O00000000000O0
199400 pp.148-163
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§. Introduction

I will report on an interpretation of the space of conformal blocks with abelian gauge
symmetry as a localization on an analog of Jacobian variety in supergeometry, cf.[S].

These space of conformal blocks are introduced by Tsuchiya and Ueno [U]. They estab-
lished the factorization property and hence the Kirchhoff rule (or the Verlinde formula).

My aim is to realize the gauge condition they used as the process of taking coinvariants
on some space, which turns out to be an analog of Jacobian variety in supergeometry
introduced by Skornyakov for a certain supercurve associated to a(n ordinary) curve and
a theta characteristic.

The contents of this note is an enlarged version of the oral report. So I start with a few
words about conformal field theory. Then I recall the idea of localization of representations
on a "flag manifold” in some situations. Next I recall conformal field theory with abelian
gauge symmetry, especially the definition of conformal blocks. After a discussion of su-
pergeometry and an analog of Jacobian variety introduced by Skornyakov for supercurves,
the main result is stated.

§1. Conformal field theory

Conformal field theory is a 2-dimensional quantum field theory. It is well-studied in
connection with superstring theory and integrable lattice models. In relation with algebraic
geometry, one of the interests is to study the space of conformal blocks, i.e., correlators of
primary fields. In WZNW model, it is relevant to the space of generalized theta functions.

A model of conformal field theory is fixed by a family of representations of a {chosen)
chiral algebra. (We skipped the explanation of chirality.) Mathematically, a chiral algebra
might be best-explained by a vertex operator (super)algebra. We don’t go into the detail
of this topic here. As an example of chiral algebras, we consider the following three Lie
algebras.

Virasoro algebra : Vir =C((t))£ & C-c.
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Here c is a central element of Vir. The bracket is defined as
d d 7 s d Ht
[f(f)a,g(t)al = {f'(9(t) = F()g' ()} 5, + Resa=o(f(t)g(t)dt) - ¢

Minimal series representations [BPZ] including unitary ones are well-studied.

(untwisted) affine Lie algebra: & = 6 @ C((t)) @ C- K.
Here & is a (finite-dimensional) simple Lie algebra and K is the central element of &.
The bracket is defined as :

(X ® f(t),Y ® g(t)] = [X,Y] ® f(t)g(t) + (X|Y)Res.—o(f'(t)g(t)dt) - K

where (|) is a Cartan-Killing form on & (normalized as (#]#) = 2, 8 the highest root).

In the Wess-Zumino-Novikov-Witten model, one treats the integrable highest weight
representations for a fixed positive integer £ (”level”). The space of conformal blocks (for
the case no currents inserted) on a smooth projective curve C over C (with a reference
point P) is defined to be L(0)g(c—p), the space of coinvariants of the basic representation
of level £ L(0) by a (kind of parabolic) subalgebra

&(C - P) = ®®H°(C-P,0)

of &. Precisely speaking, one needs a formal local parameter at P to consider &(C — P)
as a subalgebra of &.

By several people (Faltings, Beauville-Laszlo,...), it is shown that the space of conformal
blocks is isomorphic to the space of generalized theta functions H’(Mg, O(0)®%) (the
Verlinde isomorphism).

affinized abelian Lie algebra : & for the one-dimensional Lie algebra & = C.

This is almost a Heisenberg algebra. Let us denote this algebra by Heis. It has a
unique irreducible representation F (the Fock representation). Then one may define the
space of conformal blocks for Heis as the space Fg(c—p) as in the case of affine Lie algebra.
Unfortunately, one doesn’t have a finite dimenasional vector space in this way.

We will return to the right definition in §3.

§2. Method of localization

Localization of representations is a standard procedure in a geometric theory of repre-
sentations of reductive Lie algebras. It is utilized by Beilinson-Bernstein and Brylinski-
Kashiwara in their solution to the Kazhdan-Lusztig conjecture. This idea has been used
in conformal field theory, e.g. in [BMS},[KNTY],[BS],[TUY]. We recall this method in the
original setting, the Virasoro case and the affine case.

