COMPLEX STRUCTURES ON PARTIAL COMPACTIFICATIONS OF CLASSIFYING SPACES D/Γ OF HODGE STRUCTURES

Sampei Usui (Osaka University)

§1. Preliminaries.

We recall first the definition of a (polarized) Hodge structure of weight w. Fix a free **Z**-module $H_{\mathbf{Z}}$ of finite rank. Set $H_{\mathbf{Q}} := \mathbf{Q} \otimes H_{\mathbf{Z}}$, $H = H_{\mathbf{R}} := \mathbf{R} \otimes H_{\mathbf{Z}}$ and $H_{\mathbf{C}} := \mathbf{C} \otimes H_{\mathbf{Z}}$, whose complex conjugation is denoted by σ . Let w be an integer. A Hodge structure of weight w on $H_{\mathbf{C}}$ is a decomposition

(1.1)
$$H_{\mathbf{C}} = \bigoplus_{p+q=w} H^{p,q} \quad \text{with} \quad \sigma H^{p,q} = H^{q,p}.$$

 $F^p := \bigoplus_{p' \ge p} H^{p',q'}$ is called a *Hodge filtration*, and $H^{p,q}$ is recovered by $H^{p,q} = F^p \cap \sigma F^q$. The integers

$$h^{p,q} := \dim H^{p,q}$$

are called the Hodge numbers.

A polarization S for a Hodge structure (1.1) of weight w is a non-degenerate bilinear form on $H_{\mathbf{Q}}$, symmetric if w is even and skew-symmetric if w is odd, such that its C-bilinear extension, denoted also by S, satisfies

(1.3)
$$S(H^{p,q}, \sigma H^{p',q'}) = 0 \quad \text{unless} \quad (p,q) = (p',q'),$$
$$i^{p-q}S(v,\sigma v) > 0 \quad \text{for all} \quad 0 \neq v \in H^{p,q}.$$

For fixed S and $\{h^{p,q}\}$, the classifying space D for Hodge structures and its 'compact dual' \check{D} are defined by

 $D := \{ \{H^{p,q}\} \in \check{D} \mid \text{satisfying also the second condition in (1.3)} \}.$

These are homogeneous spaces under the natural actions of the groups

(1.5)
$$G_{\mathbf{C}} := \operatorname{Aut}(H_{\mathbf{C}}, S), \quad G = G_{\mathbf{R}} := \{g \in G_{\mathbf{C}} \mid gH_{\mathbf{R}} = H_{\mathbf{R}}\},\$$

respectively. Taking a reference point $r \in D$, one obtains identifications

(1.6)
$$\dot{D} \simeq G_{\mathbf{C}}/I_{\mathbf{C},\mathbf{r}}, \quad D \simeq G/I_{\mathbf{r}},$$

where $I_{\mathbf{C},r}$ and I_r are the isotropy subgroups of $G_{\mathbf{C}}$ and of G at $r \in D$, respectively. It is a direct consequence of the definition that

(1.7)
$$G \simeq \begin{cases} O(2h,k), \\ \operatorname{Sp}(2h,\mathbf{R}), \end{cases} I_r \simeq \begin{cases} U(h^{w,0}) \times \cdots \times U(h^{t+1,t-1}) \times O(h^{t,t}) & \text{if } w = 2t, \\ U(h^{w,0}) \times \cdots \times U(h^{t+1,t}) & \text{if } w = 2t+1, \end{cases}$$

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

1

2

where $k := \sum_{|j| \le [t/2]} h^{t+2j,t-2j}$ and $h := (\dim H - k)/2$ if w = 2t, and $h := \dim H/2$ if w = 2t + 1. It is an important observation that I_r is compact, but not maximal compact in general. Hence D is a symmetric domain of Hermitian type if and only if

(1.8)

$$w = 2t + 1;$$
 $h^{p,q} = 0$ unless $p = t + 1, t.$
 $w = 2t;$ $h^{p,q} = 1$ for $p = t + 1, t - 1, h^{t,t}$ is arbitrary,
 $h^{p,q} = 0$ otherwise; or
 $h^{p,q} = 1$ for $p = t + a, t + a - 1, t - a + 1, t - a$
for some $a \ge 2, h^{p,q} = 0$ otherwise.

We denote

(1.9)
$$\Gamma := \{g \in G \mid gH_{\mathbf{Z}} = H_{\mathbf{Z}}\}$$

Then Γ acts on D properly discontinuously because the isotropy subgroup I_r is compact and Γ is discrete in G.

A reference Hodge structure $r = \{H_r^{p,q}\} \in D$ induces a Hodge structure of weight 0 on the Lie algebra $\mathfrak{g}_{\mathbf{C}} := \operatorname{Lie} G_{\mathbf{C}}$ by

(1.10)
$$\mathfrak{g}_{\mathbf{C}}^{s,-s} := \{ X \in \mathfrak{g}_{\mathbf{C}} \mid X H_r^{p,q} \subset H_r^{p+s,q-s} \text{ for all } p,q \}.$$

One can define the associated Cartan involution θ_r on Lie $G := \mathfrak{g}$ induced by

(1.11)
$$\theta_r(X) := \sum_{\mathfrak{s}} (-1)^{\mathfrak{s}} X^{\mathfrak{s},-\mathfrak{s}} \text{ for } X = \sum_{\mathfrak{s}} (-1)^{\mathfrak{s}} X^{\mathfrak{s},-\mathfrak{s}} \in \mathfrak{g}_{\mathbf{C}} = \bigoplus_{\mathfrak{s}} \mathfrak{g}_{\mathbf{C}}^{\mathfrak{s},-\mathfrak{s}}.$$

We take the standard generators for the Lie algebras $\mathfrak{sl}_2(\mathbf{R})$ and $\mathfrak{su}(1,1)$ which are related by the Cayley transformation $\operatorname{Ad} c_1$, where

(1.12)
$$c_1 := \exp\left(\frac{\pi i}{4} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i\\ i & 1 \end{pmatrix},$$

as follows:

$$\mathfrak{sl}_2(\mathbf{R}) \quad \ni \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$
$$\operatorname{Ad} c_1 \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

(1.13)

$$\mathfrak{su}(1,1) \quad \ni \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \frac{1}{2} \begin{pmatrix} -i & 1 \\ 1 & i \end{pmatrix}, \quad \frac{1}{2} \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}.$$

Remark(1.14). $i \in \mathfrak{h} := (\text{upper-half plane}) \simeq \text{SL}_2(\mathbf{R})/U(1)$ corresponds to a Hodge structure $\mathbf{C}^2 = H_i^{1,0} \oplus H_i^{0,1}$ with $H^{1,0} = \mathbf{C} \begin{pmatrix} i \\ 1 \end{pmatrix}$. The Hodge structure on $\mathfrak{g}_{1\mathbf{C}} := \mathfrak{sl}_2(\mathbf{C})$ induced by $i \in \mathfrak{h}$ coincides with the canonical decomposition by the standard 'H-element' $\frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (cf., e.g., [Sa, II. §7]):

$$\mathfrak{g}_{1\mathbf{C}} = \mathfrak{g}_{1\mathbf{C}}^{1,-1} + \mathfrak{g}_{1\mathbf{C}}^{0,0} + \mathfrak{g}_{1\mathbf{C}}^{-1,1} = \mathfrak{p}_{-} + \mathfrak{k}_{\mathbf{C}} + \mathfrak{p}_{+} = \mathbf{C}\frac{1}{2}\begin{pmatrix}i & 1\\ 1 & -i\end{pmatrix} + \mathbf{C}\begin{pmatrix}0 & -i\\ i & 0\end{pmatrix} + \mathbf{C}\frac{1}{2}\begin{pmatrix}-i & 1\\ 1 & i\end{pmatrix}.$$

From now on, we assume that w > 0 and all Hodge structures of weight w satisfy $H^{p,q} = 0$ unless $p, q \ge 0$.

3

Definition(1.15) (cf. [Sc, p.258]). An SL₂-representation ρ : SL₂(**R**) \rightarrow G is horizontal at $r = \{H_r^{p,q}\} \in D$ if $\rho_*\left(\frac{1}{2}\begin{pmatrix} -i & 1\\ 1 & i \end{pmatrix}\right) \in \mathfrak{g}_{\mathbf{C}}^{-1,1}$ (see (1.10)). When this is a case, we call the pair (ρ, r) an SL₂-orbit.

