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RESOLUTIONS OF ORBIFOLD SINGULARITIES AND
REPRESENTATIONS OF THE MCKAY QUIVER

ALEXANDER V. SARDO-INFIRRI

23 January 1995

0. INTRODUCTION

This talk deals with certain moduli spaces X, (depending on a parameter {) which
give partial resolutions of orbifold singularities (of the form C"*/I" for a finite sub-
group I' of GL(n)). These were defined and studied in [SI94], as generalisations
of Kronheimer’s hyper-Kahler gravitational instantons [Kro89] to dimensions higher
than 2. They can be viewed alternatively [SI94] as moduli spaces of stable bun-
dles, as representations moduli of quivers, or as Kahler quotients. For subgroups
of SU(2), Kronheimer [Kro89] showed that they give the minimal resolution of the
singularity when ( is generic.! For subgroups of SU(3), some evidence exists [SI94]
that they coincide with the smooth crepant resolutions of C3/T" whose existence was
predicted by Witten et al. [DHVW85, DHVWS86], and established in the last decade
by Markusevich, Roan and Ito [MOP87, Roa90, Mar93, Roa93, 1t694, Roa94].

In this talk I make a further contribution to the two-dimensional case by showing
that Kronheimer’s result also holds when I' is a cyclic subgroup of GL(2):

Theorem 1. The moduli spaces X¢ coincide, for generic values of (, with the mini-
mal resolution of C?/T', for the case where I is a cyclic subgroup of GL(2).

I will rely heavily on [SI94] for background and for the theorems describing the
moduli X¢. The plan of this paper is as follows. In §1 I make some preliminary
remarks about geometric invariant theory (GIT) quotients. These enter in an essential
way in the contruction of the moduli X, which is given in §2. In §3, I state a theorem
which describes them in terms of toric geometry? in the case where I is a cyclic group.
Finally, in §4 I sketch the proof of theorem 1.

This is an expanded version of a talk given at the Kinosaki Symposium, Kinosaki, Japan; 24-29
October 1994

'Kronheimer actually shows a lot more than this.

*My version of the toric notation is given in Appendix A.

—100—



ALEXANDER V. SARDO-INFIRRI

1. VARIATION OF AFFINE GIT QUOTIENTS

This appendix contains some elementary remarks about Geometric Invariant The-
ory (GIT) quotients of affine varieties, and the way they depend on the linearisation.?

Recall that if X is an affine variety, R = k[X] is its ring of regular functions, and
G a reductive group acting linearly on X, the affine GIT quotient of X by G is the
variety whose ring of regular functions is the G-invariant subring of R:

X//G = Spec R°.

More generally, if { is a character (: G — C* of (¢ (i.e. a linearisation of the trivial
bundle over X), then the GIT quotient of X by G with respect to ( is

X[ G = Proj R[z]C,

where (& acts on the complex variable z, via the character (.
Note that if ¢ is the trivial linearisation (denoted by 0: G — 1) the G-invariant
part of R[z] is nothing but R%[z] so

X /o G = Proj R[z]® = Proj R®[zg] = Spec R® = X//G.

For general (, grading R[z;| by the powers of the variable z;, the degree-zero part
of R[z]® is equal to R®. This shows [Har77, Ex. I1.4.8.1 and Cor. I11.5.16] that
X/ G is projective over X//G, and in particular [Har77, Theorem 11.4.9] that the
map p¢: X/ G = X//o G is proper. This map is induced from the inclusion of the
corresponding semi-stable sets, and is an isomorphism on the equivalence classes of
stable points. In general, the semi-stable set X**(¢) will be Zariski-open in X, so if X
is irreducible, it will be dense if non-empty. If this is the case, p. is an epimorphism
which is one-one over the open set of stable points.
The results are summarized in the following theorem.

Theorem 2. Let G be a reductive group acting linearly on an affine variety X. Then
there are projective epimorphisms X /| G — X[o G which are isomorphisms on the
equivalence classes of stable points.

2. CONSTRUCTION OF THE MODULI X,

In this section, I recall the definition and general properties of the moduli X, [SI94].
Throughout the talk, ' denotes a finite group of order r acting on @ = C" via
[' C GL(n). The (left) regular representation of I' is denoted ¢p: I' = Aut R

R = spang(e,|y € I' with action ¢r(y)es 1= €45).

