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1. INTRODUCTION

  A deep result of Narasimhan and Seshadri state$ that, over a Åëompact curve C, there
is a one-to-one correspondence between irreducible unitary representations of rri(C)
aRd stable bgRdles wlth ci(E) : e il91. Tkls theerem was later extended to cevef
arbitrary cempagt KShler manifolds l8, 9, 27]. Hitchin then introduced ffiggs bundles,

which are pairs (E, ep) consisting of a holomorphic bundle E armd holomorphic map
Åë : E - E X K Åëalled the Higgs field. The nonabelian Hodge theorem establishes a
correspondence between irreducible representations of Ti(X) and stable Higgs bundles
with ci(E) = e for X a cempact, Kakler maRlfold ll3, le, 7, 23, 25].
  Fer noficempact curves Ce with compactificatien C = CgU{pi, . . . , p.}, Mehta afid

Seshadri proved a eorrespondence between stable parabolic bundles E. over C with
pardeg E. = O and unitary representations of rri(Co) with fixed holonomy around
each pi, the so-called parabolic points [18]. For regular bundles, the space of Higgs
fields HO(Eltd(E)XK) is Raturally dttal to H'(End(E)), but because parabolic endo-
merphlsms sat}sfy a vaRlshlRg condltieR at the parabellc peiRts, dllallty lmplles that
Higgs fields of paraboiic bundles can have poles of order one at those points. Aiiowing
the Higgs field to have either parabolic or nilpotent residues at the p{, we obtain the
two moduli spaces P. of parabolic IÅq(D) pairs and ./Vl. of parabolic Higgs bundles.
The subscript a refers to a particular cholce of weights. In [281, P. is constructed
usIRg Geemetric InvarlaRt Theofy and ls pfeved to be a Refmal, qxasl-prgjectlve varl-
ety. In l24], stable parabollc K(D) palrs are called filtered regular Higgs buRdles and

are shown to corre$pond to filtered regular Dx modules. In [15j, Konno constructs
YVI. using gauge theory and shows that stable parabolic Higgs bundles correspond
to irreducible parabolic Hermitian-Einstein Higgs bundles. In [22], the nonabelian
Hodge theorem for elliptic surfaces is used to show that parabolic Hlggs buRdle$ with
ratlonal weights correspoRd te irredllcible representatleRs of 7ri(Ce) wlth holenemy
around each pi equal to some root of unity.
  In this article, we study the topological properties of the moduli spaces of stable,
rank two parabolic Higgs bundles and parabolic K(D) pairs, using the approach of
Hitchin [13]. There is a circle action on Ar. which preserves its complex and symplectic

strgcgure, aRd the assecl3ted moment ii}ap ls & Merse fuRctloR. Ideatifyl#g the critlcal
submanifelds and their indices, we prove that Alr. is a noficompact, cefinected, simply

connected manifold and compute its Betti numbers, which turn out to be independent
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of the weights a. This behavior is in marked contrast to that exhibited by the moduli
space M. of parabolic bundles, where the Betti numbers do depend on a [4]. It
follows that the Euler characteristic of this moduli space vanishes for g 2 2. All of
the raalk resijlts ilt this ar#lcle vvatg eolte IR ajelftt work i6] wleh zzaks U. BGeea.

                2. DEFINITIoNs AND PRELIMINARy REsuL'Irs

2.1. Three moduli spaces. Let X be a smooth curve of genus g with n marked
points in the reduced divisor D : pi + • • • +p. amad E a holomorphic bundle over X.

DefiRitieR 2.l. A para5eiic structure eB E een$i$ts of weighted .flags

                       Ep = Fi(p) ) ''' ) I7T,,(p) )O

                        O S ai (p) Åq ••• Åq a,. (p) Åq 1

over each p E D. A holemorphic map Åë : Ei -"F E2 between para6olic 6undles is
eaXed para5eiie tfa}• (p) År a,2•(p) implies ip(F3(p)) C F,2•"Åqp) for ali p E D. We caii ip

strengly paraboiic if ai (p) ) a,2• (p) implies ip(Fii(p)) c F,2•.,(p) for aii p E D.

  We use E. to denote the bundle t.o. gether with a parabolic structure. Also, we use
ParHom(El, E.2) and ParHom(E:, E.2) to denote the sets of parabolic and strongly
parabolic mcrphisms frem Ei to E2, respectively. (The decoratlve fiotation will
5eceme clear in g2.2.) If al•(p) pt ct,2-(p) for all i,]' aRdpE D, theR aparabolic
morphism is automatically strongly parabolic. On the other hand, using the notation
ParEnd(E.) = ParHom(E., E.) and ParEnd"(E,) me ParHom(E., E.), then strongly

parabolic endomorphisms are nilpotent with respect to the flag data at each p q D.
  Let K denote the canonical bundle of X and give EX K(D) the obvious parabolic
structttre.

Definition 2.2. A paraboiic K(D) pair is a pair (E,Åë) cons,isting of a paraboiic
bundte E and a parabolic map Åë : E --År EXK(D). Such a pair is called a parabolic
Higgs bundle of, in addition, Åë is a strongly parabolic morphism,

  Viewing a as a vecto"vallled fukctioR eR D, we use it as ax index to iRdic&te tke
parabolic structure oxx E.. Let mi(p) == dlm(F{(pÅr) - dim(Fi+i(p)), the multipilcity
of ai(p), and f, = S(r2 - Åíe•g,(mi(p))2), the dimension of the associated fiag variety.

