AUTOMORPHISMS ON K3 SURFACES

D. -Q. Zhang

Math. Dept. National Univ. of Singapore

e-mail: matzdq@nus.sg

This is an expository note on our recent works with K. Oguiso. In the present note, we shall often use the following notations and assumptions :

(*) X is a projective K3 surface, σ an automorphism on X of order $m \ (m \ge 2), \zeta_m := exp(2\pi\sqrt{-1}/m), \omega$ a non-zero holomorphic 2-form on X and $T_X = (PicX)^{\perp} \subseteq H^2(X, \mathbb{Z})$ the transcendental lattice of X [BPV].

Theorem 1 [Ni 1]. With the notations and assumptions in (*), suppose further that σ^* acts trivially on the 1-dimensional space $H^0(X, \mathcal{O}_X(K_X))$ of holomorphic 2-forms, i.e., $\sigma^*\omega = \omega$. Then $m \leq 8$.

In view of Theorem 1, we consider the following hypothesis:

(**) With the notations and assumptions in (*), assume further that $\sigma^*\omega = \zeta_m \omega$.

Under the hypothesis (**), the Euler number $\varphi(m)|rkT_X$, and hence one has [Ni 1]:

 $m \leq 66$ and $p \leq 19$ for every prime factor p of m.

The following result can be obtained by the Hodge index theorem and by considering the diagonalization of σ^* at its fixed-points.

Lemma 2. Assume that the pair (X, σ) satisfies the hypothesis (**).

(1) The set $X^{\langle \sigma \rangle} = \{x \in X | \sigma^i(x) = x \text{ for some } \sigma^i \neq id\}$ of points with non-trivial stabilizer, is a disjoint union of smooth curves and isolated points.

(2) If $X^{\langle \sigma \rangle}$ contains a curve C of genus ≥ 2 , then X^{σ} is a disjoint union of C, smooth rational curves and isolated points.

Theorem 3 (see [Z3, Theorems 3 and 3']). Let X be a projective K3 surface with an involution σ such that $\sigma^* \omega = -\omega$.

(1) The fixed locus X^{σ} is a disjoint union of r smooth curves for some $r \leq 10$.

If r = 10 then X^{σ} is a union of 9 smooth rational curves and a smooth curve C of genus 0, 1 or 2.

(2) All pairs (X, σ) , modulo isomorphisms, in (1) with r = 10 and g(C) = 1 (resp. g(C) = 2) are parametrized by a subset of \mathbf{P}^1 (resp. of \mathbf{P}^3).

(3) There is a unique (modulo isomorphisms) pair (X, σ) such that X^{σ} is a union of 10 rational curves. Such X has Picard number 20 and discriminant 4 and hence has infinite automorphism group AutX.

Remark 4. (1) For X in Theorem 3(3) "# $AutX = \infty$ " was first proved by T. Shioda-H. Inose [SI]; such X is called one of the two most algebraic K3 surfaces by E. B. Vinberg [V] who also determined AutX (see Remark 15, and Example 6, also for the construction of X).

(2) Nikulin claimed that some results in Theorem 3 has been proved in [Ni 2], though

the author has not found any clear statements similar to Theorem 3 above and will try to read [Ni 2] again later.

Theorem 5 [OZ1, Theorems 3 and 4]. Let X_m be a projective K3 surface with an automorphism σ of order m where m = 3 (resp. 2) such that

- (i) $\sigma^*\omega = \zeta_m \omega$,
- (ii) there is no any σ -fixed curve (point-wise) of genus ≥ 2 , and
- (iii) there are at least 6 (resp. 10) σ -fixed rational curves.

Then such a pair is unique upto isomorphisms, and isomorphic to Shioda-Inose's pair $(S_m, \langle g_m \rangle)$ to be defined below.

Example 6 (see [OZ1, Examples 1 and 2] for details). Let $\zeta := exp(2\pi\sqrt{-1}/3)$ and let $E_{\zeta} := \mathbf{C}/(\mathbf{Z} + \mathbf{Z}\zeta)$ be the elliptic curve of period ζ . Let $S_3 \to \overline{S}_3 := E_{\zeta}^2/\langle diag(\zeta, \zeta^2) \rangle$ be the minimal resolution of the quotient surface \overline{S}_3 [SI, Lemma 5.1].

