A note on scrolls of smallest embedded codimension

Takao FUJITA

## §0．Introduction

The situation considered in this note is as follows．Let $M$ be an algebraic submanifold of $\mathbf{P}^{N}$ with $n=\operatorname{dim} M . M$ is said to be a scroll over $S$ if there is a surjective morphism $\pi: M \rightarrow S$ such that every fiber $F_{x}=\pi^{-1}(x)$ over $x \in S$ is a linear subspace in $\mathbf{P}^{N}$ of dimension $r-1=n-s$ ，where $s=\operatorname{dim} S$ ．This is equivalent to saying that $M \cong \mathbf{P}_{S}(\mathcal{E})$ for some vector bundle $\mathcal{E}$ of rank $r=n-s+1$ and the tautological bundle $H(\mathcal{E})$ is the hyperplane section bundle of $M$ ．

We have $b_{i}(M)=b_{i}\left(\mathbf{P}^{N}\right)$ for $i \leq 2 n-N$ by Barth－Lefschetz Theorem，hence $N \geq 2 n-1$ for scrolls，since otherwise $1+b_{2}(S)=b_{2}(M)=b_{2}\left(\mathrm{P}^{N}\right)=1$ ，contradiction．Thus we want to study scrolls such that $N=2 n-1$ ．

The case $s=1$ was studied by Lanteri－Turrini［LT］，who showed that $M$ is the Segre scroll over $\mathbf{P}^{1}$ in this case；namely $S \cong \mathbf{P}^{1}, \mathcal{E} \cong \mathcal{O}(1)^{\oplus n}, M \cong \mathbf{P}^{1} \times \mathbf{P}^{n-1}$ and $M \subset \mathbf{P}^{N}$ is the Segre embedding．In this paper we are interested mainly in the case $s=2$ ．

This problem was studied by Ottaviani．［Ot］and Beltrametti－Schneider－Sommese［BSS］， ［BS］in case $n=3$ and by Ionescu－Toma［IT］for general $n$ ．Their results are as follows．

Theorem．（cf．［Ot］）．Let $M \subset \mathbf{P}^{5}$ be a three－dimensional scroll over a surface $S$ ．Then one of the following conditions is satisfied．
（1）（Segre scroll）$S \cong \mathrm{P}^{2}, \mathcal{E} \cong \mathcal{O}(1)^{\oplus 2}, d=\operatorname{deg} M=3$ ．
（2）（Bordiga scroll）$S \cong \mathbf{P}^{2}, c_{1}(\mathcal{E})=\mathcal{O}(4), c_{2}(\mathcal{E})=10$ and $d=6$ ．
（3）（Palatini scroll）$S$ is isomorphic to a cubic surface，$c_{1}(\mathcal{E})=\mathcal{O}_{S}(2), c_{2}(\mathcal{E})=5$ and $d=7$ ．
（4）（K3 scroll）$S$ is a K3－surface obtained as a linear section of the Grassman variety parametriz－ ing lines in $\mathbf{P}^{5}$ embedded by Plücker，and $\mathcal{E}$ is the restriction of the tautological vector bundle． $c_{2}(\mathcal{E})=5$ and $d=9$.

All these four cases actually occur．
Theorem．（cf．［IT］）．Let $M \subset \mathbf{P}^{N}$ be a scroll over a surface $S$ with $N=2 n-1, n>3$ and let $\mathcal{E}$ and $d=\operatorname{deg} M$ be as above．Then，$M$ is one of the following types：
$\left(S_{n}\right) S \cong \mathbf{P}^{2}, \mathcal{E} \cong \mathcal{O}(1)^{\oplus(n-1)}, M \cong \mathbf{P}^{2} \times \mathbf{P}^{n-2}, d=n(n-1) / 2$.
$\left(B_{n}\right) S \cong \mathbf{P}^{2}, c_{1}(\mathcal{E})=\mathcal{O}(n+1), c_{2}(\mathcal{E})=(n+1)(n+2) / 2, d=n(n+1) / 2$.
$\left(M_{n}\right) S$ is a $K 3$ surface，$c_{1}(\mathcal{E})^{2}=2 n^{2}-4, c_{2}(\mathcal{E})=n^{2}-4, d=n^{2}$ ．
$\left(?_{n}\right) S$ is a surface of general type．
The existence of scrolls of the above type $\left(S_{n}\right)$ is classical and is due to Segre．The case $\left(B_{n}\right)$ is shown to exist for every $n$ in［IT］．The existence of the type $\left(M_{n}\right)$ is proved by Mukai （ $[\mathrm{Mu}]$ ）．On the other hand，no example of type $\left(?_{n}\right)$ is found：［IT］suspect rather that there is no such scroll．Any way，such scrolls must satisfy several numerical relations among their invariants．Here I propose a conjecture concerning further classifications derived from these relations，which is verified for $n \leq 11$ by hand and for $n \leq 1100$ by a computer．In particular，a scroll of the type（ $?_{n}$ ）does not exist unless $n=6,10,11,12,16,18,20,24,30, \cdots$ ．On the other hand，no example is known and the existence problem is unsettled for these $n$（and also for $n>1100$ ，of course）．