Define the parabolic degree and slope of E. by

                                          Sp
                  pardeg E. = deg E + 2 2 mi(p)ai (p),
                                      pED iwh-l
                     "(E.) ,., p::d.ekgEE*.

  If L is a subbundle of E, then L inherits a parabolic structure from E by pullback.
We call the bufidle E. stable (semistabge) if, for every proper subbttfidle L of E, we
have pa(L.) Åq ps(E.) (respectlvely pt(L.) sll pt(E.)). Llkewlse, we wlil call a parabollc

K(D) pair (E., Åë) stabte (or semistabie) if the same inequalities hold on those proper

subbundles L of E which are, in addition, Åë-invariant.
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  Denote by M. the moduli space of a-semistable parabolic bundles, by YV. the
moduli space of a-semistable parabolic Higgs bundles, and by P. the moduli space
of a-semistable parabolic K(D) pairs. By [18], M. is a normal, projective variety of

dimension
                      dimM. = (g - 1)r2 +1+ Z) f,.
                                             pED
(Ifg = O, this holds only when M. I e.) Further, in [28, 29], P. is shown to be a
normal, quasi-projective variety of dimension

                        dim P. = (2g -2+ n)r2 + 1

which contains All. as a closed subvariety of P. of dimension

                     dimYVI. = 2(g - 1)r2 +2+2 Z f,.

                                             pED
  For generic a, a bundle (or pair) is a--semistable o it is a-stable. In these cases,
the moduli spaces M., VV. and P. are smooth and can be described topologically as
certain quotients of the gauge group gC = ParAut(E.). The same is true for MO., .IV8
and P.O, the moduli spaces with fixed determinant and trace-free Åë. In this way, it is
shown in [15] that YV18 is, for generic a, a smooth, hyperkahler manifold of complex

dimension
                    dim VV8 = 2(g - 1)(r2 - 1) + 2 2 f,.

                                              pED
2.2. Parabolic sheaves and Serre duality. Suppose now that E is a locally free
sheaf on X and D = pi + • • • + p. is a reduced divisor.

Definition 2.3. A parabolic structure on E consists of a weighted filtration of the

form

                E == Eo = Eai D ''' ) Eat ) Eat+i = E(-D),

                     O= ao S ai Åq •••Åq at Åq ori+i = 1•

We can deLfine E. forx E [O,ll by setting E. = E., ifai-i Åq x S ai, and then extend
to x E R by setting E.+i = E.(-D). We call the resulting filtered sheaf E. a parabolic
sheaf.
  We define the coparabolic sheaf E., by

                         E. -( S:,., lf:l :1

A morphism ofparabolic sheaves ip : E.' -År E.2 is a called parabolic if di(E;) g Eg and
strongty parabotic if ip(E;) g Eg for aU x E R.

  We shall denote by EParSom(El , E.2) and EPatSom(El , Eb the sheaves of parabolic

and strongly parabolic morphisms, and by ParHom(Ei,Ee) and ParHom(E:,E.2)
their global sections. We now show that there is an equivalence of the categories of
parabolic bundles on X and parabolic sheaves on X.
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  Given a parabolic bundle E with fiags and weights as in Definition 2.1, we define
the filtered sheaf E. following Simpson [26]. For p E D and ai-i(p) Åq x S dvi(p), set

E.Y = ker(E.E,/F{(p)),

E. == nEg.
       peD

Now extend to all x by E.N = Ex(-D)•
  Conversely, given a parabolic sheaf E., the quotient E/Ei is u skyscraper sheaf
with support on D and, for each p G D, we get weighted flags in Ep by intersecting
wlth tke filtyatleit at p. To be precise, let aKp),... ,a,.(p) be the subset of vvelgkts

such that

(1) ori-i(p) ÅqxS ai (p) e(E./Ei ), =(E.,{,)/Ei )p•

Setting Ei(p) = (E.,(p)IEi)p, we obtain a parabolic bundle in the sense of Definition
2.1.

  Suppese Rcw Ei and E2 are parabollc bundles aRd ip G ParHom(Ei, E2). We waRt
to show that ip induces a morphism of the parabol}c sheaves. So, sttppose a}•.-i(p) Åq
x S a}• (p) and a,2•-,(p) Åq x S a,2•(p). Since al• (p) År a,2•-,(p), di(F,i(p)) c F,1 (p) and

we see that ip maps ker(E' - ES/jFii(p)) to ker(E2 - E,2/Fi2(p)) for all p G D, from

whichit follews that e iRduces a map Åë : El -År Eg.

  Suppose conversely that El and E.2 are parabolic sheaves, ip G ParHom(E.', E.2)
and al• (p) År a,2•(p). Set x ur al (p) and y = a,2•+i(p) for notational convenience. Then

Åë(E;) c E;. Sinee x År a;•(p), it follows from (l) that (Eg/E,2), c (E,2/E,2), aRd

hence ip(Fii(p)) C F,2•+i(p)•

  It is not hard to see the same correspondenÅëe for strongly parabolic morphisms.
Thus, we have an equivalence of the categories of parabolic bundles and parabolic
sheaves. We gse the defiftltleRs IRterchakgeably agd dekote by E. a parabelic buRdle
or sheaf, reserving E = Eo for the underlying holomorphic bundle.

