
  NOTE ON TWO TRANSFORMS OF PLANE
CURVES AND THEIR FUNDAMENTAL GROUPS

lvluTsuo OKA

gl. Introduction. Let C be a projective curve and let Ca = {f(x,y) = O} c C2 be the
corresponding aMne plane curve with respect to the afine coordinate space C2 == P2 - {Z == O},

x = XIZ, y= YIZ and f(x, y) = F(x,y, 1).

    In this note, we study two basic operations. For the detail, see [07]. First we consider an n-
fold cyclic covering g. : C2 - C2, g.(x,y) = (x, (y- fi)"+fi), branched along a line D = {y = fi}

for an arbitrary positive integer n ) 2. Let C.(C;D) be the projective closure of the pull back
g.'i(Ca) of Ca. The behavior of g. at infinity gives an interesting effect on the fundamental group.

In our previous paper [06], we have studied the double covering g2 to construct some interesting
plane curves, such as a Zariski's three cuspidal quartic and a conical six cuspidal sextic. Secondly
we consider the following Jung transform of degree n, J. : C2 - C2, J.(x,y) = (x+yn,y) and
let .Zn(C;L..) be the projective compactification of Ji!(Ca). rl"hough J. is an automorphism
of C2, the behavior of J. or Jl.(C) at infinity is quite interesting. Both of p. and J. can be
extended canonically to rational mapping from P2 to P2 and they are not defined only at [1; O; O]

and constant along the line at infinity L.. = {Z = O}. They have also the following similarity. For
a generic gn and a generic J., there exist surjective hornomorphisms

Åën : Ti(P:' - Cn(C)) ' Ti(P2 - C), iijn : Ti(P2 -.ln(C)) . Tl(P2 - C)

and both kernels Ker Åën and Ker W. are cyclic group of order n which are subgroups of the respec-
tive centers of Ti(P2 - C.(C)) and 7i(P2 - .Z.(C)) (Theorem (3.7) and Theorem (4.7)).

    Both operations are useful to construct examples of interesting plane curves, starting from
a simple plane curve. Applying this operation to a Zariski's three cuspidal quartic Z4, we obtain
new examples of plane curves C.(Z4) and Jl.(Z4) of degree 4n whose complement in P2 has a
non-commutative finite fundamental group of order 12n (g5). We will construct a new example of
Zariski pair {e3(Z4), C2} of curves of degree 12 (g5).

g2. Basic properties of zi(P2-C) and Zariski's pencil method. Let C be a reduced
projective curve of degree d and let Ci,...,C. be the irreducible components of C and let di be
the degree of Ci. So d = di + • • • + d.. First we recall that the first homology of the complement
is given by the Lefschetz duality and by the exact sequence of the pair (P2, C) as follows.

(2.1) Hi(P2 - C) Ex Zr/(di,...,d.) [g Z'-i e Z/doZ

where do = gcd(di, . . . , d.) and Zr == Ze• • -eZ (r factors). In particular, if C is irreducible (r = 1),

we have Hi(P2 - C) U Z/dZ and Hi(C2 - Ca) ny Z where C2 := P2 -L.. and Ca := CnL...
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    (A) van Kampen-Zariski's pencil method. We fix a point Bo E P2 and we consider the
pencil of lines {Ln, n E Pi} through Bo. 1"aking a linear change of coordinates if necessary, we may

assume that Lny is defined by Ln = {X - nZ == O} and Be = [O; 1;O] in homogeneous coordinates.
[l]ake L.. = {Z = g} as tke line at IRgnity and we write C2 = P2-L... Nete tkat Loo = limq-o. Ln.
We as$ttrne that L.. Åë C. We consider the aMne coordinates (x,y) == (X/Z, Y!Z) on C2 and iet
F(X, Y, Z) be the defining hornogeneous polynomial of C and let f(x, y) := .l;'(x, y, 1) be the aMne

equation of C. In this aMne coordinates, the pencil line Ln is simply defined by {x =: n}. As we
ceRs!deer two fundameRtal gToups ffiÅqP2 - C) aRd dy(P2 - CY L..) slinttltaiieeusly, we use the
notations : Ca = Cfi C2 and L# = Ln fi C2 g\ C. We identify hereafter Ln and Lg with Pi and C
respectively by y: lln or Pi for n l oo. Note that the base point of the pencil Bo corresponds to
oo E PI,
    We say that tk}e peRcil {Ln := {x = n}, ny E C}, is admissibge if there exists aR inÅí-eger d' S d
w}iich is ii}dependent of n E C such that Ca A L; con$lsts of d' points counting the mttltipllcity.
rl"his is equivalent to : f(x,y) hErs degree d' in y and the coeficiemt of yd' is a non-zero constant.

Note that if Bo Åë C, ll,i is admissible and d' : d. If d' Åq d, Bo E C and the intersection multiplicity

iÅqC, Loe; Be) =d- d'.
    Hereafter we a$$ttme that the peRc}l {Ln} is admissible. A line L is called generic with respect

to C if CnL consists of d distinct points, A pencil Iine Jin is called non-generic with respect to C
if Ln pangses through a singular point of Ca or Ln is tangent to C". Otherwise Ln is called generic.
Here we nete that a geReric penci} line Ln, mats'- not be generic as a liRe in P2 if Bg G C and
d - d' }it 2 but Ln. intersects tra!}$versely with C" a# d' points.

    Let CB be the line of the parameters of the pencil (CB xe- C) and me :== {Th,...,ne} be
parameters in CB which corresponds to non-generic pencil lines. We fix a geiieric pencil line Ln,
and put L#, fi Ca xe {Qi,...,Qd,}. The comp}ement Lg, - L#. nCa is topologically C ininus
d'-pciRts . We take a base point be E L#, o!} tke 2magiBary ttJcis whick ls suSciently near Åíe Be
and bo yrk Bo. We take a large disk An. in the generic pencil Iine n#, such that An, ) CnLg, and
bo Åë An,. We orient t,he boundary of An, counter-clockwise and let st = 0A,J,. We join st to the
base point by a path L connecting bg and st a}ong the imaginary axis. Let w be the class of this
loop LoS}oL-i in riÅqL3, - L#, "C; bg). We take free geBerators gi,. . .,gds eÅí 7ri(Lg. -Lg, fiC; bg)

so that gi goes around Qi counter-clockwise aiong a $maii circle and

(22) w == gd, ••'91

Put G : rri(L:, - L#, nCa; bo). Note that G is a free group of rank d' with generators gi, . ..,gdr.

The fundamental group 7i(Crs - Z;no) acts on G which we refer by the monodromy action of
rri(CB - X; no). We recall this action quickly.

