
COMPLEX STRUCTURES ON PARTIAL COMPACTIFICATIONS
  OF CLASSIFYING SPACES D/P OF HODGE STRUCTURES

Sampei Usui (Osa3ca Universlty)

  gl. Preliminaries.

  We urecall first the definition of a (polarized) Hodge structure of weight tv, Fix a free

Z-module Hz of finite rEmk. Set HQ : = QXHz, H ww HR := RXllz and Hc := C tsr, Hz,
whese comp}ex conjugatieR is denot6d by ff. Let w be ai} integer. A ficgge $tructsre ef
weight w en Hc is a decompeskion

(1.1) Hc=e llp,g with aNp•q==Hg,p.
                       p+qmew

            ltFP :me ep,)p HP 'g i$ eal}ed a Hedge fiitrutien, u}d UP,g is rccevercd by HP'g = FP A ffFg.

The integers

(1.2) hp•q := dimHp,q
ace called the Hodge numbers.
  A pelarizgtion S for a Hodge stfucture (i.1) of weight w is a non-degeRerate bilinear
ferm eR HQ, symmetric if w is even and skew-symmebic if w is odd, suc,h that ks C-bi}ineaf
exten$ion, denoted also by S, satisfies

                          tt                S(HP'g,aHP 'g ) :O unless (p,q) == (p',g'),
(1.3)
                iP-qS(v, av) År O for all O ytS v E H"'g.

  For fixed S and {hP'9}, the classifying space D Åíor Hodge structures akd its `compact
dual' D are defined by

         D := {{,lil"P'q} l Hodge structure on Hc with dimHP'g ww hP'q,

(1.4) satisfying the first coRdition in (1.3)},
         D := {{llP'g} E P I sati$fyiRg al$o tke $eceRd ceRdkioR in (l.3)}.

The$e are homogeneous spaces under the natural actions of the groups

(1.5) Gc:: Aut(Hc, S), G= GR := {g G Gc lgHR= HR},

respectively. '])aking a refereRce point r E D, gRe obtains ideRtlficaiions

(1.6) Dtht ac/Ic,r, Dbl C/Ir,
where Xc,. and I. are the isotropy subgroups of Gc and of G at r G D, respectively. It is
a direct consequence of the definition that

(i•7) Gtt(g5,2S,',kk,,i.N{Z$:l:l:'':$(,iti:lllJi),;.Okki',t).ffw=2t•

Typeset by v4vvtS-[rlilJX
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      'where k := 2)l,•ls[t!2] ht+2i`-2j and h := (,dimH - k")12 if w = 2t, and h := dim H/2 if

w :2t + 1. It is an important observation that Ir i$ compact, but not maximal compact
in general. HeRce P is a symmetTic dornaiR of Hermitian type if and only if

            w= 2t + l; hP'9 =e unless p=t" 1, t.

            w== 2t; hP'q=1 forp=t+1,t-1, ht't is arbitrary,

(1.8) hP'`i =O otherwise; or
                       hP'q =1 for p=t+ a, t"a- l, t-a+ 1, t-a
                       fe! some a 2 2, hP'g =: e otherwise.

  We denote

(1.9) r:xe {gEGIgHz =: Nz}.
Then r acts on D properly discontiriuously because the isotropy subgroup I. is cornpact
Emd r is dise!ete ixx C.

  A reÅíefeRce Hodge $tructure r = {H.P'e} E D iRduces a Hodge structure of weigkt e ofi
the Lie algebra gc : nc LieGc by

(LIO) gts ww" := {X E gc lXH.P'q c H.P+"'q-" for all p, g}.

One can define the associated Cartam involution e. on Lie G := g induced by

(l.l2År g.(X) :ww Z(-l)SX',ww" for X= Åí(-l)SX3,-S E gc =ege'S.

                     sss  We take the standard generators for the Lie algebras s[2(R) axxd su(1,1) which are
related by the Cayley transformatioxx Adci , where

s•i2) '  ci :=cxp(illit (? 6)) :igils(l• O,

as foilows:

                 ,[,(R) , (s wwo,), (g ,i), (? g),

                            (?, -,i)• }(lli i')' }(i ii)
                su(1,1) )

  Remark(1.14). iEb:= (upper-half plane) tÅrt SL2(R)/U(1) corresponds to a Hodge
structure C2 = ,Ell'O wH,O•'i with lliiO = C(D. The Hodge structure on gic :==

gl2(C) iRduced by i E b coiRcide$ wkh tke cEutonica} decempo$kioR by tke staudafd

`H-element'
 }(-Cl g) (cf,eg,[Sa, II g7]):

gic me gl b-i +g?bO +g,ww.i ,i == p"+ec +p+ = ci (l imii)+c ( ?. -oi)+cg ( -ii l. )

  Frerc Row of}, we assume that w År g aRd a31 ffodge stfuctures ef weigkt w satisfy
HP,g me O unless p, g k O.
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   Definition(1.15) (cf. [Sc, p.258]). An SL2-representation p : SL2(R) - G is horizon-
tal at r= {H.P'q} ED if p. (} (-IZ l)) E g6i'i (see (1 10)) I'Vhen this is a case, we

call the pair (p, r) an SL2-orbit.

  Remark(1.16). It is clear that (p, r) is an SL2-orbit if and only if p. : s[2(R) - g is a
morphism of Hodge structures of type (O, O) with respec,t to the Hodge structures induced
by i E U and r E D, respectively. A horizontal SL2-representation p induces an equivariant
horizontal map p'V : P) -År D with pA' (i) = r:

SL,(C) L Gc
t

Pl

        l

This is a generalization to the present context of the notion of `(Hi)-homomorphism' in
the case of symmetric domains of Hermitian type (cf., e.g., [Sa, II. (8.5), III. gl]).

  Let (p,r) be an SL2-orbit and p'V : Pi - D the associated horizontal equivariant map.

