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Abstract

This article is a generalization of the author’s work [U] to the case of several
variables. We first construct compatible actions of monoid S on a “several-variables-
version of semi-stable degeneration of pairs”and on the associated log topological
spaces introduced by Kato and Nakayama in [KN}. Here S is the product of the
unit interval and the unit circle. Then we show that the associated log topological
family is locally topologically trivial over the base, i.e., the associated log topological
fanily recovers the vanishing cycles of the original degeneration. Using this result
together with the theory of canonical extensions by Deligne [D], we introduce two
types of integral structure of the variation of mixed Hodge structure associated to
“several-variables-version of semi-stable degeneration of pairs”. We only sketch the
proof here. The complete proof will appear soon somewhere.

1 Log Structures

Let X C D be a d-dimensional complex manifold and a divisor with normal crossings.
The associated fine saturated log structure (cf. [K]) is defined by

My = {f € Ox | f is invertible outside D} < Oy.
Let T be a point Spec C with a log structure
RyoxCy —C, (r,u)— ru,

where C; ¢ C is the unit circle. Notice that this log structure is not fine saturated.
K. Kato and C. Nakayama introduced in [KN] a log topological space X'°¢ as the set of
T-valued points in the category of log schemes:

X% .= Hom(T, X) =+ X, forgetting morphism.
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Let ¥ € X'°8 and z := 7x(Z). Choose a local coordinates z,. .., zg at z € X such that D
has a local equation []y<;<y(r) 2" m(i) > 1. Then we see that
My, = H{O;‘(,z I zf(i) i be Ns(z)} >~ 0%, ® N*® where N := Zo.
1<i<s{x)
tocall g locall
Xoe T2V (Ryp)*@) x (€)1 x @ IX, x PRY o

Tx (T3, uih <icsiay, (2)s@)r1<i<a) = ((Tits) 1<i<s(z), (25)sm)+1<i<d),

where r; := |z;} and r;u, = z;. This induces a topology on the set X8 and 7 : X' — X
can be regarded as a real blowing-up (c¢f. [M]) and X'°& as a manifold with corners (cf.
[AMRTY).

Ezample (1.1) Let A be the open umnit disc in the complex plane, and H the upper
half plane. Let exp2ny/—1( ): H — A* be the universal cover of the punctured disc.
Then the pair (A, {0}) induces the following diagram:

H c H = R+ V=I(R.ell{oo})
l

J Al ~ H/Z
l

AT C A

2 Recovery of vanishing cycles
Let n > 1 and a(k) (—1 < k < n) be integers such that
(2.1) O0=a(-1)<a(0) <a(l) < - < a(n).

Set

(2.2) A:={1,2,...a(n)}, A(k):={ak-1)+1,...,ak)} (0<k<n).
Let

(2.3) FiXoP

be a proper, flat morphism of a d-dimensional complex manifold X to a polydisc P = A"
with coordinates t;,...,t,. Let By be the divisor on P defined by #;, = 0, and set
B =3 <t<n Br. Set D := f*B and let

(2.4) f*Be=: Y m@@D; (1<k<n)
i€Alk)

be the irreducible decomposition. Let Y = 57;c 40y D; be a divisor on X, flat with respect
to f. We assume that

(2.5) Y+D=Y Di+ > 3 m@)D

i€A(0) 1<k<n i€A(k)

is a divisor with simple normal crossings whose distinct prime divisors are D; (i € A).
Notice that, locally on the base space, we can reduce any proper, flat family with a flat
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divisor to the above setting by blowing-ups. The fine saturated log structures associated
to the pairs X D D, Y D DNY and P D B induce a commutative diagram:

X

(X DY) 2 (X't 5 Yle)

06 ,1 ,l

P 223

Let [0,1] C R be the unit interval which is regarded as a monoid by multiplication. The
monoid

(2.7) S = ([0,1] x C)"

has natural actions on the polydisc P and on P'. These actions can be lifted to the
diagram (2.6), and we have

Theorem 1 In the above notation, the family of open spaces
;('log: (Xlog _ ylog) — Plog

is locally topologically trivial over the base P'°8. This means that f'°8 recovers the vanishing
cycles of the degenerate family

o

FiX=-Y)—P

We will sketch the construction of the liftings of S-actions to the diagram (2.6) and
the proof of Theorem 1 in Section 4 below.

