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                              Abstract
   This article is a generalization of the author's work [Ul to the case of several

variab}es. We first construct compatib}e actions of monoid S olt a "severa}-variab}es-

versioR oÅí seml-stable (leg'ei}era#ioR of pairs"agd ci} t}}e associated }og tgpc}og'ical

spaces intrfiduced by k'ato ftBd Nakayama iR iKN]. Kere S is the predi}ct gf tl}e
imk interval aRd tl}e unit circ}e. 'I'}ieB we sl}ow t}}at t}'ie ecs$ociated }og topologlcal

family is locally topologically trivial over t}ie base, i.e., the asseciated log topological

fainily recovers the vanishing cycles of the orig'inal degeneration. Using this result

together with the theory of canonical extensions by Deligne [D], we introduce two
types of integral strueture of the variation of mixed IIodge structure associated to
" several-variables-version of semi-stable degeneration of pairs". We only sketch the

proof here. The complete proof will appear soon somewhere..

1 Log Structures

Let X c P be a d-dimei'}sioi}al complex }ii}ai}ifel(l aRcl a Åqlivisor wit}} Reymftl cyossk}g'$.

The assgciaged fine saturated log str2tctsre (cÅí IK]År is deffxed by

                Mx := {f ff Ox lf is invertible outside P} cSl, Ox.

Let T be a point Spec C with a log structure

     ' RteoxCi-C, (r,u)F--Årr2t,
wl)ere Ci c C is the unit circle. Notice that this log structure is not fine sat,nrat,ed.
K. Kato and C. Nakayama introduced in [KN] a log topologicat space XiOg as the set of

T-valued points ii} the category of log schemes:

                 xiog :ww ylom(T,x) -IN'} X, foygetting morp}}ism.

   i991 Matke?Raties S•ttoj'ecS CiassiScatign. Prly;}ary l4C3g; Secoi}Åqlary l4Dg?, 32G 2g. Partly s}ip-
pbrted by t}}e Grai}ts-in-Aid for Scientifie R.eseareh Åq1) (B): g8:i04ee2, tlke Ministry of Ed{icatien, Scienee

aizd Cuktiye, .]apau
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Let :i Ei XLOg and x :mm Tx(jb). Choose a local coordinates zi,...,zd at, x E X such that D

has a local equation llisis,(.) zl•]'(i), 'rrt(i) }il 1, Then we see that

     Mx,x == II{{O},. I { ze• (2) b E NS(XÅr} cÅr O:a. e NSÅqX), w}}ere N := ZÅr-o.

                    ISiSs{xÅr
     xiog !ocN-aiiY (RÅro)s(x) Å~ (ci)s(x) Å~ cd-,(.) -eri.!{wwÅr .\ iec.mvaiiy cd,

           Tx ((ri, 'tti Ji sis,(.), (zD ,•(.)+isJsd) = ((ri?•ti)isiss(x) , (zJ')s(x)+i sjsd)}

where ri := Izil and r"tt := zi. This iuduces a topology on the set Xi"g, and Tx ; Xi"g -" X

caii be regai'de(l as a }'eal b}gwi#g-ig) (cf. [IXifl) arwl XiOg as a maxxifo}d wkli ceyRers (cÅí

[AMRITI).

    Ei;ample (1.1) Let A be the open unit disc in the complex plane, and H the upper
half plane. Let exp27T"V=iJ( ) : H --, A' be the universal cover of the punctured disc.

Then tlie pair (A, {O}) induces the following diagram:

                  H c R := RÅÄA(RÅrelj{oc})
                          i
                   1                         Aiog y ,E)r/z

                          s
                  A' c A.

2 Recovery of vanishing cycles
Let n 21 1 and a(k;) (-1 :sl k f{ n) be integers such that

(2.lÅr g- a(-l) :S a(C)Åqa(l) Åq: t•-ÅqG(n).

Set

(2.2) A:={1,2,...a(n)}, A(k):=- {a(k-1)+1,...,a(k)} (OSkSn).