Remark(1.16). It is clear that (ρ, r) is an SL₂-orbit if and only if $\rho_* : \mathfrak{sl}_2(\mathbf{R}) \to \mathfrak{g}$ is a morphism of Hodge structures of type (0,0) with respect to the Hodge structures induced by $i \in U$ and $r \in D$, respectively. A horizontal SL₂-representation ρ induces an equivariant horizontal map $\tilde{\rho}: \mathbf{P}^1 \to \tilde{D}$ with $\tilde{\rho}(i) = r$:

$$\begin{array}{cccc} \operatorname{SL}_2(\mathbf{C}) & \stackrel{\rho}{\longrightarrow} & G_{\mathbf{C}} \\ & & & & \downarrow \\ & & & & \downarrow \\ & \mathbf{P}^1 & \stackrel{\tilde{\rho}}{\longrightarrow} & \check{D} \end{array}$$

This is a generalization to the present context of the notion of (H_1) -homomorphism' in the case of symmetric domains of Hermitian type (cf., e.g., [Sa, II. (8.5), III. §1]).

Let (ρ, r) be an SL₂-orbit and $\tilde{\rho} : \mathbf{P}^1 \to \tilde{D}$ the associated horizontal equivariant map. We set

(1.17)
$$Y := \rho_* \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, N_+ := \rho_* \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, N_- := \rho_* \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, c := \rho(c_1).$$

We denote by $H(Y; \lambda)$ the λ -eigen space of the action of Y on H, and set

(1.18)
$$W(Y)_{w-j} := \bigoplus_{\lambda \ge j} H(Y; \lambda).$$

Lemma(1.19). Let (ρ, r) be an SL_2 -orbit. Then, in the above notation, $\lim_{Im z \to \infty} \exp(-zN_+) \cdot \tilde{\rho}(z) = c^{-1} \cdot r \in \tilde{D}$. The corresponding filtration, denoted by F_{∞} , together with W(Y), determines the limiting S-polarized split mixed Hodge structure.

Proof.
$$\widetilde{\rho}(z) = \widetilde{\rho}(i + (z - i)) = \widetilde{\rho}\left(\exp\left((z - i) \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) \cdot i\right) = \exp((z - i) \cdot N_{+}) \cdot r,$$

hence $\exp(-zN_+) \cdot \widetilde{\rho}(z) = \exp(-iN_+) \cdot r = \widetilde{\rho} \left(\exp\left(-i \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right) \cdot i \right) = \widetilde{\rho}(0)$. On the other hand, $c^{-1} \cdot r = \widetilde{\rho}(c_1^{-1} \cdot i) = \widetilde{\rho}(0)$.

The second assertion follows from [Sc, (6,16)] and [U, (2.11), see also(2.12)]. (N, L in [Sc, (6.16)] correspond to N_+ , N_- in our present notation, respectively.)

§2. Line bundles L(W).

Let W_{w-1} be a subspace of $H_{\mathbf{Q}}$ defined over \mathbf{Q} which is isotropic with respect to S, i.e., S(u, v) = 0 for all $u, v \in W_{w-1}$. We assume throughout this paper that

(2.1)
$$\dim W_{w-1} = \begin{cases} 1 & \text{if } w \text{ is odd,} \\ 2 & \text{if } w \text{ is even.} \end{cases}$$

Let W_{w} be the anihilator of W_{w-1} in $H_{\mathbf{Q}}$ with respect to S. Then we have a filtration W of $H_{\mathbf{Q}}$:

$$(2.2) 0 \subset W_{w-1} \subset W_w \subset W_{w+1} := H_{\mathbf{Q}}.$$

By abuse of notation, we also use W for the filtrations induced on $H = H_{\mathbf{R}}$, $H_{\mathbf{C}}$ if it does not lead any confusion. Note that $(-1)^{w-1}$ -symmetric bilinear forms on W_{w-1} , form a one dimensional vector space.

We define subgroups of G:

(2.3)

$$N(W) := \{g \in G \mid gW_j = W_j \text{ for all } j\}^\circ,$$

$$U(W): \text{ the unipotent radical of } N(W),$$

$$C(W): \text{ the center of } U(W),$$

where $\{ \}^{\circ}$ means the connected component containing 1. The induced sub- and subquotient groups of Γ are denoted by

(2.4)
$$\Gamma_W := \Gamma \cap N(W), U(W)_{\mathbf{Z}} := \Gamma \cap U(W), C(W)_{\mathbf{Z}} := \Gamma \cap C(W), \widetilde{\Gamma}_W := \Gamma_W/C(W)_{\mathbf{Z}}.$$

Definition(2.5). $N \in \mathfrak{c} := \operatorname{Lie} C(W)$ is positive if $N \in \mathbb{R}_{>0} \cdot N_+$ for some SL_2 -orbit (ρ, r) with W(Y) = W (cf. (1.17), (1.18)).

Lemma(2.6). (i) $\dim C(W) = 1$.

(ii) C(W) is a normal subgroup of N(W), and $Ad(g)X = det(g|W_{w-1})X$ for $g \in N(W)$, $X \in \mathfrak{c} = \text{Lie } C(W)$.

(iii) Let $r \in D$ be a reference point. Then $C(W)_{\mathbf{C}}$ acts on $D(W) := C(W)_{\mathbf{C}} \cdot D$ freely.

Proof. Since we assume (2.1), (i) is obvious in the case of odd w. In order to examine (i) in the case of even w, we choose a **Q**-basis of $H_{\mathbf{Q}}$ according to the filtration W so that the polarization form S is represented by a matrix $S = \operatorname{antidiagonal}(J, \Delta, J)$, where J :=antidiagonal $(1, \dots, 1)$ of rank ≥ 2 , $\Delta := \pm I$. In this basis, any $X \in \mathfrak{c}$ represented by a matrix

$$X = \begin{pmatrix} 0 & 0 & A \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ where } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ is a } 2 \times 2 \text{ matrix.}$$

From ${}^{t}XS + SX = 0$, we can derive d = -a, b = c = 0 elementarily. This completes the proof of (i).

By using the above basis, (ii) can be also verified elementarily.

Let N be a positive basis of c. Since N is nilpotent, $\nu : \mathbf{C} \simeq C(W)_{\mathbf{C}} \to D(W) \subset \overline{D}$, $z \mapsto \exp(zN)$, is an algebraic morphism. ν is not a constant map, because the isotropy subgroup I_r of G at r is compact hence it does not contain a unipotent subgroup $C(W) \simeq$ **R**. It follows that ν is quasi-finite. If $\nu(z_1) = \nu(z_2)$, $z_1, z_2 \in \mathbf{C}$, then $\exp((z_1 - z_2)N) \cdot r = r$ and so $\mathbf{Z}(z_1 - z_2) \subset \nu^{-1}(r)$, which occurs only if $z_1 = z_2$. This completes the proof. \Box By Lemma (2.6.iii), the quotient $D(W)' := D(W)/C(W)_{\mathbf{C}}$ is a complex manifold and that the principal $C(W)_{\mathbf{C}}$ -bundle $D(W) \to D(W)'$ is a complex affine bundle. Starting from this affine bundle, we shall construct a complex line bundle $L(W) \to D(W)'$ in the following way. Take a quotient bundle

$$(2.7) D(W)/C(W)_{\mathbb{Z}} \to D(W)'.$$

Set $T(W) := C(W)_{\mathbb{C}}/C(W)_{\mathbb{Z}}$. Using the positive generator N of Lie $C(W)_{\mathbb{Z}}$, we have an identification $T(W) \xrightarrow{\sim} \mathbb{C}^*$, $\exp(zN) \mapsto \exp(2\pi i z)$. Let $\mathbb{C}^* \subset \mathbb{C}$ be the natural embedding. We denote by

(2.8)
$$\pi : L(W) := (D(W)/C(W)_{\mathbb{Z}}) \times^{\mathbb{C}} \mathbb{C}^* \to D(W)'$$

the complex line bundle associated to the principal C^* -bundle (2.7).

Proposition(2.9). The action of $\overline{\Gamma}_W$ on the C^{*}-bundle (2.7) extends to the action on the complex line bundle (2.8), which commutes with the action of T(W). $\overline{\Gamma}_W$ acts properly discontinuously on D(W)' and hence on L(W).

Proof. The first part follows easily from (2.6.ii) and an observation: $det(\gamma|W_{w-1}) = 1$ for all $\gamma \in \Gamma_W$.

