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1 Merdell-Weil lattices for Jacebiaks

Let K = k(C) be the rational function field of a smooth projective curve C defined
over an algebraically closed field k. Let V be a sinooth projective curve defu}ed over
K of geftus g ) l afid let Jr be tke jaceblaE variety gf l", wkic}} i$ an abellast varlety

defined over IÅq. We denote by r(K) (resp. Jr(K)) the set of K-rational points of r
(resp. of Jr). The group structure of Jr induces the structure of an abelian group
oR Jr(K), whiÅëh is ca}led the Mordell- Weil group of Jy (or the Mordeil- Weil gromp of

r!K by abuse ef laRguage).
  The Mordeli--Weil group can be considered geometrically as follows. By theory of
smooth minimal models of algebraic surfaces, there exists a proper surjective mor-
phisin

(1.1) f;X -c
from a smooth projective $urface X te tl}e curve C who$e generic fiber Xe is isoniof-
plilc to r (ever K). Mereover we can assume tkat there are no exceptional curves E of

the first kind in any closed fiber of f. Such a model is unique up to isomorphism. By
using this model, a K-rational point of F corresponds to a regular algebraic section

g ; C - X ef f. Since Jr is aR abeliaR variety over K, we can also gbtakn tke
unique good model, t}iat is, the N6ron model of Jr

(1.2) h:Y ---+ C,

wkich is a grottp scheifie ever C Åqand whose generic fiber is Jr).

C is not necessarily proper.)
(Note that h: y--
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   Let S(.71C) denote the group of sections of h : Jl aj C. Then we have the
canonical isomorphism

(1.3) Jr(K) fy S(51C).
It is kRewR that the Mordell-Weil group Jr(KÅr is fiRkely generated if the Klk-trace

of J: is tfivlal.

   Skioda ([Skl], ISh21) described tl}e Mofdell-Weil gTottp Jr(K) as fellews. Let
NS(X) be the N6ron-Severi grottp of the surface X. T'hen it is kttown tkat NS(X) is

a finitely generated E belian group with the intersectien pairing

                     ( , ):NS(X)Å~NS(X)-Z.

From now on we assume that there exists a section ao : C -- X.
   We set O = ao(C) and denote by F a general closed fiber and consider them as
eleinents in NS(X). We define subgroups U, T of NS(X) by

     U=ÅqO,FÅr,' Gr meÅq U, all irTeducible compenents of c}osed fibers År.

Cleady, we kave Y c T {: NS(X). Mofegvef we set L == Ti c NS(X).

   The following theorems are fundamental results of Shioda(IShll, ISh2]).

Theorem 1.1 Assume that the Klk-trace of Jr is trivial. Then there exists a group

isomorphism

(1.4) NS(X)IT tJr(K).
Theorem 1.2 Assttme that the K!k-trace is trivial and NS(X) is torsien-free. Then

we have the naturai homomorphism

(l5) Åë: J:(K)-NSÅqX) XzQ
such that ip(Q) i T. The kernei of ip is egttaj to the tarsion part of Jr(K) and

Imip c L" = Homz(L, Z).

By using theorem 1.2, one can define apairing on Jr(K) by Åq uP, Q År= -(ip(P), ip((?)) E

Q for P, ([? E Jr(K). ["his gives a positive-definite symmetric bilinear form on
Jr(K)IJr(K)t.., and Shioda called the pair (Jr(K)IJr(K)t.,Åq , År) the Mordell-
VtVeil tattice.
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2 UpperboundsofMordell-Weilrank
We denote by r the Mordell-Weil rank, i.e. r == dimQ Jr(K) X Q. We have the
following Skeerem whick gives aft upperbettRd of r. (See iSag], lgai].)

Theorem 2.1 Assume that char. k :O. Letf:.X ---. cr be as above and assume
that K!k-trace of Jr is trivial. Then we haue

                                            4g2 - 2g -4
(2.1) rS (6+4!g)x(X, Ox)+ (1 - rr){                                                       }.
                                                 g

Here sse setg -""-- genas efC.