Define M := Q @¢ Endc R. Let T' act on both factors (on Endg R by conjugation)
and denote by M! the invariant subspace.

3The way general GIT quotients vary is studied in {GS589, Tha93, DH94].
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ORBIFOLD SINGULARITIES AND REPRESENTATIONS OF THE MCKAY QUIVER

Choosing a basis {¢;} for @), an element a € M is represented by an n-tuple
(a1y-..,a,) of endomorphisms of R which satisfy o = ¥°,¢; ® ;. An element o
belongs to the invariant subspace MT iff its components satisfy the equivariance
condition

(2.1) Y do(Vkar = dr(v)ardr(¥) ™", Vk,
i

where ¢(v) is the n x n matrix which gives the action of the element v on @ with
respect to the basis {¢}.
The group GL(R) acts on M, (trivially on @, by conjugation on End R):

(2.2) a; - ga;g~", g € GL(R).

The subgroup C* C GL(R) acts trivially, and one obtains a free action of G :=
GL(R)/C*. The commutator subgroup GL'(R) (i.e. the endomorphisms of R which
commute with the action of T') acts on M' and induces a free action of GT :=
GL'(R)/C".

Define

(23) N = {a € MHCX,’,CX]'] = 0}

The points of N (resp. NT = MP'NAN) consist of n-tuples (resp. equivariant n-tuples)
of commuting endomorphisms, and is acted upon by G (resp. GT).
Denoting by Z the space of characters of G',* one can form the quotients

Xe:=NV) GY, for (€ Z.

Remark. One can identify AT with complex structures on @* x R — Q* which are
invariant under translations on the base and under the action of I'. In this way, X
can be viewed as moduli of (very special) stable bundles [S194, Chapter IV].

Proposition 1 ([S194, Thm.3.4]). If " acts freely outside the origin, then X, = Q/T

as varielies.

It turns out that the only non-stable class in X is the origin, so applying theorem 2
gives the following corollary:

Corollary 1 (Partial Resolutions). When I' acts freely outside the origin, the
quotients X are partial resolutions of the isolated singularity Q/U, i.e. they admit
proper birational maps to QQ/T" which are isomorphisms outside the origin in Q/T.

Remark. Other general properties of X (identification with Kahler quotients, exis-
tence of ALE metrics) are studied in [SI94, Chapter 1V].

17 is an integer lattice of rank equal to the number of irreducible representations of I' minus one.
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3. MODULI FOR ABELIAN GROUPS AND FLOWS ON THE MCKAY QUIVER

A quiver is an oriented graph, possibly with multiple arrows and loops. A repre-
sentation of a quiver is a realization of its diagram of vertices and arrows in some
category: it corresponds to replacing the vertices by objects (e.g. vector spaces) and
the arrowsby morphisms between the objects. If we require the morphisms to satisfy
certain relations between them, we say we have a representation of a quiver with
relations. There is a natural notion of isomorphism of two representations, and one
can thus form representation moduli: many problems in linear algebra® can then be
expressed as representation moduli problems for quivers.

The only quiver I shall be concerned with is the McKay quiver Qr g, which is a
quiver naturally associated to a representation ¢ of a finite group I'. The spaces
X can be viewed as representations moduli of the McKay quiver subject to certain
relations [SI94, Chapter III]. The details will not concern us; it suffices to know that,
applied to the case of abelian groups, this relates X, (via toric geometry) to an n-
dimensional convex polyhedron C,. It turns out that this polyhedron is closely related
to a classical linear programming problem which is known to network optimization
theorists as the “transportation problem”. In order to state the results, I will need to
review some notions regarding the McKay quiver, and regarding flows in networks.

3.1. The McKay Quiver. From now on, I write Q for the McKay quiver Qrpg.
Its vertices Qg label the irreducible representations Ry, ..., R,_; of [' and the arrows
describe how the tensor product of () with each irreducible decomposes into a sum
of irreducibles. Specifically, there are a;; arrows from the vertex i to the vertex j,
where q;; is the non-negative integer appearing in the following decomposition into
irreducibles

(31) Q@R,‘ZEB(IJ','R]'.

In other words, the multiplicities (a;;) form the adjacency matriz of Q.