Mathematical tools used here are almost the same as［IT］，but we review them here for the convenience of the reader．When I started this study，I was not aware of this paper［IT］．I would like to express my hearty thanks to Professors Ottaviani who informed me of the result in［IT］． I thank Professor Mukai，who communicated to me the existence of scrolls of the type（ $M_{n}$ ）． I also thank Professors Lanteri and Schneider for their cooperations in e－mail correspondence
during the preparation of this paper.

## §1. Computing Chern classes

(1.1) Throughout this paper let $M$ be a scroll in $\mathrm{P}^{2 n-1}$ over $S$ as in $\S 0$. Let $\mathcal{E}$ be the vector bundle on $S$ of rank $r=n-s+1, s=\operatorname{dim} S$, such that $M \cong \mathbf{P}_{S}(\mathcal{E})$ and the tautological bundle $H(\mathcal{E})$ is the hyperplane section bundle $\mathcal{O}_{M}(1)$, which will be denoted simply by $H$ from now on. We put $d=\operatorname{deg} M=H^{n}\{M\}$.
(1.2) Fact. Via the ring homomorphism $\pi^{*}: H^{*}(S) \rightarrow H^{*}(M)$, the cohomology ring of $M$ becomes a free $H \cdot(S)$-module generated by $1, h, h^{2}, \cdots, h^{r-1}$, where $h=c_{1}(H) \in H^{2}(M)$. Moreover $\sum_{i=0}^{r}(-h)^{i} e_{r-i}=0$ in $H^{\cdot}(M)$, where $e_{j}=\pi^{*} c_{j}(\mathcal{E})$.

This is well known for general vector bundle $\mathcal{E}$ of rank $r$. Thus, the ring structure of $H \cdot(M)$ is determined by $H \cdot(S)$ and Chern classes of $\mathcal{E}$.
(1.3) Fact. Put $s_{i}(\mathcal{E})=\pi_{*} h^{r-1+i} \in H^{2 i}(S)$ and $s(\mathcal{E})=\sum_{i=0}^{\infty} s_{i}(\mathcal{E}) \in H \cdot(S)$. Then $s(\mathcal{E}) c\left(\mathcal{E}^{\vee}\right)=1$, where $c\left(\mathcal{E}^{\vee}\right)$ is the total Chern class of the dual bundle $\mathcal{E}^{\vee}$ of $\mathcal{E}$.

This is also standard. $s_{i}(\mathcal{E})$ is called the $i$-th Segre class of $\mathcal{E}$ and $s(\mathcal{E})$ is called the total Sege class of $\mathcal{E}$. Moreover the following formulas are well known:

$$
\begin{aligned}
& s_{1}(\mathcal{E})=c_{1}(\mathcal{E}) \\
& s_{2}(\mathcal{E})=c_{1}(\mathcal{E})^{2}-c_{2}(\mathcal{E}),
\end{aligned}
$$

(1.4) Corollary. For any vector bundle $E$ on $X$ with rank $E=r$ and for any line bundle $L$ on $X$ with $c_{1}(L)=\ell$, we have $s_{i}(E \otimes L)=\sum_{j}\binom{r-1+i}{j} s_{i-j}(E) \ell^{j}$.