    Take a large disk A c CB eR the base $pace so that A ) X and qo E A. So we have
ni(CB - X; ne) :\ rri(A - :; nyo), We ta.ke a system of free generators ai,...,ae of Ti(A - Åí; no)

which are represented by smooth loops in A, so that the product ae•••ai is homotopic to the
counter-clockwise oriented boundary of A. We take a large disk of radius R, B(R) := {y G C; lyl S
R} se that B(R) ) UnEACa"Ln under tke ideRtracatieny:L# l-r C. We may assttme that
bg E Ln, - B(2R). Take g G rri(L#. - C" fi L:,;bo) and e E rri(CB - X; no). Represent them
by smooth loops a : (I, el) - (L:, - L#, n C; bo) and T : (I, al) -- (A - X; no) and construct a
one-pararr)eter family of deffeomorphisms he : (Ln,,C n Ln,) - (L.(e), C n L.(e)), O g e K 1 such

that the composition -i                         c Y--- L#. -lli'2+ LgÅq,) -ZL, c

is identity on C-B(2R). The action of a e rri(CB-Åí; nyo) on g G G is defined by (g,a) F-, lh2.oa].
We denote this class by ga. Note that cvg nm w for any g E Ti(CB - Åíl no). Tl}e normal subgroups
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of G which is normally generated by {g'igcr ; g E G, cr G Ti(CB- X; no)} is called the group of the
monodromy relations and we denote it by M, Let M(cri) = {gJ9 `g;i;j = 1, . , , ,d}, Then the group

of the monodremy relations M is the mir!imal normal subgroup of G generated by U,{mmiM(ai).

By the defiRitioR, we have the relatioft R(ffi) : gj =: g;•` in tke quotieRt grroup SIM. We call
R(ai) the rnonodromy relation for ai. The following is a reformulation of a theorem of van-Kampen
([K]) to an aMne situation with an admissible pencil. Let 2' : Lg, - Ln, n C" - C2 - Ca and
e : c2 - C" - P2 - C be the respective inclusions`

Proposition (2.3), (1) The canonical homornorphisin ja : ri(L#, - L#, n Ca;bo) -
Ti(C2 - Ca;bo) is surjective and the kernel Kerp'n is equal to M and therefore Ti(C2 - C";bo) is

isemorphic te the quotient group G!.M.
(2) [ he canonical honiomorphism cif : xi(C2 - CG; bo) --+ xi(P2 - C; bo) is surjective. ff Bo Åë C

(so d' = d), the kernel Kertu is raormally generated by w = gd • • •gi•

Assume further that Be Åë C and L.. is generic. Then
(3) ([03]) cti is iR the center of rri(C2 - Ca). CIrkerefote KerÅq`#) == ÅqwÅr llt Z. N

(4) tn induces an isornorphism of the commatator groups: ctiD : D(rri(C2 - Ca))--=, D(rri(P2 - C))
and an exact sequence of first hornologies: O -, ÅqwÅr or Z . Hi(C2 - C) - Hi (P2 - C) --+ O.

    We ttsually denote gf.M as xi(C2 - Calbg) == Åqgi,...,gd;R(ffi),...,R(ffe)År. We call

-i(C2 - Ca) the fundarnental group of a generic afiine complement of C if L. is generic. Note
that if L. is generic, Ti(C2 - "") does not depend on the choice of a line at infinity L...

    (BÅr Bracelets and lasso$. AR elemeRt fi E #i(P7- C;bg) is called a iasse for Cfi !Åí it is
represented by a loop L o r o Åí-i where r is a counter-clockwise oriented boundary of a smaii
normal disk Di(P) of Ci at a regular point P E Ci such that Di(,F') n (CU L.) = {P} and L is
a path connecting bo and T. We call r a bracelet for Ci. It is easy to see that any two bracelets
T ai}d r' for tke same irreeuclb!e compoReRt, say Ci, are ftee homotopie. 'l]kereÅíere tke home#gpy
ciass ofa lasso for Ci (or L..) is unique up to a conjugation, We say that the line at infinity L.. is
central for C if there is a lasso cv for L.. which is in the center of rri(C2 -Ca) : Ti(P2 -CUL,.,).

If L. is generic for C, L.. is central by Proposition (2.3) but the converse is not always true (see

Ccrellary (3.3.1) a#d Tkeerem (4.3)).
    Assume that L. is central for C and take an admissib}e pencil {Ln,n G C} with the base
point Bo Åë C. Then d' == d and mu defined by (2.2) is irm the center of Ti(C2 - C";bo) as w-i is a

lasso for ll.. Thus we can replace the hornotopy deformation of tu by free hornotopy deformation
ef st. Tki$ viewpeint is guite useful iR the later sectioxxs.

Remark (2,4). Suppose that Bo Åë C and L.,, is not generic. Take A = {n E Cfi;lnl S R} c CB as
before and we may assume that no E aA and let a. : : aA. The monodromy relation gi ig,E oo is

coRtained in the group ef moRedromy relatiens M. We caR alse censider She me#edrgmy re!atiell
around n = co. For this purpo$e, we identify Ln g( Pi through another rational function g := Y/X
for lnl ) R. For n pt O, g: Ln --, C is written as g(n,y) = yln• Let je : Ln, --+ Ln, exp(ei), O S! e -Åq

2T be a family of horneomorphisms which is identity outside of a big disk under this identification
sp: Ln --" C. Tken the base po!nt bg stays coBstaRt under the identificatlon by g but ttxxder the
first identification of y : Ln -- Pi, the base point is rotated by e N be exp(ei), Putting h' = 3'2.,

this implies that the monodromy relation around L. is given by

Åq2.4.1) hi (g) : cvg'aee cv-', g E C
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[l]his gives the foliowing coroilary.

Corollary (2.5). Take another generic line Ln6 for C with n6 X no. Let Ri,...,Re be the
illellodreii!y refa#ion edong ffi as befere. Thea Sj]e fandamei]tal greup eia generic ag?lle comapiemex#
Ti(P2 - CULn6;bo) is isomorphic to the quotient group ofTi(C2 - Ca; bo) b,y the relation cvgi =
gicv,i : 1,...,d. in particular, iftu is in the center ofrri(C2-Ca;bo), Ti(C2-C";bo) is isomorphic
to the fundamental group of a generic adine complement ri(P2 - C U Ln6; bo)•

    (C) Milnor fiber. Consider the aMixe hypersurface V(C) rm {(x,y,z) es C3;F(m,y,z) = 1}
where l' (X, Y, Z) : Zdf(X/Z, IV/Z). The restriction of Hopf fibration to V(C) is d-fold cyclic
covering over P2 - C. Thus we have an exact sequence:

(2.6) 1 -. 7ri(V(C)) -- ri(P2 - C) - ZldZ --+ 1

Comparing with Hurewicz homomorphism, we get

Proposition (2.7) ({02]). IfC is irreducible, Ti(V(O')) is isotnorphic to the commutator group
D(Ti(P2 - C)) of rri(P2 - C).

S3. Cycilc transÅíorms ef plane curves.

    (A) Cyclic transforms. Let C c P2 be a projective curve of degree d. Fixing a line at
infinity L.., we assume that the arane curve C" := CAC2 is defined by f(x, y) ww O in C2 = P2-L...

