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1 Mirror Symmetry Conjecture for Calabi-Yau
3-folds

Mirror symmetry appeared in the supersymmetric string theory where

a Calabi-Yau 3-fold M plays a role as a background for string propagation. It said
that a “mirror pair” of Calabi-Yau 3-folds (X,Y) apparently produce isomorphic
physical theories. (See [G-P], [Mo2]).

Mathematically, mirror symmetry related certain geometric invariants of a Calabi-
Yau 3-fold to a completely different set of geometric invariants of the mirror partner.
Mathematician had not found such a symmetry before physisits’ predections and
calculations. (For more historical backgrounds of mirror symmetry, please consult
[Mo2] and references therein). The two models are called A-model and B-model
respectively. A-model

on a Calabi-Yau 3-fold X has a correlation function related to the so-calied Gromov-
Witten invariants of a Calabi-Yau 3-folds, which is essentially related to the number
of holomorphic rational curves on X. On the other hand, B-model correlation
functions on a Calai-Yau 3-fold Y is given by period integrals of holomorphic forms.
A 3-dimensional complex projective manifold X is called a Calabi-Yau 3-fold if
Kx ~ Ox and h}(Ox) = h*(Ox) = 0. For a compact Kahler manifold Y, we set
HYM(Y) = HY(Y,0%) and 1P5(Y) = dimg HPY(Y).

Let X be a Calabi-Yau 3-fold and consider the following classical cubic form in

A-model:
I 1[1"(X) x HYY(X) x H"‘(X) — C

defined by usual cup product

YLy, L, L) :] LiA LA Ly
X
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Let Y be another Calabi-Yau 3-fold and fix a nowhere vanisling holomorphic 3-form
w and define a classical cubic form in B-model

12 HA(Y) x H¥(Y) x HY(Y) — C

by
121(8,,65,04) = / WA Vo Vo, Viw.
Y

Here V is the Gauss-Manin connection associated to the Hodge structure on H3(Y, C).

In A-model side, the quantum deformation of the classical cubic form can be given
by
Ig': HYY(X) x HY(X) x H'Y(X) — C,

I3 (L1, Loy Ly) = fy LyA Ly A Ly

+ Lognery(v,z) PolLl1, Lo, La)ﬂ%ﬁ

This cubic form is called A-model correlation functions in [Mo2]. Here &,(L,, Ly, L3)
denote Gromov-Witten invariants. The definitions of Gromov-Witten invariants and
the symbol ¢7 are given in lecture 3 and 4 in [Mo2]. An axiomatic treatment of
Gromov-Witten invariants are in [K-M] and the construction of Gromov-Wititen in-
variants using symplectic geometry and psuedo holomrphic curve is given by Ruan
[R]. The notion of stable maps due to Kontsevich ({K-M], {Kon]) are used for an-
other definition of Gromov-Witten invariants. For detail, readers may refer to [Kon],
[Fu-Pa] and [B-M}. Givental recentely has proved that for Calabi-Yau complete in-
tersections in toric varicties, the predicted enumerative formulas which one calculates
by using Batyrev-Borisov candidate mirror partner are in fact correct evaluations
of the Gromov-Witten invariants. ([Givl], {Giv2], [Giv3])). His proof involves sta-
tionary phase integrals, equivariant Gromov-Witten invariant and quantum Toda
lattices.

In B-model side, the quantum deformation of I is defined to be

2,1 __ 12,1
I ,w_Iw,

that is, we keep /2! not deformed. From the view point of Mirror symmetry, the
asymptotic behavior of the B-model correlation function I2! is very important when
the complex structure of Y tends to the large complex structure limit. Readers may
consult lecture 6 and lecture 7 in [Mo2].