3 Integral structure of degenerate VMHS

We usc thie notation in Section 2. Here we assume moreover that D is reduced. Then, it
can be verified that
(3.1) V= RIf, }/P(log(Y + D))

is the canonical extension of Deligne [D, (5.2)] of V|P*, P* := P — B, whose Gauss-Manin
connection V is obtained as the differential dy : E}? =V — E}? = QL(log B) ®0, V of
the spectral sequence of hypercohomology of the complex Q% (log(Y + D)) with respect
to a filtration G* := f*Q% (log B) A Q% (log(Y + D)){—k].

The locally constant sheaf of C-modules Ker(V|P*) lifts to 75'(P*) and extends
onc on P8, We denote the latter by Lz, On the other hand, by Theorem 1, we have
locally constant sheaf of Z-modules on P'°&:

(3.2) Ly = R(f").Z.

By construction, L and C ®z Ly coincide on T,Zl(P‘), lience they coincide on whole P'¢
because they are locally constant.

Let N; :=logv; (1 < i < n) be the monodromy logarithms of Lz induced by the
action of the group (C;)" on P8, Let w : H™ — P'8 be the universal covering (cf.
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Example (1.1)) and let ;,...,1, be coordinates on H" with exp(2rv/—1l;) = t;. Choose
a flat frame e, ..., e, of w 'Ly and modify

(3.3) & =exp(~ > LN e (1<j<7)

1<i<n

Then, this drops to a single-valued frame of Olf}g ®z Lz on PY8 where (Oﬁg); =
Opyfly,.. ., 1a) for t € P and t = 7p(f) € P. Hence this still drops to a frame of V
on P. We also denote this frame of V by the same symbol €;,...,é&,.

It is easy to see, by the definition (3.2), that under the identification

(3-4) C ®z (@' Lz)(h) = V(0), &(h) = &(0),

where h € H™ and O € P the origin, we have

(3.5) N; = —27v/—=1Res(l; = 0)(V) (cf. [D, (I1.1.17), (IL5.2)]).
Thus we have

Theorem 2 In the notation of Section 2, we assume moreover that D is reduced. Then
V has two types of integral structure:

1 Olog ®Z LZ ~(Tp *V  on PlOg.
P

The local tonodromies are induced by (C1)™-action on P8,

(ii) Op ®z (1p) R f°8).(f°)'Z[ly,...,L,) =~V on P.
The monodromy logarithms are given by —2m\/—1Res(t; = 0}(V) (1 <1i < n).

Remark (3.6) (1) C ®z Lz and (V, V) correspoud under the log Riemann-Hilbert
correspondence in [KN], by using the monodromy weight filtration in [CK] in case Y =
and in geuneral case the convolution of the relative monodromy weight filtrations in [SZ)
or the weight filtration constructed in [F].

(ii) The author was communicated by Morihiko Saito, on May 24, 1996, that there is a
correction of [St, (5.9)] in [Sa, 4.2].
(ili) Fujisawa has obtained some integral structure on V in different method in [FJ.

4 Outline of Proof of Theorem 1

The proof is analogous to the argmment of Clemens [C], but there are some points in the
proof of [C, Theorem 5.7] which are not clear. The readers can find a complete proof in
the case of dim P =1 in {U].

We use the notation in Section 2. For I C A, we denote

Di:=(\Di, I(k):i=INAK) (0<k<n)

icl

The following proposition plays a key role.
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Propositon 3 In the above notation, shrinking the polydisc P, we have the following:
(a) There exist a family {Ur};ca of open tubular neighborhoods Uy of Dy and a family
{m;: Ur — Dy}rca of C™ projections which satisfy

(i) UrnU; = Uy,
(11) my O7TJ|U] =Ty fOT‘ I>J

(b) There exists a family {z;}iea of C= global equations z; of D; in X which has the
following properties:

(iii) If J ¢ A— A(0), z € Dy and F := n7'(z), then {z;|F}jes forms a system of
holomorphic coordinates on F and

11 z;"(j) = (constant)ty o f on F (1<k< n),
jed(k)

where the (constant) depends only on F' and on the choice of the z; and of the ty.
(iv) Fori,j € A withi # j, 2z is constant on each fiber of m; : U; — D;.

We omit here the proof of this proposition, because it is rather complicated though
elementary and also the argument is essentially the same as in the case of dim P =1 (see
[U, 82], in this case). In order to lift the action of monoid S = ([0,1] x C;)" to the whole
diagram (2.6), we should prepare two more things.

