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COMPACTIFICATION OF THE MODULI OF ABELIAN
VARIETIES

IKU NAKAMURA
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0. INTRODUCTION.

0.1. We aim at compactifying canonically the moduli of abelian varieties in a way
similar to the Mumford-Deligne compactification by stable curves of the moduli of
curves, against general belief since Mumford that there exists no canonical (unique
in some sense) compactification of the moduli of abelian varieties.

Our idea dates back to over twenty years ago, when the works of [Namikawa76],
[Nakamura75] and Ueno [unpublished] pursued the same idea as now through con-
struction of certain kinds of degenerating families of abelian varieties. We may be
allowed to mention or emphasize that before knowing Mumford’ idea we (Namikawa
and the author) had started our consideration and had obtained the primitive idea
of stable quasi-abelian varieties through analytic Néron models, and canonical em-
bedding of abelian varieties by the theta functions, though the final formulation of
the construction followed Mumford’s method.

Very recently Alexeev and the author [AN96] retook up the problem, defined “sta-
ble quasi-abelian varieties* over any field and proved a stable reduction theorem as
a first step towards compactification of the moduli over Z. In this collaboration
[AN96], first, we discussed the problem over any discrete valuation ring possibly in
mixed characteristics, and second, we solved some problems in arbitrary dimension
which have been left unsolved in dimension greater than four because of the difficulty
arising from cerlain polyhedral decomposition called Delaunay decomposition.
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Later [Alexeev96] proved existence of the coarse moduli scheme projective over Z
through a rather complicated definition of the functor.

In the present article we report the Hilbert-stability (Theorem 0.5) of stable quasi
abelian varieties in some limited cases. This approach also will lead us to a proof of

existence of coarse or fine moduli scheme of stable quasi-abelian varieties (Theorem
0.6).

Let us recall the stable reduction theorem. For comparison we start with the
classical stable reduction theorem of (Néron and) Grothendieck in the semi abelian
version, hence not in the projective but in the quasi-projective version, which has
been proved in [SGAT7]. See a résumé by Deligne [SGA7, Expése I.pp. 1-24] for a
short proof of it.

Theorem 0.2. Let R be a complete discrete valuation ring with the fraction field
K and (Gg, Lk) be a polarised abelian variety over K. Then after a suitable finite
ramified cover Spec R' — Spec R it can be extended to a semi abelian group scheme G
over R'. Namely there exists a polarised group scheme (G, L) such that (G, L)@K' =
(Gr,Lx) ® K' and the special fiber Gy is connected and an extension of an abelian
scheme by a (split) torus over the residue field R'/I', where I' is the mazimal ideal

of R

We avoided the notion of cubical invertible sheaves in the above theorem for sim-
plifying the statement. See for instance [MB85, p. 40, 1.1. (ii)].

We now recall the stable reduction theorem {[AN96, Theorem 0.1] of abelian vari-
eties in the projective version, not in the semi-abelian version.

Theorem 0.3. Let B be a complele discrete valuation ring with the fraction field
K and (Gg,Lx) be a polavised abelian variety over K. Then after a suitable finite
ramified cover Spec R’ — Spec R it can be completed in a canonical way to a flat
projective scheme (P, L) over R with an amplie invertible sheaf L extending Ly & K'.

Let (P, Lg) be a special fiber of the family (P, L£). We call the polarised vari-
ety (Fo, Lo} a polarised stable quasi-abelian variely (abbr. SQAV) over the residue
field k of R. Although the statement of Theorem 0.3 is somewhat vague at this
moment, the object (Fg, £,) we obtained is very concrete. This is a "very” canonical
limit of a polarised abelian variety. The reason why we call it "very” canonical is
intuitively that it is a geometric realisation of limits of canonically chosen theta func-
tions degenerating moderately, or [ would say that they are singular varieties which

are the closest to a nonsingular abelian variety among degenerate abelian varieties
[Namikawa76),[Nakamura75].

Theorem 0.4. [AN96] Any stable quasi-abelian variety over a field k is

(1) a connected, reduced, Gorenstein,
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(2) (possibly) reducible singular projective variety

3) with trivial dualising shedf,

(4) whose structures of irreducible components and geometric configuration of ir-
reducible components are given by a so-called Delaunay decomposition.

(5) The invertible sheaf Lo is ample, indeed LY is very ample for N > g + 2.

(6) For N >0, R°(Py, LY) = h%( Pk, LY) = deg(Lx)N?.

(7) For N >0, k' (Py, LY) =0 (z > 0).

[Nakamura96] proved, in some limited cases, in particular, in all cases of dimension
g < 4 that the Hilbert points of the stable quasi-abelian variety (Fs, £o) are stable
(but not necessarily properly-stable) in the sense of Mumford [MFK94]. In fact, we
need only to apply the result of [Kempf78]. Though the result of the theorem is
unfortunately partial, the absolute majority of stable quasi abelian varieties (over
ninety percent of the population, T guess) satisfy the condition of the theorem by
taking an étale cover. See Theorem 7.2 for the precise statement.