  For the convenience of readers, we briefly summarize the results in [29] dealing with

exact segueRces and teksor products of pgrabolic skeaves. Thls is xecessary fgr the
statement of Serre duality for parabolic bundles, which is a tool we use throughout
the article.

E.

E
iEa2Q,---9

E-D
Oal'a2cr3 11+

.År E.

E
kta2
l'ktar3

E-Diill
Oala2dv3 11+

FIGuRE 1. The simple relationship between E. and jE}..
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  The category of parabolic sheaves 1) is not abelian, but is contained in an abelian
category P as a full subcategory. Objects in P are also written by E. and a morphism
f : Ei - E.2 is a family of morphisms f. : E; - Eg. A coparabolic sheaf E. is realized

in li5. The set ParHom(Ei, E.2) is just the set of morphisms in lii;. In li5, a sequence

is exact if and only if the induced sequence at x is exact for all x E R.

Remark. If the sequence (2) is exact, then so is the sequence obtained by tensoring
(2) with any parabolic bundle (cf. Proposition 3.3 of [29]) and

                    pardeg E. = pardeg L. + pardeg M..

  We can define dual parabolic sheaves E.V, parabolic tensor products L. X M., Hom-
parabolic sheaves SPatSom(L., M.)., and cohomology groups Ext`(L., M.). Clearly,

          pardeg(L. X M.) = rank(M) pardeg L. + rank(L) pardeg M..

In addition, we have

   ExtO(L., M.) = HO(L: x M.) = HO(EPatSom( L., M. )) = ParHom( L., M. ),

   Ext'(L., M.) = Hi(L\ x M.) = Hi(EPatSom(L., M.)).

We can identify Exti(M., L.) with the set of equivalence classes of exact sequences

of type (2).

  The Serre duaiity theorem is generalized as follows (see Proposition 3.7 of [29]).

Proposition 2.4. For parabolic sheaves L. and M., there is a natural isomorphism

               ei , Hi(L\ x M. x K(D)) EÅÄ Hi-i(M.V x Z.)V.

  Given E. and B E R", define E.[B]., the parabolic sheaf E. shifted by P, by

                            E* [fijx = n E."+` p, •

                                     i
Example. The Picard group ofparabolic line bundles.
A holomorphic bundle E is regarded as a parabolic bundle with the trivial parabolic
structure Ep ) O, ai(p) = O at each p E D. We call this the special structure on E.
Note that every parabolic line bundle L. is gotten by shifting the special structure on
the underlying bundle L, i.e., there is a unique 6 E [O,1)" with L. = L[fi]. Viewing
Ox as a parabolic bundle with the special structure, then it is not difficult to verify

that

(3) E. [rs].- E.xOx [6].
Let ei denote the standard basis vector in R". From (3) we have

                  Ei [Pi]. x E.2 [62]. - El cg) E.2 p' + fi2].,

                           E.[fi]\ - E.V[-Pl.,

                           E.[ei]. = E.XOx(-pi)•
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These three formulas determine the Picard group of parabolic line bundles on X.

Remark. For any parabolic line bundle L., the stability (or semistability) of E. XL.
is equivalent to that of E.. Similarly, the stability (or sernistability) of (E. (Eb L., ÅëX1)

is equivalent to that ef (E., Åë).

  In particijlar, apply this to the case of a rank two parabollc buRdle E. with fui}
fiag$ &t each pi agd welghts g S c\i(pi) Åq a2(pi) Åq l. UslRg equatleR (3) wltk
3i pm- i(ai(pi)+a2(pi) -l) notice that E.Ifi]. has weight$ e Åq ai(pi) Åq l -ai(pi) Åq i

at pi, where ai(pi) = ;(ai(pi) - a2(pi) + l)•

          3. A TopoLoGIcAL DEscRIpTIoN oF VV18 IN RANK Two

3.1. The function spaces of Biquard and construction of Konno. We begin
with a brief overview of the gauge theoretical description of N. following [15].

  It is convenient to thirmk of the parabolic bundle separate from its holomorphic
structure, so we use E. to denote the underlying topological parabolic bundle (weights
a) and bE lts helomerphic structure. By tensorlRg with an &pprepriate line bun-
ele, we caR always assgme that #(E.) = e. We skall &l$o restrlct eur atteRtleft te
gekeric weigkts, l.e., weights a fer whick a-st&5illty axd or--$emlstablllty colxclde.
Let C deRote the afine space of a}l holomorphic structures on E, aRd gc the group
of smooth bundle automorphisms of E preserving the fiag structure. Introduce a
metric K adapted to E (K is unitary and smooth on ElxxD, but singular at p E D
in a prescribed way, see Definition 2.3 [3]), and let A denote the afine space of N-
unitary connections. Define 9 to be the subgroup of gc consisting of K-unitary gauge
transformations. Letting e,, and v4fl.t be the subspaces of dv--semistable holomorphic
structures and the flat connections, respectively, Biquard proved that

                         M. d=efe,./gc !'!t Afiatlg

by iRtrodgciRg the Rorms li IIpit, defixlRg the weighted Sobelev spaces eP and AP ef

P? holoa}orphic structures akd Pe K-gRitary coRAectioms, and taking quotleltts by
the groups g8 aRd gP of Dg gattge traBsformatioRs for a certain p År l [3].

