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Resonance in Hypergeometric Systems related to
Mirror Symmetry *

Jan Stienstra

In the late 1980’s physicists discovered a fascinating phenomenon in Con-
formal Field Theory — they called it Mirror Symmetry — and pointed out that
this had far reaching consequences in the enumerative geometry of Calabi-Yau
threefolds; see [9] for some of the early articles about mirror symmetry and
[7] for a recent survey. It is a technique mathematicians had never dreamed
of: the number of rational curves of a given degree on one Calabi-Yau three-
fold is computed from the variation of Hodge structure on the cohomology in a
family of different Calabi-Yau threefolds. One is therefore interested in an effi-
cient computation of the variation of Hodge structure in families of Calabi-Yau
varieties.

In [1] Batyrev made the observation that behind many examples of mir-
ror symmetry one can see a simple combinatorial duality: the CY threefolds
are hypersurfaces (more precisely, members of the anti-canonical linear system)
in two toric varieties, constructed from a pair of dual lattice polytopes in R%.
In [2] he analyzed the Hodge structure of Calabi-Yau hypersurfaces in toric
varieties and showed that the periods of a (suitably normalized) holomorphic
d-form on a d-dimensional CY hypersurface in a toric variety satisfy a system
of Gel’fand-Kapranov-Zelevinskii hypergeometric differential equations with ap-
propriate parameters ({2] thm 14.2). However, the rank of this GKZ system is
larger than the rank of the period lattice. So, even if one would have all solu-
tions for this system, one would still need a method to decide which solutions are
periods. In {6] Hosono, Lian and Yau gave a method for determining the com-
plete system of differential equations for the periods and applied this method in
some examples. Their resulting system looks complicated. Fortunately, what we
need for mirror symmetry are the periods, i.e. the solutions, not the differential
equations!

My approach is based on two observations: firstly, implicit in {2] is a varia-
tion of mixed Hodge structure which is an extension of the variation of Hodge
structure for the family of CY hypersurfaces and for which the GKZ system
is the complete system of differential equations; secondly, [2] does in fact tell
precisely where the holomorphic d-form of the Calabi-Yau hypersurface lies in
this extended VMHS. In this note I present a simple explicit formula for the
solutions of the GKZ system for the extended VMHS. By differentiating these

*notes for a talk at the symposium on Algebraic Geometry in Kinosaki, November 14, 1996

— 153 —



solutions we obtain an equally simple and explicit formula for the periods of the
(suitably normalized) holomorphic d-form of the CY d-fold.
A GKZ hypergeometric system ([4] def.1) is a system of partial differential

equations for functions ® of N variables vy,...,vn . It depends on parameters
A and b: parameter A = (a;;) is a ¥ x N-matrix of rank v with entries in Z
and a;; = a1 = ... = a;ny = 1; parameter b = (b1,...,b,) is a vector in C".

Let L. C ZN be the kernel of the matrix A. The GKZ hypergeometric system
with parameters A and b is:

—~b; +Za"v136 ¢ = 0 fori=1,...,v (1)
J=1
A ]
S 2 & = 0 for (b,....6n) €L (2)
§i ;>0 Bv; §14;<0 0v;

In the situation of [2] thm 14.2 matrix A is such that when we delete its
first row the columns of the resulting (v — 1) x N-matrix are the integral lattice
points contained in the Newton polytope A of a Laurent polynomial equation
for the (v — 2)-dimensional hypersurface in a (v — 1)-dimensional torus. The CY
variety is the closure of this affine hypersurface in the toric variety associated
with A. Parameter b for the case of an appropriately normalized holomorphic
(v — 2)-form is (~1,0,...,0). For the GKZ system of the extended VMHS we
have the same parameter A, but b = (0,0,...,0).

In [4] Gel’fand-Kapranov-Zelevinskii gave solutions for the GKZ system in
the form of so-called I'-series

CJ +i;

Z1—-[I“CJ+Z +1) (3)

tel j=1

where T is the usual gamma-function, £ = (¢;,...,fny) € L C ZVN. The series
depends on additional parameters c;,...,cy € C which must satisfy

ancL+...+ainey=b; fori=1,...,1. (4)

In order to be able to interpret (3) as a function one also needs a triangulation of

the polytope A := conv {a1,...,an}; here a1,...,an are the columns of matrix
A viewed as points in R”. The triangulation is used to formulate additional
conditions on ¢y, . ..,cny € C which ensure that in (3) the coefficient in the term

for £ is zero if £ is not in a certain pointed cone.