2 A review on Mordell-Weil groups

In this section, we recall the Mordell-Weil group of abelian scheme over rational
function field of a complex projective curve. Let C' be a smooth projective curve
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defined over C, and K = C(C) the field of rational functions on C. Let A/K denote
an abelian variety defined over K. Then the theory of Néron model says that there
exist group scheme

r: A% —C
whose generic fiber Ag is isomorphic to A over K. The Mordell-Weil group of A is
defined to be
the group of K-rational points of A

MW(A/K) = A(K).
The Néron universal property ensures that
MW(A/K)={o:C — A°  regular section of 7}

In general, the group M W (A/K) is not finitely generated, for A may have nontrivial
K /C-trace B. However, a theorem of Lang implies that the Mordell-Weil group of
the quotient abelian variety A/Bg is finitely generated.
In {Manl], Manin construct a height pairing on the Mordell-Weil group MW (A/K).
In order to construct the height, he needed to suppose that A°rC has a smooth
relative compactification

A° — A

TN < h

C

such that A is smooth projective.
The group Dc(A) of all divisors defined over C on A splits into the direct sum of
the two subgroups
D¢c(A) = D @ D4
where D€ is generated by the irreducible components of the fibers
of h and D# generated by irreducible divisors which maps onto C'.
Moreover we suppose that:

1. all translation automorphisms of A%/C extend to biregular automorphisms of

A/C, and

2. the map v : Dc(A) — Dg(A) which maps each C-divisors of A into the
divisors induced by it on the genereic fiber A is null on D# and defines an A-
isomorphism beween D4 and Dy;(A). Further for a rational function f € K (A)

we have
Y(f)a) = (fa,
where ()4 (resp. (f)a) is a principal divisor on A (resp. on A).
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Let X € Dg(A), then the Tate height on MW (A/K) relative to a divisor X is
defined in [Manl] )
hx : MW(A/K)Y — R,

and moreover if X is symmetric, that is, X~ = X, where X~ is the image of the

inversion map on A, hy is really quadratic. The following theorem is due to Manin
{({(Man1], Theorem 4.).

Theorem 2.1 Let D = D¢/principal divisors on C. On the subgroup MW*'(A/K)
which acts trivially on D, the Tate height may be computed by the formula

hx(a) = (771(X),0(C)) = (v71(X),0(C)).

Here the pairings ( , ) in the right hand side denote the intersection pairing of
divisors and curves and 0 € MW ({A/K) is considered as a sectiona : C — A. (We
also denote by 0 the zero element of MW(A/K).)

Corollary 2.1 If h : A — C has only irreducible fibers, and X € Dg(A) is
symmetric and (v (X),0(X)) = 0, the Tate height is qguadratic integral-valued and
given by R

hx(o) = (v7(X),0(C)) = (L, ).

where L is a line bundle on A algebraically eqivalent to v~1{X).

Assume that MW (A/K) is finitely genrated and torsion-free. Under the assumption
of corollary, the associated symmetric bilinear form

<, > MW(A/C) x MW(A/K) — Z

gives a natural lattice sturucture on MW (A/K). In case when A/K is an elliptic
curve, one has a good minimal model & : A — C by using minimal model theory
of projective surfaces..

Shioda [Shl], [Sh3] actually showed that this lattice structure can be calculated by
using the intersection theory of the surface A4, and he called the lattice Mordell- Weil
lattice.

Later, he extended his results to the case where A is the Jacobian variety of a higher
genus curve T over K ([Sh2]).

For example, if b : A — P! is a minimal rational elliptic surface with only irre-
ducible fibers, one has isometry

MW (A/K) ~ Eq

where F4 i1s the famous even unimodular lattice of rank 8.

Y Actually, in this case, one does not need the assumption on the irreduciblity of fibers and other
condition in the corollary
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3 Calabi-Yau 3-folds with abelian fibration

In this section, we shall give two examples of Calabi-Yau 3-folds with fibrations of

abelian surfaces.
First of all, we make the following

Definition 3.1 A fibration of curves f : S — C from a smooth projective surface
S to a curve C is called a Lefschetz fibration if all cloed fibers has at most one node
as its singularity.

Example I (Example of C. Schoen {Sch].)

Let f; : S; — P! (i = 1,2) is minimal rational elliptic surfaces with sections and
assume that both of f; are Lefschetz fibrations. Moreover assume that the sets
of critical values of f; has no common elements. Then consider the fiber product

W = 5, xp1 Ss.

