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VECTOR FIELDS ON CALABI-YAU
MANIFOLDS IN CHARACTERISTIC p

YoO1cHl M1YAOKA

RIMS, Kyoto University

1. STATEMENT OF MAIN RESULTS

A compact Kahler manifold X with numerically trivial canonical class splits into a
product of a complex torus, symplectic manifolds and unitary manifolds after replacing
X by an finite étale covering X (Bogomolov decomposition, see [B]). In particular, any
non-trivial vector field on X comes from the torus component of X.

In positive characteristic, however, very little is known on the vector field of a Calabi-Yau
manifold, by which we mean a smooth projective variety with numerically trivial Chern
class. The most important contribution to this topic so far is a theoremn of A.N. Rudakov
and L.R. Shafarevich to the effect that a I{3 surface does not admit a non-zero global vector
field [RS]. In a crucial step toward the main result, they showed that a K3 surface which
carries a non-trivial vector field would necessarily be unirational [RS, Theorem 4]. The
objective of this paper is to give a higher dimensional analogue of this result.

In this paper all varieties are defined over an algebraically closed field of arbitrary
characteristic, but we are principally interested in positive characteristic cases.

Our result is this:

Theorem 1.1. Let X be a smooth projective variety with numerically trivial canonical
divisor (i.e. X is a Calabi-Yau manifold). Let F' be the subsheaf of the tangent sheaf Tx
generated by the global sections H°( X, Tx). Then exactly one of the following four cases
occurs:

(a) F = 0; namely X has no global vector field.

(b) F = 0% #0 and Tx /F is locally free.

(c) F = Of{ir # 0, Tx /| F is not locally free, and X is uniruled.

(d) c1(F) # 0 and X is uniruled.
In case (c) or (d), there exists a purely inseparable cover Y of X, such that Y is normal
with — Ky is numerically equivalent to 0 or to a non-zero, effective divisor, according as we
are in case (c¢) or (d). The cases (c) (d) are automatically ruled out when the characteristic
of the ground field is zero.

Remark. Over the complex numbers, our assertion immediately follows from the Bogo-
molov decomposition aforementioned.
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Over an arbitrary ground field, we have the case (D) if X is a product of an r-dimensional
abelian variety W and an (n — r)-dimensional Calabi-Yau manifold V. More generally,
we come across this situation on an étale quotient X of W x V by a finite group action
which leaves pr}y H*(W,Ty) invariant. In dimension two, (b) happens if and only if
X is an abelian surface or a bielliptic surface, which means X is indeed of the form
W x V/(finite étale action). The author does not know whether this passes over to higher
dimension.

From Theorein follows:

Corollary 1.2. Let X be a non-uniruled Calabi-Yau n-fold. If X admits + linearly in-
dependent vector fields, then any Chern polynomial P(X) = P(ci(X),...,cn(X)) of pure
degree i is rationally equivalent to 0 for i > n — r. In particular, given an rational repre-
sentation p : GL(n, k) — GL(s,k) and the associated vector bundle T¢, the Euler charac-
teristic x(X, TG ) vanishes. For example, x(X,0x) = x(X,Tx) = V(‘X %) =0,s €N

For instance, when c,, (X) #£ 0, a Calabi-Yau manifold with non-trivial vector field is
necessarily uniruled.

Corollary 1.3. Let X be a smooth surface with numerically trivial canonical divisor and
vanishing irregularity ¢(X) = dim HY(X,0x). If X carries a non-zero vector field, then
X Is unirational.