We assumee that f(x, y) is wrlken wltk mntually d2seinck}eiyzero ai, . . . , c!k as

(u)
         h
f(x,y) = II(ya - aixb)"` + (lower terms),

        i= i

gcd(a, b) : 1

Here (lower term) irnplies that it is a linear combination of monomials xQyfi with aa + bP Åq kab.
This implies that degyf(x,y) -ww d', deg.f(x,y) = d" where d' :ww aÅíI=i ui, d" := bÅí,k•.,i vi and

d -- max(d',d") and both pencil$ {x = r?}qEc a!id {y = 5}6Ec are admi$$ible. Note that the
assumptiexx (#) does not change by tke change of coordinates ef ti}tt. type (x, y) - (x + ew, y ÅÄ fi).

(1) Ifa nm b == 1, then d= d' me ct" and L.. f)C == {[1;czi;01;i= 1,...,k}. rn particular, if yi = 1

for each i, L.. is generic for C and thus L.. intersects transversely with C.
(2År lfa År b(respectively aÅq b), we haved nm d',CfiLoo = {poo :== Il;Oi 03} (resp. d= d", CfiL.. ==
{pbe := le;i;gl} ) axxd C has a singularlty at fi.. (resp. a-t g'..). "I'ke }ecal equatieft ef C at e..

(resp. pbo) takes the form:

(3.1) { III.i(Åqa -aiCa-b)"' +(higlier terms) cu O, Åq= Y/.X,C == Zl.X, aÅr b

l][I..,(Åq'b"a - ai6'b)"i + Åqhigher termsÅr mh- C, Åq' =: Z/ Y, 4' = X/Y, a Åq b

Here (higher terms) is defined similarly. For iristance, irm the first equality it is a linear combinations
of monomilas ÅqaCO with (a - b)a + aS År ka(a - b). Now we consider the horizontal pei}ci} Mn =

{y = R}, ?? E C aftd let 9 = Mfi be ft gekeric peRcil lii}e. As fi is geBeric, "P fi Ca is d" disÅíinct
points in C2. For ari integer n tr 2, we consicler the n-fold cyclic covering g. : C2 - C2, defined

by
                      g. : C2 - C2, Q.(x,y) =: (x,(y - fi)" -+- S)
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which is branched along D. Let C.(C; D)a == p.-i(Ca) and let e.(C; D) be the closure of e.(C; D)a
in P2. We call e.(C;D) the cyclic transform of order n with respect to the line D. To avoid the
confusion, we denote the source space of p. by CN2 and the coordinates of CN2 by (hi,g). Thus the

                                              -v Nline {g == fi} is equal to p.'i(D) and we denote it by D. We denote the line at infinity P2 - C2
by i... Let f(")(hi,g) be the defining polynomial of C.(C; D)a. As f(")(di, ij) == f(di, (g - p)n + fi),

f(n)(f,g) takes the form:

                                 k
(3.2) f(") (x, y) = H(g"a-ai2b)U' +(lower terms).
                                i=1
Observer that f(")(th,g) also satisfies (tt).

    (B) Singularities of C.(C;D). Let ai, . . . , a, be the singular points of Ca and put L.. nC =
{a&,.,.,ae..} and C.(C;D) n Z.. == {abo;i == 1,...,e-} where Z.. is the line at infinity of the

projective compactification of the source space CN2 of g.. Note that e = k if a = b = 1 and e = 1

otherwise. Note also that e-  = kb or 1 according to na = b or na l b. C.(C;D) nZ.. is either

{[1;O;O]} if na År b or {(O;1;O]} if na Åq b. It is obvious that for each i = 1,...,s, C.(C;D) has
n-copies ofsingularities ai,i, . . . ,ai,. which are Iocally isomorphic to ai. We denote the local Milnor

number at a E C by pt(C;a). First we recall the modified PIUcker's formula for the topological
Euler characteristics (see, for instance,[02j):

                                      se-
(3.3.1) x(C) = 3d- d2 + ]Z) pa(C; a,•)+2 pt (C; ats)
                                     j=1 i==1

Proposition (3.3.2). If the branching locus D is a generic pencil Jine, the topological
(C-V2,C.(C; D)") and (P2, C.(C; D)) do not depend on the choice ofa generic 6.

types of

    Note that C.(C; D) has further singularities, if the branching line D is not generic.

    (C) Main results ofthis section. Let G be an arbitrary group We denote the commutator
subgroup and the center of C by 1[)(G) and Z(G) respectively. The main result of this section is :

Theorem (3.4). Assume that (ti) is satjsfied and D is a generic horizontal pencii line.
(1) The canonical homomorphism g.v : -i(C'-"2 - C.(C; D)a) - Ti(C2 - Ca) is an isomorphism.

(2-a) Assume a 2 b (so degC.(C;D) = nd). Then there is a surjective homomorphism
Åën : Ti(P2 - Cn(C; D)) - Ti(P2 - C) which gives the following commutative diagram,

                                          Åën                        Ti(P2-e.(C;D)) --. rri(P2-C)
                                T/ti Ttv                               T

                        Ti(CN2 - e. (C; D)a) 2IL4/ T, (c2 - ca)

where Tti and Lti are induced by the respective inclusions and the kernel ofÅë. is normally generated

by the class of cv' := g.' tii (w) where w-i is a lasso for L.. and w'-n is a lasso for the line at infinity

-vNLoo of C2.
(2-b) Assume that na S b (so dege.(C;D) == degCa = d). Then di := g.' tti (w) is a lasso for Z..

and we have an isomorphism: ri(P2 - e.(C; D)) 2 Ti(P2 - C).
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Corollary (3.4.1). Assume that a ) b and L.. is central for C. Then
(1) Z.. is central for e.(C; D) and there is a canonicaJ central extension of groups

                   1 --+ ZlnZ-L+ rri(P2 - e.(C; D))E!!'#Ti (p2 - C) - 1

(i.e., t(ZlnZ) c Z(Ti(P2 - C.(C;D)))) and Z/nZ is generated by w' = g.- #i (cv).

(2) The restriction ofÅë. gives an isomorphism ofcomn]utator groups

Åën : CP(Ti(P2 ' Cn (C; D))) - 1[)(Ti (P2 ' C))

and the following exact sequences of the centers and the first homology groups:

                                                Åën          1 - ZlnZ - Z(Ti(P2-e.(C;D))) --- Z(Ti(P2-C)) - 1
                                                Åën          1 - Z/nZ - Hi(P2mCn(C;D)) -- Hi(P2-C) - 1

Proof of Coroltary (3.4.1). Assume that L.. is central. Then w E Z(Ti(C2 - Ca;bo)). As
p.ti is an isomorphism, w' E Z(Ti(CN2 - e.(C);b80))). Thus the normal subgroup YV'(w') of
Ti (C'V2 -e. (C); b80)) is simply the cyclic group Åqw'År generated by w'. We consider the Hurewicz image

ofw' in Hi (P2 -C.(C)). Suppose that C has r irreducible components CJ• of degree dJ•, j = 1, . . . , r.

