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COMPLETE INTERSECTION
PROPERTY OF HECKE ALGEBRAS

KAzUHIRO FUJIWARA

Nagoya University
Department of Mathematics

§0. Introduction

In [TW], the complete intersection property of minimal Hecke rings is shown. In this
paper we present a review of [TW] with technical improvements. A generalization
to the totally real case is in preparation. In [TW] a multiplicity one theorem based
on g-expansion principle in [W , §2] was needed implicitly. Our analysis will make
the role of g-expansion principle much clearer. Moreover our check will show that
minimal Hecke rings have the same properties as in the weight 2 case in the non-
ordinary higher weight case.
The author thanks Y.Taguchi for some useful information on this subject.

§1. Commutative Algebra

Here we present an abstract formulation of some argument of [TW]. Our method
here is influenced by an argument of Faltings on their work.

Let p be a prime, O the ring of integers of some p-adic field K, and A the maximal
ideal.

Definition.
Let Q be a set of finite sets of primes. A Taylor- Wiles system {T, Q, {Tq}geg}
consists of :
TW1 ) For q € Q, ¢ = 1lmodp holds. We put Ag = the p-sylow subgroup of (Z/q)*
with a generator 8q, Aqg =[] cq Dq- Then Tq is a finite local O[Aq]-algebra.
TW2 ) T is a finite O-algebra, and T ~ Tg/(6q — 1; g € Q) holds as O-algebras for
any @ € Q.
TW3 ) There is an O-flat Ty-module Mq for each Q € Q such that Mg is free of rank
a as an O[Ag]-module for fited a > 1.

In [TW], in addition to TW3, the condition that Mg is a free Tg-module is
required. We just need the weaker assumption here,

Unlike Kolyvagin’s Euler systems, we do not impose functoriality in general when
the index set grows.

Typeset by ApS-TEX
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Theorem (Complete intersection theorem).
Assume that a Taylor-Wiles system {T,Q, {To}ocg} with Q@ = {Qmn,m € N}
is qiven.
a ) (growth control) g € @, = q = 1 modp™.
b ) (relation control) r = Card Q, is independent of m.
¢ ) (generator control) Tq,, is generated by at most r-elements as an O-algebra.
Under a), b), and ¢), T is a complete intersection, and O-flat.

We put I, = (p",6g" -1, g€ Q) C O|Ag,.] for m >n.

O[AQm]/In = O[Sl’ 0y ST]/(pna (1 + Sl)p" - 1) "y (1 + Sr)p" - 1)

holds by condition a), sending é; to 1+ 5;. By TW3, Mg, /I.Mg,, is free of
rank . Anm = theimage of Tq,, /I.Tq,, in Endoa,, y/1,(Mq,./InMq,,)
(O[AQm]/In)az. The map O[Aq,,]/In — Anm is injective since any element in
the kernel must annihilate free O[Aq,,]/I,-module Mg, /I.Mq,..

Now we use an idea of Taylor -Wiles constructing a projective system which
approximates a power series ring. Consider the following triplet:

1) A finite ring A, ,, with embeddings

1

O[Sty .0, S /(™ (L4 81) =1, ., (14 5) =1) < Apm

E (O[St -, S )/ (@™ (1+ S1)P" = 1,.., (1 + S,)P" — 1))(edimx T80 K)?

2) r-generators f, .., fr of Ap m in the maximal ideal as an O-algebra.
3) A quotient ring By m = An,m/(8g — 1; ¢ € Qm(n)) with T-algebra structure.

Since the order of A, ,, is bounded as m varies, isomorphism classes of triplets
((An,mst1,¢2), Bnm, {f1,., fr}) are finite, and hence for any infinite set Y there is
an infinite set X,,(Y') C YN{m € N;m > n} such that ((4n m, t1,t2), Bnm, {f1,., fr}),
m € X,,(Y), are isomorphic. For n > 1 we put

X(0) = Xal- Xa(X1(N)) ), mim) = inf .