  The same approach works for parabolic Higgs moduli, at least for generic weights,
as was shown by Konno. The arguments in [15] are given for moduli with fixed
determinant, but remain equally valid without this condition. We set

   7t = {(bE, Åë) EC Å~ S)i'O(End E) l bEÅë =O on XXD and at each pE D,

          Åë has a simple pole with nilpotent residue with respect to the flag}.

Note that (H (thls is denoted by :[År in Il5]) ls just the differential geometric definitlon

of the sp&ce ef parabollc ffigg$ bwndle structgfes og E., for example, tke kllpetency
coftd}tloR lmplles tkat $ }s stroltgly para5ollc.

  For A E v4, we use dA for its covarlafit der!vative, IPA for its curvature, and d'A' for
the (O,1) cornpon'ent of dA, so d'A' E e. Define g == v4 Å~ S}O'i(End E) and EP as its

completion with respect to the nerms 11 IIDe, and set

              8fl., == {(dA, th) E 8P l d'.' Åë = O, FA + [tp, tp"] == O}.
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(This last space is denoted T)?HE by Konno.) Using the usual definition of stability on
7t, Theorem 1.6 of [15] shows that for some p År 1,

                         N. d=ef"ss/9c ny 8flat/9P'

The advantage of the second quotient is that it endows AL. with a natural hyperkahler
structure, namely by viewing it as a hyperkahler quotient of SP (in the sense of [14]),

whose hyperkahler structure is given by the metric

                    g((C, di), (6, ip)) - 2i f. Tr(C'6 + ipip'),

which is Kahler with respect to each of three complex structures

         I(6, ip) - (iC, idi), J(6, ip) - (iip", -iC'), K(6, ip) - (-ip', C').

3.2. The Morse function for the moduli space of parabolic Higgs bundles.
Assume that E. is a rank two parabolic bundle with generic weights ai and 1 - ai at
pi and that ".(E.) = O. Write a = (ai,... ,a.). We will always assume n ) 1. We
consider the moduli with fixed determinant and trace-free Higgs fields, requiring the
following minor modifications in the definitions of the previous section:

   (i) the induced connection dA or holomorphic structure OA on A2E be fixed;
  (ii) the Higgs field be trace-free, i.e. Åë E S-)i'O(Endo E).

We denote the corresponding spaces by AO,eO, SO, and 7tO.
  As in [13], we consider the circle action defined on 80 by eie • (dA,Åë) = (dA,eieÅë).

This action preserves the subspace 8fiP.t and commutes with the action of the gauge

group gP, thus it descends to give a circle action p on Ar8. This action commutes with

the complex structure defined by I and preserves the symplectic form wi(X,Y) =
g(IX,Y), so the associated moment map "p(dA,Åë) == i;.tllÅëll2Dp,, renormalized for

convenience, is a Bott-Morse function and can be used to determine the Betti numbers
of N.O.

  We introduce some notation which will be used throughout the rest of this section.
For any line subbundle L. of E., let ei(L) = dimL,, n F2(pi) E {O,1}. The weight
inherited by L. is then 6i(L) == ei + (-1)e'ai. We will often suppress the dependence
on L and simply write e = (ei,...,e.) and 5 = (Pi,...,fi.). We will also write
fi(a,e) when we want to emphasize the functional dependence of fi on a and e. We
also use lel = EZ•.i ei•

Theorem 3.1. (a) The map p, : A[8 -R is aproper Morsefunction.
  (b) IW}enever nonempty, MO. is the unique criticat submanifold corresponding to
      the minimum value p, = O. The other critical submanifolds are given by Md,.
      for an integer d and e E ZC satisfying

                            n      (4) -2Pi(a, e) ÅqdSg-1- lel/2•
                           i=1
      Along Md,,, ", takes the value d+ÅíZ-.i 5,.
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  (c) The critical submanifold Md,, is Shd•`X, the 22g cover of the symmetric prod, uct

      Shd•eX under the Tnap x F-" 2x on Jx. Here, hd,, xx 2g -2-2d- lel•

  (d) The Morse index ofMd,, is given by Ad,, =2(n+2d+g-1+lel). '

Remark. Ifg= O, there are always a with M2 =e (but vV18 fÅë). For these a, the
minimum valtte is achleved along some Md,,, which we identify IR the ncxt sectlon.

Preef. Preperaess of pt, fel}ow$ frem the global cemp&ctaess resgk for parabo}lc b"k-
dles of Biquard ÅqTheorem 2.i4 ln [3]). Th}s proves (&År. A}l the other statements rely

on the following correspondence between the circle action and the moment map given
in [11].

  (1) Critical submanifolds are connected component$ of the fixed point set of p.
  (2) The Morse index of a critical submanifold equals the dimension of the negative
     weight space of the imfinitesimal circle action on its normal bundle.

