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g. Introduction

  I will report on an interpretation of the space of conformal blocks with abelian gauge
symmetry as a localization on an analog of Jacobian variety in supergeometry, cf.[S].
  These space of conformal blocks are introduced by Tsuchiya and Ueno [U]. They estab-
lished the factorization property and hence the Kirchhoff rule (or the Verlinde formula).

  My aim is to realize the gauge condition they used as the process of taking coinvariants
on some space, which turns out to be an analog of Jacobian variety in supergeometry
introduced by Skornyakov for a certain supercurve associated to a(n ordinary) curve and
a theta characteristic.

  The contents of this note is an enlarged version of the oral report. So I start with a few
words about conformal field theory. Then I recall the idea of localization of representations
on a "flag manifold" in some situations. Next I recall conformal field theory with abelian
gauge symmetry, especially the definition of conformal blocks. After a discussion of su-
pergeometry and an analog of Jacobian variety introduced by Skornyakov for supercurves,
the main result is stated.

gl. Conformal field theory

  Conformal field theory is a 2-dimensional quantum field theory. It is well-studied in
connection with superstring theory and integrable lattice models. In relation with algebraic
geometry, one of the interests is to study the space of conformal blocks, i.e., correlators of

primary fields. In WZNW model, it is relevant to the space of generalized theta functions.
  A model of conformal field theory is fixed by a family of representations of a (chosen)
chiral algebra. (We skipped the explanation of chirality.) Mathematically, a chiral algebra

might be best-explained by a vertex operator (super)algebra. We don't go into the detail
of this topic here. As an example of chiral algebras, we consider the following three Lie
algebras.

Virasoro algebra : Vir = C((t))f, OC • c.
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YUJI SHIMIZU

  Here c is a central element of Vir. The bracket is defined as

         lf(`)iZ,r,g(t) ISItT] = {f'(t)g(t) - f(t)g'(t)}; ltl ÅÄ Res.=e(f'"(t)g(t)dt) i e

  Minimal series representations [BPZ] including unitary ones are well-studied.

                             A(untwisted) affine Lie algebra : e xe O X C((t)) di C• K.
                                                                           A  Here S is & (fikite-dimeR$icllal) simple Lie algebra akd K is tke cektral elemekt ef S.

The bracket is dehned as:

        [X X f(t),Y op g(t)] = [X, Y] X f(t)g(t) + (XIY)Res.=o(f'(t)g(t)dt) • K

where (l) is a Cartan-KilliRg form eft es (fiormalized as (ele) = 2, e the highest roo".

  IR the Wess-Zumiito-Novikev-WiSten medel, elle treats tke integrable kighest weigkt
representations for a fixed positive integer e ("level"). The space of conformal blocks (for

the case no currents inserted) on a smooth projective curve C over Åë (with a reference
point JF') is defined to be L(O)e(c-p), the space of coinvariants of the basic representation
of leve} e L(O) by a (kind of parabolic) subalgebra

                         S(C-P) =SXHO(C-P,O)

  Aof e. Precisely speaking, one needs a formal local parameter at P to consider e(C - P)
                Aas a subalgebra of e.
  By several pegp}e (FaltiRgs, Beauville-Laszle,...), it is skewR that the space ef cexxfoTmal
blocks is isomorphic to the space of generalized theta fuRctions lle(MG,e(e)Xe) (the
Verlinde isomorphism).

                              pm-aflinized abelian Lie algebra : e for the one-dimensional Lie algebra e = C.
  This is almost a Heisenberg algebra. Let us denote this algebra by Heis. It has a
uRique irreducible represekt&tieR f (the Fgck represektatieii). Thexx oRe may deboe tke
space of coRforiBal b}ocks for Heis as the space fEle(cwwp) as iR the case of afiRe Lie algebra.

Unfortunately, one doesn't have a finite dimenasional vector space in this way.

  We will return to the right definition in g3.

g2. Method ef lecalizatlen

  Locaiization of representations is a standard procedure in a geemetric theery of repre-
sentations of reductive Lie algebras. It is utilized by Beilinson-Bernstein and Brylinski-

Kashiwara in their solution to the Kazhdan-Lusztig conjecture. rlrhis idea has been used
in conformal field theory, e.g. in [BMS],[KNTY],[BS],[TUYI. We recall this method in the
eriginal $etting, the• Virasoro case and tlie afiRe case.