In order to prove the second part, we use the C^{*}-bundle (2.7). Given a compact subset $A' \subset D(W)'$. Put $A := \pi^{-1}(A')$. Take a neighborhood V_a of $a \in A \cap (D/C(W)_Z)$ satisfying that the closure \overline{V}_a is compact and contained in $D/C(W)_Z$. Then $\{\pi(V_a) \mid a \in A \cap (D/C(W)_Z)\}$ is an open covering of A' and so we can choose a finite subset $\{\pi(V_{a_i}) \mid 1 \leq i \leq n\}$ which covers A'. Set $V := \bigcup_{1 \leq i \leq n} N(W)^1 \cdot \overline{V}_{a_i}$, where

(2.10)
$$N(W)^1 := \{g \in N(W) \mid \det(g|W_{w-1}) = 1\}.$$

Then, by construction, we see that $V \subset D/C(W)_{\mathbb{Z}}$, $\pi(V) \supset A'$ and that the restriction $\pi: V \to D(W)'$ is a proper map. Since $\Gamma_W \subset N(W)^1$ whose action preserves the fiber coordinate of (2.8), we see that

$$\{\gamma \in \overline{\Gamma}_{W} \mid \gamma \cdot A' \cap A' \neq \emptyset\} = \{\gamma \in \overline{\Gamma}_{W} \mid \gamma \cdot (A \cap V) \cap (A \cap V) \neq \emptyset\}.$$

The latter set is finite because the action of $\overline{\Gamma}_W$ on $D/C(W)_{\mathbb{Z}}$ is properly discontinuous and $A \cap V \subset D/C(W)_{\mathbb{Z}}$ is a compact subset. This proves that $\overline{\Gamma}_W$ acts on D(W)' properly discontinuously. The assertion on the action on L(W) follows from this easily. \Box

§3. Boundary components B(W, p).

Let $\{h^{p,q}\}$ be a set of Hodge numbers in (1.2). For a filtration W in (2.2), we set

$$(3.1) n_{\lambda} := \operatorname{gr}_{w-\lambda}^{W}$$

We recall a definition in [U, (2.15)]:

Definition(3.2). A set $p = \{p_{\lambda}^{a,b}\}$ of non-negative integers is called a set of primitive Hodge numbers belonging to $\{h^{p,q}, n_{\lambda}\}$ if it satisfies the following conditions.

- (0) The indices a, b and λ are non-negative integrers satisfying $a + b = w \lambda$.

(i) $\sum_{a+b=w-\lambda} p_{\lambda}^{a,b} = n_{\lambda} - n_{\lambda+2}$ for all λ . (ii) $p_{\lambda}^{b,a} = p_{\lambda}^{a,b}$ for all a, b, λ . (iii) $h^{s,t} = h^{s+1,t-1} - \sum_{0 \le \lambda \le t-1} p_{\lambda}^{s+1,t-1-\lambda} + \sum_{0 \le \lambda \le s} p_{\lambda}^{s-\lambda,t}$ for all s, t with s+t=w.

Under the assumption (2.1), only the following sets of primitive Hodge nembers are possible.

(3.3) Case w = 2t + 1. The possibility is unique.

$$p_1^{t,t} = 1,$$

$$p_0^{a,b} = \begin{cases} h^{a,b} - 1 & \text{if } a = t+1, t, \\ h^{a,b} & \text{otherwise.} \end{cases}$$

Case w = 2t. There are t + 1 possible cases. (3.4) For each $s = w, w - 1, \dots, t + 1$,

$$p_1^{s,w-s-1} = p_1^{w-s-1,s} = 1,$$

$$p_0^{a,b} = \begin{cases} h^{a,b} - 1 & \text{if } a = s+1, s, w-s, w-s-1, \\ h^{a,b} & \text{otherwise.} \end{cases}$$

(3.5) For s = t,

$$p_1^{t,t-1} = p_1^{t-1,t} = 1,$$

$$p_0^{a,b} = \begin{cases} h^{a,b} - 1 & \text{if } a = t+1, t-1, \\ h^{a,b} - 2 & \text{if } a = t, \\ h^{a,b} & \text{otherwise.} \end{cases}$$

Definition(3.6). Given a filtration W in (2.2) and a set $p = \{p_{\lambda}^{a,b}\}$ of primitive Hodge numbers belonging to $\{h^{p,q}, n_{\lambda}\}$, the corresponding boundary component is a classifying space of the gradedly polarized mixed Hodge structures on $W_w H_C$: B = B(W, p) :=

{F | F is a filtration on $W_w H_C$ satisfying the condition (3.7) below}. (3.7) $\operatorname{gr}_w^W F$ (resp. $\operatorname{gr}_{w-1}^W F$) is a Hodge structure of weight w (resp. w-1) with Hodge type $\{p_0^{a,b}\}$ (resp. $\{p_1^{a,b}\}$) and polarized by the bilinear form induced by S on $\operatorname{gr}_w^W F$ (resp. positive $(-1)^{w-1}$ -symmetric bilinear forms on W_{w-1}).

We consider polarization forms on W_{w-1} are equivalent if they differ only by a positive multiplicative constant.

Proposition(3.8). There is an N(W)-equivariant embedding $B(W, p) \hookrightarrow D(W)'$.

Proof. We shall first construct a map $\varphi: B \to D'$, where B := B(W, p), D' := D(W)'. Let $F \in B$. In the present case, the weight length is one, hence we have the Hodge-Deligne decomposition

$$W_{w}H_{\mathbf{C}} = \bigoplus P_{\lambda}^{a,b}, \quad P_{\lambda}^{a,b} := F^{a} \cap \sigma F^{b} \cap W_{w-\lambda}H_{\mathbf{C}},$$

where the summation is taken over $a + b = w - \lambda$, $\lambda = 0, 1$. We want to extend this to an S-polarized split mixed Hodge structure on $H_{\mathbf{C}}$ uniquely up to modulo $C(W)_{\mathbf{C}}$ -action. Setting $P_{0,\mathbf{C}} := \bigoplus_{a,b} P_0^{a,b}$, we have a splitting over **R** of $W_{w-1}H_{\mathbf{C}} \subset W_wH_{\mathbf{C}}$. In case w = 2t + 1, our assertion follows immediately from the fact that $P_{-1,\mathbf{C}} := P_{-1}^{t+1,t+1}$ should be perpendicular to $P_{0,\mathbf{C}}$ with respect to S. Similarly, in case w = 2t, $P_{-1,\mathbf{C}} := P_{-1}^{s+1,w-s} +$ $P_{-1}^{w-s,s+1}$ is distinguished up to modulo $C(W)_{\mathbf{C}}$ -action by the same condition, where s is the integer satisfying $p_1^{s,w-s-1} = 1$ in the given set of primitive Hodge numbers. Moreover, the summands $P_{-1}^{a+1,w-a}$ (a = s, w - s - 1) are distinguished up to modulo $C(W)_{\mathbf{C}}$ action by the condition that $P_{-1}^{a+1,w-a}$ should be perpendicular to $P_{1}^{a,w-a-1} + P_{-1}^{a+1,w-a}$ with respect to S. Now let $P_{-1}^{t+1,t+1}$ in case w = 2t + 1 and $P_{-1}^{s+1,w-s}$, $P_{-1}^{w-s,s+1}$ in case w = 2t be representatives among the above constructions. These deta determine a splitting $P_1 \oplus P_0 \oplus P_{-1}$ over **R** of the filtration $W_{w-1} \subset W_w \subset W_{w+1}$, where $P_1 := W_{w-1}$, $P_{\lambda} := P_{\lambda, \mathbb{C}} \cap H$ ($\lambda = 0, -1$). This, in turn determines a real semi-simple element $Y \in \mathfrak{g}$ so that P_{λ} is the λ -eigen space of Y. On the other hand, the nilpotent element N is determined as the positive generator of Lie $C(W)_{\mathbf{Z}}$. Since [Y, N] = 2N by construction, we have a representation ρ : SL₂(**R**) \rightarrow G (not necessarily rational). Transforming the $P_{\lambda}^{a,b}$ by the Cayley element $c = \rho(c_1)$ in (1.17), we get the Hodge- (Z, X_{\pm}) decomposition: $\bigoplus Q_{\lambda}^{a,b+\lambda} := \bigoplus cP_{\lambda}^{a,b}$. Then we know that $H^{p,q} := \bigoplus_{\lambda} Q_{\lambda}^{p,q}$ determines an element $r \in D$ where ρ is horizontal (see [U, (3.4) and its proof]). We now define a map

(3.9)
$$\varphi: B \to D' \quad \text{by} \quad F \mapsto C(W)_{\mathbf{C}} \cdot r$$