We remark that ifpg(X) : dim H2(X, Ox) År O it is rather diMcult to check that the
inequality (2.1) is sharp. On the other hand, ifp,(X) = g(X)(:= dim N'(X, Ox)) = O
(e.g. X is a ;atioRai $gfface) we have tke fellowiRg tkeerem. (ISa-Sakl.)

Theorem 2.2 Let f : X - C be as above and assume that p,(X) = g(X) : O.
Then we have

(2.2). r inÅq 4g -- 4
            '
Moreover there exist examples offibrations f : X - Pi with p,(X) ex= g(X) == O and

r= 4gÅÄ4.

   We can also determine the structure of the fibration of curves of genus g ) 2 with
p,(X) : g(X) =me O and r ex= 4g + 4((Sa-Sak]).

Theorem 2.3 Letf : X -- Pi be as in Theorem 2.2 and assume thatr = 4g+4
and g 2 2. The•n there exists a finite double covering map f : X - Pi Å~ Pi whose
branch locus B c Pi Å~ Pi is a smooth curve of bidegree (2, 2g + 2).

Remark 2.1 In ISa-Sakl, we assume that X is a rational surface te obtain the up-

perbounds r S 4g + 4. Nowever the upperbottnd of Mordell- Weil rank in Theorem
2.1 is a consequence of Xiao's slope ineguatity (IXiao7? and hence the assumption
pg(X) = g(X) rm e is enough te gbtain the upperbeuRd in (S.S]. ffewever the struc-
ture theorem 2.3 says that ifp,(X) ur qÅqX) :e andr :4g+4 then X must be a
rational surface.
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3 Maximal Mordell-Weil lattices D4"gK

As far crLs the structure of maximal Mordell-Weil lattices is concerned, we can obtain
the fol}owing theoxem (ISa-Sak]År, which is a cDfo}lary of [{iheofem 2.3.

Tl)eorem 3.1 Let f : X - Pa be the fibration of curves of genus g ) 2 with
p,(X) = q(X) : O and r = 4g +4. Then the Mordell- ;,Veil lattice Jr(K) is torsion-
free and isometric to the positive-definite unirnodular lattice D4+g+4 (see bellow for the

notation]. ' '

   Let us explain about the lattiee D4$g+4. The lattice P4ÅÄg" is a poskiye-definSte
unimodular lattice which is an overlattice of the lattice D4g+4 such that [D4+g+4 :

D4g+4) = 2. Following Conway-Sloane's book (cf. I7, Ch. 4, C-S]), we will review the
lattices D. and D4+m.

   For n År- 3, we caR en}bed Dn into the Euclidean lattice Z" as

(3.1) P.,={Åqxi,•-•,x.)EZ":xi-}--••ÅÄx. evei".

The standard integral basis is given crxs usual (see [7, Ch. 4, C-S]) and its intersectiom

diagram is given by the CQxeter-Dynkin diagram of type D.:

        l

        22 3 4 n-2 n-1
             2 2 2 -• -•
        2

      n
   For n = 4m k 4, we take a vector

                       il] = ÅqV2, 1/2, • • + ,

and. set

(3•2) D4"nt me=
Tl}e lattice P4. }s a poskive-defiRite iRteg

integra} basis with the Coxeter-Dynkin diagTa.m:

2

l!2) G Q4m,

2 Dn

D4Tn U (D4m + (1])•

    iaf uftk}}edular lattiÅíe axxd kas tlie stakdard
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1 2 3 4 4m-2

2

4m-1

2

   It should be noted here that Ds+ "-" Es, hence one may regard D4+g+4(g 2 2) as
generalization of the lattice Es. (One may recall that in Shioda's theory of Mordell-

Weil lattices for rational elliptic surfaces Es arises as the frame lattice. )

   In the connection with Mirror symmetry conjecture for related Calabi-Yau three-
folds which will appear in the next section, it is interesting to consider the theta series

of lattices. We also follow the notation in [4, Ch. 4, C-S].