For the increasing sequence {m(n)}nen thus obtained ((An m(n), t1,t2), Bu,m(nys {f1, - fr})nen
form a projective system. We put J,, = Ker(TQm(") — Apn m(n))- By taking the
projective limit we define

P = Eil_nAn,m(n) = Elﬂl TQm(")/Jn'
nelN

By condition 2), there is a surjection b[[Tl,..,Tr]] - P. By 1), P contains
O[Sy, 8] = lim_O[S1,., 5]/, (1 + S1)F" —1,.,(1 + 5,)7" — 1) as a sub

O-algebra, and P C (9[[51,..,.5}]]"‘2 is finite as an O[[S\, .., S]]-module. By the
next lemma P &~ O|[Ty,..,T,]], and hence P is a power series ring.



COMPLETE INTERSECTION PROPERTY OF HECKE ALGEBRAS

Lemma.
For a finite local O|[[Sh, .., Sr]]-algebra P of dimension strictly less than r + 1,
P > O[{S1, .., Sr]] is impossible.

Replacing P by P4, we may assume that P is reduced. Then there is an
embedding P < [],.; Pi. Here integral rings P; define the irreducible components
of Spec P. dimP; < dimP. There is some ¢ € I such that O[[Sy,..,S;]] —
P; is injective: If not, I; = Ker(O[[S:, .., Sr]] — P;) are non-zero for all ¢ € I.
Since O[[S1, .., Sr]] is integral [];c; Ii C Nicrl; is not zero, and hence we get a
contradiction.

Replacing P by some P;, we may assume P is integral. By taking the integral
closure we may moreover assume that P is integrally closed. Then dimP =r +1
should hold by going up theorem. This is absurd.

From the projective system of exact sequences obtained by 3)
(TQM(H)/J,,)T - TQm(")/Jn -T/J,T—0
where (0, ..,1,..) maps to §; — 1, we pass to the limit, and get the exactness of
PT—»P->T —0.

Here T' = anT/ JoT is a quotient ring of T. T” is a complete intersection with a

presentation as above. Since T" is finitely generated as an O-module, by [Ma] T is
O-flat. We show T ~ T, thus finishing the proof of the theorem.

Fix N > 1. Since the transition maps of projective system { Ay m(n) = TQ,n(n)/ In}nen
are surjective and T' = !inT/ JnT, there is n > 1 such that

An,m(n)/mx"'m(") ~ P/mg >~ O[[T],,Tr]]/(/\, Tl, ..,TT)N

and T'/m¥, ~ (T/J,,T)/m%_,nT hold.
The following diagram with exact rows and surjective arrows

Tém(n) TQ"‘(") T 0

! ! !

(A".m(n))r - An,m(n) —— TfJ,T —— 0
induces

N N
(TQm(n)/m’IIYQm(n))r TQm(n)/mTQm(n) —— T/mT — 0

! ! !

(An,m(n)/mx

)r ? An,m(n)/mxn m(n) — Tl/mql\-{/ — 0.

n,m(n)

Apmmy/my o = O, T/ T T,)N. On the other hand, Tg /ngQm(")

is a quotient of O[T, .., T¢]]/(X\, T1,..,Tr)¥ by b). This implies that the left and
the middle vertical arrows are isomorphisms. It follows that T/m% = T'/m¥, for
any N, and hence T and T” are isomorphic.
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Remark

If Mg/(64 — 1; q € Q)Mq, Q € Q, are isomorphic to a unique T-module M, M is
a free T-module.

§2. Hecke algebra

First we define the Hecke algebra, which plays the central role in our discussion.
For a subgroup H C (Z/NZ)*,

'y (N) = inverse image of H under ['o(N) — (Z/NZ)*,

Yu(N) =Ty (N)\H, X g (N) its compactification, Ja(N) = Jac(Xg(N)).
Let T (N) be the subring of End(Jac(X g (N))) generated by

T, =T for £ )N,
(@) =(a)s for (a,N)=1
Uy, =U;  for g|N.

Let m; : X1(INE€) = X, (N), i = 1,2, be the map defined by m (z) = z and m2(2) = £2
respectively. Then

Ty = mau o} ¢ HY(X1(N),Z) —» HY(X1(N),Z).

Also,

Up: (E,P) = Y (E[C,P),
CyN(P)={0}

where C; are cyclic subgroups of E of order q.

Let Ty (N)' be the subring of Ty (N) generated by T; for £ 4N and (a) for
(a,N) =1 (i.e. omit the U,’s).