Theorem 0.5. Let (Fy, Lo) be a polarised stable quasi-abelian variety over an alge-
braically closed field k. Then the Hilbert points of (Po, Lo) are stable if the charac-
teristic of k and deg Lo are coprime and if Ly is very ample.

As a consequence of stability we prove

Theorem 0.6. Let k be an algebraically closed field of any characteristic. Let K be
a finite abelian group, any of whose elementary divisors is al least three in the strong
sense! and whose order is coprime to the characteristic of k. Then the functor® of
stable quasi-abelian varielies of dimension g < 4 with level structure K is coarsely
represented by a projective scheme over k.

We should mention that the above coarse moduli scheme paramatrises the isomor-
phism classes of stable quasi-abelian varieties with level structures forgotten. In order
to pamametrise the isomorphism classes with level structures we will need Sp(K)-
cover of the moduli in Theorem 0.6 or Mori-Keel or some other versions of existence
of quotients. The cases g > 5 seems to require a somewhat more difficult treatment.
Though our result is still very immature, the above form of the representability as
well as a simple form of the functor would be a desirable goal of the theory.

!This means that K = Z/e;Z2@ - ® Z/e,Z, nleyley| - ey, 3 < n
2See section 9.
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1. EXAMPLES—ELLIPTIC CURVES

1.1. Let us start with an elementary example. Let us look at the following degener-
ation of nonsingular elliptic curves—a variant of the Tate curve.

In what follows we assume that R is a complete discrete valuation ring, I the
maximal ideal of R, s a generator of [ and S := Spec R. The residue field R/I of R
is a (not necessarily algebraically closed) field k.

For k = 0,1,2 we define

Ox(s,w) = Y e((3m + k)*r/6 + (3m + k)z)
meZ
- Z s(3m+k)2w3m+k
meZ
where e(?) = exp(27i?), and s = e(7/6), w = e(z). We consider 0 as (a lifting to
the semi-universal covering of) a function converging in the I-adic topology. Thisis a
canonical choice. In the analytic category they are analytic sections of an (relatively
ample) invertible sheaf £®3 of elliptic curves E(s) over a punctured disc. However
the argument below is justified in the algebraic category as well.
Since £%% is very ample, the image by 8, is an elliptic curve over K, whose equation

is known as a Hesse cubic in P?. By the representation theory of Heisenberg group
[Mumford66-67, 1,p.350] it is well known that

E(s): 05+ 03 + 03 = 3u(s)806,0,

where u(s) is a so-called theta constant (theta-zerovalue) given explicitly (and clearly)
by

(o) = B0, + 0305, 1) 1 03(5,1)

L =

¢ 300(s, 1), (s, 1)05(s, 1)

In fact, the Heisenberg group transforms 8y in essentially two different manners
0o+ 00,0, — (30,,0; — (3292

00H91H92I—>00
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where (53 is a primitive cube root of unity. As is easily seen the above equation
is the (almost!) unique possibility of the equation invariant under these actions.
This elliptic curve is a universal elliptic curve with level three structure® . It has
nine 3-division points given by {1,{,0), (0,1,¢) and ({,0,1) {{: cube roots of —1)
if u(s) # coor u(s)® # 1. If pu(s) = oo and us)® = 1, then the curve E(s) is a
union of three lines with three ordinary double points, say a 3-gon of rational curves.
The curve carries a natural very ample invertible sheaf £; ~ O{1). We note that
RO(E(0), Lo) = 3 = §(Z/3Z) by Theorem 0.4.

We also see that there exists a unit « in R such that 1/u(s) = 3us?, v =1mod I.
In this sense E(s) is a Tate curve with multiplicative period ¢ = s°.

It might be instructive to compute the limit £(0), as p(s) tends to infinity, when
the parameter s approaches zero, from the view point of Néron model —a geometric
realization of theta functions in this case.

The Néron model over S of the relative elliptic curve F (= a one-dimensional
abelian scheme over K') in this case has a special fiber isomorphic to G, x (Z/3Z),
which is a Zariski open subset of the 3-gon zgz,3, = 0. The last fact is checked by
setting w = sa, s%a and s°a for nonzero a € R\ I, where we also dare to consider
a € k:= R/I for brevity. Let us set w = sa. Then we first see that

90(3,5&) . Z 39m2+3ma3m
meZ

=1+ 5% %452+ %% 4 ...

2
01(3,3(1) - Z S(3m+1) +3m+1a3m+1
meZ

= s%q 4 s%a"% + s0a 4 s¥a 5 4 ...