However, the parameter b = 0 is resonant for triangulations with more than
one maximal simplex and the I'-series (3) do not provide enough solutions; cf.
[4]. The classical trick for obtaining enough solutions for resonant hypergeo-
metric systems is to differentiate the power series solutions with respect to the
parameters of the hypergeometric system. This is what Hosono, Lian and Yau
do for the present GKZ hypergeometric system: [6] formula (3.28).
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In this note we take a different approach to find solutions for (1)-(2) in case
b = 0. First multiply the I'-series (3) with H;i__l [(c; + 1). The result can be

written as , 1

—4i— N N

> fpeselid 99 Ty - [y ®

j
el H] £>0 Hk l(CJ i=1 j=1

or more elegantly, using the notation

Bo:=1, @)p:=t-(t+1)-...-(t+r—-1) forre€eZ,r>0 (6)

for Pochhammer symbols,

I (ci)-s N N
j:¢;<0 1\ tij . ¢
Z H L+, H (-1) H Yj H Y (M

£el
J:£;>0

The key observation in our method is that for (7) to make sense it is not neces-
sary that c;,...,cy be complex numbers. It also works if ¢;,...,cn are taken
from a Q-algebra in which they are nilpotent and satisfy the linear relations (4)
for b=0, i.e.

aic1 +...+ainey=0 fori=1,...,0. (8)

In order to ensure that in (7) the coefficient in the term for £ is zero if £ is
not in a certain pointed cone we need additional conditions on ci,...,cy. Very
convenient for this purpose are the relations in the definition of the Stanley-
Reisner ring of the triangulation T of A (viewed as a simplicial complex):

Cip * v C =0 if (9)
conv{a;,...,a;,} isnot asimplex in the triangulation ¥.

The sum (7) will then only involve terms with £ satisfying
conv{a;|¢; <0} is a simplex in triangulation ¥ (10)

Thus we are lead to introduce the ring S ¢ which is the quotient of the polyno-
mial ring Q[C}, ..., Cn] by the ideal corresponding to relations (8) and (9). It
turns out that this ring is finite dimensional as a Q-vector space. This implies
that ¢;,...,cn are nilpotent. The expression v;’ in (7) should be interpreted
as exp(c; log v;). Thus (7) does contain powers of logarithms.

The expression (7) satisfies the GKZ system (1)-(2) with b = 0! . Expanding
this expression in terms of a vector space basis of S g one finds as coefficients
functions of vy, . .., vn which are solutions of the GKZ system. Expanding (7) by

IThe same resonant GKZ-system, the same form of its solutions and the same interpretation
of the Artinian ring was found by Givental; see [5] thm 3. However, Givental starts from S!-
equivariant Floer cohomology of the space of contractible loops on the toric variety associated
with the dual polytope; i.e. on the mirror side from our starting point!
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monomials in the nilpotent ¢’s is in fact Taylor expansion, hence differentiation,
with respect to the ¢’s. Thus in some sense our formula (7) is a systematized
version of the classical trick.

By looking at the logarithms appearing in these solutions of this GKZ sys-
tem one can easily conclude that they are linearly independent over C. The
dimension of the vector space Si ¢ equals the number of maximal simplices in
the triangulation ¥. In particular, if all maximal simplices have volume 1, this
dimension equals the volume of A. Since according to [4] the rank of this GKZ
system is vol A, we conclude that our method gives a basis for the solution space
of (1)-(2) with b = 0 precisely if all maximal simplices have volume 1.

Thus we have completely determined the extended VMHS. For CY hyper-
surfaces in toric varieties the next step is to apply vlo_zf to (7); for this the
indices are chosen such that a; is the unique lattice point in the interior of A.
Something similar works for CY complete intersections in toric varieties.

Details of the general theory will be published elsewhere. I finish this report
with an example.

An example
Consider the Laurent polynomial f :=

-3.-1_-1 -2 -1 -1
v + VaZ; + UsTa + v4T3 + UsT] 39:2 T3 + ey Ty + vizy + vgry (11)

as a polynomial in the variables zi,z9,z3,z4. The equation f = O defines
for generic values of the coefficients vy,...,vs a smooth hypersurface in the
4-dimensional torus (C*)*. Matrix A for this Laurent polynomial is

1111 1 11 1

0100 -3 -2 0 -1
A = 0010 -1 00 O (12)

0001 -1 0O0 O

0000 0 -11 0
Let a;,...,as denote the columns of A viewed as points in R%. Let A be the
convex hull of {a;,...,ag}, i.e. the Newton polytope of f (for generic values
of the coefficients vy,...,v8). A is a 4-dimensional pyramid with apex a; and

base the double tetrahedron formed by the 3-simplices conv {as, a4, as,a¢} and
conv {ag,as,as,ar}. Point ag is the centre of this double tetrahedron: ag =
(as + a4 + a5)/3 = (as + a7)/2. Point a; is the unique lattice point in the
interior of A: a; = (az +ag)/2.

