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Holomorph-convexity of certain covering spaces

of projective manifolds
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§1. Motivations and Results.

In this paper we study holomorphically convex properties of covering spaces of
compact complex manifolds. A complex space Y is said to be holomorphically
convez if, given a sequence of distinct points {y, }nen in Y without a limit point in
Y, there exists a holomorphic function f on Y such that {f(yn)}nen is unbounded.
Obviously a compact complex space is holomorphically convex.

There are two motivations to study such convexity properties. The first one is

the following conjecture due to Shafarevich [Shaf, IX.4.3]:

Conjecture. The universal covering space of a projective manifold is holomorphi-

cally convex.

It is necessary to assume manifolds to be projective, since C2—{0} is the universal
covering of Hopf surface and it is not holomorphically convex by Hartogs’ theorem.
Kodaira has shown that any compact manifold whose universal covering coincides
with C? — {0} is not algebraic. Furthermore, as a direct consequence of [ABR],
C?—{0} does not cover compact Kahler manifolds. At present we know the following
results:

(1.1) Compact Riemann surfaces : Riemann’s uniformization theorem.

(1.2) Algebraic surfaces of Kodaira dimension less than 2 by using essentially
the Enriques-Kodaira classification of surfaces [Gu], [GS].

(1.3) Algebraic surfaces with enough holomorphic 1-forms ( Albanese general type

with a certain condition) [Nap].

Key words and phrases. Shafarevich conjecture, holomorphically convex, universal coverings,
Stein exhaustions, existence of holomorphic functions.



(1.4) Algebraic surfaces equipped with morphisms to compact Riemann surfaces
of genus greater than 1 and all fibers are compact Riemann surfaces of genus greater
than 1 [Shab).

(1.5) Manifolds whose universal covering spaces are bounded domains in complex
Euclidean spaces [Si].

There are no constructive arguments for the existence of non-constant holomor-
phic functions on the universal covering spaces in these works and the covering
transformations do not have been used there.

The second motivation is the following classical problem in the theory of Stein
spaces [GR,V.1.1]: a complex space Y is said to be Stein if it is holomorphically
convex and holomorphically separable, i.e., if £ and y are two distinct points of ¥,

then there is a holomorphic function f on Y such that f(z) # f(y).

Exhaustion Problem. Ifa domain D of a complex spaceY is exhausted by Stein

domains i.e. there is a sequence of Stein domains D, C Y such that

DiCD;CDsC---CDandD=|] Dy,

n=1

then is D itself Stein ?

In general the answer is negative. There are examples of D, on which no non-
constant holomorphic functions exist {FS], [F]. On the other hand, we know some
sufficient conditions for D to be Stein. In those cases one of following properties is
satisfied:

(1.6) Y has enough non-constant holomorphic functions; in this case the separa-
bility is trivial [BS], [M] and [Nar];

(1.7) each pair (Dn41, Dr) has some good relation, so called the Runge pair [St].

In §2 we discuss about the reason why the answer is negative in general.

Now we formulate our result. Let (X,w) be a compact complex manifold with
a Hermitian metric w, we will use the Hermitian metric on X and the associated
fundamental (1, 1)-form interchangeably. Let (L,h) be a holomorphic line bundle
on X with a smooth Hermitian metric h, and denote the curvature form © :=

v/—1001logh. Let 7 : X — Xbea holomorphic infinite unramified covering from



a complex manifold X. We denote the pull back & := 7*w, L:= W*L,ﬁ :=7*h and
0:=10 respectively. Fix an origin zo € X and denote d(zg, z) the distance from
Totox € X with respect to the complete Hermitian metric &@. Let us assume that
there is a non zero holomorphic L? section 7 € H&)(X, Z®k) with respect to h and
w for some k € N. We can see, by Lemma 3.5 below, that there exists z, € X such
that |7(z,)| = max .z |7(z)|, where| |is the length with respect to h. We call z,
a vertex of 7.

If L is ample, L has a smooth Hermitian metric h of positive curvature and
L®* has enough holomorphic L? sections H&)(f,z@k) for large £ € N by, for
example, L?-estimate [H]. Furthermore, if X contains a compact subvariety V of
positive dimension, then, obviously, X is not Stein and (T)o, the zero locus of
T E H(°2)(X,Z®k), must intersect with V because X — (7)o is Stein by Lemma
3.5 below. So (7)o can not go far away from the vertex z,, that is, d(z,,(7)o) is

bounded by a constant which does not depend on 7. Actually we have

d(z,, (7)) = zéx(11f_) d(z,,z) < diam (X,w) + max d(zo, z),

where diam (X, w) is the diameter of X with respect to w. Note that the above
properties and the following assumption (x) do not depend on the choice of the
metrics h, w and zp. Our main results are to show that the existence of non-
constant holomorphic functions on X under the assumption which, in a certain

sense, is opposite to what we talked about above,

Theorem 1. Let o
(L>h) - (L> h)

| |
(X,5) —"— (X,w)

&0 € X and d(zy, ) be as above, but not necessarily L is ample. Assume that
(%) kl—iiﬁm sup{d(z,, (T)o) | T € H?Z)(X7L®k)} ~ +oo.