2.1 Beilinson-Bernstein theory [B]
Let G be a semi-simple algebraic group over C, B its Borel subgroup. Then the totality
of Borel subgroups in G forms the flag manifold X and is isomorphic to G/B. X can
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be defined equivalently as the totality of Borel subalgebras in LieG. Because of the left
G-action on X, there is a Lie algebra homomophism :

B — TX’: (.’L‘ (S X)
This map extends to an algebra homomorphism
U(@) s DX,,,,

where Dx denotes the sheaf of rings of linear differential operators on X with holomorphic
coeffients and Dx  its stalk at x, or to

U(@) — F(X, DX)

The kernel can be described explicitly.
We can change the ring of scalars from U(®) to Dx by this homomorphism and get a
functor (”localization functor”)

U(&)-mod,y;,, — Dx-mod

from the category of U(®)-modules with trivial infinitesimal character to the category of
Dx-modules. We have also a variant for U(®)-modules with infinitesimal character A and
D%-modules where D% denotes the sheaf of linear differential operators acting on the local
sections of an invertible sheaf O(A) on X determined by weight .

For generic A, the above functor gives an equivalence of categories between finitely
generated U(®)-modules and coherent D-modules. (One can be more precise about the
condition on \.)

2.2 The case of Virasoro algebra
The role of flag manifold for the Virasoro Lie algebra Vir is played by the moduli space

X = Mf;f) of 1-pointed algebraic curves of genus g with a formal local parameter at the
marked point.

Its (C-valued) point z = (C, @,t) consists of a smooth projective curve C (over C), a
(closed) point @ € C, and a formal local parameter at Q,i.e., a C-algebra isomorphism
t: Oc.o ~ C[[z] (z is an indeterminate). One can also consider N-point version M(g??v)

One has a surjective homomorphism of Lie algebra :

Vir/{e = 0} = C(() & — Tx..

through a calculation of H'(C,Tc(—m@)), cf.[KNTY]. This homomorphism lifts to the
following :

Vir - D;i(’il
or equivalently to

U(Vir) - (X, D%).
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Here d denotes the determinant line bundle det Rw,O for the universal curve 7 : C — X
and the sheaf O¢. Dji( denotes the sheaf of differential operators acting on the local section
of the invertible sheaf d and D;’sl the part of operators of order < 1.

Manin was led to consider the moduli space of curves M, as (a quotient space of) flag
manifold for the Virasoro algebra by his explanation of the critical dimension in string
theory. Then the above space was found independently by Beilinson and Kontsevich,

cf.[BS]. Beilinson and Feigin consider the localization of minimal series representations of
Vir, cf.[BFM].
2.3 The case of affine Lie algebra

The role of flag manifold for an affine Lie algebra & is played by the moduli space
X = M(Goo) of principal G-bundles on a fixed curve C rigidified at the given points Q; with
respect to formal local parameter ¢; (1 < i < N). Here G denotes the adjoint group for &.
X can be understood either as an algebraic stack or as a coarse moduli scheme of stable
bundles (an open part of the former).

One has a surjective homomorphism of Lie algebra :

&/{K =0} = 8@ @:C((t:)) — Tx.

This homomorphism lifts to the following :

or equivalently to

U(®) - I'(X, D%).

In this situation d denotes the determinant line bundle det Rw, P for the universal curve
7 :C — X and the universal bundle P associated to the adjoint representation of &. The
meaning of D% and Disl are the same as in the case of Vir.

One can obtain the projective connection of [TUY] in this framework, cf.[BK].

§3. Abelian conformal field theory

Conformal field theory with gauge symmetry of U(1)-currents are studied by many
people, e.g.[IMO],[KNTY],|ACKP],[KSU1,2].
Here we follow Ueno [U] for the N-point version of [KNTY].

3.1 Fock space
We want to look the Fock space representation more closely, cf.§1.
Let us name a(n) =t™ € Heis for n € Z. Then one has the commutation relation :

[a(m), a(n)] = Mémin.0-

Then the Fock space representation F(p) is the module mono-genereated by the (highest
weight) vector |p) (p € C) over Heis with only the following relation :

a(n)lp)=0 n>0
a(0)|p) =plp)
K|p) =|p)
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Note the Heisenberg commutation relation :

[a(n),a(—n)] =n.

Hence the notation Hets.
Since F(p) is freely generated over Heis_ := @n<oCa(n), F(p) is isomorphic to the
polynomial ring Cla(—1),a(—2),- -] which we realize as is well-known :

F(p) = Clty, ta,- - - |ePe

with |p) = eP'o.
The action is given by

o) =5 (120)
a(~-n) =nt, (n>1)
K =
Put

a(z) = Z a(n)z™™1.

n€Z

This is a formal expression with an indeterminate z, but it has a meaning of linear operator
acting on F(p) with an indeterminate z of z € C. It is usually called the current operator.