%4
P N\ P2
S, S,y
AN\  fa
Pl

Then it is easy to see that W is a nonsingular Calabi-Yau threefold and induced
fibration h : W — BP! is a fibration of the product of two elliptic curves. Moreover
we fix zero sections 0; and 0, of S, and S, respectively and let F; denote the class
of general fiber of f;, then set

L; = 04(P") + F.
It is easy to see that the Tate height of each section o € MW(S;/P') is given by
< 0,0 >=(L;,a(P')),
and the Mordell-Weil lattices are isometric to Es. Then one can easily prove

Proposition 3.1 The Mordell-Weil lattice structure of MW (W/P') with respect to
line bundle L = p3(Ly) -+ p3(Lo) is isometric to

(MW(W/P'),<,>)~ Es ® Es
The Hodge diamond of W is given by
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Example II([Sa-Sak].)

We recall a construction of genus g fibrations in [Sa-Sak]. For ¥, = P! x PI,
we let p; : Bo — P! (i = 1,2) be the natural projections onto i-th factor and
F; = p¥(apoint) the divisor class of a fiber of p;. A curve B in g is

said to be of bidegree (a,b) if B is linear equivalent to aFy + bF,.

Let B be a smooth curve in ¥y of bidegree (2,2g + 2) and let 7 : X —3 %, be the
double covering whose branch locus is B. Set f = 7p; and ¢ = mp,. Then we have
the following two fibrations:

X

7 Ny
P! P!

Note that f is a fibration of (hyperelliptic) curves of genus g and ¢ is a fibration of
conics, and hence X is a rational surface. Let K = C(P') be the rational function
field and considering the generic fiber X, of f as a curve of genus g over K, we
define the Jacobian variety of X,

J = Jac(X,).

¢From now on we restrict our attention to the case of g = 2. Then the Néron model
of J exists

J — P
Theorem 3.1 ([Sa3], [Saf]) Assume that g = 2 and f : X — P! is a Lefschelz

fibration. Then we have the following asserlions:

1. J° —s Plhas a good smooth compactification h : J — P! whose lotal space
is a Calabi-Yau 3-fold.

2. There ezisls a natural embedding of X — 7.

3. With respect the line bundle L = X + X~ + 2F where F is a class of fiber of
h, the Mordell-Weil lattic structure on MW (J/K') is isometric to

(M‘/V(‘]/]‘/): < >L) = DTZ

Here D}, is a unimodular latlice whose dynkin diagram is given by

10 11
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The existence of good smooth compactification in the Lefschetz fibration case is due
to Nakamura [N]. The Hodge diamond of J is given by the following:

1
0 0
0 14 0
1 14 14 1
0 14 0
0 0
1

4 Theta functions of lattices and Yukawa cou-
pling

In examples in §3, we know the structure of Mordell-Weil lattices. By virture of
result in Cor. 2.1, this let us know the number of rational curves arising from
section whose intersection number with respect to special line bundles are fixed by
the theta function of lattices.

Let us start with lattice theta functions. For any positive integral lattice L, we let

u(z) =3 ¢

n€L

be the theta function of the lattice L where ¢ = exp(miz). We have
OL(z) = Y Np(m)q™.
m=1

where ,
Nip(m) = #{n € L| <n,n>=m}.
Let us recall the Jacobi theta functions:

o0

02(2) = 24" TL(1 = ™)1+ ),
05(e) = TL0 =)0+,
o) = L0 =)0 -

Then the theta function of D7, is given by (see 7.3, Ch. 4 in [C-S]):

Ops, (2) = 1/2(05%(2) + 05%(2) + 0,°(2))



On the other hand, the theta function of Fy is Eisenstein series Fy(z), while

oEs(BEs(z) = (E2(z))2 = E4(Z)‘

By using the expansion of these Theta function, we know the number of rational
curves arising from section of fixed degree (= height) with respet to the specific line

bundle.

The further calculation of Gromov-Witten invariants needs more effort, however the
author expects that there should be good differential equation which was satisfied
by the correlation functions associated the Calabi-Yau 3-folds in §3.
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