2
92(3,3&) = Z S(3m+2) +3m+2a3m+2
melZ

=a' 4% + s 4
Therefore we have in P?
lim [64(s, 30)] = lim [1 + o(s), 0 + o{s), 1/a + o(5)]
=[1,0,1/d]
Similarly we see
liy 0405, %)) = 0,1/, 1
lim [64(5,5°0)] = 1/, 1,0

3See 1.3 for level structures.
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TABLE 1. Stability of reduced cubic curves

curves (sing.) stability Stab. gr.
smooth elliptic properly stable finite
3-gon stable not properly stable  2-dim
irred. a node  semi-stable not stable Z/27
a triple point  unstable 2-dim

In addition, if we put w = a, w = s%a or w = s*a, then we see that
lllr& [0i(s, %)) = [1,0,0]
im [04(s, %)) = 0,0,
i [0, )] = [0,1,0
In the geometric invariant theory the cubic zpzy22 = 0 is stable but not properly

stable [MFK, p.80]. In fact, the 3-gon has a two dimensional stabilizer group ~ G?

m?
while proper-stability was by definition stability with finite stabilizer group [MFK,
p.37].

The stability of the cubic is also proved by using Kempf’s criterion [Kempf78] as
well as by Gieseker’s method [Gieseker82]. The purpose of the present article is to
generalize this fact—to prove (or simply to report) Theorem 0.5.

1.2. Now we look at another example, which shows in fact that the very ampleness
condition of Ly in Theorem 0.5 is necessary for stability. Let us define

19;; — Z ng(m~—1)+8mku)3m+k (}C — 0, 1’ 2)
meZ

These theta functions on the elliptic curve C(s) with multiplicative period s® are
a canonical choice in the present case. We see easily

Po(0,w) =1+ w®
9 (0, w) =w
92(0, w) = w?
Hence the limit curve is a rational curve with an ordinary double point {1,0,0] *
C(0) : 23 + 23 = zoz1 2.

The functions 9,(0,w) are sections of £3 (=~ O(1)), where Ly, an invertible sheaf
on C(0) with deg Lo = 1, is ample but not very ample, while £3 is very ample. We

*We do not know the equation of C(s).
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note that A°(C(0),£3) = 3 by Theorem 0.4. The cubic curve C(0) is semi-stable but
not stable. The elliptic curve C(s) is also a Tate curve with multiplicative period
6
g = s
We note that the stability in [MFK,p.80] of a cubic curve is just stability (Hilbert
stability) of the third Hilbert point of the cubic curve. Therefore Theorem 0.5 seemns
to be the best possible.

1.3. Here we would like to remind the readers of the classical analytic theory. Let

T(3) i= {(ﬁ Z) € SL(2,Z); (‘c‘ Z) = ((1) ?) mod 3}

Let H be the upper hLalf plane {r € C;Im(r) > 0}, on which I'(3) acts by

at + b
er+d

Then H has four cusps oo, 0, 1 and 2 on the rational boundary {oo} UQ of H, which
are inequivalent under I'(3). These cusps correspond in the paragraph 1.1 to the
points i = oo or % = 1, or in geometric terms, the four 3-gons of rational curves.

Let F(7) be an elliptic curve with periods 1 and 7. The level three structure on
F(r) is by definition a choice of basis of 3-division points of F(7), where a natural
choiceis e, := {z =1/3} and e; = {z = 7/3}. With an identification F(7(s)) = E(s),
they will be e; := [1,(5,0] and e, = [0,1,—1] on E(s) where the zero z = 0 of the
elliptic curve is chosen to be ey = [1, -1, 0], while (3 is a primitive cubic root of unity.

The quotient curve M3 := H/T'(3) is a rational curve with four points deleted,
which can be compactified into a smooth rational curve M; by adding four cusps
mentioned above. The curve M3 admits over it a universal generalized elliptic curve
S5 with level three structure, which is just a minimal compactification of the Néron
model over Mj of the universal elliptic curve 53 X p, M3. The complex surface Sy is
perhaps more familiar as Shioda elliptic modular surface of ievel three.

For a smooth elliptic curve with 7 # i, (3 there are exactly 12 choices of level three
structures, which are in fact classified by PSL(2,F3) := SL(2,F3)/{£1}(~ A4).

The level three structures on a 3-gon are classified by the coset of PSL(2,F3) by the
image of the stabilizer subgroup Stab(cc)/ 1 =~ Z/3Z in PSL(2,Z). This is because
the effect of the different choice of e; is cancelled out by nontrivial automorphisms
of lines in the 3-gon. Therefore for the 3-gon of rational curves there are exactly four
inequivalent choices of level three structures. This explains existence of four cusps in
Ms, or equivalently four 3-gons of the form FE(s), in other words, four singular fibers
of 53.

We remark that there are six or four choices of level three structures on the elliptic
curve with 7 = ¢ or 7 = (3. This shows that rationality of M, := H/SL(2,Z) U {o0}

T =
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and M3 is consistent with the Hurwitz formula

2.0-2=12(2-0—-2)+4(3-1) +4(3 - 1) + 6(2 - 1).

2. CUBICAL STRUCTURES
Let us give a very brief summary of cubical structures here,

2.1. Let A be an abelian scheme over an algebraically closed field k, L an invertible
sheaf on A. Then the theorem of the square [Mumford74, p.59, Corollary 4] says

T2, L®L~TH(L)®Tr(L)

for any point z,y € A. Let A(L) := m*(L)®pj(L)'@p3(L)~! on A? := A x A where
m:(z,y) — z+y. Then we see by using the theorem of the cube [Mumford74, p.89]
that the invertible sheaves on A3

O12(L) = (m x 1)"A(L) ® pi3A(L) " @ p3sA (L)~
©3(L) = (1 x m)"A(L) @ pi, A(L)™ @ pisA(L)™

are trivial. The pair of the above two sheaves ©12(L) and ©,3(L) together with their
trivialisations fixed is a cubical structure on L. See [Breen83, Introduction and §1}.