Let

be a proper, fiat morphism ef a d--dimenslonal complex maitifold X to a poly(lisc P :ww-- An

wit,h coordinates ti,...,t.. Let Bte be the divisor on P defined by tk = O, and $et
B :nm ÅíiÅqkÅqn Bk-• Set D := f'B and let

(2.4) f'Bh -: X m(i)Pt (1 :E{kff{ n)
                           idiAÅqkÅr

be t,lxe irreducible decorriposition, Let, Y = 2iEA(o) JII])i be a divisor on X, flat with respect

to f. We assume that

(2.5) Y+D- Åí D,+Åí Åí m(i)D,
                           iffA((}) ISkSn iGAÅqk)

is a divisor with simpie normal erossings wl}ose distinct prime divisors are Di (i di A).
Notic;e that, locally ori the base spac;e, we can reduce any proper, fia,t family with a flat

-  l99 -

2



divisor to the above setting by blowing-ups. The fine saturated log structures associated

to tl}e pairs X ) D, Y ) D n Y ancl P D B induce a commutative diagram:

                       (XDy) L' (xtogDytog)

                          p L' piog.

Let, [O, 1] c R be the unit interval which is regarded as a monoid by multiplication. The

nionoid

(2.7) S:- ([O, 1]xCi )n
has natural actions on the po}ydisc P and on PiOg. These actions ' can be lifted to the

diagram (2.6), and we have

Theorem 1 In the above notcttion, the family of open spaces

                          o                          ftog: (xlog - ylog) " plog

                                                    ozs locally topologicallzl t7riviat over the base P!Og. This nbeans that fiOg recovers the vanish'ing

cycles of the degene'r'ate family

                             o                             f: (X-Y) -År R

    We will sketch the construction of the liftings of S-actions to the diagram (2,6) alld

the proof of Tl)eorem 1 in Section 4 below,

3 Integral structure of degenerate VMHS
We use the notation in Section 2. Here we assmne moreover t,hat D is reduced. Then, it
can be verifie(i t,hat

(3.1) ' V:= RqAst}1.(log(Y+D))
is the canonical extension of Deligne [D, (5.2)) of ViP, P' : = P-B, whose Gauss-Manin
connection V is obtained as the differential di : E?]q = V - El'q == 9},(logB) Xo. V of

the spect,ral sequence of 1)ypercohomo}ogy of the complex S)l(log(Y + D)) with respect
to a filtration Gk := f'S)k.' (log B) A S'IN(log(Y + D))[-kl.

    The locally constant sheaf of C-modules Ker(VIP') lifts to TpMi(P') and extends
one on PiOg. XVe denote the latter by L'c. On tlie other hand, 1)y Theorem 1, we liave
]ocally constant sheaf of Z-modules on PiOg:

                                     o(3,2) Lz := Rq(f)og).z.
By c;onst•ruction, L'c and CXz Lz coincide on rp-i(P'), 1)ence they coincide on wliole Pi"g

because they are locally constant.
    Let IVIi := log7i (1 S 'i S n) be the monodromy logarithms of Lz induced by the
action of the group (Ci)'i on P]Og. Let zx7 : fl" - PiOg be t,he universal covL]ring (cf,
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Example (].1)) and let li,..,,t. be coordinates on H'i with exp(2zN/=i[li) = t,. Choose

a flat, frame ei,,,.,e, of zpriLz and modify

(3.3) e"",- := exp(- E t,N,)•e, (IS]' Åq- r)•
                              1 fl:iSn

Then, this drops to a single-valued fraine of ObOg xz Lz on PiOg, where (ObOg)i :==
Op,t[li,.,,,l.] for t- E PiOb' and t = 7p(t-') E P. Hence this still drops to a frame of )2

on P. "Je also denote this frame of V by the same symbol e-' i,..,,g,.

    It is easy to see, by the definition (3.2), t,hat under the identification

(3.4) Cxz (zv rriLz )(h) -:, V(O), e, (h) H e-', (O),

where h E H" and O E P the origin, we have

(3.5) Ni =- -27rARes(ti - O)(V) (cf. [D, (II.1.17), (II.5.2)]).