Then L admits a flat Hermitian structure, that is, Lis given by a representation

WI(X) — S in the unit circle. In particular, L= Oz if X is the universal cover.

We have existence theorems under a condition that L has a weak positivity in

SOIIe sense.



Theorem 2. Assume that X is the universal cover, k(L) > 0 and (*). Then there

exists a non-constant holomorphic function on X.

Where k(L) stands for the litaka-Kodaira dimension of L, i.e.,
o(L) = { —00 if HO(X,L@: 0 for any v € N,
max{ k € NU {0} | lim, 4o v~ dim H°(X,L®") > 0 } otherwise.
We also have convexity for positive L.

Theorem 3. Assume that L is ample and (). Then X is Stein and L is torsion,

ie., there exists m € N such that LO®m = Ox.

In Theorem 3, by the assumption (*), we will see that X has a Stein exhaustion
(§3. (II)), but the Stein exhaustion does not have desirable property like (1.7). The
key is to reconstruct “nice” Stein exhaustion by using the covering transformation
effectively (Proposition 3.7).

In [St], holomorphic functions were constructed by approximation which is a
higher dimensional analogy of classical Runge’s approximation theorem.

On the other hand, our proof will be done by constructing certain plurisub-
harmonic function based on the theorem of Grauert [G], Narasimhan [Nar| and
Hérmander [H] (Lemma 2.2).

I would like to express my gratitude to Professors Takeo Ohsawa and Hajime
Tsuji for their useful comments and constant encouragement. I also would like to

express my hearty thanks to JSPS for financial support.
§2. Stein spaces and Stein exhaustions.

2.1. Stein spaces.

Let Y be a complex space with a countable topology. An upper semi-continuous
function ¢ : Y — [—o00, +00) is said to be plurisubhamonic, psh for short, if for every
holomorphic mapping ® : A — Y from the unit disk A C C, ¢ o ® is subhamonic
on A. ¢ is said to be strictly psh if for every smooth real valued function A with
compact support in Y, ¢+ is psh for every sufficiently small positive real number
€. f Y is a complex manifold and ¢ : Y — R is a function of class C?, the Leuvi
form of ¢ is the Hermitian (1, 1)-form defined by

(V=18d¢)(y) == V-1 afj;;,- (y)dz* A dZ




for y € Y and for any local coordinate system (z!

,...,2") around y. ¢ is strictly
psh (resp. psh) if and only if its Levi form is positive (resp. positive semi-) definite
for everyy € Y.

A real valued function ¢ on Y is said to be an exhaustion function if for every

ceR
Yo ={yeY | py) <c}

is a relatively compact open subset of Y. The following is the solution to the Levi

problem due to Grauert [G], Narasimhan [Nar| and Hérmander [H].

Lemma 2.2. A complex space is Stein if and only if it has a continuous strictly
psh exhaustion function. Moreover, on a Stein space, the strictly psh exhaustion

function may be chosen real analytic.

2.3. Stein exhaustoins.

Let Y be a Stein space with a smooth strictly psh exhaustion function ¢. For
every c € R, Y. := {y € Y | p(y) < ¢} €Y is Stein with a smooth strictly
psh exhaustion function —log(c — ). Hence Y is exhausted by (non-trivial) Stein
domains, Y, := {y € Y | p(y) < cn} with a smooth strictly psh exhaustion function
¥n = —log(cn — ¢),

24) (M,1) € (Ya,02) € (Ya,03) € €(YV,p)and Y = | Ya,

n=1
for appropriate choice of real numbers ¢; < ¢z < ¢z < ---.
Consider a complex space Z, not necessarily Stein itself, which is exhausted by

Stein domains Z,, with a smooth strictly psh exhaustion function ¢,

(2.5) (Z1,%1) € (Z2,%2) €(Z3,93) €--- € Z and Z = U Zn.

n=1

Note that for any Stein exhaustion, we can construct a Stein exhaustion each open
set is connected and relatively compact. The critical difference between (2.4) and
(2.5) is whether the strictly psh exhaustion functions on Y,, and Z,, are obtained
from only one function or not. For {(Y,, ¥n)}nen, by modification we get {¢], }rnen,
where ¢!, := ¢, — exp(—¢n) € C>®(Y,). The limit function exists and define a

smooth strictly psh exhaustion function ¢ on Y, and recover that Y is Stein. On



the other hand, consider a sequence of functions {¥! }.en, ¥, € C®(Z,), obtained
by certain processes from {}nen. If we want to show that Z is Stein by using
Lemma 2.2, the following troubles may occur:

(2.6) (any subsequence of) {¥}, }nen does not convergent — their vertexies are
unbounded, cf. §3 I11.