2.1 Beilinson-Bernstein theory [B]
  Let G be a semi-simple algebraic group over (C, B its Borel subgroup. Then the totality
of Borel subgroups iii G forms the flag manifold X and is isomorphic to G/B. X can
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CONFORMAL BLOCKS OF ABELIAN CFT

be defined equivalently as the totality of Borel subalgebras in LieG. Because of the left
G-action on X, there is a Lie algebra homomophism :

                             S -- Tx,. (x E X).

This map extends to an algebra homomorphism

                                U(e) - Dx,.,

where Dx denotes the sheaf of rings of linear differential operators on X with holomorphic
coefients and Dx,. its stalk at x, or to

                              u(e) -. r(x, Dx)

The kernel can be d,escribed explicitly.
  We can change the ring of scalars from U(e) to Dx by this homomorphism and get a
functor ("localization functor")

                           U(e)-modt.i. - Dx-mod

from the category of U(e)-modules with trivial infinitesimal character to the category of
Dx-modules. We have also a variant for U(e)-modules with infinitesimal character A and
DÅr-modules where DÅr denotes the sheaf of linear differential operators acting on the local

sections of an invertible sheaf O(A) on X determined by weight A.
  For generic A, the above functor gives an equivalence of categories between finitely
generated U(e)-modules and coherent D}-modules. (One can be more precise about the
condition on A.)

2.2 The case of Virasoro algebra
  The role of flag manifold for the Virasoro Lie algebra Vir is played by the moduli space
X = .MgWt) of 1-pointed algebraic curves of genus g with a formal local parameter at the

marked point.
  Its (C-valued) point x = (C, Q,t) consists of a smooth projective curve C (over C), a
(closed) point 9 E C, and a formal local parameter at Q,i.e., a C-algebra isomorphism
t : OA c,Q ty Åë[[i]] (z is an indeterminate). One can also consider N-point version MgeeN).

  One has a surjective homomorphism of Lie algebra :

                                           d
                         Vir/{c = O} = C((t)) liTt ' Txx

through a calculation of Hi(C, Tc(-mq)), cf.[KNTY]. This homomorphism lifts to the
following :
                                 Vir . Dkf.'

or equivalently to
                             u(vir) - r(x, Dk).
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  Here d denotes the determinant line bundle det RT*O for the universal curve T : e - X
and the sheaf Oc. Dl denotes the sheaf of differential operators acting on the local section

of the invertible sheaf d and DkSi the part of operators of order s 1.

  MaRiR was led te coRsider the moduli space ef curves MsJ as (a quotient spuce of) fiag
manifold for tke Virasere algebr& by }}is explagatieg of tke criSical dimeRsigll in string
theery. [l]kek tke abeve space was fouRd iRdepeRdeRtly by BeiliRsok and KeRtseyick,
cÅí[BS]. Bei}iRson afid Feigin comsidef the lgcalizatien of minimal series represeRtatiens of

Vir, cÅí[BFM].

2.3 The case of afline Lie algebra
                                                A  The role of fiag manifold for an aMne Lie algebra e i$ played by the moduli space
X : MeOO) of principal G-bundles on a fixed curve C rigidified at the given points Qi with

respect to formal local parameter ti (1 S i g IV). Here G denotes the adjoint group for e.
X can be understood either as an algebraic stack or as a coar$e moduli scheme of stable
bundles (an open part of the former).
  One has a sttrjective homomorphism ef "e algebra :

                       A                       SI{K' =: g} = Sx eeiÅë((ti)) -) Tx,.

Thi$ hemomorphism }ifts to the fo}lowing :

                                 6 - Dk5xi•

or equivalently to
                              u( (il) - T(x, Dk).

  In this situation d denotes the determinant line bundle det Rrr*P for the universal curve
7r : e - X and the universal bundle P associated to the adjoint representation of e. The
meaning of DS and DIS! are tlke same as iR the case of Vir.

  ORe caR gbtaiR tke projeÅëtive ceRi}ectio# ef [TIE}\] lx this fraraewefk, cÅíiBK].

g3. Abelian eenformal field iheory

  Conformal field theory with gauge symmetry of U(1)-currents are studied by many
people, e.g.[IMO],[KNTY],[ACKPI,[KSUI,2].
  Here we follow Ueno [U] for the N-point version of [KNTY].

