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Sl. Motivations and Results.

  In this paper we study holomorphically convex properties of covering spaces of

compact complex manifolds. A complex space Y is said to be holomorphically

convex if, given a sequence of distinct points {y.}.EN in Y without a limit point in

Y, there exists a holomorphic function f on Y such that {f(y.)}.EN is unbounded.

Obviously a compact complex space is holomorphically convex.

  There are two motivations to study such convexity properties. The first one is

the following conjecture due to Shafarevich [Shaf, IX.4.3]:

                                             '
Corijecture. The universal covering space ofa projective manifold is holomorphi-

cally convex.

  It is necessary to assume manifolds to be projective, since Åë2 - {O} is the universal

covering of Hopf surface and it is not holomorphically convex by Hartogs' theorem.

Kodaira has shown that any compact manifold whose universal covering coincides

with (C2 - {O} is not algebraic. Furthermore, as a direct consequence of [ABR],

C2 -{O} does not cover compact Kahler manifolds. At present we know the following

results:

  (1.1) Compact Riemann surfaces : Riemann's uniformization theorem.

  (1.2) Algebraic surfaces of Kodaira dimension less than 2 by using essentially

the Enriques-Kodaira classification of surfaces [Gu], [GS].

  (1.3) AIgebrqic surfaces with enough holomorphic 1-forms (Albanese general type

with a certain condition) [Nap].

  Key words and phrases. Shafarevich conjecture, holomorphically convex, universal coverings,
Stein exhaustions, existence of holomorphic functions.
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  (1.4) Algebraic surfaces equipped with morphisms to compact Riemann surfaces

of genus greater than 1 and all fibers are compact Riemann surfaces of genus greater

than 1 [Shabl.

  (2.5) Makifclds wkese ggiversal coveriRg spaces afe beufided dera&lfts lk cemplex

Euclidean spaces [Sil.

  There are no constructive arguments for the existence of non-constant holomor-

phic fuRctioRs on the universal coveriRg space$ IR these weyks and the covering

traxxsformatiofis do net have beexx used there,

  The second motivation is the following classical problem in the theory of Stein

spaces [GR,V.1.1]: a complex space Y is said to be Stein if it is holomorphically

coRvex aRd helomerphicaliy separabge, i.e., if x and y are two distinct peiRts ef Y,

then there is a ho}omorphic function f en Y such that f(x) pt f(y).

Exhaustion Problem. Ifa dornain D ofa cornplex space Y is exhausted by Stein

domains i.e. there is a sequence of Stein domains Pn c Y such that

                                                oo
                Pi C D2 C P3 c•••cD andD= U D.,
                                               n=1

then is D itself Stein ?

  Ik gelleral the answer is keg&tive. There &re exaft}ples ef D, efi wkich ne noxx-

constant holomorphic functions exist [FS], [Fl. On the other hand, we know some

suMcient conditions for D to be Stein. In those cases one of following properties is

$atisfied:

  (1.6) Y has eRough noR-coRstant he}emorphic Åíunctlefis; in this case the separa-

bility is trivial IBS], IM] and [Nar];

  (1.7) each pair (D.+i,D.) has some good relation, so called the Runge pair [St].

  k g2 we disc"s$ abeut the reaseR why ike aRswer is Regative in geRera}.

  Now we formulate our result. Let (X,w) be a compact complex manifold with

a Hermitian metric w, we will use the Hermitian metric on X and the associated

fukdameRtal (l, 1)-ferm interckaftgeably. Let (L,h) be a keloraerpkic }iRe buxxdle

on X with a smooth Hermitian metric h, and denote the curvature form 0 : =

V urTSOlog h. Let 7r : "Xr . X be a holomorphic infinite unramified covering from
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a complex manifold X. We denote the pull back di := T'w,Z : xx rr'L,n := T'h and

(iS :me T'e respectively. Fix an origin xo E .Xi and denote d(xo,x) the distance frorn

xo to x E jl with re$pect to the complete Hermitian metric di. Let us assume that

there is a ReR zero helemerpkic L2 sectieR 7 e NÅqC2)(.Xi,Z&fe) wkk respect tg 'h-" and

di for some k E N. We can see, by Lemma 3.5 below, that there exists x. E ff such

that IT(xr)l = max.Ejl IT(x)l, wherel]is the length with respect to h. We call x.

a vertex of T.