Next we define a map

(3.10)
$$\psi: \varphi(B) \to B \quad \text{by} \quad \exp(zN) \cdot F \mapsto F \cap W_w H_{\mathbf{C}}.$$

This is well-defined. Indeed, if $\exp(z'N) \cdot F' = \exp(zN) \cdot F$ then $F' = g \cdot F$ for $g := \exp((z-z')N)$. Since $W_w = \operatorname{Ker} N$, we see that $g|W_w$ is identity and so

$$F' \cap W_{w}H_{\mathbf{C}} = g \cdot F \cap W_{w}H_{\mathbf{C}} = g(F \cap W_{w}H_{\mathbf{C}}) = F \cap W_{w}H_{\mathbf{C}}.$$

We claim now that $\psi\varphi$ is identity. Indeed, let $F \in B$ and F_{∞} the Hodge filtration associated to the S-polarized split mixed Hodge structure $\{P_{\lambda}^{a,b} \mid a+b=w-\lambda, \lambda=1, 0, -1\}$ constructed above. Then the filtration F_r corresponding to $r \in D$ is $F_r = cF_{\infty}$ by definition. On the other hand, $cF_{\infty} = \exp(iN) \cdot F_{\infty}$ in the present situation. This follows immediately from an observation that the restriction $\rho(\operatorname{SL}_2(\mathbf{C}))|P'$, where $P' := P_1^{a-1,w-a} + P_{-1}^{a,w-a+1}$, a-1 = t in case w = 2t+1, and a-1 = s, w-s-1 in case w = 2t, yields a 2-dimensional irreducible representation of $\operatorname{SL}_2(\mathbf{C})$ hence we have $c = \frac{1}{\sqrt{2}} \exp(iN)$ on $P_{-1}^{a,w-a+1}$.

It is obvious that ψ is N(W)-equivariant. \Box

Let (ρ, r) be an SL₂-orbit, Y in (1.17), and W = W(Y) in (1.18). We assume that W is defined over **Q**. We denote

(3.11)
$$G_Y := \{g \in G \mid gYg^{-1} = Y\}.$$

In the notation of (2.8), we set

(3.12)
$$\widetilde{r} := (r \mod C(W)_{\mathbf{Z}}) \in L(W), \quad b := \pi(\widetilde{r}) \in D(W)'.$$

Then, by (1.19), we have $cF_{\infty} = F_r = \exp(iN_+) \cdot F_{\infty}$, and hence $b \in B = B(W, p)$ under the identification of (3.8).

Proposition(3.13). In the above situation, we have the following.

(i) The orbits $G_Y \cdot b \subset N(W) \cdot b = B \subset D(W)'$ are complex submanifolds, where B = B(W, p).

(ii) $((C(W) \rtimes G_Y) \cdot r)^{\sim} \to G_Y \cdot b$ and $(N(W) \cdot r)^{\sim} \to B$ are punctured disc bundles contained in the line bundle (2.8). $(G_Y \cdot r)^{\sim} \to G_Y \cdot b$ is the family of all SL_2 -orbits corresponding to the pair (Y, p), and $(N(W) \cdot r)^{\sim} \to B$ is the family of all nilpotent orbits corresponding to the pair (W, p).

(iii) $N(W) \cdot r$ is open in D if and only if D is a Hermitian symmetric domain.

Proof. We first claim that

(3.14)
$$\dim_{\mathbf{R}} N(W)/I_{r} \cap N(W) = 2 \dim_{\mathbf{C}} N(W)_{\mathbf{C}}/I_{\mathbf{C},r} \cap N(W)_{\mathbf{C}},$$
$$\dim_{\mathbf{R}} (C(W) \rtimes G_{Y})/I_{r} \cap (C(W) \rtimes G_{Y})$$

$$= 2 \dim_{\mathbf{C}} (C(W)_{\mathbf{C}} \rtimes G_{Y,\mathbf{C}}) / I_{\mathbf{C},r} \cap (C(W)_{\mathbf{C}} \rtimes G_{Y,\mathbf{C}})$$

where I_r and $I_{\mathbf{C},r}$ are the isotropy subgroups at r of G and of $G_{\mathbf{C}}$, respectively. (3.14) can be verified elementarily by the dimension count of the corresponding Lie algebras using bases of $H_{\mathbf{C}}$ according to the mixed Hodge- (Y, N_{\pm}) decomposition of (ρ, r) (cf. [U, §2]), hence we left it to the reader. Similarly, we can verify elementarily that N(W) acts on B transitively and so we omit this verification. (3.14) shows that orbit $N(W) \cdot r$ (resp. $(C(W) \rtimes G_Y) \cdot r)$ is open in $N(W)_{\mathbf{C}} \cdot r$ (resp. $(C(W)_{\mathbf{C}} \rtimes G_{Y,\mathbf{C}}) \cdot r)$ in the Hausdorff topology and the latter is a closed complex submanifold of $\tilde{D} = G_{\mathbf{C}} \cdot r$, hence the former induces a complex submanifold $(N(W) \cdot r)^{\sim}$ (resp. $((C(W) \rtimes G_Y) \cdot r)^{\sim})$ of $D(W)/C(W)_{\mathbf{Z}}$. From this we know that the interior of the closure of $(N(W) \cdot r)^{\sim}$ (resp. $((C(W) \rtimes G_Y) \cdot r)^{\sim})$ in L(W), denoted by

(3.15)
$$\mathcal{N} = \mathcal{N}(W, p) \quad (\text{resp. } \mathcal{S} = \mathcal{S}(Y, p)),$$

is a complex submanifold and so the intersection of \mathcal{N} (resp. \mathcal{S}) with the zero section of the line bundle (2.8) is a complex submanifold of the zero section. Via the projection, we get the assertion (i).

Now the first part of (ii) follows from (2.6.ii) and the observations that $N(W) = N(W)^1 \exp(\mathbf{R}Y)$ (for $N(W)^1$, see (2.10)), $\exp(iyN_+) \cdot r = \exp(\log(y+1)^{1/2}Y) \cdot r$, and

$$\det(\exp(\log(y+1)^{1/2}Y)|W_{w-1}) = y+1 > 0 \iff e^{-2\pi y} < e^{2\pi}.$$

As for the second part of (ii), the assertion on the family $(G_Y \cdot r)^{\sim} \to G_Y \cdot b$ follows from [U, (3.16.iii)]. Let $g \cdot r \in N(W) \cdot r$ and $F_{g \cdot r}$ the corresponding Hodge filtration. Then, by (2.6.ii),

(3.16)
$$\exp(iyN_{+})g \cdot r = g \exp(iy \det(g^{-1}|W_{w-1})N_{+}) \cdot r$$
$$= g \exp(\log(y \det(g^{-1}|W_{w-1}) + 1)^{1/2}Y) \cdot r \in D \quad \text{for } y > 0.$$

On the other hand, applying the argument at the end of the proof of Proposition (3.8) to the Hodge- (Z, X_{\pm}) decomposition and the mixed Hodge- (Y, N_{\pm}) decomposition $H_{\mathbf{C}} = \bigoplus Q_{\lambda}^{a,b+\lambda} = \bigoplus P_{\lambda}^{a,b}$ associated to (ρ, r) (cf. [U, §2]), we see that, for $P' := P_1^{a-1,w-a} + P_{-1}^{a,w-a+1}$,

$$N_+Q_{-1}^{a,w-a} \subset N_+cP' = N_+P' \subset P' = cP'.$$

It follows that $N_+F_r^a \,\subset F_r^{a-1}$ and hence $N_+F_{g,r}^a \subset F_{g,r}^{a-1}$ by (2.6.ii). Therefore $\exp(\mathbb{C}N_+)g$. r is a nilpotent orbit in the direction of (W,p). Conversely, let (N_+,F) , $F \in \check{D}$, be a nilpotent orbit, i.e., $N_+F^a \subset F^{a-1}$ and $\exp(iyN_+) \cdot F \in D$ for $y \gg 0$. Then, by [Sc, (6.16)], (W,F) is an S-polarized mixed Hodge structure. If (W,F) has mixed Hodge type p then this determines a point of B by $F \cap W_w H_{\mathbb{C}}$ hence, by (3.8) and the first part of (ii), we have $\exp(iyN_+) \cdot F \in N(W) \cdot r$ for $y \gg 0$. This completes the proof of (ii).

In order to prove (iii), we shall compute dim $D - \dim N(W) \cdot r$. Let K be a maximal compact subgroup of G containing the isotropy subgroup I_r , G = RTK an Iwasawa decomposition.