3.2. The Abelian Case. In the abelian case, there are r = |I'| irreducible represen-
tations Ry, ..., R._; of T, all of dimension one. I therefore identify the vertex set of
Q with I, the dual group to I'. I always identify T with a subgroup of C** C GL(n),
and therefore T' with a product of finite groups Z,,. The group operation is denoted
additively. Let us see an example.

Let I' = us C C* be the group of 5-th roots of unity, acting on C* with weights
w, = 1, wy = 2 and w3 = 3 (this action is denoted symbolically by %(1,2,3)). The
character group T is the additive group Zs of integers modulo 5 and there are arrows
from v to v — w (mod 5) for v € {0,...,4} and w € {1,2,3}. The quiver looks like
that in figure 1 below:

For instance, the so called “four-subspace problem” [Rin80).
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R
\%{

FIGURE 1. The McKay quiver for the action 3(1,2,3).

In general, the McKay quiver for a cyclic group g, acting with weights w,;, ..., w, is
similar. There are r vertices {0,...,7—1} and nr arrows of the form a’ := v — v —w;
(mod r) forve {0,...,r—1}and = 1,...,n.

The McKay quiver for a cyclic group thus comes equipped with an extra structure
in which each arrow is labelled by the (index of the) weight which corresponds to it;
the arrows a for v € {0,...,r — 1} will be called, for short, arrows of weight .

3.3. The Moduli X, as representation moduli. I mentioned earlier that X,
could be identified with representation moduli® of Qr, and that this leads to a com-
plete description of X in the case where I' is abelian. 1 will outline the main steps of
this 1dentification below, and state the theorem which describes X, for the simpler
case of cyclic groups.

Firstly, the space M! can be identified with the space C<* = Map(Q,,C). In other
words, an element a corresponds uniquely to an assignment & of complex numbers
to the arrows of the McKay quiver. The subvariety A" corresponds to assignments
which satisfy certain quadratic relations between the arrows of the form
(3.2) a(at)a(al_y,) — a(al)a(al_, ) =0, for all v,i,j.

v—wy

One might suspect at this point that the description of X, will involve these quadratic
relations. The surprising thing is that it doesn’t.

For a finite set A, denote by Q4 the set of maps A — Q. This is a vectorspace
with a natural basis given by the characteristic functions x, (a € A) which take the
value 1 on the element a and zero elsewhere. )

In the quiver picture, the character group of GL'(R) corresponds to the lattice
Z2°. The character group of GT corresponds to the sublattice Z&° := {¢ € Z< :
ZUEQO C(’U) = 0}

The moduli X, correspond to toric varieties defined by a polyhedron (', C Q",
which is obtained from the McKay quiver and the value of { by a generalisation of
the classical “transportation problem” familiar to network optimization and linear
programming specialists. The important point is that it can be calculated without

5Actually, one has to take representations which satisfy certain relations.
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any reference whatsoever to equations (3.2). In order to describe C¢, I need to
introduce the basic concepts of network flow theory.

3.4. Flows in Networks. Any quiver has a natural map 9: Q%' — Q%°, defined

by
Af)w):= 3 flay— 3 fla)
a€ln(v) v€Out(v)

This can be thought of as follows: imagine that the vertices Qg represent the location
where a certain comodity is produced or consumed, and the arrows between them
the itineraries by which the commodity can be transported. For any flow f of com-
modities (i.e. assignment of integers to the arrows Q,) the quantity df represents
the net excess of goods which results at each given location (i.e. vertex).

Given an element ( € Z% one can ask which non-negative flows f satisfy the equa-
tion df = (. The answer is a convex polyhedron F, called the solution polyhedron
for the transportation problem on Q.7 The polyhedron C is the projection of this
polyhedron by the map n: Q< — Q" which sends the basis vectors corresponding
to the arrows of weight ¢ (x.i,v € Qo) to the i-th basis vector e; of Q*. We will call
C, the (-solution polyhedron for the generalised transportation problem for (Q, 7).

The theorem which describes X, precisely is the following one:

Theorem 3. Let T be the cyclic group of order r acting on QQ with weights (w, ..., w,).
Then the character group Z of GT is given by Z&°. For any ( € Z&°, the moduli
space X is the toric variety TMC< where M is the sublattice of Z" defined by

1
M = {m € Z"|;(w1,...,wn)-m c Z},

and C; = n(Fy) is the (-solution polyhedron for the generalised transportation problem
on the McKay quiver.