In fact, from our condition, x(X,0x) = 1 or 2 according as X is a K3 surface or an
Enriques surface, and hence the Albanese variety of X is trivial, c2(X) # 0. Hence X
must be uniruled by Corollary 1.2. If case (d) in Theorem 1.1 occurs, then the purely
inseparable cover ¥ is ruled by the Enriques classification, with the Albanese variety being
trivial. Hence Y is rational so that X is unirational. When case (c) occurs, then Ky is
numnerically trivial, with Slugularltles at the pomts where Tx / F is not locally free. Taking
the minimal resolution of ¥, we infer that ¥ is rational unless all the singularities are
rational double points. In the latter exceptional case, the minimal resolution must be
either a K3 surface (when X is K3) or an Enriques surface (when X is Enriques), and
hence the Euler number of the singular variety Y is strictly smaller than 24 or 12. On
the other hand, the purely inseparable morphism Y — X is a homeomorphism, so that
e(X) = e(Y) = 24 or 12, a contradiction. We can thus recover Theorem 4 of Rudakov-
Shafarevich.

2. SHEAVES OF JETS AND DIFFERENTIAL OPERATORS

Let us briefly review the theory of differential operators and jets. The treatment here
essentially follows that of A. Grothendieck [EGA I}, to which the reader is referred for
details.

Every variety or scheme is defined over an algebraically closed field k. Unless otherwise
mentioned, k has positive characteristic p.

Given an element a € O, the multiplication by a is a k-linear operator on Ox. We
define a (local) differential operator of order 0 as an element € Oy = Diff?v{. A local
differential operator of order < i is inductively defined as a locally defined k-linear operator
£:Ox — Ox such that [£,a] = £ 0a — aof is a differential operator of order < i —1
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for arbitrary a € Diff?Y = Ox. A local vector field € Tx is viewed as a differential
operator of order exactly one. Conversely a differential operator of order < 1 is a sum
of a local vector field and a differential operator of order zero (i.e. a function). Denote
by DifffY the sheaf of local differential operators of order < i. The left multiplication by
a € Ox = Diffox, £ — af = a o defines an left Ox-module structure on Difff\—. The
union Diff x = |J Diﬂ"s( is thus a left Ox-1nodule as well as a non-commutative k-algebra,
because DiffiYDiﬂ"fY - Diﬁ"?j. Note, however, Diff y 1s not an Ox-algebra.

The sheaf of i-th jets is defined to be the sheaf Tﬁ;} = Ox Q OX/Ij;‘f'l, where Zx is
the defining ideal of the diagonal Ax C X x X. The projective limit

Jetx =1lim Ox ® Ox/I5

is called the sheaf of infinite jets. Jety is a sheaf of rings, which admits a canonical direct
sum (augumentation algebra) decomposition Jety = Ox @ Jetx, where Ox is identified
with Ox @1 C Ox ® Ox, and Jet x is (the completion of ) the ideal generated by Zx. The
projection pr: Jetx — Jety is defined by pr(a®b) =a® b~ ab® 1.

Given a € Ox, we denote by da and by da the elements 1 ® a € Jetx and pr((l(a)) =
l1Ra—-a®1 € Jety. dis a ring homomorphism. The correspondences a da and
a — da define injective k-linear maps Ox — Jety and Ox/k — Jetx, respectively. If X
is smooth and we introduce a local coordinate (zy,...,2,), the sheaf of jets Jety is locally
isomorphic to Ox|[dz1,...,dr,}], and Jet x is the ideal generated by dr,,...,dz,.

By definition, Jetx = Ox @ Jet x has a structure of O x-bimodule. In what follows, we
view Jetx as a left O x-module; namely, for a € Ox and b@ c € Jet x, the multiplication
a(b® c) is understood as ab® ¢. Then the projection pr: Jetx — Jetx is Ox-linear.

The action of a differential operator on Ox is naturally extended to an O x-linear
homomorphism Jety — Ox by the formula £(a @ b) = aé(b). Indeed, if a differential
operator ¢ is of order < i, then £ turns out to kill Jet';, so that £(Ya;dz’) is actually
a finite suin. It is known that Diffiy, the sheaf of differential operators of order < ¢,

is identical with 'Homo‘,(Jet[] Ox). In particular, Diffyy/Diff\7! is the dual sheaf of
Jeth /Jet'd! ~ Symy Q4. The equivalence class [¢] € Diff'y /Diff ¢! = (Symp Q4 )* of
£e Difff‘{ is nothing but the i-th principal symbol of the operator.