3.2 Free fermion
The infinite direct sum

F = @pezF (p)

can be understood in terms of free fermion, i.e., a Clifford algebra Clif. It is an associative
algebra with generators

b, ¥ (pe Z+%)

satisfying the following defining relations :

[1/’u71/)u]+ = [¢L,¢l]+ =0
[¢u7¢l]+ = 6;1,—1/

In order to explain the action of Clif on F, let us introduce the vertex operators :

Va(e)= D0 $ue V() = )] wle R

HEZ+ 3 HEZ+3

Then Clif acts on F via the following relation :

Vk(z) — e:l:p{kz @zn}ektoeka(())logzemp{_k Z ?Z—n}

n>1 n>1
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for k = £1. This can be neatly written down as
Vii(z) =: et .

where : : denotes the normal ordering (cf.{KNTY]) and ¢(z) is given by :

#(z) =ty + a(0)log z + Z @z—"
n#0

(so that £¢(2) = a(z2)).
Conversely, one can express Heis in terms of Clif on the Fock space F :

a(z) = Vi1 (2)Voi(2)

This is the so-called boson-fermion correspondence [DJKM].
Finally we need the dual space for the next paragraph. Put

F(p) =Homc(F(p),C)
vl = Dpez -7:1(1’)

Then we have a natural pairing
FIxF=C ((9]:19) — (gle)-

3.3 Conformal blocks

Let us recall the definition of the space of conformal blocks for the Fock space F ac-
cording to Ueno [U].

Let X = (C;Q1, -+ ,Qn; 21, - , 2n) be an n-pointed smooth curve (over C) of genus g
with formal local parameters z; at Q; .

For each point Q;, we attach the representation F. So we consider the tensor product
FoN,

There is a natural pairing
FieN « FoN _, C

induced from the pairing between F! and F.

Definition The space of conformal blocks V1(X) is the subspace of FT®V consisting of
vectors (9| satisfying the following conditions :

1) > Resu=o((¥lps(alz;))|9)g(z5)dz;) = 0

j=1

for the Laurent expansion g(z;) of any g € H°(C,0¢c(x Y Q;)) and

(2) > Res;—o(($]p;(Va1(z)))|gVh(z;)dz;) = 0

j=1
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1
for any h € H°(C, wgz(* >°@Q;)) and h(z;) is its Laurent expansion of h at Q;.
Here p;(?) means that ? acts on the j-th factor in the tensor product €V . wc denotes

3
the dualizing sheaf of C' and we have chosen its square root wgz. To put it the other way,

we have chosen an N = 1 superconformal structure on C, cf.§4.2.

We define the dual of the above space of conformal blocks to be
V(%) = Home(VI(X),C).

So it can be identified with the quotient of Ft®¥ modulo the relation generated by
i .
H°(C,0c(*Y Q;)) via a(z) and H°(C, wgz (*Y Q;)) via Vi (2).
This suggests it is a kind of the space of coinvariants and our purpose is to find a context
where 1t is so.

Remark 1) The above condition (2) means that {(¥]p;(Vi1(2;))|#)(dz;)'/?}, (G =

1,---,N) are the Laurent expansions of an element of H°(C, w?é(* 3 Qj)) at Q; with
respect to the formal local parameter z;.

Similarly for the condition (1).

The condition (1) is the usual gauge condition, cf.[KNTY,7.1,2)].
2) The conformal blocks are defined for a general (even) level M in [U}. This M corresponds
to the level of theta functions through the following theorem.
3) One can adapt the above definition in the case C is assumed to be n-pointed stable as
well.

The main theorem in [U] is the following :

Theorem [U,§1]. For a stable N-pointed curve having at least one marked point on each
irreducible component, one has
dimcVH (%) =1

For a smooth curve C, it is argued that one has a canonical isomorphism
VI(x) ~ H(J(C), 0(0))

where J(C) denotes the Jacobian of the curve C. The theorem is stated for an even level
M in [U] replacing O(©) by O(M0O).
Remark The above theorem generalizes [KNTY,7.7], giving the precise dimension of
the space of conformal blocks. This was possible due to the factorization property for
the conformal blocks [U,2.5]. The formulation parallels the one in [TUY] and it should
construct a projectively flat connection on the sheaf of conformal blocks on the moduli
space of stable curves (at least over smooth curves), cf.[BK,BFM].