3.1 Fockspace
  We want to look the Fock space representation more closely, cf.gl.
  Let us name a(n) = t" G Neis for n E Z. Then one has the commutation relation :

                            Ia(m), a(n)l = m6mÅÄn,e.

rken tke Feck space represeR{atioR f(p) is the medllle moite-geReTeated by the (bighest
weight) vector IpÅr (p E ÅqC) over ffeis with only the follewing relatioR:

                              a(n)lpÅr ==O n År O

                               a(O)lpÅr =pipÅr

                                KlpÅr -lpÅr
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  Note the Heisenberg commutation relation :

                             [a(n)7 a(-n)] = n.

Hence the notation Heis.
  Since .7'(p) is freely generated over Heis" := e.ÅqoÅëa(n), JF(p) is isomorphic to the
polynomial ring C[a(-1), a(-2), • • •] which we realize as is well-known :

                           •1'(p) = C[ti, t2, t • • ]epto

with lpÅr = epto.

  The action is given by

                                  a
                            a(n) =                                         (n 2 O)
                                  bln
                          a(-n) =nt. (n)1)
                              K=1

  Put
                           a(z) = 2 a(n)z'"-i.

                                 nEZ
This is a formal expression with an indeterminate z, but it has a meaning of linear operator
acting on .T' (p) with an indeterminate z of z E (C. It is usually called the current operator.

3.2 Free fermion
  The infinite direct sum
                              f == epEzf(p)

can be understood in terms of free fermion, i.e., a Clifford algebra Clif. It is an associative

algebra with generators
                                           1                            th., zbE (Lt E Z+ lii)

satisfying the following defining relations :

                          [zbp, thu]+ - [3bE, zbl]+ - o

                          [th",cbi]+ = 6",-v

                                                                      '
  In order to explain the action of Clif on .Jr', let us introduce the vertex operators :

               v-,(z)= 2 th.z-P-;,v.,(z)= 2 thPz-"'}

                       ltEZ+i liEZ+g
  Then Clif acts on 1' via the following relation :

          vk(z) = exp{k 2 a(:n) zn}ekto eka(O) iogzexp{.k 2 a(nn)z-n}

                      nÅr1 nÅr1
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for k -- Å}1. This can be neatly written down as

                               VÅ}1(z) =: eÅ}di(z) :

where::denotes the normal ordering (cf.[KNTY]) and ip(z) is given by:

                       ip(z) = to + a(o) log z + 2 a(.")z-n

                                           nxo

(so that til.Tip(z) = a(z)).

  Conversely, one can express Heis in terms of Clif on the Fock space JP:

                             a(z) =: V+i(z)V-i(z) :

This is the so-called boson-fermion correspondence [DJKM].
  Finally we need the dual space for the next paragraph. Put

                            ft(p) =Homc(f(p),C)

                              Jrt = ED.Ez ft(p)

  Then we have a natural pairing

                      ft .f- c; (Åqip1,1ipÅr) H Åqth1ipÅr•

  Let us recall the definition of the space of conformal blocks for the Fock space .lr ac-
cording to Ueno [U].
  Let ac = (C; 9i,•••,(?.; zi,•••,z.) be an n-pointed smooth curve (over ÅqC) of genus g
with formal local parameters zi at Qi.
  For each point Qi, we attach the representation JF. So we consider the tensor product
.1'XN.

  There is a natural pairing
                              ftQN Å~ jr XN .Åë

induced from the pairing between -t and 1'.

Definition The space of conformal blocks Vt(ac) is the subspace of .1'tXN consisting of
vectors Åqthl satisfying the following conditions :

                      n(1) 2Res.,=o(Åqthlpj(a(zj))lipÅrg(zj)dij)=O
                     J'=1

for the Laurent expansion g(i,•) of any g E HO(C, Oc(* X (?j)) and

                    n(2) 2Res.,.o(ÅqcbIpj(VÅ}i(z,))1diÅrh(zj)dij)=O
                    )'=1
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for any h E HO(C, wcX-l (*: ([i)ti)) and h(z,•) is its Laurent expansion of h at (?j.

  Here pj(?) means that ? acts on the ]'-th factor in the tensor product .1'XN. wc denotes
the dualizing sheaf of C and we have chosen its square root wcX -l . To put it the other way,

we have chgseR an N = 1 superconform&l structure on C, cÅíS4.2.

