AUTOMORPHISMS ON K3 SURFACES

D．－Q．Zhang
Math．Dept．National Univ．of Singapore
e－mail ：matzdq＠nus．sg

This is an expository note on our recent works with K．Oguiso．In the present note， we shall often use the following notations and assumptions ：
（＊）X is a projective K3 surface，σ an automorphism on X of order $m(m \geq 2), \zeta_{m}:=$ $\exp (2 \pi \sqrt{-1} / m), \omega$ a non－zero holomorphic 2－form on X and $T_{X}=(P i c X)^{\perp} \subseteq H^{2}(X, \mathbf{Z})$ the transcendental lattice of X［ BPV$]$ ．

Theorem $1[\mathrm{Ni} 1]$ ．With the notations and assumptions in（＊），suppose further that σ^{*} acts trivially on the 1－dimensional space $H^{0}\left(X, \mathcal{O}_{X}\left(K_{X}\right)\right)$ of holomorphic 2－forms，i．e．， $\sigma^{*} \omega=\omega$ ．Then $m \leq 8$.

In view of Theorem 1，we consider the following hypothesis：
（＊＊）With the notations and assumptions in（＊），assume further that $\sigma^{*} \omega=\zeta_{m} \omega$ ．

Under the hypothesis（＊＊），the Euler number $\varphi(m) \mid r k T_{X}$ ，and hence one has $[\mathrm{Ni} 1]$ ：
$m \leq 66$ and $p \leq 19$ for every prime factor p of m ．

The following result can be obtained by the Hodge index theorem and by considering the diagonalization of σ^{*} at its fixed-points.

Lemma 2. Assume that the pair (X, σ) satisfies the hypothesis (**).
(1) The set $X^{\langle\sigma\rangle}=\left\{x \in X \mid \sigma^{i}(x)=x\right.$ for some $\left.\sigma^{i} \neq i d\right\}$ of points with non-trivial stabilizer, is a disjoint union of smooth curves and isolated points.
(2) If $X^{<\sigma\rangle}$ contains a curve C of genus ≥ 2, then X^{σ} is a disjoint union of C, smooth rational curves and isolated points.

Theorem 3 (see [Z3, Theorems 3 and 3 ']). Let X be a projective $K 3$ surface with an involution σ such that $\sigma^{*} \omega=-\omega$.
(1) The fixed locus X^{σ} is a disjoint union of r smooth curves for some $r \leq 10$.

If $r=10$ then X^{σ} is a union of 9 smooth rational curves and a smooth curve C of genus 0,1 or 2.
(2) All pairs (X, σ), modulo isomorphisms, in (1) with $r=10$ and $g(C)=1$ (resp. $g(C)=2$) are parametrized by a subset of $\mathrm{P}^{1}\left(\right.$ resp. of $\left.\mathbf{P}^{3}\right)$.
(3) There is a unique (modulo isomorphisms) pair (X, σ) such that X^{σ} is a union of 10 rational curves. Such X has Picard number 20 and discriminant 4 and hence has infinite automorphism group AutX.

Remark 4. (1) For X in Theorem 3(3) "\#Aut $X=\infty$ " was first proved by T. Shioda-H. Inose [SI]; such X is called one of the two most algebraic K 3 surfaces by E ., B. Vinberg [V] who also determined AutX (see Remark 15, and Example 6, also for the construction of X).
(2) Nikulin claimed that some results in Theorem 3 has been proved in [Ni 2], though
the author has not found any clear statements similar to Theorem 3 above and will try to read [Ni 2] again later.

Theorem 5 [OZ1, Theorems 3 and 4]. Let X_{m} be a projective $K 3$ surface with an automorphism σ of order m where $m=3$ (resp. 2) such that
(i) $\sigma^{*} \omega=\zeta_{m} \omega$,
(ii) there is no any σ-fixed curve (point-wise) of genus ≥ 2, and
(iii) there are at least 6 (resp. 10) σ-fixed rational curves.

Then such a pair is unique upto isomorphisms, and isomorphic to Shioda-Inose's pair $\left(S_{m},<g_{m}>\right)$ to be defined below.

Example 6 (see [OZ1, Examples 1 and 2] for details). Let $\zeta:=\exp (2 \pi \sqrt{-1} / 3)$ and let $E_{\zeta}:=\mathbf{C} /(\mathbf{Z}+\mathbf{Z} \zeta)$ be the elliptic curve of period ζ. Let $\left.S_{3} \rightarrow \bar{S}_{3}:=E_{\zeta}{ }^{2} /<\operatorname{diag}\left(\zeta, \zeta^{2}\right)\right\rangle$ be the minimal resolution of the quotient surface \bar{S}_{3} [SI, Lemma 5.1].