Indeed, $s_{i}(E \otimes L)=\pi_{*}\left((h+\ell)^{(r-1+i)}\right)=\sum_{j}\binom{r-1+i}{j} \pi_{*} h^{r-1+i-j} \cdot \ell^{j}$ for $\pi: \mathbf{P}(E) \rightarrow X$.
(1.5) Let $\pi: M=\mathbf{P}(\mathcal{E}) \rightarrow S$ be the projection. Let $\mathcal{A}$ be the kernel of the natural surjection $\pi^{*} \mathcal{E} \rightarrow \mathcal{O}[H]$. Then we have an exact sequence $0 \rightarrow \mathcal{O} \rightarrow \mathcal{E}^{\vee} \otimes H \rightarrow \mathcal{A}^{\vee} \otimes H \rightarrow 0$. This is identified with the relative Euler sequence, and so we have the exact sequence $0 \rightarrow$ $\mathcal{A}^{\vee} \otimes H \rightarrow \Theta_{M} \rightarrow \pi^{*} \Theta_{s} \rightarrow 0$, where $\Theta_{X}$ denotes the tangent bundle of $X$.

From these exact sequences we obtain the following relation $c\left(\Theta_{M}\right)=\pi^{*} c\left(\Theta_{S}\right) c\left(\pi^{*} \mathcal{E}^{\vee} \otimes H\right)$ of total Chern classes.
(1.6) Let $\mathcal{N}$ be the normal bundle of $M$ in $\mathbf{P}^{2 n-1}$ and let $\Theta$ be the restriction of the tangent bundle of $P^{2 n-1}$ to $M$. Then we have $c\left(\Theta_{M}\right) c(\mathcal{N})=c(\Theta)=(1+h)^{2 n}$, where $h=c_{1}(H)$.

Combining (1.5), we get $c(\mathcal{N})=(1+h)^{2 n} c\left(\pi^{*} \mathcal{E}^{\vee} \otimes H\right)^{-1} \pi^{*} c\left(\Theta_{s}\right)^{-1}=(1+h)^{2 n} s\left(\pi^{*} \mathcal{E} \otimes\right.$ $[-H]) \pi^{*} s\left(\Omega_{S}\right)$.
(1.7) In the following computation, $\pi^{*} \alpha$ will be denoted simply by $\alpha$ for $\alpha \in H \cdot(S)$.

By (1.4), we have $s\left(\mathcal{E}_{M} \otimes[-H]\right)=\sum_{i=0}^{\infty}\left(\sum_{j=0}^{r-1+i}\left({ }^{r-1+i}\right)_{j i-j}(\mathcal{E})(-h)^{j}\right)$. Therefore the component of $(1+h)^{2 n} s\left(\mathcal{E}_{M} \otimes[-H]\right)$ of degree $2 k$ is $\sum_{i, j}\binom{2 n}{k-i}\binom{r-1+i}{j}(-1)^{j} h^{k-i+j} s_{i-j}(\mathcal{E})$ $=\sum_{\ell}\left(\sum_{j}\binom{2 n}{k-j-\ell}\binom{r-1+j+\ell}{j}(-1)^{j}\right) h^{k-\ell} s_{\ell}(\mathcal{E})=\sum_{\ell}\binom{2 n-r-\ell}{k-\ell} h^{k-\ell} \xi_{\ell \ell}(\mathcal{E})$ by the following
(1.8) Claim. $\sum_{(a, b) \mid a+b=c}\binom{m-1+a}{a}(-1)^{a}\binom{p}{b}=\binom{p-m}{c}$.

To see this, use the Taylor expansion $(1+T)^{-m}=\sum_{a \geq 0}\binom{m-1+a}{a}(-T)^{a}$ and compute the coefficients of $T^{c}$ in $(1+T)^{-m}(1+T)^{p}=(1+T)^{p-m}$.
(1.9) Combining (1.6) and (1.7), we get a formula for $c(\mathcal{N})$. On the other hand, we have $c_{n}(\mathcal{N})=0$ and $c_{n-1}(\mathcal{N})=d h^{n-1}$ since $M$ is of codimension $n-1$ in $\mathbf{P}^{N}$. This gives non-trivial relations among Chern classes of $\mathcal{E}$ and $\Theta_{S}$. In the next section we analyse them precisely in case $s=\operatorname{dim} S=2$ and $r=n-1$.