Suppose that (dA,Åë) is a fixed point of the circle action upstairs in Sfi.t. Then Åë : O
and this shews that one compenent of the fixed point set in Ar8 consists of Mg, the
moduli of stable parabolic buadles wlth fixed determinant.
  Tke other fixed pelnts ari$e from wkeR e{e i (dA, Åë) ls gauge egglvaleRt te (dA, Åë),

i.e., wheR there is a oRe parameter family ge E gP such that

                           ge-lÅëge = eieÅë,

                           giidAge = dA•

By the first equation, ge is not central, and by the second, we see that dA is reducible

and consequently the holomorphic parabolic bundle splits according to the eigenvalues
of ge. Write E. = L.OM. as a direct sum of parabolic bundles. We assume (wlog) that
pa.(L.) År O År pt.(M.). Let d xe degL and e = (ei,... ,e.) where e{ = dim L,,nF2(pi).
Then L iRherlts the vveight Bi -- ei + (-1)e'ai at p{ as a parabolic $ubbuRdle ef E.

axd

                                        n(5) CÅq paa(L.) =d+25"
                                       i=1
  Since ge is diagonal with respect to this decomposition, M is either upper or lower

                                 ' But a-stability of the pairdiagonal, which means either L or M is Åë-invariant,
(E.,Åë) implies that

                            Åë-(g g),

                       Awhere e l Åë E ParHom(L., M. X K(D)). Thus

        g f Hij(L\ X MA. op K(P)) -

Let lei = Åí;.i ei, then a nece$sary coRdltion ls that

(6) OSdeg(L" opMop K(ÅíZ•=,(1-ei)pi)) :

Now (4) follows from (5) and (6),

He(Lv x M x KÅqX.,, (l - ei)p")•

2(g - 1) - 2d - lel.
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  We can use the defining equations for SR,t to determine the associated critical
values. Take (E., Åë) as above, then

               o= FA + [Åë, Åë'l = ( FL -o ipip' ,F'. ? ip*ip )

Using the Chern-Weil formula for parabolic bundles (Proposition 2.9 of [3]), we get

  pp(dA,Åë) = Iil.7IiÅëll2 = t. f. Tr(ÅëÅë') = t. f. ÅqPq5' = t. f. FL = pardeg(L.)•

This completes the proof of (b).

  Given E. = L. O M. and Åë as above, then the zero set of ip is a nonnegative divisor
of degree

          hd,, = deg(LV X MX K(Åí;.,(1 - ei)pi)) = 2g -2 - 2d - lel

on X, which is just an element of Shd,eX. Conversely, given a nonnegative divisor of

degree hd,,, then we obtain a line bundle U of degree 2d + n along with a section of
UV X K(Åí:•.,(1 - ei)pi)) vanishing on that divisor. There are 22g choices of L so that

U = LQ2 x A2E, and each choice gives a stable parabolic Higgs bundle (E.,Åë). The
line subbundle L. is canonically determined from E., but Åë is only determined up to
multiplication by a nonzero constant. However, it is easy to see that (E., Åë) is gauge
equivalent to (E.,AÅë) for A 7C O, and (c) now follows.

  We now calculate the index Ad,, of the critical submanifold Md,,, which is given
by the negative weight space of the infinitesimal action of p, or equivalently, of the
gauge transformation ge. Letting HrO(ParEndo(E)) • Åë be the subspace of Higgs fields
of the form [W,Åë] for W E HO(ParEndo(E)), then the subspace

             W = HO(ParEnd,"(E) X K(D))IHO(ParEndo(E)) • Åë

is Lagrangian with respect to the complex symplectic form

W((Ci, ipi), (C2, ip2)) = f. Tr(ip2ei - ipi62).

So once we determine the weights on W, the weights on the dual space W' are
given by 1 - u for some weight u on W (since p(e)'w = eiew). With respect to the

decomposition E. = L. O M., we have

                         ge = ( e-6e/2 et9/2 )

with weights (O,1,-1) on

                             AAA     ParEnd,"(E.) = ParHom(L., L.) CD ParHom(L., M.) O ParHom(M., L.).

Further, there are no negative weights on HO(ParEndo(E))•Åë and the weights on W'
are (1,O,2), so we get

           Ad,, = 2hO(M.V X Z. X K(D)) = 2(n + 2d +g-1+ Iel).

This completes the proof of (d). O
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3.3. The topology of N18. Using the results of the previous section, we deduce the

following theorem.

Theorem 3.2. (a) IfgÅrO org == O and n År 3, then Ar8 is noncompact.
  (b) The Betti nttmbers of Ar8 depend only on the quasi-parabolic structure of E..
   (c) IfgÅrO org= O andn2 3, then YV18 is connected and simply connected.