One can rephrase the above fact as follows. Let N := T7(L) @ L™'. Then N €
Pic’(A) = A! ~ Ext(A, G,). Therefore N \ {0} is an extension of A by a split torus
G, which admits an abelian group scheme structure. Moreover T;(N) ~ N for any
y € A(k).

It seems that the cubical structure of L is an intrinsic manifestation of this fact
without referring to translation by k-points of A.

2.2. Let (G be a semi-abelian scheme over a (complete) discrete valuation ring. As-
sume for simplicity that G is a group S-scheme over an abelian S-scheme A with any
fiber T split torus. Namely we have an exact sequence of group schemes

1 THGES5 A0

where T is a split S-torus.

Cubical structures on G are defined in a way similar to the above. However we
have to assume triviality of the sheaves ©1,(L) and ©,3(L) in general contrary to the
case of abelian schemes.

There is an equivalence between the category of cubical G,,-torsors and the cate-
gory of rigidified invertible sheaves {rigidified along the unit of G) where a G,,-torsor
is a line bundle (associated with an invertible sheaf) minus zero section. This means
that there is one to one correspondence between a cubical invertible sheaf and a
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rigidified invertible sheaf on a semi-abelian group scheme. Any rigidified invertible
sheaf on G has a unique cubical structure [Breen83, Proposition 2.4].

Moreover by [Breen83, p.38, Proposition 3.10], [MB85, p.37, 7.2.2], the category of
cubical G,,-torsors on G with restriction to T trivial is equivalent to that of cubical
G ,.-torsors on A. We note that this fact is proved essentially by using Rosenlicht’s
lemma [SGA7, p.265, VIII, Lemme 4.1].

However by our assumption that T is a split torus, the restriction to T of any
invertible sheaf of G is always trivial. Therefore the categories of cubical G,,-torsors
on G and of cubical G,,-torsors on A are equivalent. This means that for any cubical
invertible sheaf L on G there exists a unique cubical invertible sheaf M such that

(M) = L. If L is ample®, then M is ample and vice versa®.

3. DEGENERATION DATA

The purpose of this section is to sketch the description of degenerations of abelian
varieties given by Faltings-Chai[FC90, 11.4.1,5.1]. See also [AN96, section two].

Notation 3.1. a) R is a Noetherian normal integral domain complete with respect to
anideal I = /T, § = Spec R, So = Spec R/I, K is the fraction field and = Spec K
is the generic point.

We will assume that R is a complete discrete valuation ring complete with respect
to the maximal ideal I-adic topology. We will denote by k = R/I the residue field.

b) G/S is a semiabelian scheme of relative dimension g with abelian generic fibre
G, (with a chosen unit section). The special fibre Gg is a semiabelian scheme over
k, namely an extension of an abelian scheme Ay of relative dimension ¢’ by a torus
T, of relative dimension ¢”, ¢’ + ¢ = ¢g. We assume Tp to be split, and this always
holds after a finite base change of S.

c) L is a rigidified ample invertible sheaf on G 7.

d) Associated to /.S and L are the formal scheme Gg,, = lim G @ R/I" and an
invertible sheaf £y, = lim £ ® R/I"™. The scheme G, fits into an exact sequence

m
0— Tfor - Gfor i Afor —0

By the theory of cubical structures [Breen83} [MB85, p.40, Theorem 1.1 (ii)] there
exists a unique cubical structure on £ (viewed as a G,,-torsor), which induces a
cubical structure of the sheaf Ly,.

SFor global sections f € H%(G, L™) Gy is affine and forms a base of Zariski topology of G for
n > 0.

SNote that 7 is affine.

7See Remark 3.2
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Then Ly, is descended to a unique cubical ample invertible sheaf Mg, on Ag, that
is, Lior = 7 (Mior) 8. Since there exists an ample sheaf on Ag,, Ag,, is algebraisable.
Namely by the algebraisation theorem of Grothendieck there exists an abelian S-
scheme A with an ample invertible sheaf M such that the formal completion (/1, M)
of (A, M) is (Afm-, Mfo,-).