## §2. Over a surface

From now on we assume $s=\operatorname{dim} S=2$ and set $e_{j}=c_{j}(\mathcal{E}), \gamma_{i}=c_{i}\left(\Theta_{S}\right)$.
(2.1) From (1.6) and (1.7) we obtain
$c_{n-1}(\mathcal{N})=\binom{n+1}{n-1} h^{n-1}+\binom{n}{n-2} h^{n-2} e_{1}+\binom{n-1}{n-3} h^{n-3}\left(e_{1}^{2}-e_{2}\right)-\binom{n+1}{n-2} h^{n-2} \gamma_{1}-\binom{n}{n-3} h^{n-3} e_{1} \gamma_{1}+$ $\binom{n+1}{n-3} h^{n-3}\left(\gamma_{1}^{2}-\gamma_{2}\right)$.
This is $d h^{n-1}$, while $h^{n-1}-h^{n-2} e_{1}+h^{n-3} e_{2}=0$ is the unique relation in $H$ ( $M$ ) (cf. (1.2)). Hence, substituting $h^{n-1}=h^{n-2} e_{1}-h^{n-3} e_{2}$ and comparing the coefficients of $h^{n-2}$ and $h^{n-3}$, we get the following relations in $H^{\cdot}(S)$;

$$
\begin{equation*}
\left(n^{2}-d\right) e_{1}=(n+1) n(n-1) \gamma_{1} / 6, \quad \text { and } \tag{i}
\end{equation*}
$$

(ii)

$$
\frac{(n-1)(n-2)}{2} e_{1}^{2}+\left(d-n^{2}+n-1\right) e_{2}-\frac{n(n-1)(n-2)}{6} e_{1} \gamma_{1}+\frac{(n+1) n(n-1)(n-2)}{24}\left(\gamma_{1}^{2}-\gamma_{2}\right)=0 .
$$

Next from $c_{\boldsymbol{n}}(\mathcal{N})=0$ we get

$$
\begin{equation*}
3 e_{1}^{2}-2 e_{2}-n e_{1} \gamma_{1}+\frac{(n+1)(n-1)}{6}\left(\gamma_{1}^{2}-\gamma_{2}\right)=0 . \tag{iii}
\end{equation*}
$$

(2.2) Eliminating $\gamma_{2}$ from (ii) and (iii), we get $-3\left(n^{2}-4\right) e_{1}^{2}+6\left(2 d-n^{2}-2\right) e_{2}+n(n-$ $2)(n+2) e_{1} \gamma_{1}=0$. Eliminating $\gamma_{1}$ further using (i) and noting $d=\left(e_{1}^{2}-e_{2}\right)\{S\}$, we obtain
$\left(^{*}\right)\{2(q+2) d-q(q+5)\}\left\{(q+2)(q-4) d-(q+2)^{2} e_{2}+(q-1)(q-4)\right\}=-q(q-1)(q-4)(q+5)$
for $q=n^{2}$.
(2.3) Thus, $2(q+2) d-q(q+5)$ is one of the finitely many divisors of the right hand side, so there are only finitely many numerical possibilities for $d$ and $e_{2}$. Note that they are positive integers since $\mathcal{E}$ is ample.
(2.4) For each ( $d, e_{2}$ ) satisfying (*), we examine the relation (i). By the result [IT], it suffices to consider the case where the canonical bundle of $S$ is ample, or equivalently, $d>q=$ $n^{2}$. Let $6\left(d-n^{2}\right) /(n+1) n(n-1)=a / b$ for coprime integers $a, b$. Then $a e_{1} \sim-b \gamma_{1}$, so $e_{1} \sim b A$ and $K_{S} \sim-\gamma_{1} \sim a A$ for some ample line bundle $A$ on $S$. Therefore

$$
e_{1}^{2}=d+e_{2} \text { is divided by } b^{2}
$$

(2.5) In the above case, we have $\gamma_{1}^{2}=a^{2}\left(d+e_{2}\right) / b^{2}$ and $e_{1} \gamma_{1}=-a\left(d+e_{2}\right) / b$. Using (iii), we solve $\gamma_{2}$. The result has to satisfy the Noether relation:

$$
\gamma_{1}^{2}+\gamma_{2} \equiv 0 \text { modulo } 12
$$

(2.6) It is easy to produce a computer programm to enumerate pairs ( $n, d$ ) satisfying the numerical conditions (2.2), (2.4) and (2.5). In view of the result of our experiment, we make the following

