SOME BOUNDEDNESS THEOREMS AND THEIR APPLICATIONS

VALERY ALEXEEV

1. QUESTIONS

1.1. For the most part, we are working over the field \mathbb{C} of complex numbers.

Fact (A). The class of *n*-dimensional Fano manifolds, i.e. manifolds with ample $-K_X$, is bounded (Kollár – Miyaoka – Mori).

Fact (B). The class of *n*-dimensional manifolds of general type with ample K_X is bounded and $K_X^2 \leq C$ (by Matsusaka's Big Theorem).

Fact (C). The class of *n*-dimensional manifolds of general type with ample K_X and $K_X^2 = C$ is bounded.

Definition 1.2. Let k be a field, C be a class of projective schemes /k. One says that C is bounded if there exists a morphism of schemes $\mathcal{X} \xrightarrow{F} \mathcal{S}$ such that

- (1) S has finite type,
- (2) F is projective,
- (3) all elements of C appear as some of the closed fibers of F (not necessarily in a one-to-one way and not necessarily all fibers are from C).

1.3. Let X be a normal variety, $i : U \hookrightarrow X$ nonsingular locus. Define $\mathcal{O}(K_X) := i_*\mathcal{O}_U(K_U), \mathcal{O}(nK_X) := i_*\mathcal{O}_U(nK_U).$

Question 1. Assume that $\mathcal{O}(nK_X)$ is an ample line bundle for some $n \in \mathbb{Z}$. Do (A) and (B) still hold? The answer is NO.

Example 1.4. For $G \subset PGL(2,k)$ finite, $X = \mathbb{P}^2/G$ is Fano, i.e. K_X is ample. Therefore, there are infinitely many types of Fanos with quotient singularities.

Example 1.5 (Blache). There exists an infinite sequence X_n of surfaces with quotient singularities and ample K_X such that

(1)
$$K_{X_n}^2 \uparrow\uparrow,$$

(2) $\lim_{n\to\infty} K_{X_n}^2 = 1.$

So (B) also fails.

Question 2. What are the natural conditions on the singularities of $X \in C$, under which (A), (B) and (C) still hold? We will answer this question in dimension 2, conjecture in dimension $n \ge 3$.

The most basic question here is to find good "limits" of surfaces of general type. So, let $\mathcal{X} \longrightarrow \mathcal{S} - 0$ be a one-parameter family over a punctured disk, so that every fiber is a nonsingular surface with ample K_X and $K_X^2 = C$.

Completely in line with the construction for the case of curves, we first apply the semistable reduction theorem. After a base change $S' \to S$ we obtain a nonsingular 3-fold such that the central fiber over $0 \in S'$ is reduced and has only normal crossings. At this point apply the Mori theory. The canonical model of this 3-fold over S' is the good family that we are looking for.

The central fiber has ample K_X , $K_X^2 = C$ and semi-log canonical singularities (which may be worse than quotient). X has normal crossings in codimension 1.

Let $X^{\nu} = \bigcup X_i \longrightarrow X$ be a normalization, $B_i \subset X_i$ be the double curves. Then

$$K_X^2 = \sum (K_{X_i} + B_i)^2.$$

So, if we knew something about the set $\{(K_{X_i} + B_i)^2\}$ and the boundedness of $\{(X_i, B_i)\}$, this would imply the boundedness of $\{X\}$. B_i is called the boundary.

Application 2 (Alexeev). In a similar vein, it is possible to construct the moduli of pairs (X, B), with $B = \sum_{i=1}^{n} B_i$ reduced divisor on X and ample K + B. This is a generalization of the moduli space $M_{g,n}$ of n-pointed curves to the case of surfaces. Moreover, instead of "absolute" surfaces, one can consider maps to a fixed projective scheme, with K + B only relatively ample.

Application 3 (Hurwitz, Xiao, Kollár). Bounds for automorphism groups.

Let X be a manifold with ample K_X . By Iitaka, $G = \operatorname{Aut} X$ is finite. Is there a constant $c = c(\dim X)$ such that

$$|\operatorname{Aut} X| \leq c \cdot K_X^{\dim X}$$
?

Let $X \xrightarrow{\pi} X/G = Y$ be the quotient morphism, Y has quotient singularities.

$$K_X = \pi^* K_Y + \sum (m_i - 1) D_i$$

$$K_X = \pi^* (K_Y + \sum \frac{m_i - 1}{m_i} B_i)$$

$$K_X^n = |\operatorname{Aut} X| \cdot (K_Y + \sum \frac{m_i - 1}{m_i} B_i)^n = |\operatorname{Aut} X| \cdot (K_Y + B)^n$$

$$|AutX| = \frac{K_X^n}{(K_Y + B)^n}$$

If $(K_Y + B)^n \ge 1/c$ then we are done.

Application 4 (Fujita, Kawamata, Nakayama; Kollár, Oguiso-Peternell). Elliptic 3-folds.

Let $X \xrightarrow{\pi} Z$ be a fibration with a general fiber which is an elliptic curve. Then (perhaps, after a birational modification) $K_X = \pi^*(K_Z + B)$, $h^0(nK_X) = h^0([n(K_Z + B)])$. Here $B = \sum b_i B_i$, $B_i \subset Z$ is a Q- divisor on Z,

$$b_i \in \{\frac{1}{12}, \frac{2}{12}, \dots, \frac{11}{12}, 1 - \frac{1}{n} | n \in \mathbb{N} \}.$$

Coefficients 1 - 1/n correspond to multiple fibers.