We set

(i.i7) y .- p. (6 neO, ), N. - p. (g 6), N- - p. (? 8) ,e == p(c,)

We denote by H(Y; A) the A-eigen space of the action of Y on H, and set

(1.18) w(y).,"j :- (ID H(y; A).

            A)'

   Lemma(1.19). Let (p,r) be an SL2-orbit. Then, in the above notation, liml.,-.
exp(-zN+)•p-(z) = c-i•r E D. The corresponding filtration, denoted by ,F7.., together
with W(Y), determines the limiting S-polarjzed split rnixed Hodge structure.

  pro of pN(z) = fi(z + (z - z)) = fi (exp ((z - z) (8 6)) • t) = exp((z - z) N+) r,

hence exp(-ulv+) pN(z) = exp(-zN+)•r == fi(exp (-t(8 6))•z) = fi(o) on the

other hand, c-i•r = 5(cii•i) = fi(O).

  The second assertion follows from [Sc, (6,16)] and [U, (2.11), see aJso(2.12)]. (N, L in
[Sc, (6.16)] correspond to N+, N- in our present notation, respectively.) O

  g2. Line bundles L(1?V).

  Let W."i be a subspace of HQ defined over Q which is isotropic with respect to S, i.e.,

S(u, v) =O for all u,vE W.Hi. We assume throughout this paper that

(2•1) dimW'w-i ==(S lff:l,S ,O.d.d.'.
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Let W. be the anihilator of W.wwi in HQ with respect to S. rhen we have a filtration 1)V
of HQ;

(2.2) Oc W.-1 C W. C W.,+1 : : fi" Q-

By abuse of Rotatlgk, we a3so u$e W fer tke MtTatioRs induced oll H = HR, Sc if it does
Rot lead Emy cokfusieR. Nete that (-1)W"i-symmetric bilinear forms oR W,.-i, form a ene

dimeRsioltal vecior spage.

  We defue subgroups of G:

(2.3)

N(W) :=: {g E GlgW,• = V'Vj for ali j'}e,

U(W): the unipotent radical of N(W),

C(W): the center of U(VPi),

where { }" means the connectÅëd component containing 1. The iRduced sub- and sub-
quetient groups ef r are deixoÅíed by

(2.4) rw ;= MN(W), U(W)z :-- paU(W), CÅqW)z :-dy. MC(YVf), rw := rwfC(W)z.

   Definition(2.5). N G e :=: LieC(PV) is positive ifN G RÅro • N+ for some SL2-orbit
(p,r) with VV(Y) : VV (cÅí (J.27), (1.18)).

   Lemma(2.6). (i) dirnC(W) =1.
  (ii) C(W) is a normal subgroup of IV(VV), and Acl(g)X = det(glVV,.-i)X for g G
N(W), X E c = Lie C(W),
  (iii) Let r E D be areferencepoint. Then C(W)c acts on D(W) := C(YY)c•D freefy.

  ,Preof. Since we assume (2.1År, (i) is obvleus iR tke case of odd zu. IR or{ier to extwme
(i) iR tke case cf evek w, we cl}oese a Q-bitsls ef HQ according to the MtratieR W so that
the pelasizatieR form S i$ repsesented by a matrix S -- antidiagQualÅqJ,A,JÅr, where .J : =

anticlSagonal(1,••• ,1) of rank ) 2, A := Å}I. In this basis, any X E c represented by a

rnatmx
            x- (E E [l), where A = (2 g) is a2Å~2 matrix

Nrom tXS+ SX = O, we carz derive d = -a,b = c = O elementarily. This completes the
proof of (i).

  By using the above ba$i$, (iiÅr can be also verMed elementarily.

  Let N be a poskive basis of c. Since N is R!lpetekt, y : C tf C(W)c - P(l?Y) C P,
z N exp(zN), is aB algebraic morphism. v is i}ot & con$tant map, becagse the i$otropy
subgroup I. ef G at r is compact hence it dees llot contaift a unipotent subgroup C(W) d
R. It follows that v is quasi-finite. If v(zi) = u(z2), gi, x2 G C, then exp((zi -z2)N)•r : r

and so Z(zi - z2) c u-i(r), which occurs only if zi = x2. This completes the proof. rm
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  By Lemma (2.6.iii), the quotient D(VV)' := D(I?V)IC(W)c is a complex manifold and
that the principal C(W)Åë-bunclIe D(Xi) -- D(VV)' is a complex afline bundle. Starting
from this affine bundle, we shal1 construct a complex line bundle L(I'V) - D(VV)' in the
following way. Take a quotient bundle

(2.7År b{ Y;k')fC( W)z-D(WY.
$et fl'(W) :-- CÅqW)c/C(W)z. UsiRg the poskive generator N of Lle C(W)z, we have an
identMcation T(W) -X C', expÅqxN) H expÅq27riz). Let C' c C be the natural embedding.

We denote by

(2.8) T:L(W) :-ts-- (D(W)IC(W)z) xC C* ww, D(W)'

the complex line bundle a$sociated to the principal C*-bundle (2.7).

   Proposition(2.9). TLie action of'rw on the C'-bunclle (2. 7) extends to the action
on the comp2ex fine bundle (2.8), which comfnutes with the action of T(W). Fw acts
proper2y c{i'seontinvously on P(W)' and kence on L(WÅr.

  Preef. The fast part Åíoliows easliy from (2.6.X) akd au observatieR: deeÅq71W.ND = i
for all 'y E I';iv.

  In order to prove the second part, we use the C'-bundle (2.7). Given a compact subset
A' c D(VV)'. Put A :---" rrwwi(A'). Take a nejghborhood V. of a E A fi (Dla(W)z)
satisfying that the closure V, is compact and contained in D/C(W)z. Then {T(V.)la G
An(D/C(W)z)} is an ope•n covering of A' and so we cari choose a finit•e subset {T(V.,) 1 1 K

i S n} which covers A'. Set V : : UiÅqiÅq. N(W)i • V.,, where

(2.10) N(W)i := {gEN(l'V)i det(.glW.,ha.i) me 1}.