Remark. In Chapter V of [SI94] the polyhedra C, are described in more detail. In
particular, a recipe is given to determine the number of extreme points and singular-
ities of all the C, at once.

The polyhedron C; for the value { = (—1,—1,—1,—1,4) is shown in figure 2. The
corresponding trees, flows and coordinates of the extreme points appear in figure 3.

It is immediately apparent from figure 2 that X, has a singularity at the extreme
point (1,3,1): the tangent cone there has four generators. The other extreme points
are the intersection of three faces: in order to determine whether they are in fact
singular or not one must check whether the primitive generators in M C Z of the
tangent cone actually generate M. In this case it turns out that they do, so they are
smooth points. The moduli space X in this case is therefore a partial resolution,
with a remaining singularity of the type “cone over a rational double point”.

"For obvious “conservation” reasons, it is non-empty only if 3~ .o ((v) =0.
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The moduli space X in figure 4 on the other hand is easily checked to be non-
singular: it is a full resolution of the singularity $(1,2,3).

FIGURE 4. C, for 1(1,2,3), ¢ = (9,8, —3,—2,—12), giving a smooth resolution.

5

FIGURE 5. Extreme flows for %(1,2,3), ¢=1(9,8,-3,-2,—-12).

Another example (this time for I' C SU(3)) is shown in figure 6. In this case,
the polyhedron is again non-singular. In fact, using a computational method given
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in [SI94, Chapter V], one shows that, for this action, X, is non-singular (and further-
more crepant) for any generic value of (.

1 4 6

(t--, ==¢ =--1, (-9, 2, 2, -13, 4, 4, 2, 2, 2, 2, 2}}
11 11 11

0

o

FIGURE 6. Smooth Crepant Resolution for 117(1,4,6_)

4. CycLic SUBGROUPS OF GL(2)

4.1. Orbifold Singularities. Let I' = y,, the cyclic group of order r, acting on C*
diagonally with weights w;,...,w,. Let

1
M:={me€ Z“[;(wl,...,wn) -m € L},
and denote by Cy the first quadrant in Q® = Mg®. Dual to these are
1
N = an —+ Z—(IUI, ey wn),
r

and the first quadrant o = Cy in Q*" = Ng (see Appendix A for the notation).
The moduli space Xj is given in toric notation by X, = TMCo — T'ne,. This is of
course isomorphic to the quotient C"/T'.

8Note that this is compatible with the definition of C;; given previously.
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4.2. Minimal Resolutions in Dimension 2. In two dimensions, the objects above
can be related as follows. Let L: Q* — Q? be given r times the rotation of the plane
by 7/2,i.e. L(z,y) = (=ry,rz). Then, identifying Z* with Z** in the standard way,
we have

M=LNYCZ*CNcCQ.

The minimal resolution of C?/T" is obtained by subdividing o in the following
way [Oda88, Prop. 1.19]. Let © C o denote the convex hull of o N N \ {0}. Denote
by 60 the boundary of ©. Imagine traveling along 60 from (0, +o0) to (4+00,0) and
denote by lo, [y, ..., [, the lattice points of IV encountered along the way, in that
order (thus ext® = {lo,...,l,41}, with the points indexed according to their order
along 60). Let ¥ denote the fan obtained by subdividing o by the rays determined
by the vectors l; for 7 = 1 to 5.° Then the minimal resolution of X = C?/T is

0
((‘A))

FIGURE 7. The minimal resolution of $(1,2) constructed by toric means.

Using the isomorphism L, one can translate the statement above into the following
lemma.

Lemma 1. Let C) = Q¢ x Q¢ denote the second quadrant in Q?, and let ©' denote
the conver hull of CLOA M\ {0}. Let v; := L(l;) fori=0,...,s+1. Thenvg,...,vs
are the lattice points of M one encounters as one travels along the boundary 60’ of
O’ from (—00,0) to (0, +00).

9The rays corresponding to l; and [, need not be considered since they are nothing but the
generators of o.
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Proof. Follows form the fact that Cy, NV and © get mapped respectively to Cj, M
and O by L. O

o (0,5)

(-5.00 (V)

FIGURE 8. A picture of @' for the minimal resolution of 1(1,2).