Case
$$w = 2t + 1$$
, i.e., (3.3). We see that
 $G = \operatorname{Sp}(2h, \mathbf{R}), \quad K \simeq U(h), \quad I_r \simeq U(h^{w,0}) \times \cdots \times U(h^{t+1,t}),$
 $K_Y \simeq U(h-1), \quad I_{r,Y} := I_r \cap G_Y \simeq U(h^{w,0}) \times \cdots \times U(h^{t+2,t-1}) \times U(h^{t+1,t}-1)$

Hence

$$\dim D - \dim N(W) \cdot r = \dim G/I_r - \dim N(W)/I_{r,Y} = \dim K/I_r - \dim K_Y/I_{r,Y}$$
$$= h^2 - (h-1)^2 - (h^{t+1,t})^2 + (h^{t+1,t}-1)^2 = 2(h-h^{t+1,t}).$$

This is zero if and only if $h = h^{t+1,t}$, that is, $K = I_r$.

Case w = 2t. We see that

$$G = O(2h, k), \quad K \simeq O(2h) \times O(k),$$

$$I_r \simeq U(h^{w,0}) \times \cdots \times U(h^{t+1,t-1}) \times O(h^{t,t}),$$

$$K_Y \simeq O(2h-2) \times O(k-2) \times O(2),$$

According to the subcases (3.4), (3.5), $I_{r,Y}$ is isomorphic, respectively, to $U(h^{w,0}) \times \cdots \times U(h^{s+1,w-s-1}-1) \times U(h^{s,w-s}-1) \times \cdots \times U(h^{t+1,t-1}) \times O(h^{t,t}) \times U(1),$ $U(h^{w,0}) \times \cdots \times U(h^{t+1,t-1}-1) \times O(h^{t,t}-2) \times U(1).$

As before, we can compute dim $D - \dim N(W) \cdot r$ to obtain

$$2(2h+k-h^{s+1,w-s-1}-h^{s,w-s}-2) \text{ in case (3.4),} 2(2h+k-h^{t+1,t-1}-h^{t,t}-1) \text{ in case (3.5).}$$

These are zero if and only if

$$\begin{split} h &= h^{s+1,w-s-1} \; (\text{or } h^{s,w-s}) = 1, \; k = 2h^{s,w-s} \; (\text{or } 2h^{s+1,w-s-1}) = 2 \quad \text{in case (3.4)}, \\ h &= h^{t+1,t-1} = 1, \; k = h^{t,t} \quad \text{in case (3.5)}. \end{split}$$

Hence, dim $D = \dim N(W) \cdot r$ if and only if $K = I_r$. This completes the proof of the proposition. \Box

We denote

(3.17)
$$\widetilde{D}_{W,p} := D/C(W)_{\mathbb{Z}} \cup \mathcal{N}(W,p) \subset L(W), \ \widetilde{D}_{W} := \bigcup_{p} \widetilde{D}_{W,p} \subset L(W), \ \widetilde{D} := \bigsqcup_{W} \widetilde{D}_{W},$$

where the unions are taken over all sets p of primitive Hodge numbers belonging to $\{n_{\lambda}, h^{p,q}\}$ and all rational S-isotropic filtrations W of $H_{\mathbf{Q}}$ in (2.2) satisfying (2.1).

§4. Construction of partial compactifications $\overline{D/\Gamma}$.

We recall first the partial compactification D^{**}/Γ of Cattani-Kaplan in [CK] and its generalization into arbitrary weight [U, Appendix] whithin our present use. Under the assumption (2.1), the disjoint union D^{**} of all rational boundary components and the disjoint union D^* of all rational boundary bundles, both in the sense of [CK], coincide and it is defined by

(4.1)
$$D^* := D \sqcup (\bigsqcup_{W,p} F(W,p)), F(W,p) := \{ \operatorname{gr}^W F | F \in B(W,p) \},$$

where W and p run over all rational S-isotropic filtrations (2.2) of $H_{\mathbf{Q}}$ satisfying the condition (2.1) and all sets of primitive Hodge numbers, respectively, and B(W, p) is a boundary component in the sense of (3.6).

In order to introduce the Satake topology on D^* , we choose a maximal **Q**-split Cartan subalgebra \mathfrak{t} of \mathfrak{g} and a Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ with $\mathfrak{p} \supset \mathfrak{t}$. Let $\Phi \subset \mathfrak{t}^*$ be the **Q**-root system, $\Phi^+ \subset \Phi$ the positive root system with respect to some lexicographical order in \mathfrak{t}^* . Let G = RTK be the Iwasawa decomposition, where $R := \exp(\sum_{\alpha \in \Phi^+} \mathfrak{g}_{\alpha})$, $T := \exp \mathfrak{t}$ and K is the maximal compact subgroup of G with Lie $K = \mathfrak{k}$.

Let $\mathfrak{t}^+ := \{A \in \mathfrak{t} \mid \alpha(A) > 0 \text{ for all } \alpha \in \Phi^+\}$ be the Weyl chamber. We denote by \mathcal{A} the set of all rational admissible elements in the closure $\overline{\mathfrak{t}^+}$ of \mathfrak{t}^+ in \mathfrak{t} . Then we see, by construction, that \mathcal{A} is finite and a set of complete representatives of all $G_{\mathbf{Q}}$ -conjugacy classes of rational admissible elements. Under the assumption (2.1), \mathcal{A} consists of the single element $Y := \operatorname{diagonal}(1_s, 0, \cdots, 0, -1_s)$, where s = 1 if w is odd and s = 2 if w is even. Let W(Y) be the weight filtration associated to Y in (1.18). For each set $p = \{p_{\lambda}^{a,b}\}$ of primitive Hodge numbers, we take a reference point $r_p \in D$ lying over $[K] \in G/K$, via some fixed projection $D \to G/K$, such that (Y, r_p) is an admissible pair of type p. This is possible by [U, (3.16.ii)]. We set

(4.2)
$$\widetilde{r}_p := (r_p \mod C(W(Y))_{\mathbf{Z}}) \in L(W(Y)),$$
$$b_p := \pi(\widetilde{r}_p) \in B(W(Y), p), \quad \overline{b}_p := \operatorname{gr}^{W(Y)}(b_p) \in F(W(Y), p).$$

The Satake topology $\tau^{\Gamma}(D^*)$ on D^* relative to Γ in [CK] is introduced in the following process (i)-(iii):

(i) An open Siegel set subject to the Iwasawa decomposition G = RTK is a subset $\mathfrak{S} := \omega T_{\mu}K$ of G, where ω is a relatively compact open neighborhood of 1 in R, $\mu > 0$ and $T_{\mu} := \{t \in T \mid e^{\alpha}(t) > \mu \text{ for all } \alpha \in \Phi^+\}$. An extended Siegel set in D^* is a subset

 $\mathfrak{S}^* := \bigcup_p (\mathfrak{S} \cdot r_p \cup (\mathfrak{S} \cap N(W(Y))) \cdot \overline{b}_p)$. For suitable choices of ω and μ , there exists a finite subset E of $G_{\mathbf{Q}}$ satisfying $\Gamma E \mathfrak{S} \cdot r_p = D$ and $\Gamma_{W(Y)}(E \cap N(W(Y)))(\mathfrak{S} \cap N(W(Y))) \cdot \overline{b}_p = F(W(Y), p)$ for all p. Then, as [CK, (4.28)], $\Omega^* := E \mathfrak{S}^*$ is a Γ -fundamental set in D^* , i.e, satisfies the following two conditions.

$$\Gamma \Omega^* = D^*.$$

(4.4) There exist finitely many $\gamma_{\nu} \in \Gamma$ such that, if $\gamma \in \Gamma$, $\gamma \Omega^* \cap \Omega^* \neq \emptyset$, then the actions of γ and γ_{ν} coincide on $\Omega^* \cap \gamma^{-1}\Omega^*$ for some ν .