Let p be a prime number > 3. For a maximal ideal m of Ty (N) (or Ty (N)')
such that p € m, there exists a unique semisimple representation

p:Gg — GL3(Tg(N)/m)

such that
{traceﬁ(Frg) =T,

det 5(Fr;) = €{f) for each? [Np.

A representation thus obtained is called modular.

In this case one finds an O-valued weight 2 modular eigenform f : Ty (N) —
O with its associated A-adic representation ps , such that j is obtained as the
reduction modulo A by extending O and k. The introduction of H is necessary to
put a restriction on the nebentypes of such modular liftings.

In this paper we only consider an absolutely irreducible modular representation
p satisfying local conditions at primes where p ramifies.

At prime p we impose one of the following:

. - X1 *
(Ordinary case) Alp, ( 0 Xz) ,
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where x; and x2 are distinct, and x3 is unramified. Note that we allow here that
pl1, is semi-simple.

(flat case) p comes from a finite flat group scheme over Zj,.

In [W], ordinary case and flat case do not overlap, but here we make one exception.
If 4|1, is ordinary, it comes from a finite flat group scheme if and only if it is semi-
simple and det 5|, = w (w is the Teichmiiler character), or 1, and we accept it as
a flat case in the former case.

If ¢ # p then we impose one of the following conditions as in {W]:

(A) Plp, ~ (X‘ *)

0 X2

where Xlxz_l =w, x1 and X2 are unramified, and *|;, # 0, i.e., the I,-fixed space
is of dimension 1.

(B) e~ (5 1) wrr

In the case of elliptic curves, (A) holds if the curve is semi-stable at g and the
residual representation is non-trivial. In [W], one more case is considered, but we
omit it here for simplicity.

Let 5 : Gg — GLa(k) be an irreducible modular representation, and M =
N(p) be the (prime-to p) conductor of 5. Then one can find p as the residual
representation of a modular representation pyy mod A of level M or Mp (Serre’s
e-conjecture).

The level is M if p is flat and det p|;, = w, and Mp otherwise. We say such a
modular representation minimal. In the minimal case we take the p-Sylow subgroup
of (Z/NZ)* as H, and put

T = (T (N) @z O)m,

T' = (T (N) ®z O)m.

T, T" are finite flat local O-algebras.

For the later purpose we introduce some notations. For N and ¢, (N,q) = 1,
H C (Z/NZ)* one puts

Tu(N,q) =Thxz/qzyx (Nq) = Tu(N) N To(q)

Yu(N,q) = Yuxz/qz)x(NQ), Xu(N,q) = Xux@/qzyx (N Q)
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§3. Construction of modular deformations

By Eichler-Shimura, or by Deligne, the existence of A-adic representation Gy —
GL2(T' ®p K) is known, where T" is a certain Hecke ring. From this, we have
a representation with values in GL(A), where A is a certain T'-lattice. It is quite
important to know the existence of Galois representation into GLy(T”), which can be
seen as a deformation of 5. By a method of Wiles (method of pseudo-representation)
one shows that such a deformation exists provided that the residual representation
is irreducible.

Deformations: If we are given p satisfying the local conditions in §2, we deform
it under the following local restrictions.

At p, we assume that the deformation p over an artinian local ring is Selmer or
flat according to p is ordinary or flat. By our convention flat 5 can be considered
ordinary in the exceptional case. Note that any flat deformation in such a case is
in fact a Selmer deformation.

At g # p where p ramifies, we put

(A) plp, ~ (1'%1 1;2) ,  %; : unramified, ¥,9; " =,
(B) plr, ~ ()8’ (1]) with the same x, as in §2,

according to p is type (A) or (B) at ¢. Let ¥ be a finite set of primes including
p and all ramifying primes. By Rp we denote the universal deformation ring of
p with deformation data D = { -, £, O, M}, and p*™" : Gg — GLy(Rp) the
universal representation.

Let T” be the Hecke ring with {U;, ¢|N} omitted. T’ ®o K is a product of
p-adic fields, so we have a representation p}°? : Gz — GLy(T' ® K). By Eicller-
Shimura, there exists

PR : Gy — GLy(T' ®0 K)

such that
{ trace p°? (Frp) = Ty

det pp°? (Frg) = £{f) for each £ [Np.
Theorem (Wiles).
Assume that the residual representation of p°% : Gg — GLy(T' ®¢ K) is irre-
ducible. Then there exists

p™? 1 Gy — GLy(T")

having the same trace and determinant as p°%.