    Thus we have

Theorem 2 In the notation of Section 2, we assume mo'reover that D is red'uced. Tlten
IV has tu)o t2L/pes of integral striLct'ttre:

(i) obOg opzLz cy (Tp)*v on piog,
                       t't7"he tocal 'rnono(lrom'ies aTe ind?tced by (Ci)"-act'ion o•n PiOg.

                           oo(ii) Ope)z(Tp).R`i(f}Og).(fiOg)m'Z[li,...,l.]orv on P,

The monodrom'y logarithms are given b'y -2TARes(t, -- O)(V) (1 S 'i S n).

    Remark (3.6) (i) C Xz Lz and ()i',V) correspond under the log Riemann-H'ilbert

correspondence in IKN], by using the monodromy weight filtrat,ion in [CK] in case Y = Åë
and in general case the convolut,ion of the relative monodroi'ny weight filtrations in [SZ]

or the weight filt,ration constructed in [F].

(ii) The author was coinmunicated by Morihiko Saito, on May 24, 1996, that there is a
correction of [St, (5.9)] in [Sa, 4.2].

(iii) Fiijisawa has obtained some iiitegral structure on )i) in different method in [F].

4 Outline of Proof of Theorem 1
The proof is analogous to t,he argument of Clemens [C], but there are some points in the
preof of [C, Theorem 5.7] which are not c]ear. The readers can find a complete proof in

the case of dimP= 1 in [Ul.
    VLTe use tlie notation in Section 2. For I c A, we denote

               Di :== n Di, I(k) := In A(k) (o sk Åq- n).
                    iEl

Tlie following proposition plays a key role.

-  201

4



Propositon 3 In the abo've notation, shrinking the polyi disc P, we have the following:
(a) Titere ex'ist a faTnil2y {Ui}icA of open tztb'ular neighborhoods Ui of Di and a familyt

{i[i : Ui - Di}icA ofCC'O pro]'ections 'tvhich satisf•y

  (i) ' UlnUJ == UIuJ,
  (ii) TI OTJIUI = 7rl for I) ,J.

(b) There exists a famz'ly {z,},EA of COO gtobal equations zi of Di in X wh'ich has tiie
fbllow'ing properties:

  (iii) If J c A - A(O), x E DJ and F := zui(x), then {zjiF}jEJ for"nis a s?Jstem of
holoniorphic coordinates on F and

                H z;"(]') = (constant) tk of on F (1 SkS h),

               jEJ(k•)

where the (constant) depends only on F and on the choice of the zj and of the tk.
 (iv) Fori,j' EA with i 7E j, zi is constant on each fiber of T,• : U,• - DJ.

     We oinit here the proof of this proposition, because it is rather complicated though
elernentary and also the argument is essentially the same as in the case of dim P = 1 (see
[U, E2], in this case). In order to lift the action of monoid S = ([O, 1] Å~ Ci)'i to the whole

dia,gram (2,6), we shou)d prepare two more things.
     For each integer 1 f{l k Åq- n and a number O f{ 6 Åq 1, let

               C(k) := [o,i]a(k)Ja(h-i) unit cube in Ra(k)-a(k-i),

(4•1) C(k)6 := {(r, ),EA(k) E C(k) II r,M(i) =: 6},
                                          iE4(k)
               E(k-)6 :=- U C(k)6•,
                         6,E[O,6]

For each 'i E A - A(O), we choose a number

(4.2) OÅqEi f(1
and a COO function

(4,3) gi:[O, 1]Å~[O, 1]-[O, 1] ,
which have the fellowing properties:

              Ifr l}l E, then g,(s,r) == r•

              For all r, goi(1,r) == r.

(4.4) (OPgi/asP)(O,O) ==O for allp20.
              (0g,/Os)(s,r) År O if s År O and O Åq r Åq ei.

              (Ogi/Or)(s, r) År O if r År O.