  We defiRe tke dgal of tke above $pace ef cellfermal blecks Åío be

                           Y(sc) = ffomc(vt(x), Åë).

So it can be identified with the quotient of .17tXN modulo the relation generated by
llO(C, Oc(*ZQ,•)) via a(x) and HO(C, w.X -l (*2 Q,•)) via Val(z)`

  This suggests it is a kind of the space of coinvariants and our purpose is to find a context

where it is so.

Remark 1) The above condition (2) means that {ÅqÅëlp,•(Vthi(z,•))lipÅr(dz,•)i12}, (]' -ww

1,•••,N) are the Laurent expansiens of ag element of He(C,wcXi2(* 2) QD) at Qj with

respect te Ske formal }ecal parameter z3-.
  Similarly for the coRditioR (l).
  The cendition (l) is the ttsttal gauge conditiofi, cÅí[KNTY,7.i,2)].
2) The conformal blocks are defined for a general (even) level M in [U]. This M corresponds

to the level of theta functions through the following theorem.
3) One can adapt the above definition in the case C is assumed to be n-pointed stable as
well.

  The main theorem in [U] is the following :

Theorem [U,gl]. For a stable N-pointed curve having at least one marked point on each
irreditcible cempellefit, one has
                                di?ncVi(X) =: l

  For a smoQth curve C, it is argtted that oRe has a canonical isomorphlsm

                           vt(x) cr HO(J(c),o(e))

where J(C) denotes the Jacobian of the curve C. The theorem i$ stated for an even level
M in [U] replacing O(e) by O(Me).
Remark The above theorem generalizes [KNTY,7.7], gMng the precise dimension of
the space of conformal blocks. This was possible due to the factorization property for
the conformal blecks IU,2.5]. The formulation parallels the ene in ITUY] and it should
comstrgct a prejectively fiat coxxkectieR eR tke sheaf ef cenfermal Neck$ e# the moduli
space ef stable curves (at least ever smoeth cgrves), cÅíIBK,BFMI.

  r{'here was also aR attempt to generalize [KN[l]Y] and was partia}}y successful because
only the gauge condition by U(1)-current was considered there, cÅí[SU].
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S4. Digression on supergeometry

  in order to iRterpret the ceftditieR (2) iR the defiRiti"R of the ceRformal b}ocks iR the

previous paragraph, we led to consider certain supersymmetry on a given curve.
  Basic references for supergeometry are [Ml,2,VMP,Va].

4.l Superspace
  A supercommutative ring A is a Z/2Z-graded (associative) ring

                                 A xe Ac eAi

whose supercommutator is always zero. The supercommutator is defined as

                             [a,bl xe ab - (-1)abba

for homogeneous elements a ff Ait,b E A-b(d,b = O or 1).

  A superscheme is a locally ringed space whose structure sheaf of rings is supercommu-
tative, cÅíIMI] fer more detail$.
  A smooth supercurve is a $mooth superscheme (i.e. supermanifoid) of dimemsion llN.
So it is a ringed space X == (C, Ox) with a sheaf of supercommutative (Z!2Z-graded) rings
as structure sheaf and C = X..d = X(O) is a smooth (ordinary) curve. Here we put

                       X(iÅr =(C, Ox/Ni+i)

                         N = {nilpotents}( = Ox,i + Oft,i)

for i ) e. "Smooth of dimeRsien llN" means that Ox is local}y of the ferm A`(S) where
Åí is a locally free Oc-module of rank Ar. In supergeometry, one might prefer the notation
Sym'(nS) for Ox, where fi is the parity changing functor.
  gRe recover$ She erdikary (i.e. even) cgrve iR the case N : e. cÅí (M2, Ck.2].

4.2 Superconformalcurves
  We digress on superconformal curves which are natural generalization of Riemann sur-
faces iR $upergeometry and seem te be the mest impertant supercurves.
  Let 7r: X - S be a smeoth morphism of superschemes of relative dimensien llN,
namely a family of smooth supercurves. A superconformal structure or SUSYN-structure
on T is (a choice of) a locally free and locally direct Ox-submodule of rank OIAr Ti of

the relative tangent skeaf Txfs which locaily kas &R isctropic direct Ox-sgbmodule ef
maximal possible rank for N : 2k or 2k + 1 with respect to the Frobenius form

              A2Ti - TO : : Tx/s/tTi ; ti A t2 e Iti,t2] mod Ti.