Then S_3 is the unique projective K3 surface of Picard number 20 and discriminant 3. Let g_3 be the automorphism of S_3 induced by the action diag $(\zeta, 1)$ on E_{ζ}^2 . Then this Shioda-Inose pair (S_3, g_3) satisfies all conditions in Theorem 5 with m = 3.

Let $E_{\sqrt{-1}} := \mathbf{C}/(\mathbf{Z} + \mathbf{Z}\sqrt{-1})$ be the elliptic curve of period $\sqrt{-1}$. Let $S_2 \to \overline{S}_2 := E_{\sqrt{-1}}^2/\langle diag(-\sqrt{-1},\sqrt{-1}) \rangle$ be the minimal resolution of the quotient surface \overline{S}_2 [SI, Lemma 5.2].

Then S_2 is the unique projective K3 surface of Picard number 20 and discriminant 4. Let g_2 be the automorphism of S_2 induced by the action diag(-1, 1) on $E_{\sqrt{-1}}^2$. Then this Shioda-Inose pair (S_2, g_2) satisfies all conditions in Theorem 5 with m = 2.

Corollary 7 [OZ1, Theorems 1 and 2]. There is only one isomorphism class of rational

log Enriques surface of Type D_{19} , and only one of Type A_{19} (see Definitions below).

Let Z be a rational normal projective surface with at worst isolated quotient singular points. Z is a *(rational) log Enriques surface* if a positive multiple mK_Z of the canonical Weil divisor K_Z is linearly equivalent to zero.

 $m := \min\{n \in \mathbb{Z}_{>0} | nK_Z \sim 0\}$ is called the *index* of Z. Let

$$\pi: Y := Spec_{\mathcal{O}_Z} \oplus_{i=0}^{m-1} \mathcal{O}_Z(-iK_Z) \to Z$$

be the canonical Galois $\mathbf{Z}/m\mathbf{Z}$ -covering. By the definition, we have:

Lemma 8. (1) π is unramified over the smooth part Z - SingZ.

(2) Y is a projective K3 surface with at worst Du Val (= rational double) singular points. Let $g: X \to Y$ be a minimal resolution.

(3) Let σ be an order-m automorphism on X (or on Y) coming from the map π so that $Gal(Y/Z) = \langle \sigma \rangle$. Then $\sigma^* \omega = \zeta_m \omega$, after replacing σ by a new generator of Gal(Y/Z).

By Lemma 8(3), we can apply Lemma 2 (here $m \ge 2$ because $Z = Y/\sigma$ is rational).

Remark 9. The following two things are essentially equivalent:

(A) A pair (X, σ) , where X is a projective K3 surface and σ an order m $(m \ge 2)$ automorphism on X such that $\sigma^* \omega = \zeta_m \omega$ and that $X^{<\sigma>}$ is non-empty but consists of only rational curves and isolated points. By Lemma 2, $X^{<\sigma>}$ is now a disjoint union of smooth rational curves and isolated points.

(B) A (rational) log Enriques surface Z of index m.

In fact, for (B) \Rightarrow (A), we define X, σ as in Lemma 8.

For (A) \Rightarrow (B), we let $X \to Y$ be a contraction of a σ -stable divisor D containing all curves in $X^{<\sigma>}$, into Du Val singular points. Now Define $Z := Y/\sigma$.

Question 10. Let Z be a rational log Enriques surface of index m with $\pi: Y \to Z$ as its canonical covering.

We know that Y is a projective K3 surface with at worst singular points of Dynkin types A_r $(r \ge 1)$, D_s $(s \ge 4)$ and E_t (t = 6, 7, 8).

What is the possible combination of Dynkin types of singular points on Y?

Definition 11. A log Enriques surface Z is of Type $A_r + D_s + E_t + \cdots$ if the canonical covering Y of Z satisfies Sing $Y = A_r + D_s + E_t + \cdots$.

Remark 12. The sum of "weights" $r + s + t + \cdots$ in Definition 11 has an upper bound 19, because the Picard number of a K3 surface has an upper bounded 20.

Z is an extremal log Enriques surface if this sum $r + s + t + \cdots$ equals 19.