4.3. Proving that X is the minimal resolutions for generic {. Let ¥, denote
the fan determined by the polyhedron C¢ C Mg. In dimension 2, the fan %, is
described by the following lemma, whose proof is again obvious.

Lemma 2. Let vg,...,varl denote the primitive vectors (in M), representing the
directions of the edges of the boundary of C¢ as one travels along it from (+00,0) to
(0,+400) (note that this orientation is opposite to the orientation of 60 ). Then ¥ is
the subdivision of ¢ by the rays corresponding to the vectors [$ := L_l(vf) e N.

The following proposition implies Theorem 1 and also the fact that the X, are
(partial) toric blowups of C?/T for any (.

Proposition 2. Let n = 2 and let ¥ denote the fan corresponding to the minimal
resolution of C*/T', as described above. Then, for any ¢, the fan ¥ is a subdivision
of E¢ and the two fans coincide for generic (.

Since it 1s slightly messy, a full proof of the proposition will be postponed till a
coming paper; I will content myself here with a brief sketch.

By lemmas 1 and 2, it is sufficient to prove that

(1) the set {v§, ... ,vf+1} is a subset of ext @ = {1g,...,vs41} and,

(2) the two sets coincide for generic (.

—110—
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4.3.1. Sketch proof of (1) — Part 1. Orient the boundary of C; from (400,0) to
(0, +00), and let v be a generator for one the boundary segments, chosen so that v
is primitive in M. Because C; is convex and contained in Cy, we have v € Cj \ {0}.
Hence, it only remains to show that v € ext ©'.

For this, recall that C; is the image of F;, C Q% under the projection 7: Q% — Q2.
Suppose that z is the extreme point of C; out of which v emanates and let f € F,
be any flow such that 7n(f) = z (and df = ). Then v must be the image under 7 of
a flow g satisfying dg = 0 (and which must be non-negative outside supp f). At this
point, I will pause to explain the notion of a simple flow. The rest of the proof will
consist in proving that ¢ must be simple, and this will imply that v € ext ©’.

4.3.2. Simple flows. Any flow g such that d¢ = 0 must have a support which is a
union of cycles. More precisely, it is possible to decompose ¢ into a sum of non-zero
flows ¢* which satisfy d¢* = 0.

Definition. Two flows h, h’ are called conformal if they do not take values of opposite

signs'® on any arrow.

If one insists in a conformal decomposition, namely one in which the ¢* are confor-
mal to g, then one obtains a finite number of flows g* which cannot be decomposed
(conformally) any further. We call the resulting flows simple flows. There may in
general be many conformal decompositions of g into simple flows, but that will not
concern us.

4.3.3. Sketch Proof of (1) — Part 2.
Claim. The flow g is simple.

Proof. Decompose ¢ into a positive integral linear combination of conformal non-zero
simple flows g; such that d¢* = 0. Since all the g; can be added to f without making
it negative, F; contains the convex polytope

{f+2_Xglo <X <1}
Applying 7 and writing w; := 7(g;), one deduces that C; must contain the convex
polytope

{z 4D w0 < X <13,
which itself contains the element = + v. If all the u; are not equal, then the inclusion
above would imply that = + v is in the interior of C'¢, contradicting the assumption
that v is an edge of C,. Hence all the simple flows appearing in the decomposition
of ¢ have the same image — say u — under 7 and v must be a multiple of w. But
since v is assumed to be a primitive vector, this multiple must be one and there can
be only one such simple flow. Hence the flow ¢ is itself was already simple. OO

10The sign of zero is considered neutral, i.e. not opposite to anything.
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The proof of (1) is now completed by the following lemma.

Lemma 3. Let g be a simple flow such that dg = 0 and w(g) € C;. Then n(g) €
ext ©'.

Proof. (Sketch) Suppose that v° := 7(g) ¢ ext ©’. Since two adjacent lattice points
of M on the boundary of © form a basis of M, there exist v! and v* in ext ® such
that v = v! 4+ v%. We know that v°,v!, v? belong to the lattice M. There must be a
flow ¢' which is conformal to ¢ and such that 7(g') = v'. Thus g admits a conformal
decomposition, so cannot be simple.

This completes the sketch of the proof of (1).

