O00000000000O0
199400 pp.10-16

On Brauer-Manin equivalence for zero-cycles on
varieties over local fields

mEE A5, HKX ¥¥ (Suuii SAITO, Univ. oF TokYo)

In this article we discuss a certain Diophantine problem of zero-cycles
on a variety defined over an arithmetic field. Let k be a fixed ground
field. In what follows k is either a number field (i.e. [k: Q] < 00) or a
local field (i.e. [k: Qp] < o0). Let X be a proper smooth variety over
k. Let

Zo(X)={w= E ny(2]|ne € Z, ny, = 0 for almost all z € X},
2€Xo
CHo(X) = Zo(X)/Zo(X)rat

be the group of zero-cycles on X and the Chow group of zero-cycles on
X modulo rational equivalence respectively, where Xy denotes the set
of all closed points on X. Let

deg : CHo(X) > Z; w— Z na(n(z) : k|
2€Xo

be the degree map with x(z) the residue field of z € X,. Let
I(X) = G.C.D{[r(=) : k]|z € Xo}.

By definition the image of the degree map is the subgroup I(X)Z C Z.
I(X) is an important invariant in the Diophantine problem of X. For ex-
ample, if X is a quadric then I(X) =1 or 2 and X has a k-rationalpoint
if and only if J(X) = 1. Define Ao(X) by the exact sequence

de
0 — Ao(X) — CHo(X) — Z.

We are interested in the following problems.

(Q1) What sort of structure does Ag(X) carry? More precisely, is it
finitely generated in case [k : Q] < co? What kind of topology can it be
given in case [k : Q,] < co?

(Q2) Is there any algorithm to compute I(X) or any criterion to have
I(X) =17



(Q2) For a simple variety such as a rational variety, is there any algo-
rithm to compute 4¢(X)?

§1 The case of curves

First we recall the known results in case dim(X) = 1. By the theory of
Jacobian variety Jx of the curve X one knows that 4¢(X) is identified
with Jx(k), the group of k-rational points if I(X) = 1 and with a
subgroup of finite index in Jx (k) in general. In particular Ag(X) is
finitely generated in case [k : Q] < oo by the theorem of Mordell- Weil.
In case [k : Q,] < 0o one uses a theorem of Mattuck [Mat] to deduce an
isomorphism

Ao(X)~ 2% o F,
for some integer » > 0 and a finite abelian group F.

Concerning I(X), in case [k : Q,] < oo there exists a method to
compute it even in arbitrary dimensional case. This will be explained
later in Theorem D of §4. In case [k : Q] < oo one may ask if the
following Hasse principle holds in this context.

(H) Let P be the set of all places of k and let k, be the completion of
k at v. Put X, = X xi k,. Does I(X,) = 1 for every v € P imply
I(X)y=1?

Manin [Ma] defined a certain obstruction to (H) by using the Brauer-
Grothendieck group Br(X) [Gr] of X (this obstruction is called Brauer-
Manin obstruction and it will be explained later in §6) and was able
to produce counter examples to (H). Now the important question to
arise is the uniqueness of the obstruction. The precise meaning of the
‘uniqueness’ will be explained later in §6. The following theorem is due
to Manin in case that the genus of X is equal to 1 and generalized to
arbitrary genus case by the author [Sa-2].

Theorem(A). For a curve over number field, the Brauer-Manin ob-
struction to (H) is the unique one if and only if the Tate-Shafarevich
group of the Jacobsan of the curve is finite.