Theorem 13 [OZ3, Main Theorem]. There are exactly 7 isomorphism classes of extremal (rational) log Enriques surfaces. Their Types are as follows:

 $D_{19}, D_{16} + A_3, D_{13} + A_6,$ $D_7 + A_{12}, D_7 + D_{12}, D_4 + A_{15}, A_{19},$

Example 14. Let (S_m, g_m) (m = 2, 3) be Shioda-Inose's pairs in Example 6. On S_m where m = 3 (resp. 2), there are 24 normal crossing $(g_m$ -stable) smooth rational curves shown in [OZ1, Figures 1 and 2] or [SI, Figures 2 and 3]; among these 24, there are divisors Δ_i of the first six Dynkin types (resp. divisor Δ_7 of Dynkin type A_{19}) in Theorem 13.

Let $S_m \to \overline{S}_m$ be the contraction of Δ_i and let $Z(i) := \overline{S}_m/g_m$. Then Z(i)'s are nothing but 7 extremal rational log Enriques surfaces in Theorem 13.

Remark 15. (1) Every K3 surface of (maximum possible) Picard number 20 satisfies discr. $X \ge 3$ [SI]. This might be the reason why Vinberg call *the* two K3 surfaces X with Picard number 20 and discr.X = 3, 4, the most algebraic K3 surfaces.

(2) The same rational log Enriques surfaces of Type D_{19} and A_{19} were constructed by "bottom up" (rather than "top down" here) in [Z1]. I. Naruki and M. Reid then asked about the uniqueness of these two surfaces. See Reid [R] for his result towards a kind of uniqueness theorem.

We know that there is a unique rational log Enriques surface of Type D_{19} and one of Type A_{19} . One may ask the same uniqueness question for D_n, A_n with smaller n. The following are some of the answers, where $D_{17} + *$, etc. means $D_{17} +$ something.

Theorem 16 [OZ2, Theorems 1 and 2]. There is exactly one (resp. two) isomorphism class(es) of rational log Enriques surface(s) of Type $D_{18} + *$ (= D_{18} as a matter of fact) (resp. $A_{18} + *$ (= A_{18} as a matter of fact)).

Theorem 17. [Z5, Theorem 4]. There is no any rational log Enriques surface of Type $D_{17} + *$.

Theorem 18 [OZ4, Z4, Z5]).

- (1) Any rational log Enriques surface of Type $A_{17} + *$ has index 2, 3, 4, or 5.
- (2) There are exactly two isomorphism classes of rational log Enriques surfaces of

Type $A_{17} + * (= A_{17}$ as a matter of fact) and index 5 (cf. Theorem 19 and Remark 20).

(3) There are exactly three isomorphism classes of rational log Enriques surfaces of Type $A_{17} + * (= A_{17} + A_1 \text{ as a matter of fact})$ and index 4.

(4) There is at least one and at most three isomorphism classes of rational log Enriques surfaces of Type $A_{17} + *$ (= A_{17} as a matter of fact) and index 3.

(5) There are exactly three isomorphism classes of rational log Enriques surfaces of Type $A_{17} + A_1$ and index 2.

Theorem 19 (cf. [OZ5, Theorem 4] and [OZ5]). Let Z be a rational log Enriques surface of Type A_{17} and index 5. Let $Y \to Z$ be the canonical $\mathbb{Z}/5\mathbb{Z}$ -covering, $X \to Y$ a minimal resolution, and σ an order-5 automorphism on X (or on Y) such that $Gal(Y/Z) = <\sigma >$. Then we have:

(***) discr.X = 5, $\langle \sigma \rangle = Ker(AutX \rightarrow Aut(PicX))$, and the Euler number $\varphi(5) = rkT_X$.

Remark 20. According to the result (announced in a 3-page paper by S. P. Vorontsov but without detailed proof), there is only one isomorphism class of X with a σ satisfying (***) above. We have a detailed proof of the same result [OZ5]. Kondo [Ko] has constructed such a pair $(X, < \sigma >)$.

For general m, we have the following results:

Theorem 21 [OZ5]. Let X be a projective K3 surface with an automorphism σ of order m where m = 2 (resp. 3, 5, 7, 11, 13, 17, or 19) such that

(i) $\sigma^* | PicX = id$,

(ii) $\sigma^*\omega = \zeta_m \omega$, and

(iii) there is no any σ -fixed curve of genus ≥ 2 , and there are at least 10 (resp. 6, 3, 2, 1, 1, 0, or 0) σ -fixed rational curves.