For each 1 :f{ k f{ n, and O Åq 6o Åq 1, we define a map

(4.5) sp(k-) : IO,1] Å~ E(k)6, --. E(k)6, by {p(s,('r,)iEA(k)) := (got(S,ri))zEA(k)•
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Then, for any fixed point (r,)iEA(k,) E C(k)6, and a fixed non-negative number 6 Ei{ 6o, the
curve g([O, 1], (ri)iEA(k)) and the hypersurface C(k)6 intersect at one point and, moreover,

they are transversal except at the points of the singular locus of C(k')o. Denote this

intersection point by '

(4,6) Åqr,(T,),EA(k)År, where r:= 6/6o,
and call this tl}e hyper-bolic polar coordznates of t•he point in E(h)6,. Define

(4.7) R(k) : [O,1] Å~ E(h)6, - E(k')6, by R(s, Åqr, (r,)iEA(k)År) :-- Åqsr,(rd)iEA(k)Årt

    Here we may assume that, the above number 6o is chosen so small that, for every

1SkSn,
(4i8) (ri)iEA(k) E E(k)6, implies ri Åq E,/2 for some i E A(k).

Then, for each 1 S h Åqm n,

(4,9) {(ri )iEA(st E C( k;)6, lri• Åq ej /2}JEA(k)

forms an open covering of C(k)6,. Take a COO partition of unity

(4.10) {yÅrLj}jEA(h)
on C(k)6, which is subordinate to the covering (4.9), and extend this over E(k)6, by

               •)LJ(Åqr, (ri)iEA(k)År) :== •ÅrL)((rt)iEA(k)) for all r E [O, 1]. ,

    Now we define an action of the rnonoid S on X]Og in the following way. For the CC'O
global equations zi of D, (i E A - A(O)) in Proposition 3 (b), let

(4.11) zi (2J) =: ri (y) ui (y), yE X,

be the decompositions into the absolut,e values and the arguments. We choose the pos--
itive numbers 6,• in (4.2) so small that {y E X1ri(y) G s,} is contained in the tubular
neighborhood U, in Proposition 3 (i E A - A(O)), and we shrink the polydisc P = A" so
that X C U,EA-A(o) Ui, 'r,•(y) :S{ 1 (yi ,E X,i E A - A(O)) and the radius of each factor A

is less than or equal 6o. ForyEX, let

(4. 12) I,= {i E A - A(O)I U, D •y}, x:= Ti (y), F := Ti-i(x),
           17iOg : the closure of Tx;i(I7 - P' nD) in XiOg

We define an action S Å~ Fiog - F]og by

(4.13) (r,((s,v)•fJ)),,.(,.) := R(k)(s(k),(rj(?J')),EA(k)),

               ui((s,v) • y") := v(k)"'(ij)IM(i)2ti(tf) (i E A(k))

for 1SkSn, where

 (s,v) = (s(k),v(k))isks. ES == ([O,1] Å~ Ci)", Ai(g) :=: Ai((rj(iJ'V))j.A(k)) (i E A(k')).

    Then we can verify the following claim:
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     Claim (4.14) The monoid action (4.13) is compatible with the restricted morphism
fiOg : FiOg - Piog, and these actions on the fibers FiOg fit together to give a continuous

action on Xiog.

    The S-action on XiOg preserves the subspace YiOg by Proposition 3 (iv), and they

drop down to induce S-actions on X and on Y. We see that these S-actions are compatible
with t,he natural ones on P and on PiOg. Let O E P be the origin. We denote

(4.15) O`Og :=: i-pi(O) t(ci)n, xi50,g., := (ftOg)-i(OiOg).

For (O, 1) = ((O, , . . , O), (1, . . . , 1)) E S, we define a continuous map

(4.16) it:XtOg -. Xole,g., by ft(y-):= (O,1)•yA'.

By Proposition 3 (iv), ft is compatible with the inclusion YiOg c X}Og, Let t-' E PiOg and
t-- o :== (0, 1) • t'" E O]Og, and let X,!Og and A-t!,Og be the fibers of fiOg over te' and t-o, respectively.

Then we can verify the following claini:

     Cla'im (4.17) The restricted inap ft : XiiOg - Xtl,Og is homeomorphic.

     Fi'om this, we see that the map ft in (4.16) yields a horizontal projection of the fainily

fiog : Xiog - P]og, compatible with the inclusion YiOg c XiOg. Thus we get Theorem 1,

     The above argument is essentially the same as in the case of the dim P = 1 and the
details in this case can be found in [U, g3].
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