§2 Brauer-Manin equivalence for zero-cycles on varieties over
local fields

In case dim(X) > 1 the study of the structure of A¢(X) turns out
to be very difficult. Manin introduced a new equivalence for zero-cycles
which is coarser than the rational equivalence. It will be called the
Brauer-Manin equivalence (BM equivalence) on Zp(X). A main point
of our result is that one can obtain a fairly reasonable description of the
structure of Z5(X) modulo the BM equivalence in case that the ground



field k is a local field. Thus we assume [k : Q,] < co. Let Br(X) be
the Brauer-Grothendieck group of X [Gr|, which is the group of certain
equivalence classes [A] of sheaves of Ox-algebras A locally free as Ox-
modules such that 4, := 4 ®p, x(z) is a central simple algebra over
x(z) for any z € X. By definition Br(Spec(F)) for a field F is the usual
Brauer group Br(F) of F. Now we define a pairing

<, > : Zo(X) x Br(X) — Br(k)

by the formula

< E nplz], [A] >:= Z g Ny(o)/a([A)),

@€ Xy s€Xo

where N, ()4 : Br(x(z)) — Br(k) is the norm map for the finite ex-
tension x(z)/k. Manin showed that the pairing factors through the ra-
tional equivalence on Zo(X). Combined with the isomorphism Br(k) ~
Q/Z following from the local class field theory of k, this gives rise to the
canonical pairing

<, > : CHy(X) x Br(X) — Q/Z.
We introduce the new equivalence on zero-cycles by

w € Zo(X), w0 <, [A4] >= 0 for every [A4] € Br(X).

Let CHo(X)pm C CHp(X) be the subgroup of cycle classes of wa;IO

and write

CHy(X)/BM = CHo(X)/CHo(X)BM,
Ao(X)/BM = Ao(X)/CHo(X)pM.

(It is easy to see CHo(X )M C Ao(X).) Our study of Ag(X) is now
divided into the two steps.

Problem A Study Ao(X)/BM.

Problem B Askif CHo(X)pm = 0 or equivalently if the BM-equivalence
coincides with the rational equivalence.

Concerning Problem B, in case dim(X) = 1 Lichtenbaum showed
that the BM-equivalence coincides with the rational equivalence. In
case dim(X) > 1 very little is known except the following.



Theorem(B). ([Sa-3]) Assume dim(X) =2, H}(X,0x) =0, X is not
of general type and the Albanese variety of X has potentially good reduc-
tion. Then the BM-equivalence coincides with the rational equivalence

on Zo(X).
§3 The structure of A¢(X)/BM.

Let the assumption and the notation be as in §2. In this section we
state a result on the structure of Ag(X)/BM. For this we assume that
there exists a regular model X of X over Oy, the ring of integers of k. By
definition X is a regular scheme endowed with a proper flat morphism

f : X — S =Spec(O4)

with X xg Spec(k) ~ X. Let Y = f~1(s) be the special fiber with the
closed point s € S. The following result is obtained by a joint work with
J.-L. Colliot-Théléne.

Theorem(C). (1) We have a canonical isomorphism
Ao(X)/BM ~ Hom(Br(X)/Br(X) + Br(k),Q/Z).

Moreover the groups are isomorphic to Z?' ® F for some integer r > 0
and a finite abelian group F. Thus Ao(X)/BM is endowed with p-adic
topology which makes it a compact topological group.

(2) Take a dense open subset U CY and put
X3® = {z € Xo|{z} is regular and {z} NU # 0},

where {z} denotes the closure of z € X in X. Let Sy C CHo(X)/BM
be the subgroup generated by cycles classes of ¢ € X[?. Then Y :=
By N Ao(X)/BM is dense in Ag(X)/BM.

Here we include some words about the proof. For the proof of the
first isomorphism in (1) one needs a close analysis of the behavior of the
“ramification along Y” of A € Br(X). This is done by using Kato’s
theory of Brauer groups of higher dimensional local fields. For the proof
of the second statement of (1) one uses the finiteness theorem of gen-
eralized idele class group in the higher dimensional class field theory of
varieties over finite fields.

§4. Application I (An explicit calculation of I(X))

Let the assumption and the notation be as in §3. From Theorem C
we deduce the following.



Theorem(D). The following three numbers are all equal.

(1) I(X).
(2) The order of Ker(Br(k) — Br(X)/Br(X)).
(3) G.C.D{m;e;|]1 < i < n}, where ¥; (1 < i < n) are the irreducible
components of the special fiber Y = f~(s), m; is the multiplicity of Y;
inY and e; = [F; : F| with F = x(s) the residue field of k and F; the
algebraic closure of F in the function field F(Y;) of ;.