  Supercurves with N = 1,2 superconformal structure (or N =: 1,2 superconforma}
curves) are also called N = 1,2 super Riemann surfaces or SUSYN-curves in the liter-
ature.

  Let us specify the above definition in the case S = pt and fV =: 1,2. So let X be a
smooth supercurve of dimension (liN).
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Case N = 1 : A (N = 1) superconformal structure on X or a SUSYi-structure is (a
choice of) a locally free Ox-submodule Ti of rank Oll of the tangent sheaf Tx which is a

locally direct summand and gives rise to an isomorphism

              (Ti)X2 ty crx/cTi =: TO ; ti xt2 H [ti,t2] mod Ti.

Case N == 2 : A (N = 2) superconformal structure on X or a SUSY2-structure is (a
choice of) a pair of locally free Ox-submodules T',T" of rank Ol1 of the tangent sheaf Tx
such that i) T' OT" is direct in lrx, ii) [T',T'] c T', [T",T"] c T", and that iii) one has

an isomorphism

       T' x T" fi,t Tx/(T' o CT") =: TO : t' xt" H [t', t"] (mod T' o T").

Here T' oT" = Ti.

  Over a purely even base S, one has a simple description of superconformal curves.
  So let To : Xo - S be an ordinary S-curve. Then we have

Proposition [M2, 2.7]. There is a one-to-one correspondence between

Case N=1 :
a) {N = 1 superconform al S-curve T : X - S
          with Xred = Xo,red and Ox,o = Ox, } up to isomorphisrn identical on Xo
b) {(I;a)II E Pic(XolS),a : IXI cy st},ls} up to isomorphism ofI transforminga

Case N=2 :
a) {oriented N = 2 superconformal S-curve T : X - S
          with Xred = Xo,red and Ox,o = OxEi) }

b) {(I',I";P)ll',I" E Pic(Xo/S),i(3 : I' XI" fy S}},/s}

  Here "oriented" means that the sheaves I', I" are globally distinguishable, cf.[M2,2.6].
X6i) is the first infinitesimal neighbourhood of Xo in Xo Å~s Xo. A pair (I', I"; P) is called

as a relative theta pair.

  The above correspondences are given as follows. In the case N = 1,

                   Xred == Xo,red, Ox,o = exo, Ox,i = llI

and
                            Tl = OX XOx..d IX-1'

a gives rise to the Frobenius form. The pair (I; a) is a theta characteristic of the family.

  In the case N= 2,

            Xred = Xo,red, Ox,o = Ox, (D I' X l", Ox,1 = ll(I' (D I")

and
                 Tt = Ox Xox.., ItQ-1, Tn = Ox Xox.., IttX-1
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P gives rise to the Frobenius form.

  N nm 2 supefcenferraa} cgfves are stadied by ma#y &"tkefs. Ik particulay, their moduli
is studied by LeBrun-RethsteiR [LBR] and Deligne [Dl.

4.3 PiÅëard groups in supergeometry
  There are two natural generalization of the Picard groups in supergeometry. Let X be
a superscheme.
  Defixxitioft l) Let Picc}(X) deltete tke set ef isomerphism classes ef lecal}y ffee Ox-
modules of rank lie.

  This set has a group structure as usual and is naturally isomorphic to the group
Hi(X,OX,o)•
  2) Let Picn(X) denote the set of isomorphism classes of locally free Ox-moduies of
yaRk ill wlth g-symmetry. Here a ll-symmetry eR a }ecally free Ox-modR}e S ef raxxk IP
is aR edd eBdomorphism p : S - S with p2 == -id. An isomorphism of e is wnderstood to

preserve the fi-symmetry.
  This is merely a pointed set and is naturally isomorphic to the set Hi(X,OX).

  We call such a pair (S,p) a n-invertible sheaf or n-invertible Ox-module.
  It is instrllctive to know the fellowing exact sequence

               Pico(X) . Picii(X) ---+ Hi(X, Ox,,) - H2(X, OX,),

where the first map associates L O llÅí to L E Pico(X).

  Skornyakev studied the fl-Picard group PicR(X) and gave basic properties iVMP, 54].