In characteristic zero, the ring of differential operators is generated by vector fields.
On the contrary in positive characteristic p, Diff x is not finitely generated, while Jetyx is
essentially finitely generated. When X is smooth, generators of the left O x-algebra Diff x
is given as follows. Let ¢ = p"‘ be a power of p. As a local Ox-basis of the locally free

sheaf Jet[‘?, we choose dri,...,dx%, f1,..., fv such that f; is a monomial of degree ¢ in

the dz; involving at least two factors The O x-linear map 6‘“ defined by a{q)((h q) = bij,
8:(f;) = 0 is said to be the divided g¢-th power of §; = 8/dz,. In this notation, lef‘\ 18

generated by the polynomials in 9;, 6,(”) 8(” ), ... as an left Ox-module. We have
@Y ((da)™) = jt,

so that (6“”)1’ = 0. The elements d2', I = (iy,...,in),|i| < m form a local basis of the Ox-
module Jet[\, ™ =0x EBJet[ ™ of finite rank. For eachindex;,let i; = a0j+a1jp+a2jp2+- .
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be the p-adic representation (0 < a,; < p). The dual basis of the dual sheaf Diffy is then
given by
(8;1’ ))a,,j

a,,j!

1

v,j

Let R be an Ox-algebra. Thauks to the natural (left) Ox-module structures on Jet y
and Diff x, compatible with the paring, we can naturally define an R-bilinear pairing

R®Diffy x R@ Jetx — R, denoted by the symbol { | ).

3. PROOF OF MAIN THEOREM

General theory in the preveous section in mind, we prove Theorem 1.1. In this section
the ground field k is always algebraically closed and of characteristic p > 0.

Let F C Tx be an involutive, p-closed saturated subsheaf. The functions € Ox that
are killed by F form a subring C Oy, denoted by Oy, which defines a normal variety
Y = X/F (cf. Rudakov-Shafarevich [RS], Ekedahl [E], Shepherd-Barron [SB]). There is
an inclusion relation Ox D Oy D (’)E\f). In particular, we have finite, purely inseparable
morphisms 7 : X —» Y and ¢ : ¥ — X', where o7 : X — X' is the geometric Frobenius.
The mapping degree of 7 and ¢ are p” and p"~7, respectively, where r = rankF.

Denote the smooth locus of Y by ¥° C V', and take a local parameter system {y1,..., yx)
of Y° in such a way that y;,...,yn_r,21,...,2, is a local parameter system on X° =
7~ 1(Y"°) and that y,—,4; = 2. Then F, when restricted on X°, is the subbundle of Ty
generated by /3z1,...,0/0z,.

Consider the left ideal Diff x I C Diff x generated by F, which determines the null-
submodule

(Diff x F)* = {a € Jetx| (Diffx Fla) = 0} C Jetx.

It is easy to see that, on the open subset X°, (Diff x F')* is the completion of the Ox-
subalgebra of Jetx generated by dy,,...,dy,, dz1, ..., dz"

(Diff xo F)* = Oxol[dyt, . . -y dyner,dzf, ... d2P]] = OxoJetyo = 7 Jetyo.

Let C be a smooth irreducible curve and gg : C — X a morphism. Then ¢f : Ox —
Oc¢ defines an Oy-algebra structure (and hence an Oy-algebra structure via (wgo)*)
on O¢. Consider O¢(Diff xF) C Oc¢ @oy (Diff x) and the associated null-subinodule

(OC(Diff,\«-F))L C O¢ ® Jetx. On the open subset C° = f~1(X°), we easily check that
(OceDifix F))" = Oce[ldys, .- -, dyn—r, d2",. .., dzP]] = Oco Jety.

The subsheaf OcF C OcTy = Homoe (OcSt, Oc¢) gives rise to a saturated subsheaf
(OcF)* € Oc). The subsheaf (OcF)* is a subbundle of Oc§l by the smoothness of
the curve C. Let 1y, ..., a—, be a local basis of (OcF)* such that n1,...,90—r, &1, -, &r
form a local basis of Ocf2!.