4.3.4. Sketch Proof of (2). Let z be an extreme point of C¢, where the ingoing edge
of §C¢ (i-e. to the left of z) is v* and the outgoing edge (to the right of ) is some
vector v € ext ©'. We show that if v is anything but v'*!, then ( is not generic.

Let f € F; be a representative for z, i.e. a flow such that x(f) = z. This f
can be chosen so that supp f forms a spanning tree in the McKay quiver by [S194,
Lemma V.3.24]. Since z is an extreme point of C¢, there exists a simple flow g* such
that d¢' = 0, m(¢*) = v' and f + ¢' is not admissible. This means that f(a) = 0 for
some arrow a on which ¢' is negative. In fact, f must vanish on exactly one such
arrow, because if not, some component of { must be zero, contradicting the genericity
assumption. The flow f + ¢' then, is negative on exactly one arrow. Therefore there

exists a simple flow g such that =(f 4+ ¢g) € 6C;. But the fact that g is simple again

. .
. . . .
. . . .
. . .
. 0,5 . .
. . . .
non-simple__ * CC * *
. 74 . . .
. ) s ‘ 2 . .
‘:;’::’ - 'si’mple _ R
mr+e') n(f) f-g )

FIGURE 9. The situation at the first extreme point of C, for the case é(l, 2).

forces m(g¢) to coincide with v**1 (see figure 9). 1

—112—-
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APPENDIX A. TORIC VARIETIES

Toric varieties provide a dictionary between compactifications of n-dimensional
complex algebraic tori and the convex geometry of polyhedral sets in Q™. There are
two dual approaches to studying toric varieties and many different notations. The
purpose of this appendix is to give an introduction in notation which I believe is
convenient (it’s also largely compatible with the notation in [Oda88]). Standard ref-
erences for proofs and further details are the survey article [Dan78], the introductory
book [Ful93], or the references [0da83, KKMSD73].

Let M denote an integer lattice of rank n and N its dual lattice N = Homgz(M, Z).

A.1. Affine Toric Varieties. Every complex algebraic torus has a group of char-
acters which is an integer lattice M. The torus can be written as

T™ .= SpecC[M],

which, as a set of (closed) points, can be thought of as the group homomorphisms
Homgz(M,C*). For convenience, I also introduce the dual notation T := N ®zC" =
™.

Let S be a finitely generated semi-group that generates the lattice M as a group.
Then its group algebra C[S] is finitely generated and the inclusion C[S] — C[M]
induces an equivariant affine embedding of the torus T™:

(A.1) ™ — TS := Spec C[S).

In fact, since S generates M, TM acts freely on T° with a dense orbit, i.e. TS is an
equivariant compactification of 7M. A variety is called a toric variety if it has an
action of a complex algebraic torus with a dense orbit; the variety T is called the
affine toric variety determined by S. Thus one has a correspondence

Finitely Generated Semi-Groups — (Abstract) Affine Toric Varieties
S — Ts.

The (closed) points of the scheme Spec C[S] correspond to maximal ideals of C[S5],
and hence to (kernels of ) C-algebra homomorphisms C[S] — C. Any such morphism
is induced by a semi-group homomorphism from (S5, +) to the multiplicative semi-
group of complex numbers (C,-). Thus, on the point level,

Spec C[S] = Homg group (5, C).
Giving generators my, ..., m, for the semi-group S subject to relations

Zaijmj = Zbijmj, r=1,...,k
J 7

—113—
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for a;;,b;; € Z, identifies the points of Spec C[S] with the subvariety of C” given by
the monomial equations

(A.2) X =TIX), i=1,....k
J J

In other words (A.2) determines an ideal of C[X},...,X;] and Spec C[S] just corre-
sponds to the subvariety defined by this ideal. From this description it is easy to see
the following criterion for the smoothness of T:

Lemma 4. The affine toric variety T® is smooth if and only if S is a free semi-group.

When the semi-group S is saturated (i.e. ns € S,n >0 => s € S), then C[S] is
normal, 1.e. integrally closed in its field of fractions, and we get a normal affine variety
T3, in most cases this is taken to be part of the definition of a toric variety. The
reason is that the condition of being saturated allows one to obtain such semi-groups
by intersecting the lattice M with the convex polyhedral cone C' C Mg generated by
the elements of S [0da88, Prop. 1.1]. This gives a functor

Convex Rational Polyhedral Cones — (Normal) Affine Toric Varieties
C — TCNM

The toric variety T™ is smooth if and only if C' can be generated by a basis of M.
Such cones will be called basic or non-singular with respect to M.