By our assumption that Ty is a k-split torus, g, is a formal S-split torus by {[SGA3,
IX, Théorem 3.6], [FCI0, 2.2]. Let X be the character group of T, Then by setting
T :=Hom z(X,Gp), T algebraises T,

The sequence 0 — Tg, — Gror— Agor — 0 is also algebraisable because the exten-
sion class of it is given by an element of Ext(A¢, Tror) ~ Ext(A,T) [FC90, p.34].
The dual abelian variety G is also extended to a semiabelian S-scheme G* by taking
the connected Néron model ® after taking finite ramified cover of S if necessary. See
[SGA7, 1, p.20 Appendice]. Then similarly we see that the dual G} is algebraisable.
Namely there exists a semiabelian scheme G* such that the formal completion of Gt

is isomorphic to Gy,,. Thus we obtain the so called Raynaud extensions for Gy, and
G:’or

0—-T—GL A0
0T oG5 A 0

plus the homomorphisms ¢: X — Af, ¢! : Y — A decoding them. In other words, ¢ €
Hom (X, A*) ~ Ext(A,T) and ¢! € Hom (Y, A) =~ Ext(A*,T*) describe the extension
classes of semiabelian schemes G and G respectively.

e) Finally, the polarisation A\(L,) : G, — GY, induces a morphism A : G — G* by
the universal property of Néron model of G}. It induces also a formal morphism Ag, :
Gror — GY,,, which defines two polarisations ¢ : Y — X and A4 = A(M) : A — AL
Since we are given the formal morphism Ag,, the extension classes of Gy, and Gi,, are
compatible by Ag,, = A M), s0 that e = Agy,, ¢k, After algebraisation it follows
that c¢ = A4c’. From this it follows that the formal morphism Ag, is algebraised into
a morphism from G onto G*.

Remark 3.2. Note that if R is a discrete valuation ring with the quotient field K
then according to the semistable reduction theorem any abelian variety Gg over K
can be extended to a semiabelian scheme G over R as the connected Néron model
of Gk, so the condition b) above is no restriction. Moreover since by taking a finite
extension of K if necessary there exists an invertible sheaf # € Pic®(Gy) such that
the invertible sheaf £x ® H is symmetric, namely i*(Lx @ H) = Lx @ H for the

8This is true because Tior is a split torus. Otherwise we need to take a symmetric invertible

Ligr @ {—1]* Lgor for descent.
9We mean by the connected Néron model the Néron model with closed fiber irreducible.
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involution 7 = [~1]g, of Gk '°. Therefore we can assume from the start that Lk is
symmetric, ample and rigidified along the zero section. Ly associates to some Cartier
divisor, which extends uniquely to a smooth scheme (7. Therefore L extends to a
symmetric invertible sheaf on G uniquely because Gy is irreducible. On the other
hand by [Raynaud70, p.158 XI, 1.2 and p.170 XI 1.13] £LE" extends to G as an ample
invertible sheaf for some n > 0 if Lg is symmetric and ample. Since Lx satisfies the
condition in this case, the extension £ is ample.

3.3. The space of theta functions I'(G,, £,) on the generic fibre is embedded into
['(Grors Ltor) (% K. The latter has the torus action. Therefore, every theta function

8 € T'(G,, L,) can be written as a Fourier series of eigenfunctions, and this series
should converge in the I-adic topology. The theorem of Fallings and Chai says that
the coefficients of these Fourier series satisfy the same functional equations as in the
classical complex analytic case.

We restrict ourselves to the totally (or maximally) degenerate case, that is the case
when Ag (and hence A) is trivial. Then Gg, = Tpor and = T'. The invertible sheaf
Lor is trivial on Tiop, and therefore

I'(G,, L,) = T'(G, C) @ K = T'(Giory Lior) (I%) K =
HFSOS)®I& Wt = H[&

z€X T€X

Therefore, every theta function 8 € I'(G,, £,) can be written as a formal Fourier

power series
0=">" o.()w
z€X
with o.(8) € K.

Theorem 3.4. [Faltings-Chai90] There exists a function a1 Y — K* and a bilinear
function b: 'Y x X — K™ with the following properties: ,
(1) a(y + z + w)a (‘J)a(z)a( ) = a(y + z)a(z + wla(w +y) Vy,z,w € Y (in
particular, a(0) =
(2) by, 2) = b(z,y) = a(y +z)a(y)la(z)™ Wy,z €Y
(3) bly,y) € I Vy ¢ 0, equivalently, for everyn = 0 a(y) € I™ for almost all
yeyY

10Gee the proof of Theorem 7.1.
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(4) The K-vector space T'(G,,L,) is identified with the vector space of Fourier
series 0 that satisfy o440, (0) = a(y)bly, z)o(0).

Definition 3.5. We define the functions A:Y — Z, B:Y x X — Z and elements
by,z) € R, a(y) € R* by
1
B(y,z) = val,(b(y, 2)), A(y) = valy(a(y)) = 5(Bly, (y)) + r(¢(1)))
bly,z) = by, z)sPW? | a(y) = a(y)s Bt (W))/2

for some r € Hom z(X,Z). It is easy to see that B is bilinear.
We note that B is positive definite by Theorem 3.4 (3).

4. CONSTRUCTION OF {P, L)

4.1. From [AN96], [Namikawa76] we recall that
Alg: = Rla(z)w*d;z € X]|
Rl6.9;z € X), &, 1= sBEa)/Hria)/2,»
(oot = bayofEo = $BE@DHTE@ 202 (4 4 € O(c,0))
P : = normalization of Proj(Alg)
S;(a(z)w®d) = alz + y)w ey

R

where Alg is the graded algebra with deg{a{z)w®J) = 1 and dega =0 fora € R.
The endomorphism S induces a natural action of P, which we denote by the same
letter S,. Let £ be the pull back of Opy;(1) to P.