Take a basis of (T” ®¢ K)? such that

it ) = (5.



COMPLETE INTERSECTION PROPERTY OF HECKE ALGEBRAS

Here Fro, is the complex conjugation. Then the entries of

mod (v _ (a(o) ¥(0)
P’ (o) = (C(U) d(c)
have the property that b(c) - ¢(o) is contained in T’ and independent of a choice of
basis. Using the irreducibility of p, there exists some 7 such that b(7)c(7) is a unit.
Change the basis again so that b(1) = 1. Then p2°¢ is defined over T” using this
basis.

Proposition.
T' =T holds.

First note that T'®0 K = T'®e K, which is proved in (W], chapter 2 §3. (Though
T' ®o K is semi-simple, T'®¢ K can have nilpotent elements so the statement is
non-trivial.) The point is that we can recover missing Hecke operators {Uy,, ¢q|N}
from the representation p™°¢. It suffices to check that the elements obtained in T’
coincide with Hecke operators in T ®o K = T ® ¢ K, which is a product of p-adic
fields and hence in case of A-adic representations.

Proposition. .
Assume that p is a modular representation of type D. Then the representation
p™? obtained in the theorem is a type D deformation of p.

Basic idea is that local properties of p™¢ over K are well-understood since it is

compatible with local Langlands correspondence [Car].

§4. Construction of a Taylor-Wiles system
By N we mean the level of the Hecke algebra. £ = {q; q|N} U {p}.

Theorem (Taylor-Wiles).

Assume p is flat or ordinary at p, and is of type (A), (B) at every q # p, q|N.
Then one has a Taylor-Wiles system {T,{Tq}qegy ,} for T with
Qs ;= {g;q9 /N,q = 1 modp, p(Fry) has distinct eigenvalues }

For Q € Q we construct Tg and Mg, and verify the conditions of Taylor-Wiles
system. Set

H' := H x maximal prime to p-subgroup of (Z/qZ)*,
Tq = (T (Nq1---¢r) ®z O)mq.,
where mg is the ideal generated by m and Uy, — ay,’s,
To- = (Tu(N,q1-qr) ®2 O)mq-

Then we have
To- =~ T= (TH(N) Rz O)m

Note that for ¢ € Q, Q € Qs 5, the representation does not occur in the space

of forms on I'y (N, q) which is new at g. If not, p(Fr,) looks like (%" ’g ) with
q
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aq/Bq = a4, agBy = g{g). Since ¢ = 1modp and a4, f, are distinct, this is a
contradiction. This ensures that we only need to consider the forms coming from
T'y(N), and get the isomorphism.

Let Ag, 6, and Aq = [],co A¢ be as in §1, and

Xq : Grug — Gal(Q(¢g)/Q) = (Z/qZ2)* Pl , A,
xq = [l4eq Xqa : Gruq — OlAg]*.
By abuse of notation we also use
XQ GEUQ — Té.
for its composition with
i: 0[Ag] — To; la] — (za),
where z, is an integer such that z, = amod @ and =, = 1 mod N.

Let H(Xy:(Ngq), O)m be the m-adic completion of T+ (Ng)-module H!(Xg:(Ng), 0),
and let Mg be the minus part H' (X' (Ngq),O);, with respect to the complex con-
jugation. Since Ty/(Ngq) ®z O decomposes into a product of local rings containing
Tg as a component, for the corresponding idempotent e Mg = eH'(Xy/(Ng),0)".
Homgz(TH'(Nq), K) = Sa,x is the space of K-valued weight 2 cusp forms.

By the Shimura isomorphism

HY(Xu/(Nq),C) =S c® Sz.c

HYXp(Nq),R)” ~ H (X (Ng),R)* ~ S, p as Ty (Ngq)-modules, and we get
that Ty/ (N gq) ®z Q is Gorenstein, and S, q is free of rank one as a Ty (Nq) ®z Q-
module. Tensoring K and applying the projector e this implies that Mg ®¢ K is
a free rank 1 Ty ® K-module. Then

Proposition.
Mg is a free O[Ag|-module.