(ii) A topology $\tau(\mathfrak{S}^*)$ on \mathfrak{S}^* is defined so that a basis of open sets is given by open subsets of $\mathfrak{S} \cdot r_p(\subset D)$ in the natural topology together with subsets

$$(\mathbf{4.5}) \qquad \qquad (U_{\lambda}V \cdot r_p \cup U \cdot \overline{b}_p) \cap \mathfrak{S}^*$$

for all p, where U runs over the pull-backs via the projection $N(W(Y)) \to F(W(Y), p)$, $g \mapsto g \cdot \overline{b}_p$, of all open sets in F(W(Y), p) in the natural topology, λ is a positive real number, $U_{\lambda} := \{g \in U \mid e^{\alpha}(g) > \lambda \text{ for all } \alpha \in \Phi \text{ with } \alpha(Y) > 0\}$, V runs over neighborhoods of 1 in K. The topology $\tau(\Omega^*)$ on Ω^* is induced from $\tau(\mathfrak{S}^*)$ in the following way: the system of neighborhoods of $x \in \Omega^*$ consists of all subsets $\mathcal{U} \subset \Omega^*$ satisfying the condition that, if $x \in e\mathfrak{S}^*$ with $e \in E$, then $e^{-1}\mathcal{U} \cap \mathfrak{S}^*$ is a $\tau(\mathfrak{S}^*)$ -neighborhood of $e^{-1}x \in \mathfrak{S}^*$. Then, as [CK, (4.32)], the topology $\tau(\Omega^*)$ has the following property.

(4.6) $\tau(\Omega^*)$ is Hausdorff and the action of $\gamma \in \Gamma$ is continuous in $\tau(\Omega^*)$ in the following sense: let $x \in \Omega^*$; if $\gamma x \in \Omega^*$, then for any $\tau(\Omega^*)$ -neighborhood \mathcal{U}' of γx there exists a $\tau(\Omega^*)$ -neighborhood \mathcal{U} of x such that $\gamma \mathcal{U} \cap \Omega^* \subset \mathcal{U}'$; if $\gamma x \notin \Omega^*$, then there exists a $\tau(\Omega^*)$ -neighborhood \mathcal{U} of x such that $\gamma \mathcal{U} \cap \Omega^* = \emptyset$.

(iii) By virtue of (4.3), (4.4) and (4.6), [Sa, Theorem 1'] can be applied to obtain a Satake topology $\tau^{\Gamma}(D^*)$ (uniquely determined) with the following four properties.

(4.7.1) $\tau^{\Gamma}(D^*)$ induces $\tau(\Omega^*)$ (and also $\tau(\mathfrak{S}^*)$).

(4.7.2) The action of Γ on D^* is continuous.

(4.7.3) If $\Gamma x \cap \Gamma x' = \emptyset$ with $x, x' \in D^*$, then there exist $\tau^{\Gamma}(D^*)$ -neighborhoods \mathcal{U} of x and \mathcal{U}' of x' such that $\Gamma \mathcal{U} \cap \Gamma \mathcal{U}' = \emptyset$.

(4.7.4) For each $x \in D^*$, there exists a fundamental system $\{\mathcal{U}\}$ of $\tau^{\Gamma}(D^*)$ -neighborhoods of x such that $\gamma \mathcal{U} = \mathcal{U}$ for $\gamma \in \Gamma_x$, $\gamma \mathcal{U} \cap \mathcal{U} = \emptyset$ for $\gamma \notin \Gamma_x$, where Γ_x is the isotropy subgroup of Γ at x.

In [CK], they use a closed Siegel set in stead of an open one. In both cases the arguments are parallel. In [CK, §5], they show that the Satake topology $\tau^{\Gamma}(D^*)$ is independent of choices of the following things: $t, \Phi^+, K, r_p, \Gamma, \mathfrak{S}, E$. As Looijenga has pointed out to the author, the induced topology on D^*/Γ is not locally compact in general (cf. [CK, (4.36.i)]).

Definition(4.8). In the notation of (3.17), a Satake topology $\tau(\widetilde{D})$ on \widetilde{D} is defined in the following way.

12

(i) We first define a topology $\tau(D \sqcup B(W(Y)))$, where $B(W(Y)) := \bigsqcup_p B(W(Y), p)$. On D, this topology coincides with the natural one. At a boundary point $x \in B(W(Y))$, a fundamental system of neighborhoods is given by

$$U_{\lambda}V \cdot r_p \sqcup U \cdot b_p,$$

where U runs over the pull-backs via the projection $N(W(Y)) \to B(W(Y))$, $g \mapsto g \cdot b_p$, of all neighborhoods of x in B(W(Y)) in the natural topology, λ is a positive real number, $U_{\lambda} := \{g \in U \mid e^{\alpha}(g) > \lambda \text{ for all } \alpha \in \Phi \text{ with } \alpha(Y) > 0\}$, V runs over neighborhoods of 1 in K.

(ii) We extend $\tau(D \sqcup B(W(Y)))$ to $\tau(\bigsqcup_W (D \sqcup B(W)))$, where W runs over all rational S-isotropic filtrations (2.2) of $H_{\mathbf{Q}}$ satisfying the condition (2.1), so that the action of $G_{\mathbf{Q}}$ is continuous on the latter.

(iii) $\tau(D)$ is the topology induced from $\tau(\bigsqcup_W (D \sqcup B(W)))$.

It is easy to see that the Satake topology $\tau(\tilde{D})$ is well-defined, and we can prove similarly as in [CK, §5] that $\tau(\tilde{D})$ is independent of the choices of $\mathfrak{t}, \Phi^+, K, r_p$.

Lemma(4.9). The restriction of $\tau(\tilde{D})$ to $\mathcal{N}(W, p)$ coincides with the natural topology on it for every W and p, where $\mathcal{N}(W, p)$ is in (3.15).

Proof. The assertion follows immediately by Definition(4.8) and (3.16) for the SL₂-orbit (ρ, r_p) corresponding to the admissible pair (Y, r_p) . \Box

Problem (4.10). Compare the topology $\tau(\widetilde{D}_W)$ with the natural one on $\widetilde{D}_W \subset L(W)$.

Lemma(4.11). The natural map $f: \widetilde{D} \to D^*/\Gamma$ is continuous in the Satake topologies.

Proof. Set W = W(Y). By Definition(4.8) and [CK, (5.7)] and its generalization, it is enough to show that, in the notation of (3.17), the natural map

$$(4.12) f_{W,p}: \dot{D}_{W,p} \to D^*/C(W)_{\mathbb{Z}}$$

is continuous in the Satake topologies for any p.

It is obvious that $f_{W,p}$ is continuous on $D/C(W)_{\mathbb{Z}}$. Let $x \in B(W,p)$ and \overline{x} its image in F(W,p). Note that a fundamental system of $\tau(D^*)$ -neighborhoods of $\overline{x} \in D^*$ is given by the following sets (cf. [CK, (4.31)], [Sa, Proof of Theorem 1']):

(4.13)
$$\mathcal{U} = \Gamma_{\overline{x}}(\bigcup_{g \in \Gamma E, g \mathfrak{S}^* \ni \overline{x}} g(\tau(\mathfrak{S}^*) \text{-neighborhood of } g^{-1}\overline{x} \in \mathfrak{S}^*).$$

Hence, in order to prove the continuity of $f_{W,p}$, it is enough to show that, on $\widetilde{D}_{W,p}$, the topology $\tau_1(\widetilde{D}_{W,p})$, similarly defined as the topology $\tau(D^*/C(W)_Z)$ on $D^*/C(W)_Z$ induced by $\tau^{\Gamma}(D^*)$, coincides with the topology $\tau(\widetilde{D}_{W,p})$ induced by $\tau(\widetilde{D})$.

We many assume that the Siegel set \mathfrak{S} and a finite subset $E \subset G_{\mathbf{Q}}$ satisfy $C(W)_{\mathbf{Z}}\mathfrak{S} \supset C(W)$ and $\Gamma_W(E \cap N(W))(\mathfrak{S} \cap N(W)) \cdot b_p = B(W,p)$ for all p. Set $\mathfrak{S}_W := \mathfrak{S} \cap N(W)$, $r := r_p$ and $b := b_p$. Since $\mathfrak{S}_W \exp(\mathbf{R}_{>0} \cdot Y) = \mathfrak{S}_W$, $(\mathfrak{S}_W \cdot r)^{\sim} \sqcup \mathfrak{S}_W \cdot b$ is an open subset of

 $\mathcal{N} := \mathcal{N}(W, p)$ in the natural topology. It follows that the topology $\tau_1((\mathfrak{S}_W \cdot r)^{\sim} \sqcup \mathfrak{S}_W \cdot b)$, induced from $\tau_1(\mathfrak{S}_W \cdot r \sqcup \mathfrak{S}_W \cdot b)$ which is similarly defined as $\tau(\mathfrak{S}^*)$, coincides with the natural topology on $(\mathfrak{S}_W \cdot r)^{\sim} \sqcup \mathfrak{S}_W \cdot b \subset \mathcal{N}$. Since the action of N(W) on \mathcal{N} is continuous in the natural topology, the topology $\tau_1(\mathcal{N})$, similarly defined as $\tau(D^*/C(W)_Z)$, coincides with the natural topology on \mathcal{N} by (4.13). Evidently the multiplication by $g \in N(W)$ from the left to $U_{\lambda}V$ in (4.5) does not impose any effect on the neighborhood V of 1 in K. Thus we get $\tau_1(\widetilde{D}_{W,p}) = \tau(\widetilde{D}_{W,p})$. \Box

Corollary(4.14). For any $x \in B(W,p)$, there exists a Satake neighborhood \mathcal{U}_x of x in \widetilde{D} such that the Γ -equivalence and Γ_W -equivalence coincide on $\mathcal{U}_x \cap D/C(W)_{\mathbb{Z}}$.

