
SOME BOUNDEDNESS THEOREMS AND THEIR
                 APPLICATIONS

                          VALERY ALEXEEV

                            1. QuEsTIoNs

1.1. For the most part, we are working over the field C of complex numbers.

Fact (A). The class of n-dimensional Fano manifolds, i.e. manifolds with ample

- Kx, is bounded (Kol16r - Miyaoka - Mori).

Fact (B). The class of n-dimensional manifolds of general type with ample Kx is
bounded and Kk S C (by Matsusaka's Big Theorem).

Fact (C). The class of n-dimensional manifolds of general type with ample Iix
and Kk = C is bounded.

Definition 1.2. Let k be a field, C be a class of projective schemes /k. One says
that e is bounded if there exists a morphism of schemes X -F- S such that

   (1) S has finite type,
   (2) F is projective,
   (3) all elements of C appear as some of the closed fibers of F (not necessarily in
      a one-to-one way and not necessarily all fibers are from C).

1.3. Let X be a normal variety, i : U g X nonsingular locus. Define O(It'x) :=
i.Ou(Is'u),O(nlix) := i.Ou(nliu).

(?uestion 1. Assume that O(nKx) is an ample line bundle for some n E Z. Do (A)
and (B) still hold? The answer is NO.

Example 1.4. For G c I]'GL(2,k) finite, X = P2/G is Fano, i.e. Kx is ample.
Therefore, there are infinitely many types of Fanos with quotient singularities.

Example 1.5 (Blache). There exists an infinite sequence X. ofsurfaces with quo-
tient singularities and ample Kx such that

   (1) IiR'. 11'
   (2) IiMn-.ro IN'k'. = 1'

So (B) also fails.

([?tiestion 2. VSvJliat a,re the natural conditions on the singularities of X' E C, under

which (A), (B) and (C) still hold? VSvJe will answer this question in dimension 2,

conject,ure in dimension n 2 3.
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Apptication 1 (Kolldr - Shepherd-Barron). Compactification ofthe moduli space
of surfaces of general type.
  The most basic question here is to find good "limits" of surfaces of general type.

So, let iY - 5-O be a one-parameter fami}y over a punctured disk, so that every
fiber is a nonsingular surface with ample Kx and ItT Rt = C.

  Completely in line with the construction for the case of curves, we first apply the

semistable reduction theorem. After a base change S' . S we obtain a nonsingular
3-fold such that the central fiber over O E `S' is reduced and has only normal cross-
ings. At this point apply the Mori theory. The canonical model of this 3-fold over
S' is the good family that we are looking for.
  The central fiber has ample Iix, It'k = C a,nd semi-log canonical singularities
(which may be worse than quotient). X has normal crossings in codimension 1.
  Let XU = UXi -- X be a normalization, Bi c Xi be the double curves. Then

                          k"ft = 2(k'x, + Bi)2.

  So, if we knew something about the set {(Kx, + Bi)2} and the boundedness of
{(Xi, Bi)}, this would imply the boundedness of {X}. Bi is called the boundary.

Application 2 (Alexeev). In a similar vein, it is possible to construct the moduli of
pairs (X,B), with B = Z):•., Bi reduced divisor on X and ample K + B. This is a
generalization of the moduli space Mg,. of n-pointed curves to the case of surfaces.
Moreover, instead of "absolute" surfaces, one can consider maps to a fixed projective
scheme, with Ii + B only relatively ample.

Application 3 (Hurwitz, Xiao, Kolla'r). Bounds for automorphism groups.
  Let X be a manifold with ample Kx. By Iitaka, G = AutX is finite. Is there a
constant c = c(dimX) such that

                          lAut Xl s c• It'1imx?

  Let X -T- X/G = Y be the quotient morphism, Y has quotient singularities.

                       Is'x = T'Ky + 2])(mi - 1)Di

Kx = T'(Ky +2 mi-1      Bi)
mi

Ix' :- = IAut XI •(Ky +2 mi-1      B,)Ti = lAut XI •(Iiy +B)n
nl•i

IAutXl =
ItT :.

(Ky + B)n

If (Ix'}r + B)n }l 1/c then we are done.
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Applica,tion 4 (Fu]'ita, Kawamata, Nak'ayamai KollaCr, Ogtti,so-I)eternell). Elliptic 3-
folds.
  Let X --L+ Z be a fibration with a general fiber which is an elliptic curve, Then

(perhap$, afteyab}ratioi}al modlfiÅíatioi" ffx = rr"(A'z+B),hg(nKx) = ftP([n(Kz+
B)l). }lere B=Åíbi Bi, Bi c Z ls aQ dlvlser oft Z,

                         1 `2 11 1                             '''',Ei1- ff1nE N}.                   b, E{ff, irrt

CoeMcients l - 1!n correspoftd to mu}t}p}e fibers.