  If L is ample, L has a smooth Hermitian metric h of positive curvature and

Zopk has enough holomorphic L2 sections H(02)(l,ZXk) for large k' E N by, for

example, L2-estimate [H]. Furthermore, if .Xi contains a compact subvariety V of

pesitive dimeRsioll, theR, obvious}y, jl is Rot SteiR aRd (T)g, the zerg }ecits ef

T G H(e2)(.Xi,Ztw), must intersect with V because .2 - (7)o is Stein by Lemma

3.5 below. So (r)o can not go far away from the vertex x., that is, d(xr,(r)o) is

bounded by a constant which does not depend on T. Actually we have

         d(xr,('7-)e):= iRf d(x.,x)S diam (X,bl)ÅÄmaxd(xg,x),
                                                  xEV                      xE(T)o

where diam (X,w) is the diameter of X with respect to w. Note that the above

properties and the following assumption (*) do not depend on the choice of the

metrics h, us aftd xe. Our main resu}ts &re te $kew that tke existeftce of kon-

constant holomorphic functions on X under the assumption which, in a certain

sense, is opposite to what we talked about above.

Theorem 1. Let
                          (Z,'hV) - (L,h)

                            tt
                          (.ff,di) L (X,w)

,xe G j? aRd d(xe, ) be as above, but Ret necessarily L is ample. Assume that

  (*) ,L/Il}ou SUP{d(x., (T)o) ) T E H(O,)(.ff,ZXfo)} ,,. +..

Then Z admits a fiat Hermitian structure, that is, Z is given by a representation

ri(JXf) - Si iR the uait circle. IR particular, Z nt Ojli ifX is the Hm'versaj cover.

  We have existence theorems under a condition that L has a weak positivity in

some sense.
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Theorem 2. Assume that .51 is the universal cover, rc(L) År O and (*). Then there

exists a non-constant holomorphic function on .Sl.

  Where K(L) stands for the Iitaka-Kodaira dimension of L, i.e.,

 K(L) := { lll:l{ k EifNHuO[ii f?i".).=-.+O,{)O;-ale"Yd,•:,iliNo(x,LQv) År o } .therwise.

  We also have convexity for positive L.

Theorem 3. Assume that L is ample and (*). Then .Xi is Stein and Z is torsion,

i.e., there exists m E N such that ZXM or Ol.

  In Theorem 3, by the assumption (*), we will see that .jl has a Stein exhaustion

(g3. (II)), but the Stein exhaustion does not have desirable property like (1.7). The

key is to reconstruct "nice" Stein exhaustion by using the covering transformation

effectively (Proposition 3.7).

  In [St], holomorphic functions were constructed by approximation which is a

higher dimensional analogy of classical Runge's approximation theorem.

  On the other hand, our proof will be done by constructing certain plurisub-

harmonic function based on the theorem of Grauert [G], Narasimhan [Nar] and

H6rmander [H] (Lemma 2.2).

  I would like to express my gratitude to Professors Takeo Ohsawa and Hajime

Tsuji for their useful comments and constant encouragement. I also would like to

express my hearty thanks to JSPS for financial support.

g2. Stein spaces and Stein exhaustions.

2.1. Stein spaces.

  Let Y be a complex space with a countable topology. An upper semi-continuous

function g : Y . [-co, +oo) is said to be plurisubhamonic, psh for short, if for every

holomorphic mapping Åë : A - Y from the unit disk A c C, po fp is subhamonic

on A. g is said to be stm'ctly psh if for every smooth real valued function A with

compact support in Y, g+6A is psh for every suficiently small positive real number

E. If Y is a complex manifold and g : Y - R is a function of class C2, the Levi

form of g is the Hermitian (1, 1)-form defined by

                (V:Tabg)(y) :== Avl:li 2 o?,2. a9.. (y)dzi A dz"'
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for y E Y and for any local coordinate system (zi,...,z") around y. g is strictly

psh (resp. psh) if and only if its Levi form is positive (resp. positive semi-) definite

for every y E Y.

  A real valued function g on Y is said to be an exhaustion function if for every

cER
                       Y. := {y EY l {p(y) Åq c}

is a relatively compact open subset of Y. The following is the solution to the Levi

problem due to Grauert [G], Narasimhan [Nar] and H6rmander [H].