Proof. Notice that, whenever dim.IV18 År O, then for all (d,e), Ad,. Åq dimAr8. Thus,

the Morse function "p has no maximum value and (a) follows. The only case where
dimYVI8 = O is, of course, g = O and n = 3.
  We first recall Theorem 3.1 of [4]. Let W = {a 1 O Åq ai Åq i} be the weight
space and for any (d,e), define the hyperplane Hd,, == {a 1d + fi(a,e) = O}. The
set W X Ud,,Hd,. consists of the generic weights, i.e., those for which stability and
semistability coincide. Suppose 6 E Hd,,, then stratifying M2 by the Jordan-H61der
type of the underlying parabolic bundle, we see that

                          M2 = (M2 X Åí,) U Z6,

where Åí6 consists of strictly semistable bundles, i.e., semistable bundles E. with
gr E. = L. O M. for two parabolic line bundles of parabolic degree zero. Suppose
that a and a' are generic weights on either side of Hd,. and that pardeg.(L.) Åq O.
If both MO. and .M2t are nonempty, then Theorem 3.1 of [4] states that there are
canonical, projective maps
                            M2 Mg,
                                ip X. / Åë'
                                  M2

which are isomorphisms on M2 X Z6 and are Pa and Pa' bundles along Z6, where
a = hi(M." x L.) -1 and a' = h'(L\ X M.)- 1. In particular, since Z6 = Jx,
Corollary 3.2 of [41 gives

                P,(Mg) - P,(MO.,) = (P,(Pa) - P,(Pa'))P,(Jx).

  To prove (b), we must show that Pt(vV8) == Pt(YVI8,) for weights on either side of
a hyperplane Hd,,. Note that d = degL and e = e(L), and set d" = -n -d and
ei -- 1-ei. Since

           d+ 5(ct, e) = pardeg.(L) Åq O Åq pardeg.,(L) = d+ fi(a', e),

and a+P(a',e) Åq O Åq dA+P(a, e), it follows that the indexing sets of (d, e) satisfying

(4) for N.O and N.O, are identical except for (d, e) and (d" , e) listed above; the pair (d, e)

satisfies (4) for a but not for a' and vice versa for (d", e). Thus, we claim

           O = Pt (M9) - Pt (M O.,) + t"`'e Pt (Md,e) m t"j'i Pt (M dA,e),

which, setting A = tAa•e Pt(Mi,E) - tAd•e Pt(Md,.) is equivalent to

                            (t2a'+2 - t2a+2)(1 + t)2g
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First, we compute

            hd,, = 2g -- 2- 2d - lel, Ad,. = 2(n + 2d +g-1+ lel),

            hi, = 2g -2+n+ 2d + lel, ){a,, = 2(g -1- 2d - lel).

Next, notlce that ifh År 2g-2, then Pt(gh(X)) = Pt(Sh(X)) (see p. 98 of [13]). But

beth hd,. aRd his are greater thaft 2g-2, whlch we see a$ follows. SiRce l f{ 5i(a, e) s{
2ilS!i, we kave lgl f{ Z:•,,,, fi{(a, e) f{ iEII2i. It pavy follows that 2d+lel Åq 2d+2B(a, e) Åq g

and 2d ÅÄ n ÅÄ lel År 2d + 2 :;,.P(a', e) År e.

  Now use the result of [16] to interpret Pt(ShX) as the coeficient of xh in

                                (1 + xt)2g
                             (1 - x)(1 - xt2)'

and compute in terms of residues to see

              A = tAj,ejp,(shj,ex)-tAd,ep,(shd•ex)

                 = be.,s (.th"fili - .lliliii) ((i [i.$(liit2i2g.t2)) •

This last fllgctleR is ana}ytlc at x = oo aRd has a removable siRgularity at x = 11t2,

thus

             A = ---- B.e,s (.t,",l'i., - .t,",l'e.,) ((i Ei.S(IIt2i2g.t,))

                    (tAa,e ww tAd,c)(1 + t)2g

                --                          1-t2
But we can compute direÅëtly that 2a'+2 = Ad-,e and that 2a+2 = Ad,, and (7) follows.

This proves (b) iR case both MO. and M9, are RoRempty. In case one of the meduli
is empty, we use the fellowixg lemma (see the remark).
  [re prcve (c), we use the fact that Mg. is ceRRected and simply-ceRRected, which
follows for g = e from (2] and fer g 2 1 from l5]. Since Ad,, is always eveR, (c) will
follow if Ad,, År O for all (d, e). This is true if MO. pt e. However, if g = O we must

be careful since there are weights a with M. = to. In that case, we must show that
there is a unique pair (d, e) with Ad,, = O, and also that Md,, is connected and simply

connected. This is the content of the following lemma. rm

Lemma 3.3. (i) Ifgk 1, then Ad,, ÅrO for every (d,e) satisfying (4).
  (ii) Ifg = O and n h 3, then there is at most one pair (d,e) satisfying (4) with
      Ad,. = g. Such a pair (d,e) exists if and only if M. = e, and in that case,
      Md,e == Pn-3. Here, .M = Me siRce g = g.

Remarh We kew explain wky tkls lemma pyeves pa:t (b) of the Preposlt}oR whea
one ef the medull is empty. Suppese M. = Åë, thenit follows that the momeRt map
pt, is positive with minimum value d+ Åí:•=i fi(or,e) for the pair (d,e) identified in
part (ii) of the lemma. Since (d,e) does not satisfy (4) for a', Hd,, is the relevant
hyperplane. This identifies the birth and death strata as M., and Md,,, and thus
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all the other strata for a and a' are identical. The rest follows from the fact that
M., = P"-3, first proved by Bauer [2].