Proof. By the lemma, this follows immediately from (4.7.4).

Lemma(4.15). In the Satake topology, the action of $\overline{\Gamma}_W$ on \widetilde{D}_W is properly discontinuous, hence the Γ_W -equivalence relation is closed on \widetilde{D}_W .

Proof. Let $x \in B(W, p)$, and $\overline{x} \in F(W, p)$ its image. Let $\mathcal{U}_{\overline{x}}$ be a Satake neighborhood of $\overline{x} \in D^*$ satisfying the condition (4.7.4). By Lemma (4.11), we can take a Satake neighborhood $\mathcal{U}_x = (U_\lambda V \cdot r_p)^{\sim} \cup U \cdot b_p$ of $x \in \widetilde{D}_{W,p}$ contained in $f_{W,p}^{-1}(\mathcal{U}_{\overline{x}} \mod C(W)_{\overline{x}})$. By Proposition (2.9), we may assume that $\{\gamma \in \overline{\Gamma}_W \mid \gamma U \cdot b_p \cap U \cdot b_p \neq \emptyset\}$ is finite. Since F(W,p) = B(W,p)/U(W), where U(W) is in (2,3), we see that the isotropy subgroup $\Gamma_{\overline{x}}$ at \overline{x} is equal to $U(W)_{\overline{x}} \rtimes \Gamma_x$.

For $\gamma \in U(W)_{\mathbb{Z}}$, we claim that $\gamma \mathcal{U}_x \cap \mathcal{U}_x \neq \emptyset$ if and only if $\gamma U \cdot b_p \cap U \cdot b_p \neq \emptyset$. To see this, notice that $\gamma \mathcal{U}_x \cap \mathcal{U}_x \neq \emptyset$ is equivalent to

$$\gamma (U_{\lambda}V \cdot r_p)^{\sim} \cap (U_{\lambda}V \cdot r_p)^{\sim} \neq \emptyset, \quad \text{or} \quad \gamma U \cdot b_p \cap U \cdot b_p \neq \emptyset.$$

The former implies $\gamma U_{\lambda}V \cap U_{\lambda}VI_{r_p} \neq \emptyset$, hence, by the uniqueness of the Iwasawa decomposition, we have $\gamma U_{\lambda} \cap U_{\lambda} \neq \emptyset$, and so $\gamma U \cdot b_p \cap U \cdot b_p \neq \emptyset$ as desired. This proves the 'only if' part. The converse is obvious.

Thus we see $\{\gamma \in \overline{\Gamma}_W \mid \gamma \mathcal{U}_x \cap \mathcal{U}_x \neq \emptyset\} = \{\gamma \in \overline{\Gamma}_x \mid \gamma \mathcal{U}_x \cap \mathcal{U}_x \neq \emptyset\} = \{\gamma \in \overline{\Gamma}_W \mid \gamma U \cdot b_p \cap U \cdot b_p \neq \emptyset\}$, which is finite. This proves the lemma. \Box

Using the Satake neighborhoods \mathcal{U}_x in (4.14), we now construct our partial compactification $\overline{D/\Gamma}$ by patching up

(4.16)
$$\overline{\Gamma}_W \cdot \mathcal{U}_x / \overline{\Gamma}_W \stackrel{\text{open}}{\supset} \overline{\Gamma}_W \cdot (\mathcal{U}_x \cap D / C(W)_{\mathbf{Z}}) / \overline{\Gamma}_W \stackrel{\text{open}}{\subset} D / \Gamma$$

for all $x \in B(W, p)$, all rational S-isotropic filtrations W of $H_{\mathbf{Q}}$ in (2.2) satisfying the condition (2.1) and all sets $p = \{p_{\lambda}^{a,b}\}$ of primitive Hodge numbers belonging to $\{h^{p,q}, n_{\lambda}\}$. In the above construction, the W can be taken over a set

(4.17) $W := (\text{set of complete representatives of the } G_{\mathbf{Q}} \text{-orbit of } W(Y) \mod \Gamma \text{-action}),$

which is finite by (4.3).

Theorem(4.18). $\overline{D/\Gamma}$ with the Satake topology is Hausdorff and carries the complex structure induced from $\widetilde{D}_W \subset L(W)$ for all $W \in W$.

Proof. By construction, $\overline{D/\Gamma} \simeq D/\Gamma \sqcup \bigsqcup_{W \in W, p} B(W, p)/\overline{\Gamma}_W$ as point sets. Let Δ be the graph of the equivalence relation defined by the projection $\widetilde{D} \to \overline{D/\Gamma}$. Notice that $\overline{D/\Gamma}$ is Hausdorff if and only if the graph $\Delta \subset \widetilde{D} \times \widetilde{D}$ is closed. To see the closedness of Δ , it is enough to show the following: if $x_i, y_i \in D$, and $\gamma_i \in \Gamma$ with $y_i = \gamma_i x_i$ satisfy $(x_i \mod C(W)_{\mathbb{Z}}) \to x \in B(W, p)$, $(y_i \mod C(W)_{\mathbb{Z}}) \to y \in B(W', p')$ in the Satake topology, then $(x, y) \in \Delta$.

By Lemma (4.11) and the Hausdorffness of D^*/Γ in [CK, (4.36.i)], the images of x and y in D^*/Γ coincide, hence lie in the same boundary components $F(W,p)/\Gamma_W$ of D^*/Γ . It follows that $W' = \delta W$ for some $\delta \in \Gamma$ and p = p'. Replacing y_i, y by $\delta^{-1}y_i, \delta^{-1}y$, it suffices to prove the assertion in the special case: $x, y \in B(W, p)$. We consider a diagram:

Since x, y have the same image in D^*/Γ , their images in $F(W,p) \subset D^*/C(W)_{\mathbb{Z}}$ differ by a $\gamma \in \Gamma_W$. Again replacing y_i, y by $\gamma^{-1}y_i, \gamma^{-1}y$, we may assume that x, y have the same image $\overline{x} \in F(W,p) \subset D^*/C(W)_{\mathbb{Z}}$. Let $\mathcal{U}_{\overline{x}} \subset D^*$ be a Satake neighborhood of \overline{x} satisfying the condition in (4.7.4). Then $\mathcal{V} := f_{W,p}^{-1}(\mathcal{U}_{\overline{x}}/C(W)_{\mathbb{Z}})$ is a Satake open subset of $D(W)/C(W)_{\mathbb{Z}} \cup \mathcal{N}(W,p)$ containing x, y. Therefore, $x_i, y_i \mod C(W)_{\mathbb{Z}} \in \mathcal{V}$ if $i \gg 0$. In other words, $x_i, y_i \in \mathcal{U}_{\overline{x}} \cap D$ if $i \gg 0$. Now $y_i = \gamma_i x_i, \gamma_i \in \Gamma$, so, by the assumption on $\mathcal{U}_{\overline{x}}$, we see $\gamma_i \in \Gamma_{\overline{x}} \subset \Gamma_W$ for $i \gg 0$. Hence the first assertion follows from Lemma (4.15). The second assertion follows from Corollary (4.14) and Lemma (4.15). \Box

§5 Extension of period maps.

Let $\varphi : \Delta^* \to D/\Gamma$ be a *period map*, i.e., a homolomorphic map with horizontal local liftings, from the punctured unit disc Δ^* . Let $\mathfrak{h} \to \Delta^*$, $z \mapsto \exp(2\pi i z)$, be the universal cover, $\tilde{\varphi} : \mathfrak{h} \to D$ a lifting of $\varphi, \gamma \in \Gamma$ an element satisfying $\tilde{\varphi}(z+1) = \gamma \tilde{\varphi}(z)$ for all $z \in \mathfrak{h}$, N the logarithm of the unipotent part of γ , and W(N) the monodromy weight filtration.