Lemma 2.2. A complex space is Stein if and only if it has a continuous strictly

psh exhaustion function. Moreover, on a Stein space, the strictly psh exhaustion

function may be chosen real analytic.

2.3. Stein exhaustoins.

  Let Y be a Stein space with a smooth strictly psh exhaustion function q. For

every c E R, Y. := {y E Y 1 g(y) Åq c} c Y is Stein with a smooth strictly

psh exhaustion function - log(c - g). Hence Y is exhausted by (non-trivial) Stein

domains, Y. : = {y E Y 1 g(y) Åq c.} with a smooth strictly psh exhaustion function

9n := -10g(Cn ff g),

                                                     oo
(2.4) (Yi,epi) C (Y2,g2) C (Y3,g3) Cc ••• C (Y, ep) and Y= U Y.,

                                                     n=1

for appropriate choice of real numbers ci Åq c2 Åq c3 Åq '''•

  Consider a complex space Z, not necessarily Stein itself, which is exhausted by

Stein domains Z. with a smooth strictly psh exhaustion function th.

                                                    oo(2.5) (Zi,thi)@(Z2,th2) @ (Z3,th3) c•••cZ and Z = U Z..

                                                   n=1

Note that for any Stein exhaustion, we can construct a Stein exhaustion each open

set is connected and relatively compact. The critical difference between (2.4) and

(2.5) is whether, the strictly psh exhaustion functions on Y. and Z. are obtained

from only one function or not. For {(Y., gpn)}nEN, by modification we get {g)a}nEN,

where ga := c. - exp(-g.) E COO(Y.). The limit function exists and define a

smooth strictly psh exhaustion function g on Y, and recover that Y is Stein. On
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the other hand, consider a sequence of functions {zbA}.EN, zb" G COO(Z.), obtained

by certain processes from {th.}nGN. If we want to show that Z is Stein by using

Lemma 2.2, the following treub}es may occur:

  (2.6) (aRy subseqgeRce ef) {tha}.EN dees Rot ceRveygeRt tkeir veriexies are

unbounded, cf. g3 III.

  (2.7) {th"}.EN convergents, but the limit function is not strictly psh positivity

ef vt r/feSipk are not uRiform, cf. S3 II.

  (2.8) {sS,a}.GN convergents, but the limit is not ak exhaustion fuRctieR ge-

ometry of Z at infinity is uncertain, cf. Remark 3.4 (1).

g3. Construction of nice (Stein) exhaustioms.

  Let
                          (z,n) -- (L,h)

                            1t
                          (.XiL,di) L (X,w)

,xe G .j? and d(xo, ) with the assumptieB (*) be in gl. Fix a fundamental domain

Xo me xo of the covering T, Xo is a bounded domain because X is compact. Let G

be the covering transformation group of T. There are three important ingradients

te coRstruct Rice (SteiR) exkagstiefts.

(I) Bounded geometry.
  (ff,di) is not corrxpact, but it has some nice properties like compact manifolds.

Recal} some definitioRs [C\], IKob].

Definition 3.1. Let V be an open set in C". A holomorphic map from V into

a complex manifold M of dimension n is called a quasi-coordinate map if it is

of maximal rank everywhere in V. The pair (V ; (vi,•••,v")År the Euclidean

ceerdiRates ef Åë" is a jecgi g%asi-ceerdi#ate eÅí M

Definition 3.2. A complete Hermitian manifold (M, g) is said to be have bounded

geometTy if there exist a positive real number 1/2 Åq R Åq 1 axxd a family of local

qttasi-ceerdlgates Y = {(Vl (v!, • • • , v"))} ef M witk the fe}lowing propeyties.

  (i) M is covered by the images of (V; (vi,••} ,v"))'s.

  (ii) Each V, as an open subset of Cn, contains a ball of radius R.
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  (iii) There eixst positive constants C and Ai (l =: O, 1, 2, • • • ) independent of V's

such that at each (V;(vi,•••,v")), the inequalities

                        C-!(6iD Åq (gi3•) Åq C(Åë3'),

             alpuI+lgigis•
              ovpooq Åq Alpl+lgl, fOr any multi-indices p and g,

hold, where gg denote the components of g with respect to vt's. The constants R,

C and Ai (i = e,1,2,-- •År are refered as tke censtants asseciated with the boasnded

geometry of(M,g).