There are six triangulations of A. There is only one for which all maximal
simplices have volume 1; namely the following triangulation ¥ with 12 maximal
simplices

[12346] [12347) [12356] [12357] [12456] [12457]

[13468) [13478] [13568] [13578] [14568 [14578] (19
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( here [12346] means conv {a1, 3z, a3, 34,35}, etc.)

From (12) and (13) one easily computes Sp z. From (12) one gets in partic-
ular c3 = ¢4 = ¢5 and ¢g = ¢7. From (13) one gets in particular czcycs = 0 and
cecr = 0. Hence ¢ = ¢Z = 0. A vector space basis for Sy ¢ is:

. .2 .2 2 .2
1; cs, ce, cs; C5, C5Ce, C5C8, C6Cg; C5Cey C5C8, C5CC3 ; C5CECH

One can substitute all the concrete information into (7). From (10) one can
see that for each term in the sum #; is < 0 and #5,...,47; are > 0. The sum
contains terms with £g > 0 as well as terms with £g < 0.

Now apply v 5‘3—1 to (7). The result takes the form ¢; Q. I will give an explicit
formula for 2. One easily checks that ¢;cg = 0, and hence ¢;{? contains only
terms with £, < 0 and £2,...,4s > 0. As a basis for L. we take the rows of the
matrix

-6 3 1 1 1 0 0 0
L:=| 42000110 (14)
-2 1 0 0 0 0 01 ‘
Then we have for £ = (¢;,...,03) €L
(Zl’£2a£37£4a85186187788)=(£5’eﬁ’£8)'L (15)

Similarly the linear relations among the ¢’s can be summarized as

(C1,02,C3,C4,C5,Cﬂ,C7,C3) = (CS’CG)CS)'L (16)

The chosen basis of L is also used to introduce new variables:

25 = vfevgva UgUs
zg = v 41)%1)51}7
zg = vy 21}2'08
Then
p— mp . THg T8 C5 ..C6 ., C8
1= E Yms,me,ms ' %5 %6 28 25 26 48

M5, mg,Mms 20

with coefficients v, ,mg,mg =

(1+ 65 + 4cs + 2C8) (6mg-+4me-+2ms)
(1 +3cs5 + 2¢g + C8)(3mp+2me +ms) (1 + €5)ms)* (1 4 C6)me)? (1 + €8)ms

In this formula the ¢'s must be interpreted in SLT / Ann(c,)- In particular
cg = 0. One easily checks )

Suz/ Ann(e;) = QO Cel/ (02, €3)

The expression for 2 can be simplified further by introducing

26

and We = m

Wy = ———---zs
5 (1—428)3
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This gives

Q = _1— Z (% + 3cs + 206)(3m5+2m5)
v 1- 425 mg ((1 + 05)m5)3((1 + 06)m5)2

. (43 Ws ) ms (42’11)6 )me "l.l.)gts w§°

,me 20

If we now expand Q in terms of the obvious basis for SL, / Ann(e; )

= goo + g10¢5 + go1Cs + gzocg + gucsce + gzlc§Cs

then gog, - - - , g21 form a basis for the period lattice of the (compact) Calabi-Yau
threefold given by the Laurent polynomial f; see (11).

With this basis one can compute the Yukawa coupling, and thus (assuming
mirror symmetry) count numbers of rational curves, on the mirror CY threefold.
Details of this computation and its results will be discussed elsewhere.

I finish this note with a description of the mirror CY threefold 2. This is the
double covering of P2 x P! branched along a surface of degree (6,4). If one de-
scribes this double covering by a homogeneous equation z? = p(z1, T2, z3; ¥1, ¥2)
then the weights of the variables for the action of C* x C* are: z has weight (3, 2);
Z1,T2,z3 have weight (1,0) and 1,y have weight (0,1) (compare this with the
basis of L in (14)). From these weights one gets the polytope A with its marked
points aj, ..., a7. In order to have a triangulation T of A for which all maximal
simplices have volume 1, we must insert the point ag. The triangulation gives
a refinement of the outer normal fan of the dual polytope of A. It gives a toric
variety V, in which the double covering of P? x P! sits as a hypersurface X. This
construction really is Batyrev’s version of mirror symmetry!

SL.1 is in fact the cohomology ring of V (see [3] § 5.2) and SL.x/ Ann(q) s
the image of H*(V) in H*(X). The elements cs and cg can be identified as the
pullbacks of the hyperplane classes of P? and P! respectively.
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