TkeR, by ceR$truetioR, we see Åíhat V c PfC(ldvTÅrz, rr(VÅr ) 2`{' and ti}ai tke restrictiok
rr : V g D(W)' is a proper raap. Skce rw c N(W)i whose actloR preseyves the fiber
coordinate ef (2.8), we see that

          {7ErwI7•A'nA' #e} = {7Grwh•(AnV)A(AnV) 7E O}.

The latter set is finite because the action of rvv on D/C(W)z is properly discontinuous
imd AAV C DIC(VV)z is a co:npact subset. This proves that rw acts on D(I?V)' properly
discontinuously. The assertion Qn the action on L(W) fo11ows from this easily. O

  g3. BouRdary components B(W,p).

  Let {kP,g} be a set of godge Rumber$ iR (l.2). Fof a fikratioll W iR (2.2), we set

(3•l) nx:= gr.W.x.
We recall a definition in [U, (2.25År):
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   Definition(3.2). A set p = {pft'b} ofnon-negative integers is called a set of px'imitive

Hodge maumbers belonging to {hP'g,nA} ifit satisfies the fo11ovving conditions.

  (g) irke indices G, 5 and A are f]en-negatiye integrers satfsfying a -F b : zv - A.
  (i) X.+b=.-ApaXb = nA - nA+2 for ail A.
  (ii) pk'" =: pft'b for al1 a, b, A.

  (ili) hS,` = hSN,t-i -ÅíeÅqAÅq,-i pX"'t'i-A -l- ]EI)eÅqxÅq.pXwwA# for all s, t with s -e-t == w.

  Under the assumption (2.1), only the following sets of primitive Hodge nembers are
possible.

  (3.3) Case !p ut 2t + 1. The possibility is unique.

                       p:,t = 1,

                        a,b f ha'b -1 if a =t+ 1, t,
                       PO ==lha,5 etkerwise.

Case w = 2t. There are t+ 1
(3.4) For each s = w, zv - 1

              s,w-s-l             Pl xeP
             p,a,b ,.. ( hh".l:

possible cases.

,••- , t -l- 1,

;v-s-l,tg ww li

- 1 ifa=s+1,s
     otherwise.

u) - s, w-s-1,

(3.5) Fors=t,

 t,t-1Pl =
 a,b
Po

pl-1't :1,

 ha,h-l ifa :t+l,t-l,
 ha,b -2 if a ew t,

 ha,b otherwise.

  DefinkioR(3.6År. Givexx a 6kratioxx W in (2.2] anda setp= {paA'5} ofprimitive Hodge

numbers belonging to {hP'g,nA}, the corresponding boundary component is a clab'sifying
space of the gradedly polarized mixed Hodge structures on VV.Hc: B = B(Ulp) :=
{F I .F is a Eltration on W.ffc satisfying the coRdition (3. 7) balg?y}.
  (3.7) gr.WF (resp. gr.W-a F'] is a Hodge structure of vveight w (resp. w- 1] with Hodge

type {po"'b} (resp. {p:'b}) andpolarized by the bilinear form induced by S on gr.WY (resp•

positive (-1)W-i-syrnmetric bilinear forms on VVw-D.
  We collsider poSarizatioR forfns oll W.-i are egva'valext if tj]ey differ only by a positive

multiplicative constant.

   Proposition(3.8). There is an N(W)-equivaritmt embedding B(VV, p) g D(1?V)',

  Prgof• We $hall fust coRstruct amap g: B --, P', where B := B(eqp), P' :== P(W)'.
Let ,l7 G B. In the present case, the weight length is one, hence we have the Hodge-Deligne

decomposition

Wwffc .,, Of}ft}b, pxa,b := Fa fi ffGfib ft w.-kffc,
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where the summation is takaxi over a + b = w - A, A nm O, 1. We want to extend this to
an S-polarized split mixed Hodge structure on Hc uniquely up to modulo C(W)c-actioxx.
Setting Po,c := (iD.,b Poa'b, we, have a splitting over R of W.imiHc c W.,Hc. In case

w = 2t + 1, our assertion folloswrs immediately from the fact that P-i,c := Piti't+i should

be perpeRdicular t-o jPg,c "rith respect te S. Simi!arly, in case w =: 2t, P-i,c ;== P2ti'W-S+

P-Wi-S'SÅÄi is distiRgr]Llshed xxp te modttle C(W)c-actioxx by ke same c•oRditlgR, where s is

the iRteger sati$fyiRg p;'WtwSww; : 1 iR the giveR set of primitive ffeege Rumbers. Moreover,

the snmmands PSti'W-a Åqa xx s, w - s - l) aTe distinguished np to mfidule C(lrY)c-

action by the condition that .F'at;'W-a should be perpendicular to Pia'W""-i + PEti'"'ww"

with respect to S. Now let ,P#i't+i in cakge uJ = 2t+1 and piti'W-S, p.Wi-S•"+i in

case w = 2t be representatives among the above constructions. These deta determine a
splitting Pi (l) Po (I) P-i over Rof the filtration W.-i C VV. C W.+i, where Pi := TVw-i,
.PA :== PA,c AH (A = O,-1). This, in turn determines a real serni-simple element Y G g
so that PA is the A-eigen spaca of Y. On the other hand, the nilpotent element N is
determined as the pesitive generator of LieC(W)z. Since [Y,N] = 2N by constructioxx,
we have a repfeselttatioxx R ; SL2(R) - G (Rot RecessaTily rationa2År. Tyaiisfgrming the
Pft'ij by tke Cayley elemeRt c nm p(eD iR (l.l7), we get t}}e Heege-(Z,XÅ}) decemposiÅíioxx:

(IiÅr Q&'bÅÄX := (D cPft'b. 'lrheix we know that ffP,g :== (EDA {?X'q determiRes Em elemeAt r G D

where p is horizontal (see IU, (3.4) and its proof]). We now clefine a map

(3.9) g:B--ÅÄD' by FHC(W)c•r.
  Next we define a map

(3.10) th : v(B) -, B by exp(zN) •F F-" Fn W. Hc.