There was also an attempt to generalize [KN'TY] and was partially successful because
only the gauge condition by U(1)-current was considered there, cf.[SU]J.
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§4. Digression on supergeometry

In order to interpret the condition (2) in the definition of the conformal blocks in the
previous paragraph, we led to consider certain supersymmetry on a given curve.
Basic references for supergeometry are [M1,2, VMP,Va].

4.1 Superspace
A supercommutative ring A is a Z/2Z-graded (associative) ring

A = A B A
whose supercommutator is always zero. The supercommutator is defined as
[a,b] = ab— (~1)®ba

for homogeneous elements a € Ag,b € Ay(a,b=10 or 1).

A superscheme is a locally ringed space whose structure sheaf of rings is supercommu-
tative, cf.[M1] for more details.

A smooth supercurve is a smooth superscheme (i.e. supermanifold) of dimension 1|N.
So it is a ringed space X = (C,Ox) with a sheaf of supercommutative (Z/2Z-graded) rings
as structure sheaf and C = X,y = X(? is a smooth (ordinary) curve. Here we put

X =(C,0x /N*)
N ={nilpotents}(= Ox; + 0% )

for 1 > 0. “Smooth of dimension 1{N” means that Ox is locally of the form A-(£) where
£ is a locally free Oc-module of rank N. In supergeometry, one might prefer the notation
Sym (II€) for Ox, where II is the parity changing functor.

One recovers the ordinary (i.e. even) curve in the case N = 0. cf. [M2, Ch.2].

4.2 Superconformal curves

We digress on superconformal curves which are natural generalization of Riemann sur-
faces in supergeometry and seem to be the most important supercurves.

Let 7: X — S be a smooth morphism of superschemes of relative dimension 1N,
namely a family of smooth supercurves. A superconformal structure or SUSYx-structure
on 7 is (a choice of) a locally free and locally direct Ox-submodule of rank 0|N T of
the relative tangent sheaf 7x,s which locally has an isotropic direct Ox-submodule of
maximal possible rank for N == 2k or 2k + 1 with respect to the Frobenius form

AZTI — TO = Tx/s/Tl 3 t Aty — [tl,tZ] mod Tl.

Supercurves with N = 1,2 superconformal structure (or N = 1,2 superconformal
curves) are also called N = 1,2 super Riemann surfaces or SUSYy-curves in the liter-
ature.

Let us specify the above definition in the case S = pt and N = 1,2. So let X be a
smooth supercurve of dimension (1|NV).
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Case N =1: A (N = 1) superconformal structure on X or a SUSY;-structure is (a
choice of ) a locally free O x-submodule 7' of rank 0|1 of the tangent sheaf Tx which is a
locally direct summand and gives rise to an isomorphism

(THD2 > T /T = T° ; 4 ®t; > [t1,t3] mod T

Case N =2: A (N = 2) superconformal structure on X or a SUSY>-structure is (a
choice of) a pair of locally free O x-submodules 7', 7" of rank 0|1 of the tangent sheaf Tx
such that i) 7/ & 7" is direct in Tx, ii) [7',7'] c T',[T",T"] € T", and that iii) one has
an isomorphism

TRT' ~Tx/(T'®T")=T° : t'®t'—[t't"] (mod T'®T").
Here 7' T" = T!.

Over a purely even base S, one has a simple description of superconformal curves.
So let g : X9 — S be an ordinary S-curve. Then we have

Proposition [M2, 2.7]. There is a one-to-one correspondence between
Case N=1:
a) {N =1 superconformal S-curvew: X — S

with Xyeqd = Xo,rea and Ox o = Ox, } up to isomorphism identical on X,
b) {(L;a)|l € Pic(Xo/S),a: IQI~ Qﬁ(o/s} up to isomorphism of I transforming o
Case N =2:
a) {oriented N = 2 superconformal S-curvew: X — S

with X, eqd = Xo, red and 0)(,0 = (’)Xél) }

b) {(I',I";8)|I',1" € Pic(Xo/S),B:I' @ I" ~~ Q}(D/S}

Here “oriented” means that the sheaves I’, I” are globally distinguishable, cf.[M2,2.6].
X" is the first infinitesimal neighbourhood of Xo in Xo X5 Xo. A pair (I, I"; 8) is called
as a relative theta pair.