  (.jil,di) has bounded geometry, since g covers the compact Hermitian manifold

(X,w) aRd ij = rr'w. By smeethiRg the distance fuRctieR d(xg, ), we kave

Lemma 3.3 ([Nap, Lemma 3.2]). There exist a positive constant co depending

only on the constants associated with the bounded geometry of(fi, di) and a smooth

po$itive fuRction r oll ff sgch that

  (i) cod(xe,x) f{ r(x) E{ ce(d(xe,x) + l) fer aRy x E .j?,

           - -v  (ii) 1(a+a) rlur• g co on X and

  (iii) -codi s VnyOb r s codi on JXf.

Remark 3.4. (1) Tke existeRce ef a fuRcticit with preperties (i), (ii) aftd (iii) eR

a Hermitian manifold strongly restricts the geometry of it.

  (2) The above lemma can be formulated for any Hermitian manifold (M, g) with

bounded geometry [Nap].

(II) Uniform po$itivity.

  The following lemma is important to construct relatively compact Stein subdo-

mains and to guarantee the limit function corresponding to (2.7) is strictly psh.

Lemma 3.5. Fer any lleR zero T E ff&)(ft,ZXk), g - (7)g is exkatisted by a

smooth function - log l712, where lrl is the length ofT with respect to the Hermitian

metric nQle, and V rTab(-k-i loglr12) = (5. Tn particular, ji5 - (T)o is Stein ifL

             'is ample.

                     NApt NProof. By definitions of h and e, we have V=iOS(-k-i log IT12) = e. All we have

to show is that -log IT12 is an exhaustion function of jl - (T)o. Let j' : V -----} je
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be a local quasi-coordinate centered at x E jl. By the mean value inequality for

subharmonic functions, we have

                     IT(x)l2 f{; ..iCB. f,Åq..) ITI2dVF,

where c is a pgskive co=$taRt depeRdiRg eRly cR tke coRstaRts asseciated with the

bollRded geometry of (Xi,di), llot depend oft x, BR (: V is the ba}l of radius R,

vol BR is the volume with respect to the standard Euclidean metric (Definition 3.2

(ii)) and where dV is the volume element determined from di, For any e År O, there

exist constants di År do År O such that

                   L, lrl2di7 ) f)i ITI2dV - e ancl

                  ]'(BR) ft Be = g fer aRy x E X - Bi,

where Bi = {x E dXf l d(xe,x) K di} for i -- e, 1. [I]hen

                 IT(x)12 s ..ICB. f,(B.) ITI2dV S ..ICBR 6

for any x E .X5 - Bi. Since c and vol BR depend only on the constants associated

with the bounded geometry of(.2,di), IT(x)l . O as d(xe,x) -År +oo and this means

---  log kl2 is afi exkaustion fuRctioit. ll

(III) Grollp action.

  We do not use the assumption (*) and the covering transformation yet. The

former is utilized to construct a (Stein) exhaustion, the latter controls the (Stein)

exhaustion and guarantees the existence of the limit fumction corresponding to (2.6).

  Let Ti E H(02)(.Xi,ioplei) be a non-zero section for some k"i E N. For a suitable

choice of ci E R, the fol}owing Xi is Ren-empty.

    Xi := acoRRected cempgReRt of (x EX l gfiiÅqx) :xx -". }egI7A2 Åq ei}

which contains a vertex xi of ri (see gl). We can see that Xi is a relatively compact

domain of jl by Lemma 3.5. By the definition of vertices, qi(xi) = infx, gi•

Furthermore we may assurne that gi(xi) = O by multiplying some constant to 7.
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  Now there exists a covering transformation g E G such that g-i(xi) E Xo: the

closure of the fundamental domain. By regarding g"n as n, we have

                                   N-                    xo G Xo C Xi cX and xi G Xo

for suitable choices of kk ff N, Ti E HÅqg2)(.Xr,ZXhi) axxd ci E R by (*). Iterating

tkese precesses, we kave:

Propgsition 3.6. Foreveryn E N, tkere exist k. G N, r. E H(e2)(jl,ZQkn),c. E me

and

   x.:= aconnected component of (xE jllgn(x):: il logITnl2 Åq cn}

which contains a vertex x. of T., such that {X.}.EN defines an exhaustion

                                                c)o(3.7) xe e Xe ex Xi C. X2 (''' CX Xf xe U Xn,
                                                n==1
and x. E IZ; for any n wr N. IfL is ample, (3.7] is a Stein exhaustioR of .ff.