(2.7) {¥1, }nen convergents, but the limit function is not strictly psh — positivity
of /~188+!, are not uniform, cf. §3 IL

(2.8) {¥,,}nen convergents, but the limit is not an exhaustion function — ge-

ometry of Z at infinity is uncertain, cf. Remark 3.4 (1).

§3. Construction of nice (Stein) exhaustions.

Let o

(X,0) = (X,w)
,To € X and d(zo, ) with the assumption (x) be in §1. Fix a fundamental domain
Xo 3 xo of the covering #, Xy is a bounded domain because X is compact. Let G

be the covering transformation group of . There are three important ingradients

to construct nice (Stein) exhaustions.

(I) Bounded geometry.
(X' ,w) is not compact, but it has some nice properties like compact manifolds.

Recall some definitions [CY], [Kob].

Definition 3.1. Let V be an open set in C*. A holomorphic map from V into
a complex manifold M of dimension n is called a quasi-coordinate map if it is
of maximal rank everywhere in V. The pair (V ; (v!,---,v")) the Euclidean

coordinates of C™ is a local quast-coordinate of M

Definition 3.2. A complete Hermitian manifold (M, g) is said to be have bounded
geometry if there exist a positive real number 1/2 < R < 1 and a family of local
quasi-coordinates V = {(V; (v!, -+ ,v™))} of M with the following properties.

(i) M is covered by the images of (V;(v', - ,v™))’s.

(ii) Each V, as an open subset of C", contains a ball of radius R.



(iii) There eixst positive constants C' and A4; (I = 0,1,2,---) independent of Vs
such that at each (V;(v!,---  v™)), the inequalities

C7H(8:5) < (93) < C(6i5),

plpl+lal g

W—_?J— < Ajp|41q|> for any multi-indices p and g,
vPOTI |

hold, where g;; denote the components of g with respect to v¥’s. The constants R,

C and A, (I =0,1,2,---) are refered as the constants associated with the bounded

geometry of (M, g).

()Z' ,@) has bounded geometry, since X covers the compact Hermitian manifold

(X,w) and @ = 7*w. By smoothing the distance function d(z¢, ), we have

Lemma 3.3 ([Nap, Lemma 3.2]). There exist a positive constant ¢, depending
only on the constants associated with the bounded geometry of(f, @) and a smooth
positive function r on X such that

(1) cod(o, x) < r(x) < co(d(zo,xz) + 1) for any z € X,

(i) (8 + 8) r

(iii) —cow < /=108 7 < coid on X.

5~ < co on X and

Remark 3.4. (1) The existence of a function with properties (i), (ii) and (iii) on
a Hermitian manifold strongly restricts the geometry of it.
(2) The above lemma can be formulated for any Hermitian manifold (M, g) with

bounded geometry [Nap].

(II) Uniform positivity.
The following lemma is important to construct relatively compact Stein subdo-

mains and to guarantee the limit function corresponding to (2.7) is strictly psh.

Lemma 3.5. For any non zero 7 € H&)(X,E@k), X — (7)o is exhausted by a
smooth function — log ||

metric h®*, and V=188(—klog |7|?) = ©. In particular, X — (7)o is Stein if L

, where || is the length of T with respect to the Hermitian

is ample.

Proof. By definitions of k and ©, we have v/—188(—k~!log |7]?) = ©. All we have

to show is that —log|7|? is an exhaustion function of X —(r)o. Let j: V — X



be a local quasi-coordinate centered at = € X. By the mean value inequality for

subharmonic functions, we have

2 ¢ 2 77
@ < g [ IV

where c 1s a positive constant depending only on the constants associated with the

bounded geometry of (5(',5)), not depend on x, By C V is the ball of radius R,
vol Bp is the volume with respect to the standard Euclidean metric (Definition 3.2
(ii)) and where dV is the volume element determined from &. For any € > 0, there

exist constants d; > dp > 0 such that

/ I7)2dV > /~ |7|2dV —¢  and
Bo X

J(BR)N By =0 for any z € X - By,

where B; = {z € X | d(zo,z) < d;} for i = 0,1. Then

c . c
dV <
volBg /j(Bn) |T| ~ volBg ¢

()] <
for any z € X - B,. Since c and vol Br depend only on the constants associated
with the bounded geometry of (X, ), |7(z)| — 0 as d(zo, ) — +oo and this means

~log |7|? is an exhaustion function. =

(III) Group action.

We do not use the assumption (*) and the covering transformation yet. The
former is utilized to construct a (Stein) exhaustion, the latter controls the (Stein)
exhaustion and guarantees the existence of the limit function corresponding to (2.6).