The above correspondences are given as follows. In the case N =1,

Xred = Xo,red, Oxpo=0x,, Ox,=1IU

and
T! = Ox ®OX.-=¢ %1,

a gives rise to the Frobenius form. The pair (I; @) is a theta characteristic of the family.
In the case N = 2,

Xred = Xored, Ox0=0x,@8I'®I", Ox; =0T &I")

and
T' =0x Qoy_, I'®7!, T'=0x®0,  I"°"
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(3 gives rise to the Frobenius form.

N =1 superconformal curves are studied by many authors. In particular, their modul
is studied by LeBrun-Rothstein [LBR] and Deligne [D].

4.3 Picard groups in supergeometry

There are two natural generalization of the Picard groups in supergeometry. Let X be
a superscheme.

Definition 1) Let Picg(X) denote the set of isomorphism classes of locally free Ox-
modules of rank 1}0.

This set has a group structure as usual and is naturally isomorphic to the group
HY(X, O% 0)-

2) Let Picn(X) denote the set of isomorphism classes of locally free Ox-modules of
rank 1|1 with II-symmetry. Here a II-symmetry on a locally free Ox-module £ of rank 1|1
is an odd endomorphism p : £ — £ with p? = —id. An isomorphism of £ is understood to
preserve the II-symmetry.

This is merely a pointed set and is naturally isomorphic to the set H'(X,0%).

We call such a pair (£,p) a II-invertible sheaf or II-invertible O x-module.

It is instructive to know the following exact sequence

Picy(X) — Pien(X) — H'(X,0x,1) —» H*(X,0%,),

where the first map associates £ & IIL to £ € Pico(X).
Skornyakov studied the II-Picard group Pic(X) and gave basic properties [VMP, §4].

Here we should briefly recall sheaves on a superscheme X.

First all (supercommutative) rings and modules are Z/2Z-graded. Ox 1 is a coherent
Ox o-module and Ox is a coherent ring.

A left O x-module has a natural right O x-module structure consistent with the left one,
cf.[M1,Ch.3.§1,4]. Thus one can form tensor products of O x-modules freely.

The group of homomorphisms is Z/2Z~graded :

Homoy (E,F) = Homo, (E,F)o ® Homo, (€, F)

The first (resp. second) factor consists of even (resp. odd) homomorphisms. An automor-
phism is an even endomorphism which is isomorphic.

A locally free Ox-module of rank p|q is a coherent O x-module which is locally isomor-
phic to (’)f,’(lq = 0% & [10%. Here II is the parity changing functor : (II(£)); = &;41,1 €
Z]2Z.

The set of locally free O x-modules of rank plq up to isomorphism is in bijection with
the set H'(X,GL(p|q; Ox)) as usual. Here GL(p|q; Ox) denotes the sheaf of germs of
(even) automorphisms of such an Ox-module.

Let us call a Ox-module of rank 1|1 as II-invertible O x-module. Then one has the
following :

—157—
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Lemma. For a Il-invertible O x-module (€, p), one has

EndH(E) ~O0x @H0x
AutH(E) ~ O%.
Here End, is a subgroup of GL{1]1) consisting of the morphisms preserving the II-
symmetry. Similarly for Autp.

44 JI-Picard schemes : a superanalog of Jacobians
One can introduce a structure of superschemes on Pico(X), Picy(X) for a proper
smooth supercurve X of dimension (1|N)(N = 1,2).
Consider the following functors from the category of superschemes Ssch to Set.
Picy : S+ Pico(X x S)/psPice(S)
Picg : S+ HI(S’ (PS)-(O}xs))
Here ps: X x S — S is the second projection.
Then the above functors are representable by some superschemes denoted as Picy x,
Picy, x, cf.[S,§3.1]. The main technical tool for the construction is the obstruction theory
for extending sheaves to infinitesimal neighbourhoods (in the odd direction) (the so-called

“component analysis”).
In the case N = 1, one has

P‘iCo,X = P‘iCC,‘PiCn,X = Picc X HI(C,N)

where N is the ideal of nilpotents in Ox and C = X,.4 is the underlying (ordinary) curve.
In the case N = 2, one has

Picy x = Picc x H'(C,A*(F)), Picnx = Picc x H'(C,1+ N)

where F = Ox,; ~ N /N? is locally free of rank 2 over Oc.
We need the following supervariety in this situation :

P'L'CH’X(l) = PiCC x HI(X,}_)
where X (1) sits in the infintesimal thickening (Note A = 0) :

X0 =X, eu=Cc XY =(C,0c0F)c X?P =X

§5. Results

We give a natural geometric framework for conformal field theory with U(1) gauge sym-
metry using the II-Picard scheme §4.4 and its dressed version of certain N = 2 supercurves.