S4• Proof of Theorem.

  We use the same notations in Proposition 3.6.

4.1. Proof of Theorem 1.

  For every m E N, consider a sequence

        {9n,,n - 9m,m -l- Cm}nÅrm, Where 9n,m : ur 9nlxm E COO(Xm).

Since vn,m ) g and gm,m - cm s{ g eR Xm,

                      qn,m - epm,m+cm )O and

                 V rTOS(gn,m - gm,m + cm) =: O on Xm

for any n 2 m. Take a dornain Xh such that -X..i @ Xh ag X.. By the Harnack's

inequality [GT], using a family of local quasi-coordinates of (Xf,di), there exists a

constaRt Cm depeRding only oR Xm,X;,, aRd the constants asseciated with the

beukded geemetry of (.5if,di) $uck ikat

         SxU,P(ipn,m - mpm,m + Cm) S Cm Nn.,.,f(9n,m - 9m,m + Cm)

           m
                              S Cm(9n,m(Xn) ww Wm,m(Xn) + Cm)

                              S CmCm
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for any n 2 m. Hence we have

                    suplqn,m - gm,ml S cm(1 + Cm)
                    xA

for any n 2 m. Thus we have a bounded sequence of smooth functions on Xh

     {(gn,m - gm,m)l xA }n2m such that V=iab( qn,m - gm,m)l xA = O•

Hence by the Harnack's convergence theorem [GT], {(gn,m - gm,m)lxA }n2m COn-

tains a subsequence {(q.(.),. - gm,m)lxA } converges uniformly on the relatively

compact subdomain X.-i to a function

Åëm-1 := .( .1)i!.+ ..(9n(m),m - 9rn,rn ) E COO (Xm-1 ) such that vr=iOjÅëm-1 = o.

Thus we have {Åëm-i},.2i step by step from m = 1. We define Åë(x) := Åëm-i(x)+

gm(x) if x E Xm-i, note that indices are renumbered, then Åë is well defined and

                            A.t -N - AVa smooth RÅro-valued function on X with V=EilaaÅë = e. Since vETOalog(eÅëh) =

- vCTabÅë+e=O, efph isaHermitian flat metric onL 1

4.2. Proof of Theorem 2.
  By Theorem 1, Z or OI. Since K(L) År O, there exists a non zero holomorphic

section f E HO(X, LX") for some u E N with non empty zero locus (f)o. Then the

pull back T"f E HO(jlf, ZX") corresponds to a non-constant holomorphic function

4.3. Proof of Theorem 3.

  If L is ample, we may take w = e as a Kahler metric on X. Let us consider

a function Åë+ (2co)'ir on jl, where Åë is the potential function as in 4.1, and

where co and r are the functions in Lemma 3.3. Åë is a smooth semi-positive valued

function with V=ilabÅë == 6. r is a smooth exhaustion function like the distance

                        -Nfunction from xo with AaOr 2 -coe. Hence fp + (2co)-ir is a smooth strictly

psh exhaustion function on .jli. Hence .Xf is Stein by Lemma 2.2.

  We consider the exponential sequence

                     o-Z-OI-Ok.O,
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and a part of the long exact sequence,

             Hi(kor) - picX --Sl-ÅÄ H2(g,z) - H2(.Xi,oi),

                                           -v NNwhere 6is the connection homomorphism. Since X is Stein, Hi(X, OI) = H2(X, Ox)

= O, and we see that 6 is an isomorphism. As vCTabÅë = di, the first Chern class

ci(Z) = O in H2(g,R). We denote j' the natural homomorphism H2(.Xf,Z) -

H2(X,R). Since ci =jo6, 6(L) E kerj' = H2(X,Z)t.,. This means L is torsion,

and the pull back of Z is trivial after taking certain finite 6tale covering of jli. 1
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