This is well-defined. Indeed, if exp(z'?V) • F' = exp(zN) • F theR F' = g • F for g :==
exp((i - z')N). SiRce W. ww IÅqerN, we see that, glW. is idenÅíity aRd so

           ,}i" fi W.Hc -ww g - FA W.ffc == g(F fi W,.ffc) = F fi \4'{wHc•

We claim now that thg is identity. Indeed, let F G B and F.. the Hedge filtratiou
associated to the S-polarized split mixed Hodge structure {PA"'bla+b = w - A, A me

1, O,-1} constructed above. Then the filtration F. corresponding to r E D is Fr = c.P7oo
by definition. On the other hand, cF.. = exp(iN) • F. im the present situation. This
fo11ows immediately from ari observation that the restriction p(SL2(C))IP', where P' : =
pi"-i,t"-a+pEIW-"+i,a---1 :tin case u) == 2t+1, and a-1 :s, w-s-1 in case tv = 2t,
yields a 2-dimensional irreducible representation of SL2(C) hence we have c : z7il exp(iN)

on P2}te-aÅÄi.

  It is obviegs that V is N(Yl7W)-equivagriaRt. =

  Let (p,r) be aR SL2-orbit, Y in (1.l7), aRd W = l,V(Y) iii (2.18). We assume that W
is defined over Q. We denote

(3•11) (i'y := {g EGIgYg-'= Y}.
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In the notation of (2.8), we set

(3•12) F:ur (r mod C(V'V)z)EL(W), b:=T(F) ED(U2')'.

TheR, by (l.19), we have c.F7co = E. : expÅqiNÅÄ) • Sr.., ane heRce 5 ff B = B(W p) under
the identification of (3.8).

   Proposition(3.13). Jn the above situation, we have the fo11owing.
  (i) The orbits Gy • b c N(W) • b = B c D(W)' are cornplex submanifolds, where
B : B( W, p).
  (ll) ((C(W) x Gy) • r)N - GÅrn 5 Emd (N(W) • r)'" - B ctre punctured disc belldjes
contru'xxed in the 2fne bundle (2.8]. (Gy •r)'" - Gy •b is the family of al1 SL2-orbits
corresponding to the pair (Y,p), and (AT(VV) •r)'" --" B is the family of all nilpotent orbits

corresponding to the pair (W, p),
  (iii) N(VV) • r is open in D if arJd only if D is a Hertnitiari syrnrnetric dornain,

  Proof. We fust claim that

           dimR N(W)/I. fi N(W) = 2dimc N(W)c/Ic,. n N(W)c,

(3.M) dimR(C(W) x Gy)lf, n(C(W) x Cy)
                   == 2 dimc(C( VV)c x Gy,c)/ Ic,. n (C( VV)c Å~ Gy,c),

where I. and lc,. are the isotropy subgroups at r of G aRd of Gc, respectively. (3.24) caR
be verified e}emektariiy by tke dimensiefi cownt oÅí the correspoxxding Lie algebras uslRg
bases of Hc according to the mixed Hodge-(Y, AXth) decomposition of (p, r) (cf. [U, 52]),

hence we left it to the reader. Similarly, we can verify elementarily that Ai(W) acts on
B transitively and so we omit this verificat,ion. (3.14) shows that orbit N(VV) • r (resp.
(C(W)xGy)•r) is open in N(W)c•r (resp. (C(VV)c Å~Gy,c)•r) in the Hausdoifl; topology
Emd the latter }s a closed complex $ubmEmifeld of P = Cc•r, heace ehe formex indgces
a comp!ex submEmifold (N(W) • r)"" (resp. ((C(W) Å~ Gy)4r)'Y) of P(W)fC(W)z. Y\om
this we know that the interior of the closure of (N(W)•r)"" (resp. ((C(W) Å~ Gy)•r)"") in
L(VV), denoted by

(3.15) yV=N( W, p) (resp. S :S( Y, p)),
is a comp}ex sgbmanifeld aftd se tke intersect!en of 7V (resp. 5) wkh the zere sectioR ef

the line bundle (2.8) is a complex submanifoid of the zero section. Via the projection, we
get the assertion (i).

  Now the first part of (ii) follows from (2.6.ii) and the observations that N(W) =
N(VV)i exp(RY) (for N(VV)i, see (2.10)), exp(iyND • r == exp(log(y + 1Åri!2Y) • r, and

           det(exp(}egÅqy ÅÄ 1)iY2Y)IW.-D = y -F 1 År g Åq==År e-2"Y Åq e2g.

As for the second part of (ii), the assert,ion on the fumily (Gy • r)'" -ÅÄ Gy ny b follows from

[U, (3.16.iii)]. Let g•r E N(VV)•r amud F,.. the corresponding Hodge filtration. Then, by
(2.6.ii),

(3•1$) exp(iyNDg + r = g exp(Sy det(g-i lW. ww"NÅÄ) • r

             = g exp(log(y det(g-i IW..i ) + '1 )i /2 Y) • r E D for y År e.
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On the other hand, applying the argument at the end of the proof of Proposition (3.8)
to the Hodge-(Z, XÅ}) decomposition and the mixed Hodge-(Y, NÅ}) decomposition Hc =:
(D (?K'b+A = (D PAa'b associated to (p,r) (cf. [U, S2]), we see that, for P' := p,a-i'W-a +

PEu"-a+i,

                    N+Qa:,wLa c lv+cpt = .lv+pt c p' = cpt.