Then S_{3} is the unique projective K3 surface of Picard number 20 and discriminant 3. Let g_{3} be the automorphism of S_{3} induced by the action $\operatorname{diag}(\zeta, 1)$ on $E_{\zeta}{ }^{2}$. Then this Shioda-Inose pair (S_{3}, g_{3}) satisfies all conditions in Theorem 5 with $m=3$.

Let $E_{\sqrt{-1}}:=\mathbf{C} /(\mathbf{Z}+\mathbf{Z} \sqrt{-1})$ be the elliptic curve of period $\sqrt{-1}$. Let $S_{2} \rightarrow \bar{S}_{2}:=$ $E_{\sqrt{-1}}{ }^{2} /<\operatorname{diag}(-\sqrt{-1}, \sqrt{-1})>$ be the minimal resolution of the quotient surface \bar{S}_{2} [SI, Lemma 5.2].

Then S_{2} is the unique projective $K 3$ surface of Picard number 20 and discriminant 4. Let g_{2} be the automorphism of S_{2} induced by the action $\operatorname{diag}(-1,1)$ on $E_{\sqrt{-1}}{ }^{2}$. Then this Shioda-Inose pair (S_{2}, g_{2}) satisfies all conditions in Theorem 5 with $m=2$.

Corollary 7 [OZ1, Theorems 1 and 2]. There is only one isomorphism class of rational
log Enriques surface of Type D_{19}, and only one of Type A_{19} (see Definitions below).

Let Z be a rational normal projective surface with at worst isolated quotient singular points. Z is a (rational) log Enriques surface if a positive multiple $m K_{Z}$ of the canonical Weil divisor K_{Z} is linearly equivalent to zero.
$m:=\min \left\{n \in \mathbf{Z}_{>0} \mid n K_{Z} \sim 0\right\}$ is called the index of Z. Let

$$
\pi: Y:=\operatorname{Spec}_{\mathcal{O}_{Z}} \oplus_{i=0}^{m-1} \mathcal{O}_{Z}\left(-i K_{Z}\right) \rightarrow Z
$$

be the canonical Galois $\mathbf{Z} / m \mathbf{Z}$-covering. By the definition, we have:

Lemma 8. (1) π is unramified over the smooth part Z-Sing Z.
(2) Y is a projective $K 3$ surface with at worst $D u$ Val (= rational double) singular points. Let $g: X \rightarrow Y$ be a minimal resolution.
(3) Let σ be an order-m automorphism on X (or on Y) coming from the map π so that $\operatorname{Gal}(Y / Z)=\langle\sigma\rangle$. Then $\sigma^{*} \omega=\zeta_{m} \omega$, after replacing σ by a new generator of $\operatorname{Gal}(Y / Z)$.

By Lemma $8(3)$, we can apply Lemma 2 (here $m \geq 2$ because $Z=Y / \sigma$ is rational).

Remark 9. The following two things are essentially equivalent:
(A) A pair (X, σ), where X is a projective K 3 surface and σ an order $m(m \geq 2)$ automorphism on X such that $\sigma^{*} \omega=\zeta_{m} \omega$ and that $X^{\langle\sigma\rangle}$ is non-empty but consists of only rational curves and isolated points. By Lemma 2, $X^{\langle\sigma\rangle}$ is now a disjoint union of smooth rational curves and isolated points.
(B) A (rational) \log Enriques surface Z of index m.

In fact, for $(\mathrm{B}) \Rightarrow(\mathrm{A})$, we define X, σ as in Lemma 8.

For (A) $\Rightarrow(\mathrm{B})$, we let $X \rightarrow Y$ be a contraction of a σ-stable divisor D containing all curves in $X^{\langle\sigma\rangle}$, into Du Val singular points. Now Define $Z:=Y / \sigma$.

Question 10. Let Z be a rational \log Enriques surface of index m with $\pi: Y \rightarrow Z$ as its canonical covering.

We know that Y is a projective K 3 surface with at worst singular points of Dynkin types $A_{r}(r \geq 1), D_{s}(s \geq 4)$ and $E_{t}(t=6,7,8)$.

What is the possible combination of Dynkin types of singular points on Y ?

Definition 11. A \log Enriques surface Z is of $T y p e A_{r}+D_{s}+E_{t}+\cdots$ if the canonical covering Y of Z satisfies Sing $Y=A_{r}+D_{s}+E_{t}+\cdots$.

Remark 12. The sum of "weights" $r+s+t+\cdots$ in Definition 11 has an upper bound 19, because the Picard number of a K3 surface has an upper bounded 20.
Z is an extremal \log Enriques surface if this sum $r+s+t+\cdots$ equals 19.