Theorem(5.1). (i) Any period map $\varphi : \Delta^* \to D/\Gamma$ from the puncture disc with the monodromy weight filtration W = W(N) satisfying the condition (2.1) extends holomorphically to $\overline{\varphi} : \Delta \to \overline{D/\Gamma}$.

(ii) For any boundary point $\overline{\xi} \in \overline{D/\Gamma} - D/\Gamma$, there exists a period map $\varphi : \Delta^* \to D/\Gamma$ with the property described in (i) and its holomorphic extension $\overline{\varphi} : \Delta \to \overline{D/\Gamma}$ such that $\overline{\varphi}(0) = \overline{\xi}$.

Proof. As the proof is almost analoguous to the one in [CK], we shall write down the proof as long as it is needed. By the rational version of the SL₂-orbit theorem [Sc, (5.13), (5.19), (5.26)], there exists an SL₂-orbit (ρ, r_p) with ρ defined over \mathbf{Q} , such that $\rho_{\star}\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = N$, and satisfies the property (5.2) below. Let $Y := \rho_{\star}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Choose a

maximal **Q**-split Cartan subalgebra t of \mathfrak{g} containing Y, and a positive root system $\Phi^+ \subset \mathfrak{t}^*$ for the adjoint action of \mathfrak{t} on \mathfrak{g} satisfying that any root α with $\alpha(Y) > 0$ belongs to Φ^+ . Set $R := \exp(\sum_{\alpha \in \Phi^+} \mathfrak{g}_{\alpha})$ and $T := \exp \mathfrak{t}$. Then the centralizer of T in G is a product TM with M **Q**-anisotropic, and P := RTM is a minimal **Q**-parabolic subgroup of G. Let K be the maximal compact subgroup of G corresponding to the Cartan involution θ_{r_p} determined by the reference point r_p as in (1.11). Then G = PK = RTMK, and we have the following:

(5.2) There exist functions r(x, y), t(x, y), m(x, y) and k(x, y) defined and real analytic on a domain $\{x + iy \in \mathfrak{h} \mid y > \beta\}$ for some β and taking values in groups R, T, M and K, respectively, such that

(5.2.1) $\widetilde{\varphi}(x+iy) = r(x,y)t(x,y)m(x,y)k(x,y)\cdot r_p.$

(5.2.2) As $y \to +\infty$, the functions converge

 $r(x,y) \to \exp(xN)r(\infty), \exp(\log y^{-1/2}Y)t(x,y) \to 1, \ m(x,y) \to 1, \ k(x,y) \to 1,$ uniformly in x, where $r(\infty) \in \exp \mathfrak{v}$ with $\mathfrak{v} := \operatorname{Im}(\operatorname{ad}_{\mathfrak{g}} N) \cap \operatorname{Ker}(\operatorname{ad}_{\mathfrak{g}} N).$

By [CK, (6.4)], we see $\exp \mathfrak{v} \subset U(W)$. (Since $N^2 = 0$ in the present case, the proof is easier.) φ factors through $\Delta^* \to D/C(W)_{\mathbb{Z}}$, denoted also by φ , by an abuse of the notation. We now claim

(5.3) $\lim_{t\to 0} \varphi(t) = r(\infty) \cdot b_p \in D/C(W)_{\mathbb{Z}} \cup \mathcal{N}(W,p)$ in the Satake topology, where $b_p \in B(W,p)$ is induced from r_p as in (3.12).

In order to set the situation where we have introduced the Satake topology, we choose a maximal compact subgroup K' of G whose associated Cartan involution acts on t by multiplication by -1. Then, as in the proof of [U, (3.16.ii)], there exists $g \in G_Y$ such that $K' = (\operatorname{Int} g)K$. $g \in G_Y$ splits according to the decomposition G = PK, hence we may assume moreover $g \in P \cap G_Y$. Set $r'_p := g \cdot r_p \in D$ and $b'_p := g \cdot b_p \in B = B(W, p)$. We are thus in the situation after (4.1). Then (5.3) follows if we show

(5.4) in the notation of (4.8), for the pull-back U' via the projection $N(W) \to B, h \mapsto h \cdot b'_p$, of any neighborhood of $\xi' := gr(\infty) \cdot b_p$ in B, any $\lambda > 0$ and any neighborhood V' of 1 in K', there exists $\beta > 0$ such that $g \cdot \tilde{\varphi}(x + iy) \in U'_{\lambda}V' \cdot r'_p$ for all $y > \beta$ and |x| < 1.

Indeed, (5.4) implies $\widetilde{\varphi}(x+iy) \in g^{-1}U'_{\lambda}V' \cdot r'_{p}$ for all $y > \beta$ and |x| < 1. It is easy to see that this, in turn, yields, $\varphi(t) \in ((g^{-1}U')_{\lambda_{0}\lambda}V' \cdot r'_{p})^{\sim}$ for $0 < |t| < e^{-2\pi\beta}$, where $\lambda_{0} := \min\{e^{\alpha}(g^{-1}) \mid \alpha \in \Phi \text{ with } \alpha(Y) > 0\}$. Since $((g^{-1}U')_{\lambda_{0}\lambda}V' \cdot r'_{p})^{\sim} \cup (g^{-1}U') \cdot b'_{p}$ is a Satake neighborhood of $g^{-1}\xi' = r(\infty) \cdot b_{p}$ in $D/C(W)_{\mathbb{Z}} \cup \mathcal{N}(W,p)$, which can be taken arbitrarily small, we get (5.3).

Now we shall prove (5.4). Set $g = r_0 t_0 m_0$, $r_0 \in R$, $t_0 \in T$ and $m_0 \in M$. Then, from (5.2.1), $R \triangleleft P$ and $M \subset K$, we see

$$\begin{split} g\widetilde{\varphi}(x+iy) &= r'(x,y)t(x,y)k'(x,y) \cdot r'_{p}, \quad \text{where} \\ r'(x,y) &:= gr(x,y)g^{-1}r_{0}(t(x,y)m'(x,y))r_{0}^{-1}(t(x,y)m'(x,y))^{-1} \in R, \\ k'(x,y) &:= m'(x,y)gk(x,y)g^{-1} \in K', \\ m'(x,y) &:= m_{0}m(x,y)m_{0}^{-1} \in M. \end{split}$$

It follows from (5.2.2) that, as $y \to +\infty$, the following converge uniformly in x :

$$m'(x,y) \rightarrow 1, \quad r'(x,y) \rightarrow g \exp(xN)r(\infty)g^{-1}, \quad k'(x,y) \rightarrow 1.$$

Hence there exists $\beta > 0$ such that $r'(x, y)t(x, y) \in U'_{\lambda}$ and $k'(x, y) \in V$ for all $y > \beta$ and |x| < 1. (5.4) is proved, and this completes the proof of (i).

In order to prove (ii), we take the lifting $\xi \in B(W,p)$ of $\overline{\xi}$ with $W \in W$ (see (4.17)). Then, by Proposition(3.13.ii), there exists a nilpotent orbit (N,\widetilde{F}) such that $\pi(\widetilde{F}) = \xi$, where N is the positive generator of $C(W)_{\mathbb{Z}}$ and $\widetilde{F} \in \mathcal{N}(W,p)$. Then for some $\beta > 0$, $\nu : \{z \in \mathbb{C} \mid \text{Im } z > \beta\} \to \mathcal{N}(W,p) \subset \widetilde{D}_{W,p}, z \mapsto \exp(zN) \cdot \widetilde{F}$, is a holomorphic map with horizontal liftings and, by (4.9), $\nu(z) \to \xi$ as $\text{Im } z \to +\infty$. Hence $\varphi(t) := (\text{projection}) \circ \nu((1/2\pi i) \log t + i\beta) \in D/\Gamma$ is the desired period map. \Box

REFERENCES

- [CK] E. Cattani and A. Kaplan, Extension of period mappings for Hodge structures of weight 2, Duke Math. J. 44 (1977), 1-43.
- [Sa] I. Satake, Algebraic Structures of Symmetric Domains, Publ. Math. Soc. Japan 14, Iwanami Shoten and Princeton Univ. Press (1980).
- [Sc] W. Schmid, Variation of Hodge structure; the singularities of the period mappings, Invent. Math. 22 (1973), 211-319.
- [U] S. Usui, A numerical criterion for admissibility of semi-simple elements, Tôhoku Math. J. 45 (1993), 471-484; Appendix, Proceeding of Symposium on Algebraic Geometry, Kinosaki 1992, 160-167.