Conjecture. Any pair ( $n, d$ ) with $n>3$ as above is one of the following types:
(1) $n \equiv 0,2,6,12$ or 16 modulo 18 and $d=q(q+5) / 6$ for $q=n^{2}$. Moreover $e_{2}=(q-4)(q+3) / 6$, $K_{S} \sim n e_{1}, K_{S}^{2}=q\left(q^{2}+2 q-6\right) / 3, \gamma_{2}=e(S)=\left(q^{3}+8 q^{2}+24 q+36\right) / 3$ and $\chi\left(\mathcal{O}_{S}\right)=$ $\left(q^{3}+5 q^{2}+9 q+18\right) / 18$ for the corresponding scrolls.
(2) $n=10$ and $d=595$. Moreover $e_{2}=561, K_{S} \sim 3 e_{1}, K_{S}^{2}=10404, e(S)=12648$ and $\chi\left(\mathcal{O}_{S}\right)=1921$.
(3) $n=11$ and $d=231$. Moreover $e_{2}=221,2 \Gamma_{S} \sim \epsilon_{1} \cdot \Gamma_{S}^{-3}=113, e(S)=283$ and $\chi\left(\mathcal{O}_{S}\right)=33$.
(2.7) Remarks.
(1) The above conjecture is verified for $n \leq 11$ by my hand, and for $n \leq 1100$ by a personal
computer. In particular, the case with smallest $n$ is $(n, d)=(6,246)$. [IT] apparently claims that such a case can be ruled out by "divisibility manipulations", but I cannot understand the reasoning.
(2) The above condition for $n$ of the type (1) is equivalent to $q \equiv 0$ or 4 modulo 18 .
(3) It is perhaps a delicate problem whether scrolls of the type $\left(?_{n}\right)$ exist or not for a pair ( $n, d$ ) in (2.6). I find no example at present. To settle the problem, we need some more geometric observations. I feel that the case (2.6.3) might be of particular interest, since this is the unique case with odd $n$ and moreover the invariants are relatively small.
(4) The sectional genus $g=g(M, \mathcal{O}(1))$ can be computed by using the relation $2 g-2=$ ( $\left.K_{S}+e_{1}\right) e_{1}\{S\}$, and $g$ is bounded by the Castelnuovo inequality. But it turns out that no pair ( $n, d$ ) in (2.6) is thus ruled out.

## References

[BSS] M. C. Beltrametti, M. Schneider and A. J. Sommese, Threefolds of degree 9 and 10 in $\mathbf{P}^{5}$, Math. Ann. 288 (1990), 613-644.
[BS] M. C. Beltrametti and A. J. Sommese, New properties of special varieties arising from adjunction theory, J. Math. Soc. Japan 43 (1991), 381-412.
[FL] W. Fulton and R. Lazarsfeld, Positive polynomiols for ample vector bundles, Ann. of Math. 118 (1983), 35-60.
[IT] P.Ionescu and M.Toma, Boundedness for some special families of embedded manifolds, Contemporary Mathematics 162 (1994), 215-225.
[LT] A. Lanteri and C. Turrini, Some formulas concerning nonsingular algebraic varieties embedded in some ambient variety, Atti Accad. Sci. Torino 116 (1982), 463-474.
[ Mu ] S. Mukai, $K 3$ scrolls of dimension $n$ in a projective space of dimension $2 n-1$, letter, dated June 2, 1995.
[Ot] G. Ottaviani, On 3-folds in $\mathrm{P}^{5}$ which are scrolls, Annali d. Scuola Norm. Sup. Pisa 19 (1992), 451-471.

Takao FUJITA
Department of Mathematics
Tokyo Institute of Technology
Oh-okayama, Meguro, Tokyo
152 Japan
e-mail:fujita@math.titech.ac.jp