Then our construction of (P, L) [AN96] can be stated in the following

Theorem 4.2.
(1) Let (Py, Lo) be the closed fibre of (P,L). The restriction of Lo to any irre-
ducible component of Py is ample .

115 is the normalization of Proj so that Lo may not be very ample.
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(2) For n large enough, nY acts on Py freely so that the quotient Po/nY is a
scheme of finite lype over k covered with (the isomorphic images of ) affine
open subsets of Py. The invertible sheaf Ly is descended to an invertible sheaf
Lo/nY on the quotient Py/nY. A union of only finitely many irreducible
components of Py dominates Py/nY so that Eg/nY is ample and (Py, Lo)/nY
is_a projective scheme over k.

(3) (Po,L0)]Y is a quotient of a projective k-scheme of (Py, Lo)/nY by a finite
group Y/nY so that it is a projective scheme over k 12

(4) (Pror, L1or)] Y is a flat projective formal S-scheme.

(5) There exists a flat projective S-scheme (P, L) such that the formal completion
(Pror, Lior) of it along the closed fibre is isomorphic to (ﬁfm.,ifor)/Y.

Proof. {5) follows from the algebraisation theorem of Grothendieck. The rest is clear
from the statements. [

Remark 4.3. The above construction is still insufficient because the closed fibre Fy
can be nonreduced. We need to take a certain finite ramified cover {o obtain a reduced
closed fibre. The modification is not difficult but only technical, so we omit it here.
See [AN96]. By the modification we obtain Theorems 0.3-0.4.

5. DELAUNAY DECOMPOSITION

Definition 5.1. Let B be a symmetric positive definite integral g x g-matrix, which
determines a distance || ||g on the Euclidean space Xg. For an arbitrary o € Xy we
say that a lattice element a € X is o-nearest if

la — allp = min{||b — a||p; b € X}

We define a (closed) B-Delaunay cell o {or simply a Delaunay cell if B is under-
stood) to be the closed convex hull of all lattice elements which are a-nearest for some
a € Xgp. Note that for a given Delaunay cell o the element « is uniquely defined
only if o has the maximal possible dimension, equal to ¢g. In this case we sometimes
call o the centre or the hole of o.

Together all the B-Delaunay cells constitute a locally finite decomposition of Xg
into infinitely many bounded convex polyhedra which we call the B-Delaunay de-
composition Delg.

12£,/nY is descended to By/Y .
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Remark 5.2. It is clear from the definition that the Delaunay decomposition is
invariant under translation by the lattice X and that the 0-dimensional cells are
precisely the elements of X.

Definition 5.3. For a given B-Delaunay cell o consider all o € Xy that define o.
They themselves form a locally closed bounded convex polyhedron which we denote
Vor®(o) and call an open B-Voronoi cell (even though it is only locally closed). We
denote the closure of this cell by Vor(s). All the closed B-Voronoi cells make a
(closed) polyhedral Vorono: decomposition Vorpg of Xg.

5.4. As we vary the bilinear form B, the corresponding decompositions Delg and
Vorg themselves change. Since the vertices of Delg are all in X, it is clear that
Delg have a discrete set of values. The Voronoi decompositions, however, have some
continuous moduli. The Delaunay and Voronoi decompositions are dual, with respect
to B, in the following sense:

Lemma 5.5.

(1) The natural maps o — V (o), & — D(6) define a one-to-one correspondence
between closed Delaunay and Voronoi cells;

(2) dimo +dim V(o) = dimé + dim D(6) = g¢;

(B)YrCoiff V(o) C V(r), T C & iff D(G) C D(7);

(4) for c € Y the cell V{c) is a g-dimensional polyhedron with vertices at centers
a(a), where o goes over all mazimal-dimensional cells containing c;

(5) for an arbitrary Delaunay cell o the cell V(o) is a polyhedron with vertices at
centers a(o), where o goes over all mazimal-dimensional cells containing all
of the vertices of 0.

Proof. Straightforward. See also [Namikawa76]. [

Delaunay decompositions enter the theory through the following
Theorem 5.6. Let Py be the central fibre of the flat family (P,L). Let o,7 be Delau-
nay cells in the Delaunay decomposition Del{ P) corresponding to (P, L).

(1) For each o there ezists a T-invariant subscheme O{c) of the central fibre Py

which is a torus of dimension dimo over k,
(2) o C 7 iff O{0) s contained in O(7),
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(8) For each o there ezists a unique closed subscheme V(o) which is the closure
of O{(c) and has dimension dimo over k,

(4) o C 7 iff V(o) is contained in V{7)},

(5) PO = UaeDel(P)mod Y V(O’)

See [Namikawa76}, [AN96].

