / C(W)_{\mathbf{z}}$, denoted also by φ, by an abuse of the notation. We now claim
(5.3) $\lim _{t \rightarrow 0} \varphi(t)=r(\infty) \cdot b_{p} \in D / C(W)_{\mathbf{Z}} \cup \mathcal{N}(W, p)$ in the Satake topology, where $b_{p} \in B(W, p)$ is induced from r_{p} as in (3.12).

In order to set the situation where we have introduced the Satake topology, we choose a maximal compact subgroup K^{\prime} of G whose associated Cartan involution acts on \mathfrak{t} by multiplication by -1 . Then, as in the proof of [U, (3.16.ii)], there exists $g \in G_{Y}$ such that $K^{\prime}=(\operatorname{Int} g) K . g \in G_{Y}$ splits according to the decomposition $G=P K$, hence we may assume moreover $g \in P \cap G_{Y}$. Set $r_{p}^{\prime}:=g \cdot r_{p} \in D$ and $b_{p}^{\prime}:=g \cdot b_{p} \in B=B(W, p)$. We are thus in the situation after (4.1). Then (5.3) follows if we show
(5.4) in the notation of (4.8), for the pull-back U^{\prime} via the projection $N(W) \rightarrow B, h \mapsto$ $h \cdot b_{p}^{\prime}$, of any neighborhood of $\xi^{\prime}:=g r(\infty) \cdot b_{p}$ in B, any $\lambda>0$ and any neighborhood V^{\prime} of 1 in K^{\prime}, there exists $\beta>0$ such that $g \cdot \widetilde{\varphi}(x+i y) \in U_{\lambda}^{\prime} V^{\prime} \cdot r_{p}^{\prime}$ for all $y>\beta$ and $|x|<1$.

Indeed, (5.4) implies $\widetilde{\varphi}(x+i y) \in g^{-1} U_{\lambda}^{\prime} V^{\prime} \cdot r_{p}^{\prime}$ for all $y>\beta$ and $|x|<1$. It is easy to see that this, in turn, yields, $\varphi(t) \in\left(\left(g^{-1} U^{\prime}\right)_{\lambda_{0} \lambda} V^{\prime} \cdot r_{p}^{\prime}\right)^{\sim}$ for $0<|t|<e^{-2 \pi \beta}$, where $\lambda_{0}:=\min \left\{e^{\alpha}\left(g^{-1}\right) \mid \alpha \in \Phi\right.$ with $\left.\alpha(Y)>0\right\}$. Since $\left(\left(g^{-1} U^{\prime}\right)_{\lambda_{0} \lambda} V^{\prime} \cdot r_{p}^{\prime}\right) \sim \cup\left(g^{-1} U^{\prime}\right) \cdot b_{p}^{\prime}$ is a Satake neighborhood of $g^{-1} \xi^{\prime}=r(\infty) \cdot b_{p}$ in $D / C(W)_{\mathbf{z}} \cup \mathcal{N}(W, p)$, which can be taken arbitrarily small, we get (5.3).

Now we shall prove (5.4). Set $g=r_{0} t_{0} m_{0}, r_{0} \in R, t_{0} \in T$ and $m_{0} \in M$. Then, from (5.2.1), $R \triangleleft P$ and $M \subset K$, we see

$$
\begin{aligned}
& g \widetilde{\varphi}(x+i y)=r^{\prime}(x, y) t(x, y) k^{\prime}(x, y) \cdot r_{p}^{\prime}, \quad \text { where } \\
& r^{\prime}(x, y):=g r(x, y) g^{-1} r_{0}\left(t(x, y) m^{\prime}(x, y)\right) r_{0}^{-1}\left(t(x, y) m^{\prime}(x, y)\right)^{-1} \in R, \\
& k^{\prime}(x, y):=m^{\prime}(x, y) g k(x, y) g^{-1} \in K^{\prime}, \\
& m^{\prime}(x, y):=m_{0} m(x, y) m_{0}^{-1} \in M .
\end{aligned}
$$

It follows from (5.2.2) that, as $y \rightarrow+\infty$, the following converge uniformly in x :

$$
m^{\prime}(x, y) \rightarrow 1, \quad r^{\prime}(x, y) \rightarrow g \exp (x N) r(\infty) g^{-1}, \quad k^{\prime}(x, y) \rightarrow 1 .
$$

Hence there exists $\beta>0$ such that $r^{\prime}(x, y) t(x, y) \in U_{\lambda}^{\prime}$ and $k^{\prime}(x, y) \in V$ for all $y>\beta$ and $|x|<1$. (5.4) is proved, and this completes the proof of (i).

In order to prove (ii), we take the lifting $\xi \in B(W, p)$ of $\bar{\xi}$ with $W \in \mathcal{W}$ (see (4.17)). Then, by Proposition(3.13.ii), there exists a nilpotent orbit (N, \tilde{F}) such that $\pi(\tilde{F})=\xi$, where N is the positive generator of $C(W)_{\mathbf{Z}}$ and $\widetilde{F} \in \mathcal{N}(W, p)$. Then for some $\beta>0$, $\nu:\{z \in \mathbf{C} \mid \operatorname{Im} z>\beta\} \rightarrow \mathcal{N}(W, p) \subset \widetilde{D}_{W, p}, z \mapsto \exp (z N) \cdot \widetilde{F}$, is a holomorphic map with horizontal liftings and, by (4.9), $\nu(z) \rightarrow \xi$ as $\operatorname{Im} z \rightarrow+\infty$. Hence $\varphi(t):=$ (projection) \circ $\nu((1 / 2 \pi i) \log t+i \beta) \in D / \Gamma$ is the desired period map.

REFERENCES

[CK] E. Cattani and A. Kaplan, Extension of period mappings for Hodge structures of weight 2, Duke Math. J. 44 (1977), 1-43.
[Sa] I. Satake, Algebraic Structures of Symmetric Domains, Publ. Math. Soc. Japan 14, Iwanami Shoten and Princeton Univ. Press (1980).
[Sc] W. Schmid, Variation of Hodge structure; the singularities of the period mappings, Invent. Math. 22 (1973), 211-319.
[U] S. Usui, A numerical criterion for admissibility of semi-simple elements, Tôhoku Math. J. 45 (1993), 471-484; Appendix, Proceeding of Symposium on Algebraic Geometry, Kinosaki 1992, 160-167.