Then it is obvious that C.(C) consists of r irreducible components e.(Ci),...,C.(C.) of degree
ndi,...,nd. respectively. For any fixed i dj•-elements of {gi,j•,...,gd,j} are lassos for e.(CJ•). Thus

w'  corresponds to the class [w'] = (di,...,d.) of Hi(P2 - e.(C)) ny Zr/(ndi,,..,nd.). Thus [w']
has order n in the first homology group. As w'" = e already in Ti(P2 - C.(C)), order(w') == n and
the kernel of Åë. is a cyclic group of order n generated by w'. This proves the first assertion (1).
    As Åë. is surjective, the commutator subgroup 1])(Ti(P2 -e.(C; D))) by Åë. is mapped surjec-
tively onto the commutator subgroup D(-i(P2 - C)). On the other hand, the kernel ZlnZ is injec-
tively mapped to the first homology group Hi (P2-C.(C)), Thus D(ri(P2-e.(C)))nZ/nZ = {e}.
Therefore Åë. induces an isomorphism of the commutator groups. The sequence

                                               wa
                   1 - Z/nZ - Z(ri(P2 - e. (C)))-Z(Ti(P2 - C))

is clearly exact. We show the surjectivity of Wa. Take h' E Z(Ti(P2 - C)) and choose h E
Ti(P2 - e.(C)) so that Åë.(h) = h'. For any g E Ti(P2 - e.(C)), the image of the commutator
hgh'igffi by Åë. is trivial. Thus we can write hgh-ig-i = w'a for some O S a S n- 1. As [w'] has
order n in first homology, this implies that a = O and thus hg = gh for any g. Therefore h is in the
center. The last exact sequence of the assertion (2) follows by a similar argument, This completes
the proof of Corollary (3.4.1). O

Remark (3.5?. (1) We remark that the rational map va : P2 - P2 which is associated with g. is
defined by sp"((X;Y; Z]) = (XZ"-';Y";Z"] and thus gA is not defined at p.. :== [1;O; O] E C.(C)
and gA(Z.. - {p..}) - pbo - [O;1;O].

(2) In the case of na År b År a, there does not exist a surjective homomorphism Åën : Ti(P2 -
Cn(C)) - Ti(P2 - C) in general. For example, take C' a smooth curve of degree d' and let
C = e2(C';D') a generic two fold covering with respect to a generic line D' := {x = a}. Then
we take a covering e3(C;D) of degree 3 with respect to a generic D :== {y = fi}. Then we
know that degC = 2d' and dege3(C;D) = 3d' and therefore 7i(P2 - C3(C; D)) = Z13d'Z and
Ti(P2 - e2(C';D')) = Z/2d'Z. Thus there does not exist any surjective homomorphism.
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    (D) Generic cyclic covering. Now we consider the generic case:

                 d
(3.6) f(x,y)=H(y-aix)+(lower terms), ai,..,,adEC', aifaj• (ilj')
                i=1
This is always the case if we choose the line at infinity L.. to be generic and then generic aMne
coordinates (x,y). Take positive integers n ) m 2 1 and we denote e.(C;D) by C.(C) and
C.(C.(C;D);D') by C.,.(C) where D == {y = 6} and D' == {x = a} with generic a, fi. Note
that C.(C) = Ci,.(C). The topology of the complement of C.,.(C) depends on!y on C and m,n.
We will refer C.(C) and C.,.(C) as a generic n-fold ( respectively a generic (m, n)-fold ) covering
transform of C. They are defined in C2 by

       e.(C)a = {(th,ij) E C2;f(x, ijn) = o}, e.,.(c)a == {(di,g) E c2;f(dim,gn) = o}

taking a change of coordinate (x,y) H (x + or,y+ fi) if necessary, If n År m, C.,.(C) has only one
singularity at p.. = [1;O;O] and the local equation takes the following form:

               d
               H(Åqn - aiC"-M) + (higher terms) = O, C = Y/X, e = Z/X

               i=1
Therefore C.,.(C) is locally dÅ~ gcd(m, n) irreducible components at p... (e.,.(C), p..) is topolog-

ically equivalent to the germ of a Brieskorn singularity B((n-m)d, nd) where B(p, q) :== {CP -Cq} =
O. In the case m = n, we have no singularity at infinity. By rl"heorem (3.4) and Corollary (3.4.1),

we have the following.

Theorem (3.7). Let C.(C) and e.,.(C) be as above. Then the canonical homomorphisms

                Ti(CNN2 - C,.,.(C)a)9-" tt Ti(cN2 - e. (c)a) 2I'EgU ., (c2 - ca)

and Åëm : Ti(P2 - em,n(C)) - Ti(P2 - C.(C)) are isomorphisnis. There exist canonical central
extensions of groups where the diagrains are comniutative.
           1 - Z/nZ -L Ti(P2-C.,.(C)) tpL!Ih';" Ti(P2-C) - 1

           i- z///2 -2'.' .,(ptt-iÅëeLkc)) iil• .,(pS'Ldc) --, i

The kernel KerO. (respectively KerÅë.,.) is generated by an elernent cv' (resp. cv" = Åë,-.i(cv')) in

                                       N -A'.the center such that w'" (resp, w"") is a lasso for L.. (resp, for Lcx)). The restriction ofÅëm,n, Åëm

and Åë. give an isomorphism of the respective cornniutator groups
                                                     ÅënP                                 ÅëmP                                                     - T)(Ti(P2 - C))                                  - IE)(Ti (P2 - Cn(C)))         Åë.,np : 1)(ni (P2 - e.,.(C)))

and exact sequences of the centers and the first homology groups:
                                            Om,n                                             - Z(ri(P2-C)) - 1         1 - Z/nZ - Z(zi(P2-Cm,n(C)))
                                            Åëm,n                                             --- Hi(P2-C) -. 1         1 - ZlnZ - Hl(P2-Cm,n(C))

    Let {ai, . . . , a.} be singular points as before. Then e.(C) (respectiveiy e.,.(C) ) has n copies
(resp. nm copies)of ai for eachi= 1,...,s and one singularity at p.. := [1;O;O] except the case
n = m. The curve C.,.(C) has no singularity at infinity. The similar assertion for e.,.(C) is
obtained independently by Shimada [Sh].
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Corollary (3.7.1). (1) Ti(P2 - e.,.(C)) is abelian ifand only ifri(P2 - C) is abelian.

(2) Assume that C is irreducible. Then the fundamental groups 7i(V(em,.(C))) and Ti(V(C)) of
the respective Milnor fibers V(C.,.(C)) ofC.,.(C) ai]d V(C) ofC are isomorphic.

Proof. The assertion (1) follows from Theorem (3.7). The assertion (2) is immediate from Propo-
sition (2,7) andTheorem (3.7). a

The following is also an immediate consequence of Theorem (3.7) and Corollary (2.5).

                  rv --Corollary (3.7.2). Z.. is central for C.,.(C) i.e., Ti(P2 - e.,.(C) UZ..) is isomorphic to the

fundamental group of the generic aMne complement of C.,.(C).