5.1 AsI mentioned after the definition of the conformal blocks in §3.3, the problem in the
spirit of the method of localization is to interpret the condition that the conformal blocks
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satisfy as (the dual of) coinvariants with respect to some infinitesimally homogeneous
space.
We know that H°(C, Oc(* Y. @Q;)) can be realized on the dressed space of the Jacobian

of the curve C. Since the remaining H%(C, wg%(* >~ Q;)) is a subspace of Clif through
Vi1(2), the basic strategy is to interpret it as fermionic symmetry related to C and wé: =
w87,

Let wlc/ ? be a theta characteristic on C. It amounts to choose a N = 1 superconformal
structure overlying C §4.1. We consider the supercurve of odd dimension N = 2

X =(C,STwd* ®wd?)

as well as

x) — (C,0c® H(wé/z 1/2))

See §4 for the notation.

The solution of the above problem is to consider the superscheme Picy x) whose even
part is just the Jacobian Picc. »

To go further, we have to introduce the dressed version of these (super)schemes.

5.2 Dressed [I-Picard schemes

To consider the dressed version of some moduli space is just to replace the (infinitesimal)
automorphism of the object classified by its affinized version, cf.§1. We refer to [SU] for
the dressed version of the Jacobian.

We briefly describe the dressed version of Picyy x(1). For teh details, see [S].

Let X = (C, Ox) be the proper smooth supercurve of odd dimension N = 2 in $5.1
associatd to (C, ‘-"c )

The dressed II-Picard group classifies dressed Il-invertible sheaves, i.e. Il-invertible
sheaves with trivialization at given points.

Let @ € C be a (closed) point and Z = (z,6,,62) be formal local coordinates at
Q, i.e. z is a formal local coordinate at @ and #,,8, are local generating sections of
Po=(w’ e wl?):

Ocq~Cllell, Po = C[[=]]6: & C[[])6,

Thus we have R
Ox,q =~ A(C[[2]]6, & C[[£]]6-)

Let mg denote the maximal ideal of the (supercommutative) local ring Ox g, which is
generated by the maximal ideal of O¢ ¢ and odd generators 6,,0;.
Definition Let k be an integer > 1.

A trivialization of k-th order at a point § € C of a Il-invertible sheaf £ is an Ox,q /m()
isomorphism

k+1_

a: L/mG L~ Ox o/mGt @ T(Ox o/ meH)

which transforms the II-symmetry on the left to the obvious one on the right.
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Considering the projective limit of such an isomorphism, we define the formal trivial-
ization of a Il-invertible sheaf.

Of course, we can consider these notions on XM,

Let XV = (X1):Q,,--- ,@nN;Z1, - ,Zn) be a datum consisting of the supercurve
X jts points and formal local coordinates at these points.

Denote by Piclf J(XM) (resp. Picﬁ’o)(.’{“))) the set of isomorphism classes of all II-
invertible sheaves with trivialization of k-th order (resp. formal trivialization) at given
points.

Then Picg)(f{(l)) (resp. Picﬁ’o)(f{(l))) has a structure of superscheme which is a
LG (Oxw g, /mgfl)—torsor (resp. H,-G:,I,l((j)\x(l)’Q‘, )-torsor) over Picy x1). Let us de-
note these superschemes by Pz'cgi )x, Picgﬁox).

We can have similar objects on X.

The infinitesimal structure of the dressed II-Picard schemes can be described as follows :

T(C,a)P,iC;Iiox)m = C((2)) ® (C & Ch & Ch)/H (XD, O x1)(* Z Qs))

where (£, a) is a (C-)point of Pic;mx)(l). This is calculated by H! of the group of infini-

tesimal automorphisms of the object in question, namely, Endp(L)(—(k+ 1)) ; Q) for k
finite.
For k = 0, we have

T[,PiCILX(l) ~ HI(C, Oc) D HI(C, .7'_)

This description shows that the dressed II-Picard schemes are homogeneous spaces of
the loop group HiGﬂl(@ x(1),0, ), infinitesimally.