Theorem 13 [OZ3, Main Theorem]. There are exactly 7 isomorphism classes of extremal (rational) log Enriques surfaces. Their Types are as follows:

$$
\begin{gathered}
D_{19}, D_{16}+A_{3}, D_{\mathbf{1} 3}+A_{6} \\
D_{7}+A_{12}, D_{7}+D_{12}, D_{4}+A_{15}, A_{19}
\end{gathered}
$$

Example 14. Let $\left(S_{m}, g_{m}\right)(m=2,3)$ be Shioda-Inose's pairs in Example 6. On S_{m} where $m=3$ (resp. 2), there are 24 normal crossing (g_{m}-stable) smooth rational curves shown in [OZ1, Figures 1 and 2] or [SI, Figures 2 and 3]; among these 24, there are divisors Δ_{i} of the first six Dynkin types (resp. divisor Δ_{7} of Dynkin type A_{19}) in Theorem 13.

Let $S_{m} \rightarrow \bar{S}_{m}$ be the contraction of Δ_{i} and let $Z(i):=\bar{S}_{m} / g_{m}$. Then $Z(i)$'s are nothing but 7 extremal rational \log Enriques surfaces in Theorem 13.

Remark 15. (1) Every K3 surface of (maximum possible) Picard number 20 satisfies discr. $X \geq 3$ [SI]. This might be the reason why Vinberg call the two K3 surfaces X with Picard number 20 and discr. $X=3,4$, the most algebraic K3 surfaces.
(2) The same rational log Enriques surfaces of Type D_{19} and A_{19} were constructed by "bottom up" (rather than "top down" here) in [Z1]. I. Naruki and M. Reid then asked about the uniqueness of these two surfaces. See Reid $[\mathrm{R}]$ for his result towards a kind of uniqueness theorem.

We know that there is a unique rational \log Enriques surface of Type D_{19} and one of Type A_{19}. One may ask the same uniqueness question for D_{n}, A_{n} with smaller n. The following are some of the answers, where $D_{17}+*$, etc. means $D_{17}+$ something.

Theorem 16 [OZ2, Theorems 1 and 2]. There is exactly one (resp. two) isomorphism class(es) of rational log Enriques surface(s) of Type $D_{18}+*\left(=D_{18}\right.$ as a matter of fact) (resp. $A_{18}+*\left(=A_{18}\right.$ as a matter of fact)).

Theorem 17. [Z5, Theorem 4]. There is no any rational log Enriques surface of Type $D_{17}+*$.

Theorem 18 [OZ4, Z4, Z5]).
(1) Any rational log Enriques surface of Type $A_{17}+*$ has index $2,3,4$, or 5 .
(2) There are exactly two isomorphism classes of rational log Enriques surfaces of

Type $A_{17}+*\left(=A_{17}\right.$ as a matter of fact) and index 5 (cf.Theorem 19 and Remark 20).
(3) There are exactly three isomorphism classes of rational log Enriques surfaces of Type $A_{17}+*\left(=A_{17}+A_{1}\right.$ as a matter of fact) and index 4.
(4) There is at least one and at most three isomorphism classes of rational log Enriques surfaces of Type $A_{17}+*\left(=A_{17}\right.$ as a matter of fact) and index 3 .
(5) There are exactly three isomorphism:classes of rational log Enriques surfaces of Type $A_{17}+A_{1}$ and index 2.

Theorem 19 (cf. [OZ5, Theorem 4] and [OZ5]). Let Z be a rational \log Enriques surface of Type A_{17} and index 5. Let $Y \rightarrow Z$ be the canonical $\mathbf{Z} / 5 \mathbf{Z}$-covering, $X \rightarrow Y$ a minimal resolution, and σ an order-5 automorphism on X (or on Y) such that $\operatorname{Gal}(Y / Z)=\langle\sigma\rangle$. Then we have:
$(* * *)$ discr. $X=5,\langle\sigma\rangle=\operatorname{Ker}(\operatorname{Aut} X \rightarrow \operatorname{Aut}(\operatorname{Pic} X))$, and the Euler number $\varphi(5)=r k T_{X}$.

Remark 20. According to the result (announced in a 3 -page paper by S. P. Vorontsov but without detailed proof), there is only one isomorphism class of X with a σ satisfying $(* * *)$ above. We have a detailed proof of the same result [OZ5]. Kondo [Ko] has constructed such a pair $(X,<\sigma>)$.

For general m, we have the following results:

Theorem 21 [OZ5]. Let X be a projective $K 3$ surface with an automorphism σ of order m where $m=2$ (resp. $3,5,7,11,13,17$, or 19) such that
(i) $\sigma^{*} \mid P i c X=i d$,
(ii) $\sigma^{*} \omega=\zeta_{m} \omega$, and
(iii) there is no any σ-fixed curve of genus ≥ 2, and there are at least 10 (resp. 6,3,2,1,1,0, or 0) σ-fixed rational curves.