    (E) Homologically injectivity condition of the center. The following is useful to pro-
duce Zariski pairs from a given Zariski pair (See g5). First we consider the following condition for

a group G:

(H.I.C) Z(G) n P(G) = {e}

This is equivalent to the injectivity of the composition: Z(G) c-, G - Hi(G) := G/1])(G). When
this condition is satisfied, we say that C satisfies homological in]'ectivity condition of the center (or

(H.I.C)-condition in short).

Theorem (3.8). LetC = CiU•i•UC. and C' = C( U•••UC;. be projective curves ;vith the same
number ofirreducible coniponents and assurne that degree(Ci) == degree(C;•) = di fori= 1,...,r
and assume that Ti(P2 - C') satisfies (H.LC)-condition. Assume that Ti(P2 - Cm,.(C)) and
Ti(P2 - e.,.(C')) are isomorphic for some integer m,n with 1 S m S n. Then Ti(P2 - C) and
Ti(P2 - C') are also isomorphic.

Remark (3, 9?. ' (1) Take a non-generic line D = {y == fi} for C and consider the corresponding cyciic
covering branched along D, p. : C2 - C2. Then the assertions in Theorem (3,4) and Corollary
(3.4.1) for the pull back C' = g.'i(C) may fail in general. For example, we can take the quartic
defined by (5.1.1) in g5. Then L.. is central for C and Ti(P2-C) = Z/4Z. Take D= {y = O} and
consider g2 : C2 - C2, g2(x, y) == (x,y2). Then the pull back Z4 of C is a so called Zariski's three
cuspidal quartic and Ti(P2 - Z4) ia a finite non-abelian group of order 12 ([Zl],[05]). See also g5.
(2) We do not have any example of a plane curve C such that Ti(P2 - C) does not satisfy the
(H.I.C)-condition.

S4. Jung transforms of plane curves.

    Let C be a projective curve of degree d in P2 and let f(x, y) = O be the defining polynomial of
C with respect to the aMne space C2 = P2 - L... In this section, we introduce another operation
which produces a projective curve Jl.(C) of degree nd.

    (A) Jung transform of degree n. First for any integer n }l 2 we consider the following
automorphism of C2 ([J]).

(4.1) J. : C2 - C2, J. (x, y) = (x + y", y).
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"Irhe inverse of J. is given by J.whi(x,y) == (x - y",y). Let 1.(O;L,,.) be the projective closure of
J.-i(Ca). We call J7.1 (C;L..) an Jung transforTn of C of degree n. By the definition, Jl.(C;L.,,)
is birationally equivalent to O and the aMne complements C2 - C" and C2 - 3I.(C;L..)a are

                                             N ivbiholomorphic. We denote the source space of J. by C2, the line at infinity by L.. and the aMne
coordinates by (di, ij) as in S3, By the definition, Jll.(C;L..) is defixxed in CN2 by

(4.2) fÅqn)(s,Åë=f(eÅÄsn,g).
We say tkat j. gf the aMne coordi=ates (=,y) !$ an admissibie for C lf ll;g$] f C. We call
J71n(C;L.) aR ad7r}issible Jung transform of C of degree n if J. i$ admissible. Note that the
admissibility of J71. impiies that degf(")(di,M = nd. Finally we ca}l .71n(C;L..) a generic jung

transform of C of degree n, if L.. is generic with respect to C and Jh is admissible for C. In this
case, we denote Jl.(C; L.o) simply by Jln(C)•

    (B) Singularities of Y.(( ;L.). We consider the singularities of an admissible Jung traris-
form JTn(C;L..). Let ai,..,,an,, be the singular points of Ca and let {ag.,...,ag.} = CnL.. be
the points at infinity. Let ri be the number of local irreducible cornponents of C at a&,. As J.
is biholomorphic, the singularities of J71.(C;L..) in C2 corresponds bijeetively to ak,. . . ,a.. Let

f(x,y) = fd(x,y) + fd-i(x,y) ÅÄ •+• -l- fe be the homogeneeus decomposltion of f. By admiGsi-
bility, we caR write k(x,y) nm ll,fo•mei(x - ctiy)U` where ai,...,ad G C are mutgal}y distiRct a#d

Xl,,,i yi = d. We may assume that ag. = (ai;llg) iR the kemogexxeotts coerdimates. Tke;} tke

homogeneous po}yRomial w}kich defines J71n(C;Loe) is

                      kd(4.3) F(n)(x, Y, Z) := ll(.xznww1 -t- yn - aiyznfi1)vz +2zjnfdmaJ•(xzn-1 +yn,yzn-1)

                     i=1 j'--l
Irhus deg .ll.(C; L..) = nd arrd p.,, :=: [1;O; O] is the only intersection of ,Z.(C; L..) with the line at

infinity L.. and p.. is a singular point of 51.(C; L..). The number of local irreducible components
of J71n(C; Lo.) at p.. is EC.i ri and the local Milnor number p(J71.(C;L,.,);a..) can be computed

using the modified Pl"cker's forrnula :

                                    s(4.4) x(.Jl. (C; L.e)) = 3nd ww #2d2 + 2 ge(Cl a" ÅÄ #(` ln (C; LocÅr); aoe) = x(C) - k Jl- i

                                    i=l

Thus the Milnor number pa(J71.(C;L..)la..År is independent ef the c}ioice of the admissible aMne
coordinate (x, y) of C2 = P2 - L,.,. As the space of the adrnissible aMne coordinates are connected

and a kconstant family of plane curves are topologically equivalent to each other, we have:

Proposition (4.5). The topological type of thepair (P2, .X.(C;Loo)) depend only on C and L.
and it does not depend on the choice of the admissible affne coordinates (x, y). If L.. is generic,
the topological type of the pair (P2, .71.(C; L..)) does not depend on Lc.).

    Let us study the structure of the singularity p.. E J71.(C) of a generic admissible Jung trans-
form of degree n lit detai}. Let Åq nm '}i/X, C == Z!X be aeeRe coordii'iates ceRtered at p.. ef the agene

space P2 - {X = g}. TkeR local eeftnigg pe!yRemiakakes the follewing form:

                     dd(4.6) h(Åq, c) = n(cn-i + Åqn - or,ccn-!) +24nf,wwj(cn-i ++. Åqn,ccn-i)

                     i=1 J'--1
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J71.(C) has d irreducible components at p... Consider an admissible toric modification

                  T : c2 - c2, T(u, v) == (c,c), Åq = uvn-1, c = uvn.

Then the defining polynomial changes into

            T'h(u,v) ,: vfn("-i)(-1)d("-i) (tlij. Ii(ui + a,vr-i) + (higher terms))

where ui := u+ 1,vi := v are local coordinates at (u,v) = (-1,O). Thus we see that the Newton
boundary of T"h in (ui, vi) is non-degenerate. Thus the resolution complexity e(.71n(C);p..) is two
for n ) 3. See (Le-Oka] for the definition of the resolution complexity. The Milnor number is given
by p(J71.(C);p..) = d2(n2 - 1) - d(3n - 2) + 1. (In the case of n == 2, the resolution complexity

e(Jll.(C);p..) is 1.) The germ (,7.(C);p..) is topologically determened by the first term of (4.6)
and it is equivalent to B(n - 1,n; d) := {(C"" + cn)d - (Åqcn-i)d .. o}.