It followsthat AT+F." c F.ami and hence N+F,a.. c F8,Fi by (2.6.ii). Therefore exp(CN+)g•

r is a nilpotent orbit in the direction of (VV,p). ConveTsely, let (A'+,F), F E D, be a
nilpotent orbit, i.e., N+F" c Fa'i and exp(iylV+)•F E D for y ÅrÅr O. Then, by [Sc,
(6.16)], (VV, F) is an S-polarized mixed Hodge. structure. If (VV, F) has mixed Hodge type
p then this determines a point of B by Fn W.Hc hence, by (3.8) and the first part of
(ii), we have exp(iyN+)•F E lrNl'(W') tr for y ÅrÅr O. Thig. completes the proof of (ii).

  In order to prove (iii), we shall compute dimD - dim AT(W) t r. Let It' be a maximal

compact subgroup of G containing the isotropy subgroup I., G == RTK an Iwasawa
decomposition.
  Case w = 2t +1, i.e., (3.3). We see that

    G= Sp(2h,R), K '-v U(h), I. -tv U(hW'O) Å~ ••• Å~ U(ht+i•t),

    IÅqy tY U(h- 1), I.,y := l. nGy ty U(hi"'O) Å~ ••• Å~ U(h`+2•`-i) Å~ u(ht+i•t -1)

Hence

    dimD - dimN(W) 'r = dimGIIr ' dim IV(W)IIr,y == diM KIIr - diMKy/Ir,y

    = h2 - (h - 1)2 - (ht+i,t)2 + (ht+i,t " 1)2 ,. 2(h. ht+i,t).

This is zero if and only if h = ht+i't, that is, K = I..

  Case w = 2t. We see that

                   G= O(2h,k), K t-- O(2h) Å~ O(k),

                   I. ,f U(hW,O) Å~ ••• Å~ U(ht+i,t-i) Å~ O(ht,t),

                   Ky f)t O(2h - 2) Å~ O(k - 2) Å~ O(2),

According to the subcases (3.4), (3.5), I.,y is isomorphic, respectively, to

U(hW,O) Å~ ... Å~ u(hS+1,W-S-i - 1) Å~ U(hS,W-S - 1) Å~ ... Å~ U(ht+i,t-i) Å~ O(ht,t) Å~ u(1),

u(hW•O) Å~ ... Å~ u(ht+i•t-i - 1) Å~ O(ht•t - 2) Å~ U(1).

As before, we can compute dim D - dimN(W) • r to obtain

                2(2h + fo - hS+i'W-'-i - hS'i"-' - 2) in case (3.4),

                2(2h + k - ht+i't-i - h`'t - 1) in case (3.5).

These are zero if and only if

   h = hS+i,W-S-i (or hS,W'S) = 1, k = 2hS'W-S (or 2hS+i'W'S-i) = 2 in case (3.4),

   h .= ht+i,t-i = 1, k=ht't in case (3.5).

Hence, dimD == dimAI(Ml) • r if and only if K --- I.. This completes the proof of the

proposition. a
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  We denote

(3.i7) bw,, := D/c(w)z u yV(w, p) c L(vv), bw := U Z5w,, c L(w), b := Ubw,

                                               pW
where the unions are taken over all sets p of primitive Hodge numbers belonging to
{nA, hP'9} and all rationai S-isotropic filtrations VV of HQ in (2.2) satisfying (2.1).

  S4. Construction of partial compactifications D/r.

  We recal1 first the partial compactification D"lr of Cattani-Kaplan in [CK] and its
generalization into arbitrary weight [U, Appendixl whithin our present use. Under the
assumption (2.1), the disjoint union D" of al1 rational bonndary components and the
disjoint union D' of all rational boundary bundles, both in the sense of [CK], coincide and
it is defined by

(4•1) D' := DU (U F( W, p)), .l7( W, p) := {gr 'VFIFE B( VV, p) },

                      W,P

where W and p run over al1 rational S-isotropic filtrations (2.2) of HQ satisfying the
condition (2.1) and all sets of primitive Hodge numbers, respectively, and B(I7V,p) is a
boundary component in the sense of (3.6).
  In order to introduce the Satake topology on D', we choose a maJ)cimal Q-split Cartan
subalgebra f of g and a Cartan decomposition g = e+p with p D f. Let Åë c t' be the
Q-root system, Åë+ c Åë the positive root system with respect to sorne lexicographical

order in f'. Let G = RTK be t,hc Iwasawa decorripog,it,ion, where R := exp(Åí.EÅë+gcr),
T := expt and K is the ma)cimal compact subgroup of G with Lie Is' = e.
  Let f+ := {AEf1a(A) ÅrOfor al1aE Åë+} be the Weyl chamber. We denote by A
the set of all rational admissible elements in the closure f+ of f+ in L Then we see, by
construction, that A is finite and a set of complete representatives of al1 GQ-conjugacy
classes of rational admissible elements. Under the assumption (2.1), A consists of the
single element Y := diagonal(1,,O,••• ,O, -1,), where s = 1 if w is odd and s = 2 if w is
even. Let W(Y) be the weight filtration associated to Y in (1.18). For each set p= {pK'b}

of primitive Hodge numbers, we take a reference point rp E D lying over [K] E G/K, via
some fixed projection D - G/K, such that (Y, rp) is an admissible pair of type p. This is
possible by [U, (3.16.ii)]. We set

(4•2) F, := (r, mod C(VV(Y))z)EL(I4i(Y)),
            b, := T(F,) E B(VV(Y),p), E, := grLV(Y)(b,) E F(VV(Y),p).

  The Satake topology Tr(D') on D' relative to F in [CIÅq] is introduced in the following

process (i)-(iii):

  (i) An open Siegel set subject to the Iwasawa decomposition G = RTK i's a subset
S := wTpK of G, where w is a relatively compact open neighborhood of 1 in R, p År O
and T. := {t E T1ea(t) År pa for all a E O+}. An extended Siegel set in D' is a subset
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S' ;= Up(S•rpU(esnAT(W(Y)))•bp), For suitable choices ofw and ", there exists afinite

subset E of GQ satisfying rEG • r, ex: D and rw(y)(EnN(VV(Y)))(6nN(VV(Y)))• b, =
F(l2V(Y),p) foy all p. TheR, as [CK, (4.28År], st' :=: ES' is a r-fundameRtag set in P", i.e,

satisfie$ tke fellowing two cgRdkion$.