Then such a pair (X, σ) is unique upto isomorphisms. Moreover, discr. $X=m$.

Let X be a projective K 3 surface and let $H_{X}:=\operatorname{Ker}(\operatorname{AutX} \rightarrow A u t(\operatorname{Pic} X))$. Then H_{X} is a finite cyclic group of order m_{X} say [Ni 1]. By [Ni 1], $\varphi\left(m_{X}\right) \mid r k T_{X}$. Kondo [Ko] determined all possible values of m_{X}; in particular, if T_{X} is non-unimodular, then either m_{X} is prime with $2 \leq m \leq 19$, or $m_{X}=2^{r}(r=0,2,3,4), 3^{s}(s=2,3)$, or 25.

Corollary 22 [OZ5]. There is a unique projective $K 3$ surface such that m_{X} is prime and $\varphi\left(m_{X}\right)=r k T_{X}$. Moreover, such X satisfies discr. $X=m_{X}$.

When $m=13,17$ or 19 , we can prove that all conditions (i), (ii) and (iii) in Theoren 21 will be satisfied automatically. That is, we have:

Corollary 23 [OZ5]. For each of $m=13,17$ and 19, there is exactly one isomorphism class of projective $K 3$ surface with an automorphism of order m.

References

[A] V. A. Alexeev, Boundedness and K^{2} for log surfaces, Intern. J. Math. 5 (1995), 779-810.
[AS1] M. F. Atiyah and G. B. Segal, The index of ellitpic operators: II, Ann. of Math. 87(1968), 531-545.
[AS2] M. F. Atiyah and I. M. Singer, The index of ellitpic operators : III, Ann. of

Math. 87(1968), 546-604.
[Bl] R. Blache, The structure of I.c. surfaces of Kodaira dimension zero, I, J. Alg. Geom. 4 (1995), 137-179.
[BPV] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, SpringerVerlag, Berlin Heidelberg, New York, Tokyo 1984.
[Br$]$ E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
[Ko] S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan, 44 (1992), 75-98.
[Ni 1] V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc. 38 (1980), 71-135.
[Ni 2] V.V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections, J. Soviet Math. 22 (1983), No. 4.
[O1] K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of non-isogenous elliptic curves, J. Math. Soc. Japan 41 (1989), 651-680.
[O2] K. Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Intern. J. Math. 4 (1993), 439-465.
[O3] K. Oguiso, On certain rigid fibered Calabi-Yau threefolds, Math. Z. 22 (1996), 437-448.
[O4] K. Oguiso, On fibred Calabi-Yau threefolds of quasi-product type, forthcoming.
[OZ1] K. Oguiso and D. -Q. Zhang, On the most algebraic K3 surfaces and the most extremal \log Enriques surfaces, Amer. J. Math. to appear.
[OZ2] K. Oguiso and D. -Q. Zhang, On extremal log Enriques surfaces, II, submitted 1996.
[OZ3] K. Oguiso and D. -Q. Zhang, On the complete classification of extremal log Enriques surfaces, Preprint 1996.
[OZ4] K. Oguiso and D. -Q. Zhang, Normal algebraic surfaces with trivial five times of the canonical divisor, submitted 1996.
[OZ5] K. Oguiso and D. -Q. Zhang, Automorphisms on K3 surfaces acting non-trivially on 2-forms, Preprint 1996.
$[R]$ M. Reid, Campedelli versus Godeaux, in: Problems in the Theory of Surfaces and their Classification, Trento, October 1988, F. Catanese, et al. ed. Academic Press, 1991, pp. 309-365.
[SI] T. Shioda and H. Inose, On singular K3 surfaces, in : Complex Analysis and Algebraic Geometry, W. L. Baily, Jr. \& T. Shioda eds, Iwanami Slıoten, Cambridge Univ. Press 1977, pp. 119-136.
[V] É. B. Vinberg, The two most algebraic K3 surfaces, Math. Ann. 265 (1983), 1-21.
[Z1,2] D. -Q. Zhang, Logarithmic Enriques surfaces I; II, J. Math. Kyoto Univ. 31(1991), 419-466; 33(1993), 357-397.
[Z3] D. -Q. Zhang, Quotients of K3 surfaces modulo involutions, submitted 1996.
[Z4] D. -Q. Zhang, Normal algebraic surfaces with trivial two or four times of the canonical divisor, submitted 1996.
[Z5] D. -Q. Zhang, Normal algebraic surfaces with trivial three times of the canonical divisor, submitted 1996.