    (C) Main results of this section. Now we stat•e the main result of this section.

Theorem (4.7). Assume that L.. is central for C and Iet J. : CN2 --+ C2 be an admissible Jung

transform ofdegree n ofC. Then Z.. is central for ,Jl.(C; L..) and there exists a unique surjective

homomorphism tpn : Ti(P2 - .7.(C;L..)) - ri(P2 - C) which gives the fo11owing commutative
diagram .,(p2-.1.(c;L..)) Ill!.!, .1(p2-c)
                               Ti,                                                     Tbv

                       Ti(CN2-,7.(C;L..)a) L'Sti T,(c2.ca)

where Ttt and t# are associated ;vith the respective inclusion maps. tp. has the fo11owingproperty.
(1) The kernel of W. is a cyclic group of order n which is a subgroup of the center. So we have a
central exactension of groups:

                  1 -- ZlnZ-S!.Ti(P2 - Jln(C;Lc.)))I!!'4Ti(P2 - C) '- 1

The image a(ZlnZ) is generated by Ttt(w') where w' := J.- tti (w), w is a lasso for L.. in the base
space P2 D C, and w'" is a lasso for the line at infinity Zoo.

(2) The restriction of W. gives an isornorphism W. : CD(ri(P2 - .71.(C;L..))) - II)(Ti(P2 - C))
and the following exact sequences of the centers and the first homology groups:

                                                 Wn         1 - Z!nZ - Z(Ti(P2-Jln(C;L..))) - Z(Ti(P2-C)) - 1
                                                 utn         1 - Z/nZ -- Hi(P2-.7n(C;Loo)) - Hi(P2-C) - 1

The proof is parallel to that of Theorem (3.4). See [07]. The essencial poit is:

Lemma (4.7,4). J.ti(di) = w", w'n = di and the order of ln(w') in Ti(P2 - Jln(C;L..)) is n.

Assuming this for a moment, we complete the proof of Theorem (4.7). As J.tt is an isomorphism,

          --t N Ncv'  E Z(Ti(C2 - JT.(C;L..);bo)) and Ti(P2 - Jl.(C;L..); bo) or ri(C2 - Ca;bo)/Åqw"År by (4.7.3).
Combining this with (4.7.2), we get a central ext•ension

               1 - Åqla (cv')År - Ti(P2 - .71n(C;Loo);5e)-ll!!'!,Ti (P2 - C; bo) - 1
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where W. is the quotient homomorphisni which is associated with the above identificatiQn. This
prove$ (1). The assertion (2) can be proved by the exact same way as in the proof of Corollary
(3.4,1).

    (") Cgrellaries. The pregfs of the fo}lowiRg Coroilaries are giveR by t}ie exact same way as
tho$e oÅí Corollaries (3.7,1), (3.7.2) and Theorem (38).

Corollary (4.8). Let J. : C2 - C2 be an admissible Jnng transform of clegree n with respect to

a central line at infinity L... Then we have the following,
(1) ri(P2 - .71.(C; L..)) i$ abelian jf and on?y if ffi(P2 - C) is abejian.

(2) Assume Skat C is irreducib;e. Thex rri(Y(Jl.(C;Loo))) tw ff!(li(C)) where Y(J71.(C;Lrm)) aiid
V(C) are respective Miinor fibers of Jln(C; Loo) and Ci

Corollary (4.9). Let J. : C2 - C2 be an admissible Jung transforrn of clegree n with respect to
a central line at infinity L... Then Z.. is central for Jr.(O; "L..) and Ti(P2 - 5.(C;Lco)UZ..) is

ison'iorpi}ic to tke falldamental grgup of a gefieyjc Eg?iiie comp!emeiit ef Jln(C; L.e)•

Corollary (4.10). llet J. : C2 - C2 be an admissible Jung transform of degree n with respect
to a central line at infinity L... Let C = Ci U + • • U C. and C' = C{ U • • • U C; be projective curves

;vith the same number of irreducible components and asstmie that degree(Ci) -- degree(C;•) =: di
for i : 1, . . . ,r. VVe assume that either rri(P2 - C) or rr!(P2 - C') satisfies (H.LC)-condition and
that dyÅqP2 - 31.(Cl L..År) ai]d gi(P2 - J71.(C')) are isemerphic. C keii xKP2 - C) aiid gi(P2 - C')

are isoinorphic.

Renzark (4.11?. (1) Iri the definition of arm admissible Jung transform, we can take an arane auto-

morphisin
                        Ja : C2 --. C2, (x,yÅr H (x -l- 2}.(y),y)

where h.(y) is an arbitrary polynomial of degree n. Let J71A(C;L..) be the c}osure of .JAwwi(Ca).

Then the topological tÅrrpe of the pair (P2, SIK(C; L..)) is equal to that of (P2, .7.(C; Loo)).

(2) If J. : C2 - C2 is admissible but L,., is not necessarily central, there exists a surjective
homoinorphism 'IP. : rri(P2 - .Z.(C;L..)) - Ti(P2 - cr). In fact, assuming the admissibility
ll;O;Ol Åë C, J. ca be extended a birational mapplRg J;, : P2 - P2 defuied by JA((X;Y;Zl) =
{xzrt-i -i- yn;yzn-i; znl. .J"s well-dekoed ok p2 - {[l;g; gl} 3Rd .?lk(ill,., - {llig; g]}) =: il;O; g].

So jA : P2 - 5.(ClL..)) . P2 - C is we}}-defined. However lÅqerW. i$ not necessarily a cyclic
group of order n.

g5. Zariski's quartic and Zariski pairs.

    l# tkis sectioR, we apply tke resuks of g3 and g4 te construct plaRe curves w}}ese complement
have interestlRg fttnda.n}exxeal groups.

    (A) Zariski's three cuspidal quartics. Let Z4 be an irreducible quartic with three cusps.
Such a curve is a rational curve. For example, we can t,ake the following curve which is defined in
C2 by the following equation ([06]):

(5.l) Z4" wh- {Åq=,y) E C21x3Åq3x ÅÄs) m 6x2(y2 ww g - (g2 - g2 ,,. g}
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We call such a curve a Zariski's three cuspidal quartic. It is known that the fundamental group
Ti(C2 - Z4) and Ti(P2 - Z4) have the following representations ([Zl],[06]):

(5.2)
  ri (C2 - Z4) = Åqp, 6; {p, C} == e, p2 = c2År{ Ti(P2m Z4) = Åqp,C; {p,C} == e, p2 = C2,p4 =eÅr

where p and C are lassos for C and {p,C} := pCpC-ip-iC-i. The relation {p,C} == e is equivalent.
to pCp = Cp6. A lasso w for L.. is given by p2C2(= p4). Recall that w-i is a lasso for L.. and is

contained in the center. A Zariski's three cuspidal quartic is the first example whose complement
has a non-abelian finite fundamental group. We first recall the proof of the finiteness.