If $K_X \equiv 0$ (f.e. X is a Calabi-Yau manifold) then $K_Z + B \equiv 0$. The boundedness of (Z, B) in this case was used by K.Oguiso and Peternell to prove that there are only finitely many elliptic fibrations on a CY 3-fold of general type.

If the Kodaira k(X) = 2 then $k(K_Z + B) = 2$. Kollár proved that if there exists a universal bound on $(K + B)^2$ for ample $(K_Z + B)$, then there exists a universal constant N > 0 such that $h^0(NK_X) \neq 0$.

2. RESULTS

2.1. Conclusions from above the discussion.

- (1) Instead of the canonical divisor K_X , we need to consider a "log canonical" divisor $K_X + B = K_X + \sum b_j B_j$, $B_j \subset X$. Coefficients $b_j \in \mathcal{A} \subset [0, 1]$ should, perhaps, be not arbitrary but satisfy additional conditions.
- (2) The set $\{(K_X + B)^2\}$ is of special interest.

2.2. Singularities.

2.1. Let X be normal, $f: Y \longrightarrow X$ be a desingularization. Look at the formula

$$K_Y + f^{-1}B + \sum F_i = f^*(K_Y + B) + \sum a_i F_i$$

in which F_i are exceptional divisors. The coefficients a_i are called log discrepancies. We can even assume X to be only (S_2) and Gorenstein in codimension 1, with $B_i \not\subset \text{Sing } X$.

Then either for all resolutions of singularities all $a_i \ge 0$, or $\inf_{Y \to X} a_i = -\infty$.

Definition 2.2. One says that the pair (X, B) is

- (1) log canonical if $a_i \ge 0, b_j \le 1$,
- (2) Kawamata log terminal if $a_i > 0, b_j < 1$,
- (3) canonical if $a_i \ge 0, b_j \le 0$,
- (4) terminal if $a_i \geq 0, b_j < 0$,
- (5) ε -log canonical if $a_i \geq \varepsilon \geq 0, b_i \leq 1 \varepsilon$,
- (6) ε -log terminal if $a_i > \varepsilon > 0, b_i < 1 \varepsilon$.

2.3. It is well known that the quotient singularities are (Kawamata) log terminal.

2.3. Theorems.

2.4. In what follows, dim X = 2, k = k, char $k \ge 0$.

Theorem 2.5. (A) holds for ε -log terminal. Moreover, $-(K_X+B)$ may be assumed to be only nef, modulo trivial exceptions.

Theorem 2.6. (B) holds for ε -log terminal if $\mathcal{A} = \{b_j\}$ satisfies the descending chain condition.

Definition 2.7. $\mathcal{A} \subset [0, 1]$ satisfies D.C.C. if any sequence $x_i \in \mathcal{A}$ with $x_i \parallel$ is finite.

Theorem 2.8. (C) holds for semi-log canonical singularities if $\mathcal{A} = \{b_j\}$ satisfies the descending chain condition. Moreover, $\{(K_X + B)^2\}$ also satisfies D.C.C.

2.9. All conditions in the theorems above are sharp.

3. On the proofs

3.1. There is a standard method for proving boundedness (Matsusaka, Kollár-Matsusaka). It basically says that every time when every variety in the class C has a polarization, i.e. an ample Cartier divisor H, and we can bound $H^{\dim X}$ and $H^{\dim X-1}K_X$, the class is bounded.

The main difficulty is that in our situation we can take $H = \pm N K_X$ but N cannot be bounded locally, because log terminal singularities can have arbitrarily large index.

In the case of non-positive K_X it turns out that to bound the index N of X it is sufficient to bound the rank of the Picard group of the minimal desingularization \tilde{X} .

In the case of positive K_X we use a very different method, we prove boundedness by obtaining a contradiction, applying the following

Lemma 3.2. If for any infinite sequences $\{X_i \in C\}$ there exist an infinite subsequence $\{X_{i_k}\}$ which is bounded, then the class C is bounded.

3.1. Higher dimensions. .

Conjecture 3.3. The direct analogs of theorems 2.5, 2.6, 2.8 hold in arbitrary dimensions.

3.4. The only known results in this direction are:

- (1) ε -log terminal toric Fanos ($B = \emptyset$) are bounded (Borisovs),
- (2) 1-log terminal Fano 3-folds ($B = \emptyset$) are bounded (Kawamata: \mathbb{Q} -factorial case, Miyaoka-Mori-Kollár: general case).

References

- 1. V. Alexeev, Boundedness and K^2 for log surfaces, Int. J. Math. 5 (1994), no. 6.
- 2. _____, Moduli spaces $M_{g,n}(W)$ for surfaces, Preprint (1994).
- 3. R. Blache, An example concerning Alexeev's boundedness results on log surfaces, Preprint (1994).
- 4. A.A. Borisov and L.A. Borisov, Singular toric Fano varieties, Matem. Sbornik 2(1992).
- 5. S. Iitaka, Algebraic geometry. An introduction to birational geometry of algebraic varieties, Graduate Texts in Mathematics, vol. 76, Springer-Verlag New York, Inc., 1982.
- 6. K. Oguiso and T. Peternell, An observation on the nef cone of Calabi-Yau threefold of general type, Preprint (1994).
- 7. Y. Kawamata, Boundedness of Q-Fano threefolds, Contemp. Math. (1989).
- 8. J. Kollár, Log Surfaces of General Type: Some Conjectures, Contemporary Math. (1992).
- 9. J. Kollár, Y. Miyaoka and S. Mori Rational curves on Fano varieties.
- 10. J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299-338.