The coincidence of the first and second numbers immediately follows
from the following commutative diagram

Br(k) —  Br(X)/Br(X)
= l

deg®

0 (Z/I(X)Z)* — 2Z* ——  CHo(X)"

with the right vertical arrow injective by Theorem C, where we use the
convention A* = Hom(A4,Q/Z). The proof of the coincidence of the
first and second numbers requires some argument using the class field
theoretic study of the structure of Brauner group of a henselian local ring
with finite residue field in [Sa-1].

§5. Application IT (An explicit calculation of 4y(X))

Let k be a local field. Let X be a rational surface over k, namely a
projective smooth surface such that X x; L is birational to P% for some
finite extension L/k. By Theorem B and C we have the isomorphism

Ao(X) ~ Hom(Br(X)/Br(X) + Br(k),Q/Z).
On the other hand we have the isomorphism for such a surface
Br(X)/Br(k) ~ H'(k,Pic(X)),
where X = X xj k with k _an algebraic closure of k. If one can give
an explicit generator of Pic(X) with the Galois action one can compute
Br(X)/Br(k). For example Manin has done it for the cubic surface
X : X3+X{+X}+aX3=0, ack”.

Note X is birational to P2 if and only if a € (k*)®. Thus, to compute
Ao(X) it suffices to determine which elements of H*(k,Pic(X)) is ‘un-
ramified’ along the special fiber Y. This is actually done to obtain the
following.



Theorem(E). Let X be as above and assume a & (k*)*. Then

%2/3Z & Z/3T if (s €k,

Ao(X) = { Z/3Z  if(s €k

where (3 denoles a primitive cubic root of unity.
§6. Application ITI (Global case)

In this section (contrary to the previous ones) k denotes a number
field, namely [k : Q] < co. Let X be a proper smooth variety over k
with a regular model X over the ring Oj of integers in k. Let P be
the set of all places of k and k, the completion of k at v € P. Put
X, = X xj k,. One has the following conjecture ([K-S} and [CT]).

Conjecture(F). The following sequence is ezact
lim CHo(X)/n — [[ CHo(X.)/BM = Hom(Br(X)/Br(X),Q/Z) —0.
» vEP

Here the map a is induced by the pairings for ve P
<, >y : CHp(X,) x Br(X,) — Q/Z.

The product [[,cp is the restricted product with respect to the compact
subgroups Ao(X,)/BM C CHo(X,)/BM (cf. Theorem C).

There are a couple of evidences for the conjecture.

(1) In case dim(X) = 1 the conjecture is a consequence of the finiteness
of the Tate-Shafarevich group of the Jacobian of X (cf. Theorem A of
§1).

(2) In [Sa-2| a general conjecture is made on various motivic cohomology
group of arithmetic schemes. For example the higher dimensional class
field theory for arithmetic schemes by Parshin, Bloch, Kato-Saito fits
nicely into this picture. The above conjecture is implied by this general
conjecture.

As corollaries of Theorem C in §3 we obtain the following.

Theorem(G). The map

| [ cHo(X.) = Hom(Br(X)/Br(X),Q/Z)
veEP

s surjective.



Theorem(H). Assume Conjecture(F). Assume that I(X) > 1 and that
there ezists a place w of k such that I(X,) = 1. Equivalently we assume
that there is no zero-cycle of degree one on X and that there ezist w € P

such that there ezists a zero-cycle of degree one on X,. Then there ezists
A € Br(X) such that

<wy, A>,=0 for any w, € Zy(X,) withv # w
and that

< wy, A >y=1/I for any w, € Zo(Xy) with deg(w,) = 1.

Recall that the (conjectural) uniqueness of the Brauer-Manin obstruc-
tion for zero-cycles of degree one on X asserts that for a given collection
{we }vep of zero-cycles of degree one on X,, the existence of 4 € Br(X)

such that
Y <wA>,#0
vEP

implies I(X) > 1. Now the conclusion of Theorem H is much stronger
than this.
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