(4.3) rst* = D*.

(4.4) There existfinitel?y rnany 7. er such that, if7E P, 7S}'nst"
of7 and 7v ceincide on R" ft 7-i se" for sgmg y.

  (ii) A topology r(S') on S' is defined so that a basis of open
subsets of S • rp(C D) in the natural topology together with subsets

(4.5) (UAV • r, U U • b,) n S"

S O, then the actions

$ets is given by open

Åíor all p, where U run$ over the pttll-backs via tl}e projectioA N(W(Y)) - F(WÅq]"),p),
g N g•bp, of all open sets in F( I2V(Y),p) in the natural topology, A is apositive real mxxnber,

UA : : {g E Ulecr(g) )) A for all dv (I co with cv(Y) År O}, V runs over neighborhoods of 1

in K. 'Irhe topology r(st') on 9' is incluced from r(6") in the following way: the system
of neighborhoods of x E st' consists of all sub.sets U ( S)' satisfyirig the coRdition that, if

x E eS' wkk e E E, theR e'il-f ft S' is a 7(S')-neighborhood of ewwi.T E S'. Thexx, as
[CK, (4.32)], the topolegy T(st') has the following property.

  (4.6) r(S)") is Hattsdorff and the action of7 E r is continuous in r(ft') in the following
sense: let x E S")' i if )tx E S)*, then for any T(st")-neighborhood O(' of 'rx there exists a
T(ft")-neighborhood e( of x such that "yor n st' c U'; if or:i: Åë st', then th.ere exists a r(S)'År-

ggighgerheed bl ofx 3uch thgS 7or ft ft' =g.

  (iii) By virtue of (4.3), (4.4) and (4.6), [Sa, Theorem 1'] can bct applied to obtain a
Satake topology rr(D') (uniquely determined) with the following four properties.

  (4.7.1) Tr(D') induces T(S"}') (and also T(S')),

  (4.7.2) The action ef V en D' is continttous.
  Åq4.7.3) IfrxArx' =e with x, x' G D", then there exist F(D")-neigh5erheeds b( efx
and U' of x' such that rbt A rLt' =: e,
  (4.7.4) Eor each x E D*, there exists a fundamentat system {l,t} of Tr(D')-neighbor-

hoods ofx such that crL( =U for7G r., orU nLI = e for or Åë P., where P. is the isotropy
subgroup of r at x,

  lfi ICK], tkey use a clesed Siegel set iR stead cf an opeR eRe. k both cases the axgumeRts
are parallel. In [CK, fi5], they show that the Satake topology Ti'(D") is independexxt of

choices of the following things: f, ep+, K, rp, T, 6, E. As Looijexxga has pointed out to

the author, the indueed topology on D'/r is not locally compact in general (cf. [CK,
(4.36j)1).

   "efiRkleRÅq4.8). ill tke notation of (3.2 7), a Satake topology r(b) ofi b is deEned jR

the foUowing way.
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  (i) We first define a topology r(DUB(VV(Y))), where B(VV(Y)) := U,B(VV(}ip).
On D, this topology coincides with the natural one. At a boundary point x E B(VV(Y)),
a fundamental system ofneighborhoods is givn by

UAV • rp U U • bp,

where U runs over the pull-backs via the projection IV(VV(Y)) - B(V[i(Y)), g H g• bp, of
al1 neighborhoods of x in B(W(Y)) in the natural topology, A is a positive real number,
UA := {g E U1ecr(g) År A for all a E Åë with ct(Y) År O}, V nins over neighborhoods of 1 in

K.
  (ii) We extendT(DUB(I?V(Y))) to T(Uw(DUB(W))), where VV runs over al1 rational
S-isotropic filtrations (2.2) of HQ satisfying the condition (2.1), so that the action of GQ

is continuous on the Jatter.
  (iii) T(D) is the topology induced from T(U.(DUB(W)))•

  It is easy to see that the Satake topology T(D) is well-defined, and we can prove similarly
as in [CK, g5] that T(b) is independent of the choices of f, Åë+, K, rp.

   Lemma(4.9). The restriction ofT(D) to A/'(W, p) coincides with the natural topology

on it for every W and p, where N("i, p) is in (3.15).

  Proof. The assertion follows immediately by Definition(4.8) and (3.16) for the SL2-orbit
(p, rp) corresponding to the admissible pair (Y, rp). 0

   Problem(4.10). Compare the topology r(bw) with the natural one on bw c L( VV).

  Lemma(4.11). Thenaturalmap f : b . D'/r is continuous in the Satake topologies.

  Proof. Set W = VV(Y). By Definition(4.8) and [CK, (5.7)] and its generalization, it is
enough to show that, in the not,ation of (3.17), the natural map

(4.12) fw,,:bw,, --ÅÄ D'/C(VV)z
is continuous in the Satake topologies for any p.

  It is obvious that fw,p is continuous on D/C(V[i)z. Let x E B(VV, p) and bl its image in
F(W,p). Note that a fundamental system of T(D')-neighborhoods of bl E D' is given by
the foHowing sets (cf. [CK, (4.31)], [Sa, Proof of Theorem 1']):

(4.13) U = riÅq U g(T(S')-neighborhood of g-ir. E G').

       gEPE, gS')T

Hence, in order to prove the continuity of fvv,p, it is enough to show that, on Dvv,p, the

topology Ti (bw,p), similarly defined as the topology T(D'/C(VV)z) on D"/C(W)z induced

by rr(D'), coincides with the topology T(bvv,p) induced by 7(D).