  If Kx E g (Åíe. X is a Ca}abl-Yatt manife}d) theii Kz ÅÄ B !i e. The bollftdeÅqiness
of (Z,B) in this case was used by K.Oguiso and Peternell to prove that there are
only finitely many elliptic fibrations on a CY 3-fold of general type.

  If the Kodaira k(X) = 2 then k(Kz + B) = 2. Kollar proved that if there exists
a llniversal bound oxx (Ii + B)2 for ample (Kz + B), then there exists a universa}
ceRstakt N År g sRck tkat hg(NKx) f g.

                             2. REsuLTs

2•1. Conclusions from above the discussioxx.

   (l) IRstead ef the caRgxical divisor Iix, we keed te ceftsider a "log caftonical"
      diviser Kx +B : Iix+Z) bj Bj, Bj c X. Coefficients bj G v4 c {e,1] should,
      perhaps, be not arbitrary but satisfy additional conditions.
   (2) The set {(Kx + B)2} is of special interest.

2.2. Singularities.

2.1. Let X be normal, f : Y - JXI" be a desingularization. Look at the forrn"la

               k"y + f-iB + Åí ,Fri = f'(Ky + B) + 2 ai Fi

}ft whick Ei are excep{ioRa} divlsers. T5e ceeficleets ai are ca}led log discrepaftcles.

We can eveR assume X tg be oftly (S2) and GerenstelR in codimeRsloft l, with
Bi Åë SingX.
  Then either for all resolutions of singularities all ai År- O, or inf}tww.x ai = -oo.

Definition 2.2. 0ne says that the pa•iT ÅqX,B) is

   (1) leg cafieRlcal if ai År. g,b,- Åqww l,

   (2) Kawamata log terminal if ai, År O,bj Åq 1,
   (3) canonical if ai Årnt O,bj Åq- O,

   (4) terminal if ai Årww O, b,- Åq O,
   (5) s-log canonical if ai År- s År- 6,bi S 1 -e,

   (6) s-}gg termi}}al !f (i.i År s År g, bi Åq i -f.

2•3. It is well known that the quotient singularities are (Kawama,ta) log terminaL
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2.3. Theorems.

2.4. In what follows, dimX : 2, k= k, chark År- O.

Theorem 2.5. (A? holds for .e-tog terminal. Moreover, -(A'x+BÅr may be assumed
to be ongy nef, mo(lztle trivial exceptiens.

Thegrem 2.6. (B] hol{is for g--geg termiRGi if A = {bj} saksLfles the geseemk?}g
chain coRdition.

Definition 2.7. .4 c [O,1] satisfies D.C.C. if any sequence a'i E A with xi U is
finite.

Theorem 2.8. (C? holds for semi-log canonical singularities if A = {bj} satisfies
the descending chain eondition. Moreover, {(Iix + B)2} also satisfies D.C. C.

2.9. A}} coftdklons IR the tkeorems above are sharp.

                           3. 0N Tg2 PRgeFS

3.1. There is a standard method for proving boundedness (Matsusaka, Kollar-
Matsusaka). It basically says that every time when every variety in the class C
has a polarization, i.e. an arnple Cartier divisor H, and we can bound Hd'MX and
lldimX'ilix, the class is bounded•

  The main difficulty is that in our situation we can take H = Å}NKx but IV
cannot be bounded locally, because log terminal singularities can have arbitrarily
}arge index.

  IR the case of RoR-positlve It"x !t tums out that to bound the iRdex N of X it ls
$uMcieRt tg bo#Rd Ske raxxk of the Picafd group ef tl}e m}k}ma} desl#gglarlzatleR
g.
  in the case ef posltive Kx we use a very dlfferent method, we prove boundedRess
by ebtaining a contradiction, applying the following

Lemma 3.2. If for any inLft'nite seqtiences {Xi E e} the, re exist an in,finite subs•e-

quence {Xi,} whieh is bounded, then the class C is boimded,

3.1. Higher dimensions. .

Cenjecture 3.3. 'The direct a7}agegs of theorems 2.5, : .6, 2.{g i}eki iR asbit.rary

dimensieRs.

3.4. r]]lie ei}ly kiiowi} re$iilts ii} tl}is tllrect•ioi} a•re:

   (1) .c-log terminal toric Fanos (B = Åë) a,re bounded (Borisovs),
   (2) 1-log terminal Fano 3-folds (B = Åë) are boundQ.(,l (Ka,wamata: (Q) -factorial

      case, Miyaoka---Mori-Kolld,r: general case).
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