Set Yo = YH:(Nq), Yoo = Yr(N, q).
To show the proposition, it suffices to see

Lemma.
HY(Yg, 0)~ is a free O[Ag]-module with rank equal to the O-rank of H' (Y-, 0)~.

proof)

Ag-covering 7 : Y — Yg_ is defined over R. (Assume Ag-action is free.)
Then there exists a perfect O[Ag|-complex L with Gal(C/R)-action such that

HY(L) = H(Yg, ®). L™= the minus part.

HY(L- ®Y O[Ag]/m) = H(Yg,k)™ = 0 except i = 1

This implies that H!(L™) = H(Yg, O)~ is a free O[Ag}-module.

We need to check TW2: T/(6,—1, g€ @) =T.

This is not evident since Ty /(6 — 1, g € Q) can have p-torsion a priori.

Assume p JN. Then Homgz(TH/(Nq), Zy) is identified with H®(Xp:(Nq)z,, ")
using the g-expansion principle. Here Xg/(Ngq)z, is the Z,-model of Xg:. The
action of Ag is etale on Yy(Nq)z, (assume the action is free), and extends to
Xy (Nq)z,. Xu(Nq)r,/Aq = Xy(N,q)r,. Using base change, ®F, of the map

Homz (Tx(N), Zp) = H*(Xu(N, ¢)z,, ")
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— Homgz(Ty/(Nq), Z,) = H* (X (Nq)z,, Q")

equals to
H(X(N,q)¥,, Q") - H'(Xp (Nq)r,, ).

The Ag-invariants of HO(XH:(Nq)Fp,Ql) coincides with H®(Xg (N, q)pp,Ql) us-
ing H*(Y(Nq)r,, 2)?2 = H*(Yy(N, g)r,, ') and looking at the regularity at
cusps.

Hom(Ty/(Ng), F,,)AQ = Hom(TH(Nq)/(6q — 1,9 € Q),Fp)

Then Ty (Nq)/(6q — 1,9 € Q) ® Fp = Ty (N, q) ® Fp, and the claim follows.
If p|N, we need a refined argument, since the g-expansion principle is non-trivial
in this case.

§5. Finding Q

The essential point is that we have a deformation pg“’d : Grug — GL2(Tg) of p
over Ty by the method of pseudo-representations, whose local behavior can be un-
derstood by the local Langlands correspondence. Using Galois cohomology groups
(and Chebotarev density theorem) we can choose an infinite set of appropriate Q’s,
assutning that the Hecke ring is minimal. We need the minimality here since the
residual representation does not tell the size of the local deformation at each prime
where the representation is unramified. There is another reason for ramified places.
Looking at the representation p’é“’d : Gzug — GLy(Tq) only is not quite enough
(we do not want to deform the determinant), and we need to look at p’Q = pg"d ®
~1/2
Xq -
Theorem (Taylor-Wiles).
Assume ﬁlGa](Q/Q(\‘/(—_l)-(P"_l)/—’; ) is absolutely irreducible, p is flat or ordinary at
p, and is of type (A), (B) or (C) at every q # p, g|N. T is a complete intersection
if the representation is minimal.

proof) One already has a Taylor-Wiles system for T. Under the minimality
we find a subset @ C Qy ; satisfying the assumption of the complete intersection
theorem. Let pf, : Gx,@ — GL2(Tq) be the twisted representation. The twist must
be of type D (the minimal one) outside @, and at primes ¢ € @, its restriction
X1
0
deformation data Dg is defined as follows:

For ¢ € T, the condition is the same, and for ¢ € @ we put no restriction on the
deformation.

We denote by D* and D*? the dual data of D, Dg as in [W], and for the dual
ad’5* = ad®p(1) of ad®p, Hp.(Qx/Q, ad’p*), Hé.q (Qsug/Q,ad’5*) are the dual
Selmer groups.

Recall that

to D, must have the form , where x1x2 is unramified at q. The local

(mRQ/(Tn%{Q’A))‘ = H’IDQ (QEUQ/Q, adoﬁ))

where Rp, is the universal local deformation space of p of type D. Let pg)
Gzug — GL2(Rp,) be the universal representation.
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Put
r = dimg Hp(Qx/Q, ad’p).