A.2. General Toric Varieties. In fact, because of the contravariant nature of the
above functor, it is more common to consider the dual picture in Ng. The dual cone
to C C Mg is the cone

CV:={n € Ng:(n,m)>0,Vm e C}.
Taking the dual again gives back the original cone. We define in this way a covariant
functor
Convex Rational Polyhedral Cones in N9 — Affine Toric Varieties
o — Trny = To'nM,
This functor satisfies the following key property.
Lemma 5. Ifr < o, t.e. if 7 is a face of o (given, say, by taking the intersection with

the hyper-plane determined by an element m € M) then T, is naturally an open
subset of 'y, (defined by the condition u(m) # 0 for u € Homy yreup(c¥ N M,C)).

In this way, one can glue together collections of cones in Ng with appropriate
compatibility conditions under the operations of intersection and restricting to a
face: these collections are called fans. The compatibility conditions required for the
cones of a fan ¥ are

(1) Every face of a cone in ¥ is also a cone in ¥.
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(2) The intersection of two cones in ¥ is a face of each.

These conditions ensure that one can glue together any T, and T, along T,n,r,
since the latter is an open set of each, and furthermore, that the diagonal map
Toror — T, x Ty, is a closed embeddmg The result 1s that we obtain a normal
irreducible toric variety Ty = Tz which is Hausdorff as an analytic space.

We denote by |E| € Ng the union of the cones of ¥ and call it the support of X.

A.3. Toric Morphisms.

Definition. A map of fans ¢: (N',¥') — (N, X) is a Z-linear homomorphism ¢: N’ —

N whose scalar extension ¢g: Ng — Ng satisfies the following property: for each
o' € ¥, there exists ¢ € ¥ such that ¢g(o’) C 0.

Lemma 6 ([0da88, Thm. 1.13]). A map of fans ¢: N' — N determines a. mor-
phism of toric varieties Ty: Tnr 50 — Tnyx which is equivariant with respect to the
actions of Tnr and Ty

Lemma 6 provides a dictionary for studying maps between toric varieties by study-
ing the corresponding linear maps of lattices.

Proposition 3 ([Oda88, Thm. 1.15]). The map
Td’: TN’,E’ — TN,E
is proper if and only if
¢~ (1)) = [Z'}.

Taking the second lattice to be zero, we see that a toric variety T vz is compact
if and only if |E'| = Ng, in which case the fan ¥’ itself is called complete. Let us see
some examples of toric morphisms.

A.3.1. Finite Quotients. Consider the case when N’ is a Z-submodule of N of finite
index and ¥’ = ¥. We write X’ and X for the corresponding varieties:

Lemma 7 ([Oda88, Cor. 1.16, p.22],[Ful93, §2.2]). With the data as above, we have
X = X'T,

i.e. X' — X coincides with the projection of X' with respect to natural action of the
finite group

['= N/N" = Homg(M'/M,C") = ker[Ty: — Tx].
Heve M' is the dual of N' and is naturally an over-lattice of M. There 1s a unique
pairing M' x N — Q/Z which extends the pairings M x N — Z and M' x N' — Z;

this gives rise to a canonical pairing

M'/M x N/N' = Q/Z,
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which we compose with the homomorphism Q/Z I ) o identify I' with
Homz(M'/M,C*). If we identify v € [ with the morphism n,: M' — Q/Z such that
n (M) C Z, the action is given by

(A.3) v - &'(m') = exp(27i(n.,m'))z’'(m'),
fora' € Ty

Example 1. Take the cone ¢ generated by the vectors n; = (1,0) and n, = (1,2) in
N = 7. This is non-basic, since det(!9) = 2. The dual cone ¢ in M is generated
by the column vectors m; = (0,1)T and m; = (2,—1)T. These do not generate
M N oY as a semi-group: a third generator ms = (1,0)7 is needed. The relation
my + my = 2m3 shows that TN,G is isomorphic to the singularity X; X, = X2 in C3.