Then such a pair (X, σ) is unique up to isomorphisms. Moreover, discr. X = m.

Let X be a projective K3 surface and let $H_X := Ker(AutX \rightarrow Aut(PicX))$. Then H_X is a finite cyclic group of order m_X say [Ni 1]. By [Ni 1], $\varphi(m_X)|rkT_X$. Kondo [Ko] determined all possible values of m_X ; in particular, if T_X is non-unimodular, then either m_X is prime with $2 \le m \le 19$, or $m_X = 2^r$ (r = 0, 2, 3, 4), 3^s (s = 2, 3), or 25.

Corollary 22 [OZ5]. There is a unique projective K3 surface such that m_X is prime and $\varphi(m_X) = rkT_X$. Moreover, such X satisfies discr. $X = m_X$.

When m = 13, 17 or 19, we can prove that all conditions (i), (ii) and (iii) in Theorem 21 will be satisfied automatically. That is, we have:

Corollary 23 [OZ5]. For each of m = 13, 17 and 19, there is exactly one isomorphism class of projective K3 surface with an automorphism of order m.

References

[A] V. A. Alexeev, Boundedness and K^2 for log surfaces, Intern. J. Math. 5 (1995), 779-810.

[AS1] M. F. Atiyah and G. B. Segal, The index of elliptic operators: II, Ann. of Math. 87(1968), 531-545.

[AS2] M. F. Atiyah and I. M. Singer, The index of ellitpic operators : III, Ann. of

Math. 87(1968), 546-604.

[Bl] R. Blache, The structure of l.c. surfaces of Kodaira dimension zero, I, J. Alg. Geom. 4 (1995), 137-179.

[BPV] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, Berlin Heidelberg, New York, Tokyo 1984.

[Br] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.

[Ko] S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan, 44 (1992), 75–98.

[Ni 1] V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc. **38** (1980), 71–135.

[Ni 2] V.V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections, J. Soviet Math. **22** (1983), No. 4.

[O1] K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of non-isogenous elliptic curves, J. Math. Soc. Japan 41 (1989), 651-680.

[O2] K. Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Intern. J.Math. 4 (1993), 439-465.

[O3] K. Oguiso, On certain rigid fibered Calabi-Yau threefolds, Math. Z. 22 (1996), 437–448.

[O4] K. Oguiso, On fibred Calabi-Yau threefolds of quasi-product type, forthcoming.

[OZ1] K. Oguiso and D. -Q. Zhang, On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. to appear.

[OZ2] K. Oguiso and D. -Q. Zhang, On extremal log Enriques surfaces, II, submitted 1996. [OZ3] K. Oguiso and D. -Q. Zhang, On the complete classification of extremal log Enriques surfaces, Preprint 1996.

[OZ4] K. Oguiso and D. -Q. Zhang, Normal algebraic surfaces with trivial five times of the canonical divisor, submitted 1996.

[OZ5] K. Oguiso and D.-Q. Zhang, Automorphisms on K3 surfaces acting non-trivially on 2-forms, Preprint 1996.

[R] M. Reid, Campedelli versus Godeaux, in: Problems in the Theory of Surfaces and their Classification, Trento, October 1988, F. Catanese, et al. ed. Academic Press, 1991, pp. 309-365.

[SI] T. Shioda and H. Inose, On singular K3 surfaces, in : Complex Analysis and Algebraic Geometry, W. L. Baily, Jr. & T. Shioda eds, Iwanami Shoten, Cambridge Univ. Press 1977, pp. 119–136.

[V] É. B. Vinberg, The two most algebraic K3 surfaces, Math. Ann. 265 (1983), 1-21.

[Z1,2] D. -Q. Zhang, Logarithmic Enriques surfaces I; II, J. Math. Kyoto Univ.
31(1991), 419-466; 33(1993), 357-397.

[Z3] D. -Q. Zhang, Quotients of K3 surfaces modulo involutions, submitted 1996.

[Z4] D. -Q. Zhang, Normal algebraic surfaces with trivial two or four times of the canonical divisor, submitted 1996.

[Z5] D. -Q. Zhang, Normal algebraic surfaces with trivial three times of the canonical divisor, submitted 1996.