In relation to the method of localization, the above homomorphism can be understood
as a Lie superalgebra homomorphism

Y, (Heis ® Clifi) — Tic,a)PY

for (£,a) € Picﬁ’o)(x(l)) Here we put PiciIoox)(l) = Pg and denote the degree 1 part of
Clif by Clif, -
Clify = ®uez+§c¢u o ®yez+§C¢L'

The kernel of the above homomorphism is H°(C, Oxa)(xY; Q:)), which is a Lie sub-
superalgebra of I1;( Heis ® Clif ) via the formal trivialization. H°(C,Oc(xY_; Q;)) (resp.
H°(C,w'? @ w'/?(x 3>, Q:)) injects into I1;(Heis) (resp. IL;(Clif,)) through

g —(Res;;=o(9(z:)a(z:)dz);
(h1,h2) = (Resz=o(hj(2:)Vi—1yi (2:)d2i)i j=1.2

Then we have the following :
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Proposition. The above homomorphism lifts to

Opge ® ML, (Heis @ Clify) — D3y

univ)

where d(Lyniv) is the determinant line bundle pulled back to Pz°. c%(lﬁu,.‘-,,) is the degree

< 1 part of the ring of differential operators Dy, ....) acting on the sections of the invertible
sheaf d(Lyniv)-
The kernel of this homomorphism equals Opx= ® H*(C,Oxa)(* 3; @s))-

Recall that we have the universal (Poincaré) bundle £, on C x Picc. Then we have
the determinant line bundle det Rmy(Lyniv) = d(Lyniv) on Picc where w: C x Picc —
Picc is the second projection.

The proof uses the method of [BS].

From this proposition, we obtain a ring homomorphism

p: Opgo ® (®i(U(Heis) ® Cl’lf) — Dd(L

uni‘u)

Given representations of Heis @ Clify M;(: = 1,---,N) with the same center, the
localization on Picglmx)(l) of ®;M; is defined to be the scalar extension by p

A(®:iM;) = Dy(L i) Bp ®iMi.

Its fiber is just the coinvariants :

A(®:iM;) ® Opge [myc q) = ®: M; /H®(C,Ox0) (* Z Qi) ®: M;

where m(¢ o) is the ideal sheaf of Pg° at the point (£, c).

5.3 We now apply the localization functor A to the Fock space representation F®V.
Recall that F becomes a representation of Clif through vertex operators Vi, (z;).
Then one of the main results in [S] is the following :

Theorem. The space of conformal blocks V(X) equals the fiber of the localization

A(]:’r®N) at any point of Picg’o;u)-

Remark Penkov’s theorem [P] on the equivalence of the category of D-modules and
that of D,.4-modules implies that it is enough to consider the restriction of the module
A(F®N) to (Pic%lofx)(l)),ed = Pic({%o;)( Q@:)i(=)}- This last space is the dressed Picard scheme
on the even part {C;(Q;); ()} of X, cf.[SU].

We can relate the space of conformal blocks with the space of global sections of the
determinant line bundle. Let us restrict Picy yq) etc. over the component of degree g — 1.
(00)

In order to carry it out, let us descend the Dy . )-module A(f®N) on Picy
PicZ! and then integrate on Pic%_l.

ay to
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Denote the natural projection by r: Picﬁx’x)(l) — Picy x). Then A(F®N) descends to

Ay = ro(A(FON))TER Ox.a))

. g—1
Picg

This amounts to taking invariants with respect to the change of formal trivialization of L.
We also used the relation (Picy, x(1))red = Picc.

It is known that the fibers of d(L,n:y) injects into the Fock space FON through the
semi-infinite exterior product, cf.[SU]. Then we have :

d(Lun'iv) — AN

As its dual we have :
d(‘cun'iv)_l — A;V

Taking the global sections, we obtain a surjection
HO(PiC%‘_l,d(Luﬂiv)_l) « HO(PiC%‘_1> ~)

Remember that d(Lyniy) on Pick ' is nothing but the dual O(—©) of the theta divisor,
cf.[Sz]. We also note that A}, is the module whose fiber is the space of conformal blocks
V1(X) since taking invariants is cancelled by taking r,.

Comparing the dimension, one obtains

Theorem. We have a canonical isomorphism
H(Pick !, 0(0)) ~ V(%)

Remark One can develop the story in the relative situation.
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