  Here we sko"}d briefty recal} sheave$ oR a s"perscheme X.
  Fir$t all (supercommutative) rings and modules are Z12Z-graded. Ox,i is a coherent
Ox,o-module and Ox is a coherent ring.
  A left Ox-module has a natural right Ox-module $tructure consistent with the left one,
cÅí[Ml,Ch.3.gl,4]. Thus oRe caR form tensor products of ex-modules freely.

  The grgup ef komomcrpkisms is Z!2Z-gfaded :

Homo. (8, f) == Uomo. (8, Jrr)o di Homo. (S, X)i

The first (resp. second) faÅítor coiisists of even (resp. odd) homomerphisms. AR automer-

phism is aR eveR ekdomerpkism wh}ck is isemerpkic.
  A locally free Ox-modu}e of rank pig is a coherent Ox-module which is locally isomor-
phic to OPxlg = ePx $ IIOI. Here II[ is the parity changing functor : ("(S))i = Si+i,i E

Z/2Z,
  The set of locally free Ox-modu}es of rank plq up to isomerphism is in bljection with
tke set Hi(X,GL(plg;Ox)) as gsual. Here GL(plg;Ox) deRotes the skeaf ef germs gf
(even) antomorphisms of such aR Ox-module.
  Let us call a Ox-module of rank 111 as n-invertible Ox-module. Then one has the
following :
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Lemma. For a n-invertible Ox-module (S,p), one has

                            8ndff(S) bl Ox $ fiOx

                            Autii (S) f t OX.

  Here End. is a subgroup of GL(lll) cefisisting of the moTphis{its pfeserving the R-
symmetry. Similarly for Autll.

4.4 n-Picard schemes:asuperanalog ofJacobians
  eRe caR intreduce a struct=re ef superschemes gR Pice(X), Pieg(X) fer a preper
smooth supercurve X of dimension (llN)(N = 1, 2).
  Consider the following functors from the category of superschemes Ssch to Set.

                       .Pice : S H ,Picij(X Å~ S)/dsPiee(S)

                      Picrr : S H ,lll'i(S, (ps)*(Ol:c.s))

Here ps : .X Å~ S -} S is tke secoRd prejectieft.

  Then the above functors are representab}e by some superschemes denoted as Pico,x,
Picii,x, cf.[S,S3.1]. The main technical tool for the construction is the obstruction theory
for extending sheaves to infinitesimal neighbourhoods (in the odd direction) (the so-called

" compenent aRalysis").
  In the case N = 1, one has

                   Picig,x : Picc,gPiell,x = Mcc Å~ Hi(C,.Ar).

where JV is the ideal of nilpotents in Ox and C = X..d is the underlying (ordinary) curve.

  In the case N = 2, one has

          Pice,x xe Picc Å~ ll1(C, A2(f)), Pictt,x = Pice Å~ ffi(C, 1+N)

where .1' me Ox,i f)t VV' /YV'2 is locally free of rank 2 over Oc.

  We Reed the fellowiRg supervariety in this situatioR :

                         .PicH,x(,) xx= Picc Å~ Ul(X, .7:)

where XÅqi) sits iR the iRfipte$ira&} thickegiRg (Note .AS3 = g) :

                X(O) = Xred =CC X(i) = (C, Oc e f) C X(2) =X

g5. Results

  We give a natural geometric framework for conformal field theory with U(1) gauge sym-
metry usikg the R-Picard scheme S4.4 and ks dressed versioll ofcertaiR N = 2 supercurves.

5.1 A$ I mentioned after the definition ofthe conformal blocks in g3.3, the probiem in the
spirit of the method of localization is to interpret the condition that the conformal blocks
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satisfy as (the dual of) coinvariants with respect to some infinitesimally homogeneous

space.
  We know that HO(C, Oc(* X Q2•)) can be realized on the dressed space of the Jacobian
of the curve C. Since the remaining HO(C, blcX-; (*ÅíQ3-)) is a subspace of Clif through

                                                                          iV,l,2(i), tke basic stfategy is te iRterpret it a$ fermieRic symrcetry related te C aftd w6 =:

 xg
w c•  Let wY2 be a theta characteristic on C. It amounts to choose a N = l superconformal

structure overlying C S4.1. We consider the supercurve of odd dimension N = 2

                           X = (C, S'll(w}12 o wb12))

as well as
                        X(i) xx (c, oc o II(w}12 o tuY2)).