Lemma (5.3) ([Zl]). Put

Gi = Åqp,C; {p,C} = e, p2 =C2,p` =: eÅr,

Then Gi is a finite group of order 12 such that CD(Ci) = Åqp2CpÅr 21 Z/3Z, Z(Gi) = Åqp2År !-l! Z/2Z

and Hi(Ci) 2! Z14Z and it is generated by the class ofp

    We consider the Hurewicz exact sequence:

(s.4) 1- D(Gi) !-)t z13-eL'+Gi-S2-+Hi(Gi) or- z/4z -,1

This sequence splits by taking the section P H p of ip so that Gi has a structure of a semi-direct
product of Z!3Z and Z/4Z. More precisely, the semi-direct structure is given by pfip-i = fi2 as
pPp-i = p(p2Cp)p-i = p3C = fi2.

    (B) Generic transforms of a Zariski's quartic. Let C.(Z4) (respectively C.,.(Z4)) be
a generic cyclic transform of degree n (resp, of (n,n)) of the Zariski's quartic Z4 and let .71.(Z4)

be a generic Jung transform of degree n of the Zariski's quartic Z4. The singularities of e.(Z4)
(respectively of C.,.(Z4)) are 3n cusps (resp. 3n2 cusps). e.(Z4) has one more singularity at
poo E Loo and,(e.(Z4), p..) is equal to B((n-1)d, nd) := {C"d-Cd("-i)} = O}. On the other hand,

Jll.(Z4) is a rational curve which has 3 cusps and one more singularity at infinity poo E .71.(Z4)nL...
(JTn(Z4),p..) is topologically equal to B(n-1,n;d) := {(C't-i+Åq")d-(Cen-i)d == o}. By Corollary

(3.4.1) and Theorem (4.7), we have the following:

Theorem (5.5). The af]ine fundamental groups Ti(C2 -C.(Z4)a), Ti(C2- .7.(Z4)a) are isomor-
phic to Ti(C2 - Z4) ;\ Åqpn,Cn;{Pn,Cn} = e, PZ = CZÅr'
(1) The projective fundamental groups ri(P2 -C.(Z4)) and Ti(P2 - Jl.(Z4)) are isomorphic to G.
where Gn is defined by G. := Åqp.,C.;{p.,C.} = e, pk == CR,pan = eÅr. Moreover we have a central

extension of groups:

(5.5•1) 1- ZlnZ-G. f2!'!+Gi -1
defined by Åën(p.) = p and Åë.(e.) = C and KerO. is generated by pA. In particular, we have
IGnl =: 12n, ID(Gn) = Åq6nÅr or Z13Z where 6. = [p.,C.] and Z(Gn) = ÅqpZÅr = Z/2nZ.

(2) The Hurewicz sequence 1 . T)(G.) . G. - Hi(G.) - 1 has a canonical cross section
e : Hi(Gn) - Gn which is given by e(P.) = p.. This gives G. a structure ofsemi-direct product
Z13 and Z14nZ which is determined by p.fi.p.-' = fiZ.
(3) G. is identified with thesubgroup ofthepermutation group Si2. of12n elenients {xi, yJ•, zk; 1 S
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i,ikS 4n} generated by two permutations: an = (xi,•••,x4n)(yi,•••,y4n)(zi,•••,z4n) and Tn =
(X1,Yl,X3,Y3)•••,X4n-1,Y4n-1)(X2,Zl,X4,Z3,••+,X4n,Z4n-1)(Y2,Z2,Y4,Z4,•••iY4n,Z4n)•

Proof, The assertions (1) and (2) is due to Theorem (3.7) and Theorem (4.7). We prove the
assertion about the semi-direct structure in (2). Note that any element of G. can be uniquely
written as one of pi, piC., piC.p. for O S i Åq. 4n - 1. Let fi. = [p.,C.] E D(G.). Then by an
easy computation, we have P. = p4."-2C.p., fi2 = p2"'iC. and and p.P.p.-i = pa"'iCn = P,2,.
Finally we prove the assertion (3). It is easy to see that {a., Tn} satisfies the relations: {a., T.} =

e, a3 = T3, aa" = e. Thus we have a homomorphism di : Gn - Gi2n which is defined by
ip(pn) == an and di(Cn) = T.. Let GA be the image. As we know IG.l = 12n and ord(a.) = 4n,
we have either IGkl = 4n or 12n. As T. Åë Åqa.År, we must have ICLI = 12n, which implies that
ip : Gn - GA c Gi2. is an isomorphism. 0

Remark (5,6?. Composing the cyclic and Jung transformations, we can produce many different
types of singularities with the same fundamental group. For example, there are at least 7 types of
curves Ci, i = 1, . . . , 7 of degree 12 whose complements have the fundamental group G3 as follows.
(In the list, X(Ci) is the singularities of Ci.)

1. Ci = ei,3(Z4) and Åí(Ci) = {9B(2,3) +B(8,12)}. 2. C2 = C2,3(Z4) and Z(C2) = {18B(2,3) +
B(4,12)}. 3. C3 = C3,3(Z4) and Z(C3) = {27B(2,3)}. 4. C4 = .73(Z4) and Z(C4) == {3B(2,3) +
B(2,3;4)}. 5. Cs = C3(.13(Z4);D) where D = {di == a} and X(Cs) = {9B(2,3) +3B(4,8)}. 6.
C6 = e2(JT3(Z4);D) where D= {i = a} and Åí(Cs) == {6B(2,3)+B(4,28)}. 7. C7 = C3(Jr2(Z4);D)
where D = {di = a} and Åí(C7) = {9B(2, 3) + B(4, 24)}.

    (C) Zariski pairs. Let C and C' be plane curves of the same degree and let Åí(C) =
{ai , . . . , a. } and Z(C') == {al , . . . , a'., } be the singular points of C and C' respect ively. Assume

that L. is generic for both of them. We say that {C, C'} is a Zariski pair if (1) m = rn' and the
germ of the singularity (C, ai•) is topologically equivalent to (C', aS•) for each o' and (2) t•here exist

neighborhoods N(C) and N(C') of C and C' respectively so that (N(C), C) and (N(C'), C') are
homeomorphic and (3) the pair (P2, C) is not homeomorphic to the pair (P2, C') ([Ba]).
    The assumption (2) is not necessary if C and C' are irreducible. For our purpose, we replace
(3) by one of the following:
(Z-1) 7i(P2 - C) g)e Ti(P2 - Ct),
(Z-2) 7i(C2 - Ca) ?e 7i(C2 - C'a), where C2 = P2 - L.. and L.. is generic for C and C',
(Z-3) 1)(Ti(P2 - C)) ?e CP(Ti (P2 - C,)).

    We say that {C, C'} is a strong Zariski pair if the conditions (1), (2) and the condition (Z-1)
are satisfied. Similarly we say {C, C'} is a strong generic aLt}ine Zariski pair ( respectively strong
Milnor pair) if the conditions (1), (2) and the condition (Z-2) (resp. (Z-3) ) are satisfied.