   Let L be a positive-definite lattice. For each positive integer m, we set

(3.3) NL (m) =#{xELI Åqx,x År= m}.
Then the theta series of L is defined by

                                      co(3•4) eL(z)=2g`X'X' =2N(m)qM,

where q==exp(Tiz
   In order to write
theta functions:

)•

the

=EL m=1

theta series of D4+g+4,

          oo
e,(z) = 2q'/4 H (1

oo

m=1

we introduce

-
 q2m)(1 + g2m)2,

the foll owlng Jacobi's

                    e3(z) = H (1 - q2m)(1 + g2m-i)2,

                           Mo-o-1

                    e4(z) = n(1 ne q2m)(1- q2m-i)2.

                           m==1
Then the theta series for D4+g+4 can be written as (see 7.3, Ch. 4 in [C-S]):

(3•5) eD,+,., (z) = 112(eS9'4(z) + egg+4(z)+ e2g• +4(,)).

   Expanding the right hand side of (3.5) in the powers of g, we obtain the explicit
number IV4g+4(m) = ND,+,+,(m) of elements in D4+st+4 with length m.
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   For example, if g = 2, then we have the foilowing expansion up to order gi5:
(3.6)

    ep", (iÅr = 1 + 264 g2 + 2048 q3 •" 7944 g` + 24576 g5 + 64416 g6 " 13Jr 168 g7

             -}2537g4 g8 -}- 475136 6" ÅÄ 825264 4" + l284e96gii " i938336g22
             +2973696 q'3 + 4437312 q'` + 6107136 q'5 + • • • .

Tkis expansion gives us the nttmber Ni2(mÅr up to m == 15. (Tl}e above expansioR
was doRe by Matliematica.)

4 CertainCalabi-Yauthreefolds
IR t}}is sectioR, we will a$$time that k = C. Let X be a iatiei}a} surface wkh fibratioR

f : X - Pi of cuTyes ef gefiljs 2. We assume Åíhat the fibration f i$ a Lefschetz
pencit, that is, all singular fibers are reduced and have only one node. Then the
Mordell-Weil lattice for such a fibration is isotnetric to Dt2.

Tl}eorem 4.i (XSa27.) Under the above notation and assumption, let JZ - Pi
be the Ne'ron model of Jr. Then there exists a smooth projective threefotd Y with a
fibration h : Y --, Pi ivhich gives a relative compactification of Ne'ron model YIPi.
Moreover Y has a triyiai canenical bundge azzd h2'O(YÅr rm h!tg(YÅr = 9, that is, Y
is a Caiabi-Yau threefotd. OtheT Ifodge nttmbers are given as folloivs: hi}i(Y) =
h2•i(Y) = 14, hence the llodge diamond of Y is self-mirror, that is, invariant under
the r12 rotation.

   Here we only remark that under the assumption of Lefschetz pencil f : X --, Pi
the smooth relative compactification h : Y ---- Pi of the N6ron model Jl - Pi
is constructed by Nakamura [Nl. Moreover one can relatively embed X - Pi into
h : Y - Pi es a relat}ve pfiRcip&l tketa dlvisor. T}}e!efore X caR be coR$idered as

a smooth divisor in }i.

   In connection with Tvlirror symmetry conjecture for the above Calabi-Yau three-
folds, the following theorem may be int•eresting.

Theorem 4.2 (/Sa21.? LetL = X+ X- +2.F be a divisor class on the Catabi-Yau
threefold Y where X- is the minus of X and F is a class of general closed fiber
of h : Y - Pi. Then L is nef and big divisor on Y. MoTeover fer any sectien
g e S(51Pi) x Jr(K), one has

(4.1) deg Li.(pi) =Åq a, cr År.
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"ere Åq a,a År denotes the height of the section cr with respect to the Mordelt- Weil
lattice. Hence the rturnber of rational curves coming from sections of JllPi with ftved

degree m with respect to L is egual to Ni2(m) in g,9, hence can be calculated by (3.6?.

   Tke detail will be publis}}ed ixx ISa21.
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