See g4 fer the Retation.
  tl7he selutigR ef tke abeve preblem is te coRsider tke superscheme }'icR,xÅqi) wkese eve#
part is just tke jacobiaft Picc.
   ro go further, we have to intredttce the dressed version of these (super)schemes.

5.2 Dressed "-Picard schemes
  To consider the dressed version of some moduli space is just to replace the (infinitesimal)
automorphism of the object classified by its aMnized version, cf.gl. We refer to [SU] for

the dressed version of the Jacobian.
  We briefiy describe the dressed version of PicH,x(i). For teh details, see [S].

  Let X = (C, Ox) be the proper smooth supercurve of odd dimension IV = 2 in $5.1
associatd to (C, wcX '} ).

  Tke dfessed ft-Picard greup classifies dressed g-invertib}e skeaves, i.e. fi-ii}vertible
skeaves witk trivializatieR at givex poikts.
  Let {? E C be a (clo$ed) poikt aRd Z = (z,ei,e2) be formal local coordinates at
Q, i.e. i is a forina} }oÅëal coordinate at Q and ei,e2 are loca} generating sections of
P: : II(w}12 o cvb12) ,

                     "S A                     Oc,q nd Åë[[z]], 1'Q at C[[z]]ei (D Åë[[x]]02

Thus we have
                          A                          O if,Q ! A(()[[Z]]ei eÅë[[Z]]e2)

  Let me defiete the maximal idei{l of the (supercemmutative) loca} ring ex,Q, which is
geRerated by tke maxlmal ideal ef Oc,Q &nd edd geReraters gi,e2.

Deftnitiefi Let k be an integer ) l.
  A trivia}ization of S'-th order at a point Q E C of a R-invertib}e sheaf Åí is an Ox,g/mkQ+i--

isomorphism
                   a: C/rnts+iL ft Ox,QlmkQ+' o II(Ox,Q/mkQ+i)

which transforms the ll-symmetry on the left to the obvious one on the right.
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  Considering the projective limit of such an isomorphism, we define the formal trivial-
ization of a ll-invertible sheaf.

  Of course, we can consider these notions on X(i).

  Let SEÅqi) = (XÅqi);Qi,••-,QN;Zi,•i-,ZN) be a datum censi$tiRg ef the supercurve
XÅqiÅr, its poiRts aRd forma} lecal coordiRates at tkese peiRts.
  Dekete by Picff)(X{iÅr) (resp. Pick"O)(ee{iÅr)) the set ef isomorpkism classes ef a}} ff-

invertib}e sheaves with trivialization of k-th erder (resp. formal triyialization) at given

polnts.
  Then Picfile)(ac(i)) (resp. ,I'icft"O)(ac(i))) has a structure of superscheme which is a

lli((l;}hli(ox(i),Q.lmet. i)-torsor (resp. ni({i;"1i(OAx(i),Q,)-torsor) over PicH,x(i). Let us de-

note these superschemes by pichft)x, picfiR•

  We can have similar objects on X.
  The infinitesimal structure ofthe dressed fi-Picard schemes can be described as follows :

        TÅqÅí,.Årpicftep2,,, tt Åë((x)) x (c e Åëgi $ Åëg2)fHe(xÅqk), oxÅq,År(*2Q")

                                                               i

where (L,a) is a (C-)point of Pickll12(,). This is calculated by Eli of the group of infini-

tesimal automorphisms of the object in question, namely, Sndll(Åí)(-(k + 1) 2i qi) for k
finite.

  For k = O, we have

                      TxxMcrm x(i) f! H'i(C, Oc) o ,}ll'i(C, X)
                             '

  This descriptioll shows that the dTessed g-Picard schemes are homggeneeus spaces of
tke leop gfggp xiGtii(6xÅqiÅr,e.), infuitesimal}y.

  Ik felatieR te the metked ef }ecalizatigR, tke abeve hememerpkism c&R be uRderstood
as a Lie superalgebra homemorphism

                        ll,lme,(Heis e Clifi) . T(L,.)Pff

for (L,a) E PicfiO`')(E(;(i)) Here we put PicfiOOI{,) = PceOO and denote the degree l part of

                                      'Clif by Clifi :
                       ulifi :e.Ez+}Cth.eo.Ez+;CthR•

  The keTRel ef the above homemorphism is EC(C, exÅqi)Åq* ÅíiQ"), which is a Lie sub-
superalgebr& ef Ri(Heis$ CgiA) via tke formai trivializatioxx. llg(C, ec(* ]2]i q") (resp.