Let i, € H&)(X, i@k;) be a non-zero section for some k; € N. For a suitable

choice of ¢; € R, the following X; is non-empty.
~ 1 \
X1 := a connected component of {x € X l p1(z) ;= -—-,—;—log Inl® <a
V1

which contains a vertex z; of 7; (see §1). We can see that X, is a relatively compact
domain of X by Lemma 3.5. By the definition of vertices, ¢;(z;) = infx, ¢;.

Furthermore we may assume that ¢;(z;) = 0 by multiplying some constant to 7.



Now there exists a covering transformation g € G such that ¢g~!(z;) € Xo: the

closure of the fundamental domain. By regarding g*7; as 7;, we have
:cQEXo@Xl@Xandxl € Xo

for suitable choices of k; € N, 7, € H?Z)(f(,f@u) and ¢; € R by (x). Iterating
these processes, we have:
Proposition 3.6. For everyn € N, there exist k, € N, 7, € H(Oz)(f(,z@‘"),cn €eR

and

~ 1
X, := a connected component of {:c eX [ On(z) = e log |7,|* < cn}

n

which contains a vertex z,, of T, such that {X,}ren defines an exhaustion

(3.7) To€EXe€EX1 EXp € -+ € X, )?:UXm
n=1

and x, € Xy for any n € N. If L is ample, (3.7) is a Stein exhaustion of X.

§4. Proof of Theorem.

We use the same notations in Proposition 3.6.

4.1. Proof of Theorem 1,

For every m € N, consider a sequence
{#nm — @mm + Cmlnzm, Where 9nm = nlx, € C®(Xn).
Since Ynm > 0 and @Ym,m —cm < 0 0n Xy,
Prnm ~ Pmm + Cm >0 and

\/-—105(g0n,m — @mmt+cm)=0 on X,

for any n > m. Take a domain X, such that X,,_; € X! & X,,. By the Harnack’s
inequality [GT], using a family of local quasi-coordinates of ()? ,w), there exists a

constant C,, depending only on X,,, X and the constants associated with the

bounded geometry of (X,&) such that

f}l{lp(éon,m = $mm + €m) < Cn 0 (Prm = Pmm + cm)

< Cm(son,m(xn) - Som,m(mn) + Cm)

< Cmem



for any n > m. Hence we have
S;IP I‘Pn,m - ‘Pm,m‘ < cm(l + Cm)
for any n > m. Thus we have a bounded sequence of smooth functions on X,

{(pn,m — ‘Pm,m)lXin }an such that v _135(‘Pn,m - ‘Pm,m)lX:n =0.

Hence by the Harnack’s convergence theorem [GT], {(¢n,m — ¥m,m)| X’ }n>m con-
tains a subsequence {(¥n(m),m — ¥m,m)|x;, } converges uniformly cn the relatively
compact subdomain X,,_; to a function

Q1= Lm  (Pnim)m— Ym,m) € C*(Xm—1) such that vV—-100%,,_, = 0.

n(m)—+oo

Thus we have {®.,_1}m>1 step by step from m = 1. We define &(z) := d,,1(z)+
@m(x) if £ € X1, note that indices are renumbered, then & is well defined and
a smooth Rxo-valued function on X with /=105 = ©. Since v/—18081log(e?h) =
—v/—100% + 0= 0, ¢®h is a Hermitian flat metric on L [

4.2. Proof of Theorem 2.

By Theorem 1, I = Ox. Since k(L) > 0, there exists a non zero holomorphic
section f € H°(X, L®) for some v € N with non empty zero locus (f)o. Then the
pull back 7*f € H 0()? , Z®") corresponds to a non-constant holomorphic function

on X. [ ]

4.3. Proof of Theorem 3.

If L is ample, we may take w = © as a Kihler metric on X. Let us consider
a function ® + (2¢o)”!7 on )?, where ® is the potential function as in 4.1, and
where ¢y and r are the functions in Lemma 3.3. ® is a smooth semi-positive valued
function with /—100® = ©. r is a smooth exhaustion function like the distance
function from zo with /—18dr > —coé. Hence ® + (2¢o)~!r is a smooth strictly
psh exhaustion function on X. Hence X is Stein by Lemma 2.2.

We consider the exponential sequence

0—Z— 0g — 0% —0,



and a part of the long exact sequence,

where § is the connection homomorphism. Since X is Stein, H ()?, Oz)=H? (X, Oz)

HY(X,0%) — PicX - H¥(X,z) — H*(X,0%),

= 0, and we see that é is an isomorphism. As v/—180% = @, the first Chern class
ei(L) = 0 in H*(X,R). We denote j the natural homomorphism H%(X,Z) —
H%(X,R). Since ¢; = j 06, §(L) € kerj = H*(X,Z)tor. This means L is torsion,

and the pull back of L is trivial after taking certain finite étale covering of X. [
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