  We many assume that the Siegel set S and a finite subset E C GQ satisfy C(VV)zS )
C(VV) and rw(En IV(V[i))(GnN(J2V)) • b, = B(W,p) for all p. Set 6w :== GnN(VV),
r :== rp and b := bp. Since Sw exp(RÅro•Y) = Sw, (Gw•r)NU Sw•b is an open subset of
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Ar :== YV' (VV,p) in the natural topology. It follows that the topology ri((Gvv•r)'" U Sw•b),
induced from Ti(Sw •rU Sw • b) which is similarly defined as T(S'), coincides with the
natural topology on (Gw•r)"" U Gw•b C VV'. Since the action of N(VV) on Ar is continuous
in the natural topology, the topology 7i (.IV), similarly defined as T(D'/C(VV)z), coincides
with the natural topology on yV by (4.13). Evidently the multiplication by g E Ai(VV)
from the left to UAV in (4.5) does not impose any effect on the neighborhood V of 1 in K.
Thus we get Ti (bw,,) = T(Dvv,,). D

   Corollary(4.14). For any x E B(W,p), there exists a Satake neighborhood or. of x
in .b such that the r-equivalence and rw-equivalence coincide on U. n D/C(I7V)z.

  Proof. By the lemma, this follows immediately from (4.7.4). D

   Lemma(4.15). In the SataJce topology, the action ofrw on Dw is properly discon-
tinuous, hence the rw-equivalence relation is closed on bw.

  Proof. Let x E B(W,p), and hi E F(VLI,p) its image. Let UT be a Satake neighborhood
of hi E D' satisfying the condition (4.7.4). By Lemma (4.11), we can take a Satake
neighborhood U. =: (UAV•r,)N U U• b, of x E bw,, contained in f[irl,(LtT mod C(14i)z).

By Proposition (2.9), we may assume that {or E rw l orU • bp n U • bp l O} is finite. Since

F(l2V,p)= B(VV,p)/U(W), where U(W) is in (2,3), we see that the isotropy subgroup rT
at hi is equal to U(VV)z x r..

  For or E U(VV)z, we claim that orU. nU. 7E O if and only if 7U • b, A U• b, iE e. To see
this, notice that 7U. n U. I to is equivalent to

or(UAV • r,)'N' n(UAV • r,)N f Åë, or orU • b, n U • b, l Åë.

The former implies orUAV n UAVI., 7E! Åë, hence, by the uniqueness of the Iwasawa decom-
position, we have ')fUA n UA 7E O, and so 7U • bp n U • bp 7L Åë as desired. This proves the

`only if' part. The converse is obvious.

  Thus we see {or E rw 1orU. Ali(. 7e O} = {or E rTlorl,(. nU. 7E Åë} = {or Ervv lorU• b, n

U• bp le}, which is finite. This proves the lemma. O

  Using the Satake neighborhoods U. in (4.14), we now constrtict our partial compactifi-

cation D/r by patching up

(4.16) rw•or./fw OP)e" fw•(u.nDlc(w)z)lr. OPce" D/r

for al1 x E B(VV,p), all rational S-isotropic filtrations VV of HQ in (2.2) satisfying the
condition (2.1) and al1 sets p = {pK'b} of primitive Hodge numbers belonging to {hP'q, nA}.

In the above construction, the VV can be taken over a set

(4.17) VV :== (set of complete representatives of the GQ-orbit of W(Y) mod Paction),

which is finite by (4.3).
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   Theorem(4.18). D/r with the Satake topology is Hauscloxfr and carries the complex
structure induced from fiw c L(W) for al1 VV E )iV.

  Proof. By construction, D!r )t D/FUUwEyv,pB(W,p)lrw as point sets. Let tts be
the graph ot' the equivalence relation defined by the prejection .[År - D/r. Notice that

P/r is Hattsdorff if altd oniy if the graph A c b Å~ .l5 is closed. To see the closedltess of

A, k ls ekough te shQw tke Åíoilowk}g: if xi, yi E P, ascLd 7i di r witk yi = 7i=i satisfy (xi

mod C(W)z) - x E B(W, p), (yi med C(W)z) - y G B(W',p') iR t}ie Satake topology,
then (x,y) E A.
  By Lemma (4.11) and the Hausdorffness of D'IF in [CK, (4.36.i)], the images of x armd
y in D'/r coincide, henee lie in the same boundary coinponents F(W,p)lrw of D'!r.
It follows that VV' == 6VtX for sorne 6 E r and p = p'. Replacing yi, y by 6-iyi, 6-iy, it

suMces to prove the assertion in the special case: x, y (fl B(PV, p). We consider a diagram:

                   fiw,, fLMTIiSV D*/C(I4i)z - D*/r

                                  UU
                               F( eq pÅr - F( eq p)/rw

Since x, y kave the same iix}age 2n D'/r, tkeir images in F(W,pÅr c D'/C(W)z dlffer
by a 7 E rw. Again replacing yi, y by 7-iyi, 7-iy, we may akgsume that x, y have the
same image T E ,I7(W,p) C D'!C(W)z. Let UT c D' be a Satake neighborhood of W
satisfying the condition in (4.7.4). Then V := filr],(UT/C(VV)z) is a Satake open subset of

D(VV)/C(VV)z U YV'(VV,p) containing x, y. Therefore, xi, yi rnod C(I2V)z E V if i ÅrÅr O.

In other words, xi, yi G UurnD if i ÅrÅr O. Now yi = 7ixi, cri G r, so, by the assumption oxx
UT, we see 7i E rT C rw for i ÅrÅr O. Hence the first assertion follows frorn Lemma (4.15),
The second assertion follows frorn Corollary (4.14) and Lernrna (4.15). []

  g5 Extension of period xx}aps•

  Let g : A' - Dlr be a period mGp, !.e., a homolomorphic map with kor!zeiital local
liftiRgs, frem tke puRctured unit dise A'. Let h . A", x H expÅq2ntz), be the uBiversai
eover, gN : lj - D a !ifting of g, 7 E r an eiement satlsfying gN(z ÅÄ 1) = 7gN(z) for all i E b,

AX the logaritlm of the unipotent part of 7, arid W(N) the monodromy weight filtration.