N"e(qwif2 ewif2(* 2, Q") injects inse Ri(Ueis) (re$p. Hi(Clif") threggk

                        g H(Res.,.o(g(zi)a(z"dzi)i

                   (hi,h2)H(Res.,.o(hJ'(zi)V(-i)j(zi)dxi)i"'--i,2

  Then we have the following:
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Proposition. The above homomorphism lifts to

                     Op.oe X H,N'.i(Heis O CIifi) - Di'L..,.)

where d(L..i.) is the determinant line bundJe pulled back to Pxoo. IPM'(iL..,.) is the degree

S 1 part ofthe ring ofdifferential operators 1)d(L..,.) acting on thesections ofthe invertible

sheafd(Luniv)•
  The kernel of this homomorphism equals Op.eo X llEIO(C, Ox(i)(* ]Z)i Qi))•

  Recal1 that we have the universal (Poincar6) bundle L..i. on C Å~ Picc. Then we have
the determinant line bundle detRT*(Åí..i.) = d(L..iv) on Picc where T: C Å~ Picc .
Picc is the second projection.
  The proof uses the method of [BS].
  From this proposition, we obtain a ring homomorphism

                   p: Op.oe X (Xi(U(Heis) X CIif) - 1])d(L..,.)

  Given representations of Heis O CIifi Mi(i = 1,••• ,N) with the same center, the
localization on PicfiO02(,) of xiMi is defined to be the scalar extension by p

                 '

                         A(XiMi) = Dd(L..i.) Xp XiMi•

  Its fiber is just the coinvariants :

           A(XiMi) XOp.oe lm(L,a) or XiMilHO(C, Ox(i)(*2Qi)) Xi Mi

                                                      i

where m(L,.) is the ideal sheaf of PrOO at the point (L,a).

5.3 We now apply the localization functor A to the Fock space representation jl XN.
Recall that .7' becomes a representation of Clif through vertex operators VÅ}i(zJ•).

  Then one of the main results in [Sl is the following:

Theorem. The space of conformal blocks V(ec) equals the fiber of the localization
A(JFtXN) at any point of PicfiO02(,).

                           '
Remark Penkov's theorem [P] on the equivalence of the category of D-modules and
that of D..d-modules implies that it is enough to consider the restriction of the module
A(.1'XN) to (Picfill?B(,))..d = Pic({OcO,)(Qo,(.,)}. This last space is the dressed Picard scheme

on the even part {C; (Qi);(zi)} of ac('), cf.[SU].

  We can relate the space of conformal blocks with the space of global sections of the
determinant Iine bundle. Let us restrict Picn,x(i) etc. over the component of degree g- 1.
In order to carry it out, let us descend the 1)d(L..,.)-module A(IXN) on PicfiO02(,) to

                                                                       ,PiNc'i and then integrate on picgc-i.
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  Denote the natural projection by r: Picfi91?2(,) - Picn,x(i). Then A(.1'XN) descends to

                      AN = r.(A(.7rXN))n,GLi'(6x•Q.)lpi.e-i

This amounts to taking invariants with respect to the change of formal trivialization of L.
We also used the relation (Pic",x(i))red = Picc•
  It is known that the fibers of d(jC..i.) injects into the Fock space .1'XN through the

semi-infinite exterior product, cf.[SU]. Then we have :

                               d(Luniv) C- AN

  As its dual we have :
                              d(Luniv)-1 - AN

  Taking the global sections, we obtain a surjection

                   HO(PiN.-',d(L..i.)-') Åq-- HO(Picg.-i,AN)

  Remember that d(L..i.) on Picgc-i is nothing but the dual e(-e) of the theta divisor,

cf.[Sz]. We also note that AN is the module whose fiber is the space of conformal blocks
Vt(ac) since taking invariants is cancelled by taking r*.

  Comparing the dimension, one obtains

Theorem. We have a canonical isomorphism

                          HO(pic9.-',o(e)) 2t vt(ec)

Remark One can develop the story in the relative situation.
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