    If C and C' are irreducible curves satisfying (1) and (2), {C, C'} is a strong Milnor pair if and

only if the fundamental groups of the respective Milnor fibers V(C) and V(C') are not isomorphic
by Proposition (2.7). The above three conditions (Z-1)ev (Z-3) are related by the following.

Proposition (5.7), (1) If {C, C'} is a strong Milnor pair, {C, C'} is a strong Zarislci pair as well

as a strong generic afine Zariski pair.
(2) Assume that C and C' are irreducible and assume that {C, C'} is a strong Zariski pair and
either Ti(C2 - Ca) or Ti(C2 - C'a) satisfies (H.I.C)-condition. Then {C, C'} is a strong generic

aMne Zariski pair.

Proof. The assertion (1) is immediate by Proposition (2.3). Assume that C and C' are irreducible
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and assume that Ti(C2 - C'a) satisfies (H.I.C)-condition and assume that to : Ti(C2 - C) ;!
Ti(C2 -C') is an isomorphism. Let w, ou' be the generators of the respective kernels of the canonical

homornorphisms: e# : rri(C2 - C) - rri(P2 - C) and ta : Ti(C2 - C'") -+ rri(P2 - C'). As the
hemology class of cv is divisible by d =: degree(C), the homology class of ip(cv) is also divisible by d
aitd therefofe gg(ip(cg)) G P(7;i(P2 - C')) ft Z(7;i(P2 - Ci)). By (g.l.C)-coi}ditloR, eÅqcv) G Ker(eS)

and thus di(bl) = w'3' for seme 2' E Z, As Hi(C2 - C) as lli(C2 - C') as Z and {w] = d, Itui] = d,

we must have 2' = t1. Thus di induces an isomorphism of KerLtt and KerLe and therefore an
isomorphism of Ti(P2 - a) or Ti(P2 - C') by Proposition (2.3) and by Five Lemma. [ )

'l"he results ef S3,4 ean be restated a$ follews.

Theorem (5.8). Let C, C' be projective curves and let en,m(C),C.,,.(O') (respectively Jlln(C)
and 1.(C')) be the generic (n,m)-fold cyclic transforrns (resp. generic Jung transform of degree
n) of U and C' respectively.
(1) Assume that {C,C'} is a strong aMne Zariski pair (respectively strong Milnor pair), Then
{e.,.(C), e.,.(C')} is a sSreRg afine Zariski pajr (fesp. streng A•filRor pair].
(2) Assume that {C, U'} is a strofig Zariski pair. We assume also eiSher C er C' satjsEes (ff.f.C)-
condition. Then {e.,.(C),e.,.(C')} is a strong Zariski pair.

The satne assertion holds for Jln(C) and J71rt(C')•

Preof, 'I['he asseTtion (!) is due te [iXheoreff} (3.7) aRd Theorem (4.7). 'i['ke assertiDR (2) follows

from Tlieerem (3.8) ai}d Cerollary (4.ig). g

    A well-known example is given by Zariski ([Zl]). Let Z6 be a curve of degree 6 with 6 cusps
which are on a conic and let Z6 be a curve of degree 6 with 6 cusps which are not on a conic. In
I061, such examples are explicitly given. It is known that rri(P2 - Z6) is i$omorphic to the free
prodEict Z/2Z * Z!3Z and niÅqP2 - Zg) is isomcyp}}ic eo Z/6Z.

Example (5.9) (A new example of a Zariski pair). In (1) A. (4), we apply generic 2-covering
or (2, 2)-hcovering and gemeric Jung transform of degree 2 to the pair {Z6, Z6} to obtain three strong

Zariski pairs of curve$ of degree 12:

(1) Take {C2(Z6),C2(Z6)}. Both curves have 12 cusps (nm B(2,3)År and one B(6, l2) singularity at
IRfinity. #i(P2 -C2(Z6)) is a ceRtrai Z/2Z-exteR$lgit ef Z/3Z*Zl2Z and it is deRoted by (]lf(3;214)
IR I051. rri(P2 - e2(Z6)) i$ isomerphic to a cyclic grottp ZA2Z.

(2) Take {e2,2(Z6),C2,2(Z6)}. They have 24 cusps. The fundamental groups are as above.
(3) Take {.72(Z6), J12(Z6)}. Singularities are 6 cusps and one B(6, 18). The fundamental groups
are as in (1).

(4) Take {C2(Jl12(Z6)),e2(JZ2(Z6))}. Sir}gu!arities are 12 cusps and two B(6,6) singularities.

(5) We ikow prepose a new strei}g Zarlski palr {Ci,C2} of degree l2. Firse for Ci, we take the
generic cyclic transform C3ÅqZ4) of degree 3 of a ZaTiski's three cttspidal quartic. Recall that Ci has

9 cusps and one B(8,12) singularity at p. := [1;O;O]. We have seen that rri(P2 - Ci) is G3, a
finite group of order 36. We will construct below another irreducible curve C2 of degree 12 with
9 cusps and one B(8,12) singularity at p.. such that rri(P2 - C2) !! G(3;2;4) where G(3;2;4) is
introdttced in [05} (see a}so S6) aBd it is a ceRtra} extexxsion of Z!3Z * Z!2Z by Z!2Z.

(6) Take {e3,3(Z4),C3(C2;D)} wheie P mm {x = a} i$ generic. They are curves ef degree i2 wkk
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27 cusps.
case (5).

The fundamemhal groups Ti(P2 -C3,3(Z4)) and rri(P2 - C3(C2; D)) are isomorphic to the

CeRstructleB ef C2. Let
TC(x)} (T E C') where h(y)

us ceRsider a family ef a$lle curves
3y4 ÅÄ 4y3 - l, G(x) = -(x2 - l)2.

Ka(T) nm {(Xi Y) E C2;h(y)3 =

 -}

- 3--""--'s-

         -1

' r

 1
 l
 I
 l
 l

- y
- bl .l

G(x)

t

iI{l
bl

x

                                     Figure (5.9.A)

Let K(r) be the projective compactification of Ka(T). Le.t ai,...,a4 be the solution of h(y) = O.
Here we assume that ai,a2 are real roots with ai Åq a2 and a3 = dE. By a direct computation, we
see t}vat K(T) kas 8 cusp siRgglayities at {Ai,241,...,u44,xtiG} where ALi :=: (1,a", A;• :== Åq-!,a"

for i : l,,..,4 and a B(8, l2) singularity at p.. = [l;&gl. PuttlRg T= l, K(i) has oRe more cusp
at Ao : : (-1,O). For C2, we take K(1). As Ti(P2-K(r)) : G(3;2;4) by [051i, Ti(P2-C2) is not
smalier than G(3; 2; 4) as there exists a surjective morphisrn from ri(P2-K(1)) to Ti(P2-K(r)) =
C(3;2; 4). In fact, we assert that Ti(P2 - C2) = G(3; 2;4).
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