   Theorem(5.1). (i) Any period rnap g : A' - Dlr frorn the puncture disc with the
monodromy weight filtration IV == IV(N) satisfying the condition (2.1) extends holornor-

phically to ip : A - D/r,

  (ii) For any boundary point 4 E D/r - D/r, there exists a period map g : A* - D/r
with the property described in (i) aiid its holorriorphic exterusion IP : A - D/F such that

if(g) - g•

  Preef. A$ the prooM$ almest ar}aleguotts to the oRe in iCK], we shall wrke dowxx
the preof as leRg as it is needed. By the rational versioxx of the SL2-orbk theorem [Sc,
(5.13), (5.19), (5.26)], there exists an SL2-erbk (p, rp) with p defiRed over Q, such that
p. (g ol) =N, and satisfies the property (s2) below Let Y == p* (8 -Ol) Choosea
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maximal Q-split Cartan subalgebra f of g containing Y, and a positive root system Åë+ c f'
for the adjoint action of f on g satisfying that any root a with a(Y) År O belongs to Åë+.

Set R := exp(Åí.Etp+g.) and T := expL Then the cent,raJizer of T in G is a product
TM with M Q-anisotropic, and P := RTM is a minimal Q-parabolic subgroup of G. Let
K be the ma)cimal compact subgroup of G corresponding to the Cartan involution e.,
determined by the reference point rp as in (1.11). Then G = PK = RTMK, and we have
the following:

  (5.2) There exist functions r(x,y), t(.T,y), m(.r,y) and k(x,y) defined and real analytic

on a domain {x +iy E b I y År B} for some B and taking values in groups R, T, M and K,
respectively, such that

  (5.2.1) gN(x + iy) = r(x, y)t(x, y)m(x, y)k(x, y) • r,.

  (5.2.2) As y - +oo, the functions converge
    r(x,y) - exp(xN)r(oo), exp(logy-i12Y)t(x,y) - 1, rn(x,y) -, 1, k(x,y) - 1,
uniformly in x, where r(oo) E expo with o := Im(adgN) A Ker(adgN).

  By [CK, (6.4)], we see expo c U(W). (Since IV2 = O in the presc,nt case, the proof
is easier.) g factors through A' -ÅÄ D/C(Mi)z, denoted also by g, by an abuse of the
notation. We now claim

  (5.3) limt-og(t) = r(oo)ib, E D/C(VV)z U yV(VV,p) in the Satake topology, where
bp E B(W, p) is induced from rp as in (3.12).

  In order to set the situation where we have introduced the Satake topology, we choose
a maximal compact subgroup ls" of G whose associated Cartan involution acts on f by
multiplication by -1. Then, as in the proof of [U, (3.16.ii)], there exists g E Gy such that

Is" = (Intg)Is'. g E Gy splits according to the decoinposition G = PIÅq, hence we inay
assume moreover g E PnGy. Set rS :== g• rp E D and bS :=g• bp E B = B(W, p). Wc are
thus in the situation after (4.1). Then (5.3) follows if we show

  (5.4) in the notation of (4.8), for the pull-back U' via the projection N(W) - B, h H
h•bS, of any neighborhood of 6' := gr(oo)•bp in B, any A År O and any neighborhood V'
of 1 in K', there exists P År O such t,hat g• {A, 'p(x +iy) E USV' • rS for all y År 6 and Ixl Åq 1.

  Indeed, (5.4) implies gN(x + iy) E g-iUSV'•rS for all y År P and lxl Åq 1. It is easy
to see that this, in turn, yields, gp(t) E ((g-iU')A,AV'•rS)'" for O Åq ltl Åq e-2TB, where

Ao := min{ea(g-')1cr E Åë with a(Y) År O}. Since ((g-iU')A,AV' • rS)'N' U (g-iU') • bS is

a Satake neighborhood of g"iC' = r(oo) • b, in D/C(VV)z U Ar(;?V, p), which can be taken

arbitrarily smal1, we get (5.3).

  Now we shal1 prove (5.4). Set g = rotomo, ro E R, to E T and mo E M. Then, from
(5.2.1), R Åq P and M C K, we see

ggN(x + iy) == r'(x, y)t(x, y) k'(x, y) • rS , where

r' (x, y) := gr(x, y)gmiro(t(x, y)m'(x,y))ro-i(t(x, y)m'(x, y))-i E R,

k'(x,y) := m'(x,y)gk(x,y)g"i E K',

rn' (x,y) :== morn(x,y)mo-i E M.
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It follows from (5.2.2) that, as y - +oo, the following converge uniformly in x :

            m'(x, y) - 1, r'(x, y) - g exp(xlV )r( oo )g-i, k'(.T, y) - 1.

Hence theTe exists I3 År O such that r'(x,y)t(x,y) E US and k'(x,y) E V for all y År P and
lxl Åq 1. (5.4) is proved, and this completes the proof of (i).

  In order to prove (ii), we take the lifting C E B(W, p) of e with IV E )'V (see (4.17)).
Then, by Proposition(3.13.ii), there exists a nilpotent orbit (IV,.iJ) such that T(,ii) = e,

where N is the positive generatoT of C(I)V)z and ii E AX'(VV,p). Then for some 5 År O,

v : {z E C 1 Imz År B} - VV'(VV, p) c Dvv,p, z H exp(zAr)• fi, is a holomorphic map with

horizontal liftings and, by (4.9), v(z) --ÅÄ C as Im z - +oo. Hence g(t) :== (projection) o

v((112Ti)logt+iB) E D/r is the desired period map. []
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