If we consider N' = Zn, @ Zn, C N, then M' = %Zml &) %ng; the semi-group
M'noY is generated by the basis mj = %ml and m), = %m2 of M';and X' =T, =
Spec C[ X1, X}] = C2. The relations

!
my = 2m1
!
mg = 2m,
1 1
mg = m; +m,

show that the quotient map X’ — X is induced by

C? — 3
X, = X*?
X! 1
( X}) - X=X,
2 X3 = X{Xé

and this exhibits the variety X, X; = X2 as the quotient of C? by Z, = N/N'. The
generator v = (1,1) acts, according to (A.3) by

vX1 = exp(2mi(1,1) (1)) X] = —X;
7X} = exp(2mi(1,1) ({5 )) X = =X}

Note that X’* X!? and X!X} are indeed generators of the sub-ring of Z,-invariant
polynomials in C[X], X}, X}].

Example 2 (Cyclic singularities). More generally, suppose I = 4, a cyclic group
of order r, acting with weights w;,...,w,. Let

1
M :={m e Z"|-(wy,...,w,) -m € Z},
N
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and denote by Cj the first quadrant in Q™ = Mg. Dual to these are
*7 1
N =Z" + Z—(wy,...,w,),
T

and the first quadrant 0 = Cy in Q** = Ng. Then the singularity Xo = C*/T" is
isomorphic to TM¢_If ¥4 denotes the fan in N consisting of the cone Cy and all its’
faces, then Xo = Tn 5.

A.3.2. Resolutions. Instead of keeping the fan fixed and refining the lattice, we can
keep the lattice fixed and subdivide the fan, namely replace ¥ by a fan ¥’ in such
a way that the cones of ¥ are unions of cones in ¥'. Proposition 3 implies that the
morphism X' := Tyy: — X := Tny is proper, and since it is an isomorphism on the
big torus T o = Ty, it is actually birational as well.

Example 3. Take X as in example 1, and split ¢ into two cones by drawing the
half-line from the origin through the point (1,1). This gives a variety X’ which is
non-singular and is the resolution of X. The map X' — X blows down the curve
corresponding to the one-dimensional cone generated by (1,1).

In §4 I describe a well-known procedure for computing the minimal resolution of
cyclic abelian singularities in dimension 2 (and then show that it coincides with X¢).

A.4. Toric Varieties and Convex Polyhedra. Let us go back to the original
vectorspace Mg. Any convex polyhedron P C Mg of full dimension determines a
unique fan Y p and we define T-M’P:zTN,EP. The cones in the fan £p are the duals
in Ng of the tangent cones to P at its faces F'. If F' is a face of P then the tangent
cone to P at F' is the convex cone

TeP =Q(P-F)={Mp—f):pe P, fe F,FAecQ,}, forany f € intF.

When F = {p} € ext P, the tangent cone of P at p coincides with the usual notion.
It is easy to check that in fact, the fan ¥ p consists of the duals of the tangent cones
to P at its extreme points along with all their faces. From this it follows that if
P = (' is a convex cone in Mg then TM:€ = TCNM,

Remark. The correspondence between polyhedra and varieties is many-to-one: mul-
tiples and translates of the same polyhedron determine the same fan; the extra data
specified by P turns out to correspond to an ample TM-equivariant line bundle
LP — TP [0Oda88]. (Actually, only polyhedra whose vertices are integral points
of M give rise to genuine line bundles: rational polyhedra can however be viewed as
formal fractional powers of line bundles.)

—117—

18



ORBIFOLD SINGULARITIES AND REPRESENTATIONS OF THE MCKAY QUIVER

A.5. The Proj Construction. In fact, there is a direct construction of T™F which
avoids introducing fans and piecewise linear functions.
Given a polyhedron P C Mg, consider the lattice M := Z x M and the polyhedral

cone CP C MQ associated to P, 1.e. the closure of the cone on P:
CP:=Q5({1] x P) C Mg =Q x M.

The group algebra of the corresponding semi-group is C[CP N M] and is a finitely
generated graded C-algebra, where the grading is induced by the first coordinate.
Finally, define

(A.4) TMF .= Proj C[C P N M].

If P 1s a convex cone, this notation is compatible with the one originally defined for
cones. Also, the line bundle L? is nothing but O(1).
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