— 152 —



Lemma 3.1. Let C be a smooth irreducible curve and g9 : C — X a morphism such
that C° = gO_I(X°) is open dense in C. Put (9( Jety = (OcDiffx F)t C OcJletx, and

—~— (m})

Oclety = @\Jgty N Oclety. (Jety denotes the m-th power of the ideal Jetx; do not
confuse it with Jet[;] = Jetx/Jet}t!.) Then
(1) Oclety is an Oc¢-subalgebra of Oclet .

m) ——~—— (m+1)

N(
(2) Oclety [Oclet is a locally free Oc-module, of which a local basis is given

by the monomials of degree m in the n; and the ¢, where the degree of ¢! is counted as p.

Proof. (1) In fact, k(C)Jety C k(C)Jetx is a k(C)-subalgebra isomorphic to the for-
mal power series ring k(C)[[dy1,...,dyn—r,d2},...,dz?]]. Hence Oclety = k(C)Jety N
OcJletx is an Oc-algebra.

——— {m) {(m+1

)
(2) By definition, Oc¢Jety /OcJety is an O¢c-submodule of OcJet’y /(’)CJet’"+1 ~
Symg, COCQ . Its element is annihilated by Diff’y "' F 4 Diffy ! < Diff%, of which

the actlon is given by the multiplication of m-th principal symbols. It follows that
——~— (m+1)
OcJety /(’)CJety is contained in the subsheaf C Symg_(O¢k ) generated by the 7;

and &7,
j
Let us show the converse inclusion relation. Take ( € Oc¢Jet’y such that

*) ¢ mod Ocletyt! € (m,...,ne &0, .. €h_) C Sym§ (Ocf).

It suffices to show that there exists ¢ € (’)CJety such that ¢ = ¢ mod OcletTth,
The condition (*) is equivalent to:

(OcDIff R ™' F + OcDiffg () = (k(C)Diffy "' F + k(C)Diff g '|¢) = 0.
Thus we have a well-defined O¢-linear map
1) : (OcDiffx ™ + k(C)DIff Y F) /k(C)Diff ' F — Oc.
Consider natural injections
k(C)Diff} F/k(C)Diff ¥ ' F — k(C)Diff ¥ ' /k(C)Diff§,
OcDiff 1! JOcDiff % — k(C)Diff ¢! /k(C)Diff§.
Then G = (k(C)Diff} F/k(C)Diff ¥ "' F) N (OcDiff v ' /OcDiff ) is a subbundle of
OcDiff gt /O Diff
~ (OcDiff ¥t + k(C)Diff ¢ 7' F) /(OcDiff§ + k(C)Diff ' F)
~ (OcDiff ! + k(C)Diff ) /k(C)Diff §.

Take o; € K(C)DIffY F and f; € (’)CDiﬁ'Kf'H such that a; = 4; mod k(C)Diff"’_lF+
OcDiff¥ and that their equivalence classes form a basis of G. Then we see that

(ail€) € (Bil¢) + (K(C)DIff™ ™' F|() + (O¢Diff () C Oc.
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For a homogeneous polynomial w of degree > m + 1 in the dx; with coefficients in O¢, we
have (Bilw) = (a;|w), because k(C)Diff™ kills w € Jettt!. By the natural isomorphism
OcSym™tQl ~ Oc.]et}?+l/oc.]etf{f+2 ~ Homoc((’)cDiff}’H/(’)cDiff?}, O¢)

and by the fact that {8} is a part of a local basis of OcDiff'st!/OcDiff%, we can find
wy € Oc.]etf"‘f“ such that Bi(w)) = ai(w;) = «i(¢),7 = 1,2,.... Then (' = ( ~w; €
OclJetx is annihilated by Diff ¢ F.