Since p’Q is a deformation of g of type Dg, we have a canonical map Rp, — Tg.
Note that the map is surjective, since Tg = Tj, is generated by {T¢,¢ ¢ L U Q},
which is the image of {tracep¥*"(Fx,),{ ¢ ¥ U Q}. Since Rp, is generated by
at most dimy H}, Q elements, T is the same. The theorem is proved if we choose
Q C {g:q=1modp™}N Qs ; such that #Q = dim, H-qu(Q):Uq/Q, ad®p) = r for
any m 2> 1.

By the minimality of D, we have dimy HL(Q,ad’p)/H}.(Q, ad’5*) = 0. For
Dg, we have, by the formula of [W]

dimy Hp,, /[ Hpeo = dimg Hp(Q, ad’p)/Hp. (Q, ad’p") + Z dimg H°(Qg,ad’5")
q€Q

= nQ.

Note that dimx H%(Qq, ad®s*) = 1 for each ¢ € Q € Qx;, since ad’p"(Fr,) has
eigenvalues qo, /By, q, 4Bq/ 0.

So, to have #Q = dim H,gq =, it is enough to have H}., = 0 and #Q = r.
We apply the following proposition.
Proposition.

Assume ﬁlcal(Q/Q(m) s absolutely irreducible. Then there is Q C
{g:9€Z,g=1modp™} N Qg 5 such that

Hp-(Qr/Q,ad’s") - [] H}(Qq, ad’s")
q€Q

is injective (and hence the kernel H}., vanishes).

This proposition is proved by a closer study of subgroups of GL; of a finite field
and Chebotarev density theorem. The assumption on pj Gal(@/ QU777 ) is
necessary only when the projective representation associated to p has Z/2Z x Z /27
as the image.

Since dimy H(Qq, ad®p") = dimg H%(Qq, ad®s") = 1 for each q € Q, we can
shrink () so that

Hp(Qs/Q,ad’p") ~ [] H}(Qq, ad’s).

q€Q
Then we have #Q = dimy H}.(Qs/Q,ad’5") = r using dimy H}(Q,q, ad’p*) =1

again.
This completes the proof of the Theorem.

10
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§6. Mazur conjecture : Rp ~T
Finally we prove the Mazur conjecture in the case of the minimal Hecke algebras.
The argument here is due to Faltings. Recall that deformation ring Rgq, ., is
generated by at most. r elements.

Suppose now that we have a similar diagram for deformation rings

(RQuuioy/ In)" 4, Rguu/In —— R/I, —— 0

l l l

(TQm(n)/In)r —— TQm(n)/In — T/[, —— 0

such that f looks like (6, — 1,..,6, ~1). Then R will be a complete intersection
of the same defining equations as T (we argue similarly as in §1), hence R ~ T
follows. We need to define elements é1,--- ,6r € Rq,,,, such that

Rg /(61 —1,.,6, — 1)~ R.

Recall first what §; € T is : The representation pg : Gzug — GL2(Tg), re-
stricted to the inertia group I, at g, factors through Gal(Qy""((,)/Qy""). Let o4
be a generator of a Sylow p-subgroup of this Galois group. Then 8, € T is such

that s
0
vato) = (5 7).

Now let p‘é"i” : Goug — GLa2(Rp,) be the universal representation of type Dg
with residual representation p. By assumption, p(Fry) has distinct eigenvalues oy

and ;. We take a basis so that pi**(f) = (‘3’ l? , where f is a Frobenius lift
q

in Dg.

Claim.

PE|p, is diagonal.

Proof. p‘é"“l 1, factors through a pro-p group, so it factors through Z,(1) (= the
Galois group of the Z,-extension of Q};"T). Let o be a generator of this group. We
have fof~! = ¢9. We will check modulo m", inductively on n, that p&**(o) is
diagonal.

P& (fof~1) = pE*¥(09). Writing down this relation explicitly, we have the
claim.

The twist pg = pq ® xal/z looks as

§1% o
p,Q(UQ) = ( qO 6—1/2)-

q

i Y1 0
univ ~
pQ |D¢ b ( 0 wz )

we set 8, := 1(0q)? € Rp,. Then we have Rp, /(61 — 1,..,6, — 1) = Rp.

So, if

11
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