6. HEISENBERG GROUP OF (P, L)

We will prove

Lemma 6.1. By choosing a suitable finite extension K' of K if necessary, the finite
group XY operates freely on (P, L)® R' via S, (z € X) defined below. The quotient
(Pouots Louot) 1= (P, LY ® R'[(X]Y) is a proper flat family of principally polarised '
stable quasi-abelian varielies over Spec R’ where R is the integral closure of R in K'.

Proof. We define an algebra homomorphism S}, (z € X) of Alg QR'/I"™" by the
same formula as [AN96};

S: o (@(z)€:9) = a(z + 2)€sy,9 mod I
S;,n(cl‘.c) = B(Z, m)Cr,c-{-z mod ]m+1,

It is clear that each S}, is an algebra homomorphism. Since S5, is degree-
preserving, 3 (LQR'/I"™") ~ L@ R'/I'"™*". Since 53 . (n > 0) are compatible and

z.n
commutes with Sy (y € Y}, we have an R'/I""*.isomorphism of (P,£) ® R'/I'""*!,
which we denote by S, ,. Therefore we have an R'-isomorphism of (Pior, Lior) @ R'.
Hence by the algebraisation theorem of Grothendieck, it is algebraised by an R'-
isomorphism S, of (P,£) @ R’. It is also clear that the finite group X/Y operates
on (P, L) Q@ R’ freely via the algebraised actions S, and these give a descent data for

(P,L£)® R'. The rest follows from {AN96] and the theory of descent. [

Remark 6.2. If Gy is a k-split torus, (in fact, this is the case for a suitable extension
K’ of K), G is an algebraic R'-split torus, and it is an open subscheme of P ® R'.
[AN96, 3.13]. Hence we may assume for simplicity that there exists a g-dimensional
Delaunay cell o such that 0 € oq and rel.int. O(0g) = G ® &'. In other words,

G = Spec R 2z € C(0,00) N X]

13The term principally polarised means that A(Pyuor, Lquor) = 1.
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where C(0, 09) is the cone spanned by Delaunay vectors of o starting from the vertex
0 of 0. For simplicity we assume (or introduce the notation) w® 1= (0,

(rp = sBlEHTE2m = 2 (g € C(0,00) N X),
which is equivalent to the following
B(a(oo),z) +r(z)/2=0 (Vz € X).

In what follows we also assume the equation.

Definition 6.3. It is clear that the lattice X is spanned by C(0,00) N X. Hence
G is an R'-torus Spec R'[w;z € X]. We denote G by G(oo). By [Mumford72] the
quotient of G(Cfo)for by the periods Y is algebraised into a semi-abelian group scheme
over R, which we denote by G(a¢). By [Mumford72] G{sy), (= P,) is independent
of the choice of oy.

Lemma 6.4. Assume that B: Y xX — Z extends to a bilinear form B : X x X — Z.
We define a R'-valued point §(z) of P by §(2)"(w®) = b(z, z)sBG#)(=: b(z,z)). Then
§(z) 1s algebraised by an R'-valued point s(z) of P and S, is induced from translation
of G, @ K' by s(z) @ K'.

Proof. By Remark 6.2 we are given a R'-valued point e of P, which gives rise to a
formal R’'-valued point eg, of P, By the Remark 6.2 we may assume that a lifting
éior : Spec B — P @ R’ of eg, is given by & (w®) = 1 (Vz € X).

It is easy to see from the definition that 5(z) is an R'-valued point of P. In fact,
8(2)"(Coi=z) = 3(2)" (sB(-22)%) = b(z,2). Then we have s(z), := (z) mod I'"""' ¢
P R'/I'n+1 hence a formal R'-valued point s(2)gr of Pror. Since it is proper over R’
we have an algebraisation s(z), an R’-valued point of P. Next we define translation
Ty by s(z) as follows. First we define on Alg@R’

:(z)ﬂ(fx,c) = b(2,2)(z o4, mod it

because by definition (,, = sB)+7@/2% if ¢ 4 ¢ € 0. Hence Ti(;),n is defined
on (P,L)® R'/I"* for any n > 0 in a compatible way, and Ti(z)m commutes with
Syn (Vy € Y). Moreover since Ty, , on Alg@R' is degree-preserving, it descends
to an action Ty, of (P,L)® R/ I""*1 hence an action T2y gor 00 (Pror, Lior) @ R'.
By algebraisation theorem Ty, for 18 algeblalsed into an action T,y on (P, L) ® R'.
Since S2((eo) = b(z, )z, Ty or = Sngors hence Ty = S, O
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Remark 6.5. s(z) is a R'-valued point of G{og — z). This confusing fact comes
from our notational convention S7((y0) = (2, 2)(se4., in other words, S,(U{c)) C

Ule - 2).

Definition 6.6. For a R'-valued point « of (G(og) we define translation action T,
upon P by « as follows. Suppose that a is given by a R'-valued point & of (o)
&*(w*) = a(z) € R = R'\ I’ where & € Hom (X, R"") = G(0o)(R’). Then we define

T;,n(CI,C) = a(z)(z,. mod I
It is clear that Sy Ty = T; S» (Vy € Y). Hence T}, descends to a morphism

ynta,n a,n~yn
from P ® R'/I"*! to itself. By algebraisation theorem, we have an algebraisation

To: P& R — P ® R, which we call translation by a.