Reiterating similar procedure of adjusting ¢ by w, € (’)cJetKH'", v=12,..., we can
find ¢ € O¢letx = Oc¢lldzy,...,dz,]] such that

(i) { = ¢ mod OctetTt! and that

(ii) ¢ € (OcDiffx )t = OcJety.
This completes the proof of (2). O
Corollary 3.2. Let C be a smooth irreducible curve and go : C — X a morphism such
that C° = go_l(X°) is non-empty.

(1) Choose (1,...,(n—r € Oclety such that they form a local O¢-basis of

e~ (1) —~— (2)
OCJetY /Op]et

Then we have a local isomorphism
Oclety ~ Oc[{Ciy- -y Cuer,ydxl, ... d2t]],

where {(1,...,(p—r,dx1,...,dz,} is a basis of OcQk.
(2) Put

~ (OcF)*t C Oc0k.

] e (l) /—\/(l) 2
Ocfly = Oclety [(Oclety ).

We have a canonical O¢-homomorphism OCQ%, — Oc§. which is an isomorphism on the
open subset C°. There is a natural and globally defined exact sequence

(**) 0 Oc (0O (OcF)H) P — 058ty — (OcF): - 0.

Here ((’)CQI/(OCF)‘L)(M stands for the (’)g’)—module freely generated by (dz;)P, where
{dx;} is an Oc-basis of Ocly /(OcF)*t.

Let (A, M) be an artinian local k-algebra. Fix a morphism fy : C — 17, which gives
rise to a ring homomorphism f§ : Oy — Oc C A @ Oc¢. A ring homomorphism 1 :
Oy — A® Oc¢ induces a ring homomorphsm (f§,14) : Oy ® Oy — A ® O¢, defined by
(f&, )N a@b) = fe(a)p(b) € AR Oc¢. 1 is said to be (the ring homomorphism attached
to) a deformation of fo parametrized by A if (f5,¥)(Ia, ) C M ® Oc, or, equivalently, ¥
mod M @ O¢ coincides with f3. When 1 is a deformation of fy, the ring homomorphism
(fo.¥) factors through Oy ®(9y/[}§x for sufficiently large N, so that we can view it as an
Oy -algebra homomorphism Jety — O¢ or an O¢-algebra homomorphism Oc®e Jety —
Oc. In particular, (f5, %) defines a k(C')-algebra homomorphism k(C)Tety — A® k(C).

Assume that there is a morphism ¢¢ : C — X with fy = 7ge and that C° = fo_l(Y") =
g5 '(X°) is dense. A deformation ¥ of f§ is called admissible if ( fg, d))((g(_;\jgty) C ARO¢.

This definition inakes sense hecause @\jgt y = (OcDiff x )t = (¢;Diff x )L is an O¢-
subalgebra of k(C)Jety = k(C)Jetyo.
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Lemma 3.3. Let C be a smooth affine curve. Let go : C — X be a morphism such
that C° = gy '(X°) is non-empty and that (OcDiff x F)* is the completion of the algebra
locally generated by (y,...,(n—r,dxl, ... daP. Theu:

(1) Given : Oy — A/J® O¢, an admissible deformation of fy = wgg parametrized by
A/J, we can find an admissible deformation ¥ : Oy = A® O¢ such that ¢ mod J = ¢,
called an admissible lift of { to A.

(2) Fix an arbitrary admissible lift 1 : Oy — A ® O¢ above. There is a natural one-
to-one correspondence between the set of admissible lifts of ¢ to A and the k-vector space

1
HOH‘IOC(OCﬂy, Oc)
Proof. (1) JC\EY is isomorphic to O¢[|(1,. .., ¢, dal, ... da?

n—r

1] Hence the Oc-algebra
homomorphism (f&,%) : Oclety — A/J @ O¢ can be lifted to a homorphism ¥ :

Oclety — A ® O¢. Then the natural homomorphism Oy — Oclety,a » 1@ a de-
termines a ring homomorphisin ¥ : Oy > AQ Oc, and it is clear that ¥ = (fs, 1/))

(2) Once a specific lift is fixed, the identification above is obtained by a standard argu-
ment [SGA]. O

Corollary 3.4. Let C be a smooth irreducible curve and gy : C — X a morphism such
that C° £ 0. Let ¥ : Oy — A/J @ O¢ be an admissible deformation of fy = wgy. Then

1
the obstruction for admissible lifting of ¥ to A lies in H'(C, Homo.(OcQy,Oc)). When
—~—1
the obstruction vanishes, the set of liftings is given by Home . (OcQy-, O¢)).