Proof. Suppose that Ad,, = O for a pair (d, e) satisfying (4). We first show that g = O.

Recall that 6i(a,e) == ei+(-1)e'ai. Using the fact that O = Ad,, = n+2d+g+lel-1,
the condition (4) and the inequality fii(a,e) Åq gig Li, we see that

(s) n+ lel 2+g-1Åq }l.l}, p, (., ,) Åqn+2 1el

This is only possible if g = O, which we now assume.
  Setting 7i = 1 - 6i = (1 - eJ(1 - ai) + eiai, then equation (8) is equivalent to

                       n -, Iel Åq ;l.l?, ,, Åq n- l,el+i.

Writing 7i = :i!3Se + (1 - ei)(i - ai) + eiai, we get immediately

(9) OÅq l,llll.,(i-ei)(S-ai)+eiai Åq S•

The advantage of the (9) is that each summand is positive.
  We now prove uniqueness of the pair (d, e). If Ad,,., = O for (d', e') 7L (d, e), then it

follows that lel - le'l = 2(d' - d) is even, which implies that e{ l el- for at least two

i, which we assume (wlog) to include i = 1,2. Now (a, e) and (a, e') both satisfy the
inequality (9). Add them together and notice that since ei l el and e2 S e'2, the sum
of the left hand sides is at least ai + (1/2 - ai) +a2 +(112 - a2) = 1, which violates
the (summed) inequality and therefore gives a contradiction.
  It follows from Ad,, = O and g= O that n+ lel- 1 is even and hd,g = n- 3. Thus
Md,, = ShX = ShPi = P"-3. The rest of the lemma follows from the the inequality
(8), together with the following proposition, which we have chosen to state as it is of

independentinterest. O

Proposition 3.4. Ifg = O, then the moduli space M. I Åë o

(iO) Åí., e, + (-i)ei a, Åq "+ 12el - i.

for every e = (ei,... ,en), ei E {O, 1}, with n - lel + 1 even.

Remark. For n = 3, M. is either empty or a point. In this case, the proposition
can be verified directly by comparing the inequalities (10) to the well-known fusion
rules (or the quantum Clebsch-Gordan conditions):

            M. I e o lai - a21 S a3 g min(ai + a2,1 - ai - a2)•

Proof. Like the proof of part (b) of the theorem, we shall use the techniques of [4].
Recall the weight space W = {a l O S ai S 1/2} and the hyperplanes Hd,, = {a 1
d+B(a,e) = O} defined earlier. We call connected components of WX Ud,eHd,,
chambers. A chamber C is called null if the associated moduli space M. is empty
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in genus O for every a G C. The proposition follows once we show that every null
chamber is given by Cd,, ex {dv 1 d+ fi(a,e) År O}, where 2d = 1 -n- lel.

  Associated to the configuration of hyperplanes in W is a graph with one vertex
for each chamber and an edge between two vertices whenever the two chambers are
separated by a hyperplane. We shall see that iR terms ef this graph, Rull chambers
kave valeRcy oRe. Tke (unlque) hyperplage separatiRg a nvll chamber from the rest
of W is called a vaRisking walt. If 5 E ffg,., a vaRlshiRg wa}l, altd a,a' are fiearby
weights oa either slde of ffd,., then the proof of Proposltlon 5.l of I4] shows that
M6 = Z6 and, assuming that M.i = Åë, the map ip is a fibratien wlth fiber Pa, where
a = h'(M." X L.) - 1. Moreover, hi(L\ X M.) = O and this last equation in fact
characterizes vanishing walls.
  We claim now that every vanishing hyperplane is given by Hd,, for 2d = 1 -n- lel.
Now ifd= degL and e : e(L), then direct computation shows that h'(L\ X M.) :
2d+n+ lel - 1. 0n the other hand, ifn+ lel -1 is even and d=: !=!il 1!t, then Hd,,

is a vanishing hyperplane.

  AloRg Hd,., the relevant llne buRdles ef parabolic degree e are giveR by L. ex
Ox(-n'2eÅÄi)[-Bl. aRd M. -- Ox(-"ÅÄ,e-i)[-71. wkere 5 G ffd,,,B = B(i,e) aRd
x == l - fi{. SiRce hi(L\ X M.) = g ar}d hi(M.V & L.) xx R - 2, it fellows th&t the
nttll chamber is defined by Cd,, = {a l fi(a,e) År !!Å}igbiL}. To verify this ls IRdeed a

chamber, we prove that no other hyperplane cuts through Ud,,. This will a}so show
that null chambers have valency one in the graph associated to the configuration of
hyperplanes.
  So suppose to the contrury that a E Hdt,,,nCd,,. Then we have 2)(-1)etai År !!=lgt :1

and ]Åí(-1)e: ai = -le'1 - d' ww k ff Z. If ei = e(• = O, then ((-1)e` + (-1)e:)ai Åq 1 and

in all other cases, ((-1)"i + (-1)e:')ai Åq- O. Using a similar property for e" = 1 - e',

we see
             R- l2el ww i +k Åq II.l},((-i)e' +(-i)e2)at Åq ,,t/li,l=,i'

             n ' I2ei - i - k Åq ll.l}, ((-i)e' + (-i)e;' )at Åq ,, tt. ., i

These are strict inequalities of integers, so after addimag one to the left hand sides
and summing the two inequalities (which are no longer strict), we see n - lel + 1 K
: )ei,,,o 1 == n - iel, a contradiction. o