For each integer 1 < k < n and a number 0 < 6 < 1, let

Ck) = [0,1]“(")_"("_1) unit cube in Ro®-atk-1)
(4.1) Clk)s = {(rieawy €CH) | TT ¥ =16},
i€ A(k)
Ek)s = | Ch)s.
5€[0,6)

For each i € A — A(0), we choose a number
(4.2) O0<eg <1

and a C* function
(4.3) @i - [0,1] x [0,1] — [0, 1]

whichi have the following properties:
If r > g then ¢;(s,7) = r. ‘
For all 7, <p,-(1,.r) = .

(4.4) (0Pp;/0sP)(0,0) =0 for all p > 0.
(Opif08)(s,7) >0 ifs>0and0< 71 <eg;.
(Op;/Or)(s,7) >0 ifr>0.

For each 1 <k <n, and 0 < §, < 1, we define a map

(4.5) w(k) [O> 1] x E(k)s, — E(k)s, by w(s, (Ti)ieA(k)) = (‘Pi(s:ri))ieA(ky
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Then, for any fixed point (r;)icaw) € C(k)s, and a fixed non-negative number 6 < &, the
curve ([0, 1], (r;)ieap)) and the hypersurface C(k)s intersect at one point and, moreover,
they are transversal except at the points of the singular locus of C(k)y. Denote this
intersection point by -

(4.6) (r,(r)ica)), where 71:=6/6,

and call this the hyperbolic polar coordinates of the point in E(k)s,. Define
(4.7)  R(k) : [0,1] x E(k)s, = E(k)sy by R(s, (r, (ri)icaw) = (57, (ridicaw))-

Here we may assume that the above number 8, is chosen so small that, for every
1<k<n,
(4.8) (ri)icaw) € E(k)s, implies r; < €;/2 for some i € A(k).

Then, for each 1 < k < n,

(4.9) {(ri)icamy € C(k)s, |75 < €5/2}ieam

forms an open covering of C(k)s,. Take a C™ partition of unity

(4.10) {Ahieaw

on C(k)g, which is subordinate to the covering (4.9), and extend this over E(k)s, by
Ai({r, (ridieaw)) = Ai((Ti)ieawy)  for all r € [0,1]. )

Now we define an action of the monoid S on X' in the following way. For the C*°
global equations z; of D; (i € A — A(0)) in Proposition 3 (b), let

(4.11) z(y) = ri(yuly), yeX,

be the decompositions into the absolute values and the arguments. We choose the pos-
itive numbers €; in (4.2) so small that {y € X |r;(y) € €} is contained in the tubular
neighborhood U; in Proposition 3 (i € A — A(0)), and we shrink the polydisc P = A" so
that X C Uiea—a Ui, ri(y) < 1 (y,€ X,i € A— A(0)) and the radius of each factor A
is less than or equal éy. For y € X, let

(4.12) I'={iec A-A(0)|U; >y}, z:=my), F:=n7'(z),
F'°8 ; the closure of 73! (F — F N D) in X8

We define an action S x F'% — F'98 by

(4.13) ((5,0) D),y = REV(sK), (r3(@) e
wi((s,v) - §) i= v(k)ND/ ™Dy, (7) (i € A(k))
for 1 < k < n, where

(s,0) = (s(k), v(E)iskcn € S = ([0,1] x C1)",  Xi(9) = M((r(9))jeawy) (& € A(k)).

Then we can verify the following claim:
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Claim (4.14) The monoid action (4.13) is compatible with the restricted morphism
f'8 ;. Fl& — P& and these actions on the fibers F'°& fit together to give a continuous
action on X8,

The S-action on X' preserves the subspace Y8 by Proposition 3 (iv), and they
drop down to induce S-actions on X and on Y. We see that these S-actions are compatible
with the natural ones on P and on P8, Let O € P be the origin. We denote

(4.15) 0% = 73 (0) = (C1),  XE, = (f%)71(0%).
For (0,1) = ((0,...,0),(1,...,1)) € S, we define a continuous map
(4.16) X X8 by #(§):=(0,1)-7

By Proposition 3 (iv), 7 is compatible with the inclusion Y98 ¢ X'6. Let t € P'°% and
to:=(0,1)-t € O 8, and let X“’g and Xlog be the fibers of f1°8 over ¢ and ty, respectively.
Then we can verify the followmg claim:

Claim (4.17) The restricted map 7 : X }Og - X }gg is homeomaorpliic.

From this, we see that the map 7 in (4.16) yields a horizontal projection of the family
flog ;. X8 _, Plog compatible with the inclusion Y'°¢ ¢ X°6. Thus we get Theorem 1.

The above argument is essentially the same as in the case of the dim P = 1 and the
details in this case can be found in [U, §3].
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