Corollary 3.5. Let C be smooth and projective and g9 : C — X a morphism with C°
non-empty. Then the quasi-projective scheme Hom(C,Y') has dimension at least

(p—1)deg OcF + deg g (— K x) + n(1 — g(C))

at fo = mgo, where 6;?’ stands for the saturation of gJF C g5Tx.

Proof. By the exact sequence (**), we have

deg Homo o (Ocfly, Oc) = ~pdeg(OcQx [(OcF)*) — deg(OcF)*
= —pdeg(OcF)" - deg(OcTx /(OcF)")
= pdeg(OcF) + (deg(OcTx) — deg(OcF))
= (p— 1) deg(OcF) + deg g3 (—E x ).

It is well-known [M]} that the dimension of adinissible deformation is more than or equal
to

1 —1
dim H°(C, Homo,(Ocfy,Oc)) — dim H(C, Homo (Oc$y-, Oc))
and the Riemann-Roch yields our estimate.

Proof of Main Theorem. Let F' C Tx be the subsheaf generated by the global vector fields.
F is clearly closed under Lie bracket and p-th power. Let F* C Ty be the saturation of
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F, ie. the kernel of the projection Tx — (Tx/F)/(torsion). Then F* is again closed
under Lie bracket and p-th power. By definition, ¢,(F') is an effective divisor on X, and
ci(FY) 2 e)(F). ei(F)=0if and only if F >~ HY(X,Tx) ® Ox =~ O%r. c1(F*) = 0 if and
only if ¢;(F) = 0 and F! = F in codimension one. When in addition F* is a subbundle
of Tx, then an isomorphism between the two locally free sheaves F and F¥ automatically
extends to a global isomorphism on X, yielding F! = F.

We have thus three cases:

Case 1. F = F? ~ (’)'?\%" is a subbundle in Tx.
Case 2. ¢;(F!) = ¢)(F) =0, but F! C T is not a subbundle.
Case 3. ¢;(F"} > 0.

As for Case 1, there is nothing to prove.
In Case 3, we follow arguments by Rudakov-Shafarevich [RS] and Shepherd-Barrou [SB.
The canonical divisor Iy of the quotient variety Y = X/F! is calculated by

T det Qif =" det(Jety/Jet%r) = (det Fa)@"_” ® IKx.

Indeed in codimension one, F! is a subbundle of Ty, thereby inducing a natural exact
sequence

0 — Ox(Q%/FH) = Jety /Jetd — F+ 0,

and we have F't = (Tx /F')*, QfY/Fl = (F')*. Noting that Kx =~ 0 and det F' > 0, we see
that —#* Iy is numerically equivalent to a non-zero effective divisor. Hence ¥ is uniruled
by Miyaoka-Mori [MM], and so is X, which is a purely inseparable cover of Y.

Thus we have only to show that X is uniruled in Case 2. Choose a smooth curve I' C X
such that TN X° # @ and that F* is not a subbundle at one or more points on I'. Take a
purely inseparable morphism C' — I of sufficiently high degree ¢ = p™. C/is\issumed to

be smooth. Denote by gy the induced morphism C — X. The saturation OpF¥ € OpTy
is strictly bigger than Op F*!/(torsion), whence follows that deg(Oc¢F*) > ¢. On the other

hand, the dimension of Hom(C,Y") at fo = 7gy is at least (p — 1) deg(Oc F*t) —deg g5 Tx +
n(1 — g(C)), which is very large whenever g is sufficiently large. Hence for each point on
7(T"), we can find a rational curve on ¥ passing through the point by [MM]. We have ample
choice of ' C X, which shows thie uniruledness of ¥, and hence of X. O
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