3.4. The Betti numbers of the moduli space of parabolic Higgs bundles.
Tke result$ ef the previous sectloR shew that the Bettl twmbers of Ar8 depeRd oRly exx

tke geRus g aRd Rumber n ef parabelic pgiRts. IR this sectiog, vve give g formu}a fer
the PoiRcar6 pglynomlal of ArÅí. Such a geiteral calculationi$ itot posslble for Pt(Mg.)

without first specifying a, $o take a == (g,...,".). Using Proposition 3.4 (taking
e=(O,1,...,1)) it is clear thea lies inanull chamber. We could calculate Pt(MO.)
using the Atiyah-Bott procedure for parabolic bundles as in [5], but there is an easier
method which exploits the fact that a lies in a null chamber. First of all, using the
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results of g6.4 in [5], we get

             p,(Mo.) = (i +t2()i"l't(,i),+ t3)2g - ((ii +-tt),2)g 2,,. t2dA•e.

Note that dA,. depends on g (dA,, = dA,,(g = O) + g), but the indexing set {A,e} is
independent of g. Since MO.(g = O) = Åë, this determines the sum and we see that

              p,(M2) = (1 + t2)n-i ((1 + t3)(2gl -- tt2,g)Sl + t)2g)

It follows from Theorem 3.1 that

                   Pt(YV[.P) = Pt(Me.) + 2t"d'e Pt(Md,e),

                                    d,e

where the sum is taken over (d, e) satisfying (4), which, for our choice of a, is simply
ei - lel S d g [g - 1 - g], where [x] is the greatest integer less than x. Setting

j' = 2d + n + lel - 1, then j satisfies:

       n+ 2ei - lel -1 S 1' Åq- 2g +n-3 and j' -n- lel +1 is even.

Also Ad,, =2(g+j') and hd,, == 2g +n-j' -3.
  Fixing ei and jel, for each d, there are (1,"1:.i,) strata given by the choice of e. Thus,

for each i there are qi• =E {.o (";. i) strata (note that qj = 2"-i for j' -År n- 1) and

we see

liii,i), t"d'`Pt(Md•e) = illili., (1,"i :1,) le,-=tiElllel.ii]t"d•cpt(s-'hd•ex)

                 2g+n-3
               = 2 q,•t2(g+i')p,(g2g+n-J"-3x)

                  1'=O

                 n-2 2g-2               = 2 qjt2(g+i')p,(g2g+n-j-3x) + 2 2n-it2(g+n+j-i)p,(g2g-j-2x).

                 J=O j=O
We refer to the last two sums by Si and g2. Using the Binomial Theorem and the
general formula (p. 98 of [13]) Pt(ghX) = (22g - 1) (2gh-2) th + Pt(ShX), we see that

        n-2
 gl = Åí qjt2(g+j) p,(s2g+n-j-3x) = s, ,

        J'=O
 g2 = tz/--o22n-i't2(g+n+j'-i)p,(s2g-J-2x)+2,z"='o22n-i(22g-i)(2gj-. 2)t4g+2n+J'-4

     = S2 + 2n-i(22g - 1)t2(2g+n-2)(1 + t)2g-2,
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where Si and S2 are the sums obtained by removing the tildes from the summands
of Si and S2. According to a result of [16], Pt(ShX) is the coefficient of xh in

                                (1 + xt)2g
                             (1 - x)(1 - xt2)'

This allows us to evaluate Si as follows:

                si = B=e,s (1):.Ii,2 .,,.q.J-t :g,'ii)(-t l)fi);g.t2)),

                s, = B..,,(2.n,ilt,2((lg+-n-.i))((i-+it,))2,g)

But each of these rational functions is analytic at x = oo, so we can use the Cauchy
Residue Formula to evaluate instead at the poles x = 1 and x = 1/t2. Letting Q.(t) =
Åí:.-o2 qkt2k and noticing that Q.(1) = Åí:.-o2 qk = 2"'2(n - 1), we get

          Si == (Q.(t)t2g - 2n-2 (n - 1)t2(2g+n-2)) ((11 +- tt)22)g ,

          s, = 2n-i (t2(g+n-i) + t4g+2n-3 ((2g - i)t - 2g)) ((ii I llig, .

But since (?.(t)(1 - t2) + 2"-it2("'i) = (1 + t2)"-i, it follows that

   P,(N.O) = P,(M2)+g,+g,
           = Pt(M2) + Si + S2 + 2"-i(22g - 1)t2(2g+n-2)(1 + t)2g-2

              (1 + t3)2g(1 + t2)n-i + 2n-it2n+4g-3(l + t)2g[(2g - 1)t - 2g]

                                   (1 - t2)2
                2n-2(n - 1)t2n+4g-4(1 + t)2g

Evaluating

1.

2.

3.

4.

this at t=

     1-t2

- 1 shows that

X(N.O) -

    the Euler c

(n - 1)(n - 2)2n-4

3•2n
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