Definition 6.7. By modifying slightly [Mumford66-67] we define a functor from the
category (Schemes/K') to the category (Sets)
H(Gyy £)(T) = {Ts € Autr(Go(T))iz € GolT), T2 (L) = L1}

for a scheme T over K. Since L is ample, this functor is representable by a finite
group subscheme of Aut(G,), which we denote by H(G,,L,). By [ibid.] if K is
algebraically closed and if characteristic K and d := deg £, are coprime, H(G,,L,)
is a finite abelian reduced group scheme of order d* where deg £,, := (£§)/¢! = [X : Y]
[Mumford66-67, 1, p.289]. In fact, it is isomorphic to ker A(L,) where A(L,) : G, —
(, is the polarisation morphism by £,. It follows that there exists a suitable finite
extension K’ of K such that H(G,, £,)(K’) is of order d*. Therefore by choosing such
an extension K’ we may assume that H(G,, L,)(K") is of order d* for an arbitrary
finite extension K of K’

Lemma 6.8. By choosing a suitable finite extension K' of K if necessary, with the
notation in Lemma 6.4 and Definition 6.6 we define

K(P,L)® R'): = {Tyu);2 € X/Y}
K(P,L)® R) :={Tyja € G(R),a(y) =1 (Vy € Y)}
H((P,L)®R):=K((P,L)QR)® K((P,L)® R).

Then
H((P, L)@ R)® K' = H(Gy, L,)(K').
Moreover the Weil pairing on H((P, L} ® R') is given by

eC®R’((Ts(z)> Ta)> (Ts(w)a Tﬁ)) = a(w)ﬂ(z)‘l .
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Proof. Recall that S, = T,(,) (= € X) by Lemma 6.4. It is clear that S, (y € Y
induces identity transformation of P ® R’ so that K((P,£) ® R') ~ X/Y. Let
a € G(R'). Then we have

TS5 (a(2)w®) = a(z + 2)a(z + 2)w* 9
ST (a(z)w®™) = a(z)a(z + 2)w™*d.

Hence T%5% = ST if and only if a(z) = 1. Moreover TxS; = S:T* (Vz € Y) if
and only if T} descends to (Pror, L1or)® R’ and is algebraised by algebraisation theorem
into an isomorphism of (P, £) ® R/, equivalently (P, T (L)) ®@ R ~ (P,L)@ R'. 1t is
also easy to see that T2S5} = a(2)S;T: on L. Therefore we have

ecor (Toa), Ta), (Towy, Tp)) : = STTLSLTH(SIT) 7 (SLTE) ™

= a(w)B(z)7".
Lemma follows from |H(G,, £,)(K')| = |X/Y|* and [Mumford66-67, I, p.310]. O

Definition 6.9. We call H((P, £) ® R’') the reduced Heisenberg group of of (P, L).
The total Heisenberg group G(( P, L)®R') of (P, L) is a central extension of H((P, L)®
R') by R,
1R - G(P,LY®R)— H(P,L)®R)— 1"
The group structure of G((P, L) ® R') is defined by

(a; Ts(z)>Ta) . (ba Ts(w)yTﬂ)) = (abﬂ(z),Ts(z+w)y Taﬁ)

Usually the Weil pairing ecqn, a skew symmetric bimultiplicative form on H{( P, £)®
R') is defined [Mumford66-67, 1,p.293] by

85®R'((Ts(z)7 Ta)’ (Ti(w)7 Tﬂ)) = [(17 Ts(z)a Ta)) (11 Ts(w)7 Tﬂ))]
= a(w)f(z)"

where [u,v] := uvu™'v™? is the commutator for u,v € G((P, L) ® R’). This coincides
with the above Lemma 6.8. The Weil pairing is clearly nondegenerate.

A subgroup K of H((P,£) ® R’} is called isotropic (resp. maximally isotropic) if
ecer = 1 on K x K (resp. if it is isotropic and maximal among isotropic subgroups).
A subgroup K of G((P,£) ® R') is called a level subgroup if K N (R™*) = {1} and
if the image K of K is maximally isotropic. Any level subgroup K is of order
deg(L) = |X/Y|. The image K of a level subgroup K is called a reduced level
subgroup of H((P,L) ® R').
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As an abstract group H((P,£) ® k') =~ (X/Y)®% and G((P,£) ® k') is a central
extension of it by £, whose group structure is uniquely determined by X/Y.

G((P,L)®FK') has a unique irreducible representation of weight one [Mumford66-67,
[,Theorem 2] where we say that the representation has weight n if the centre &~
operates by the scalar multiplication of n-th power.

In the above definitions, we omit @&’ from the notation if (Fy, £o) is defined over
an algebraically closed field k.

Lemma 6.10. Assume that k is algebraically closed. Then H°(P, L) is an irreducible
G(P, L)-module of weight one.

Proof. We recall

6, = Z a(z + y )ty
y€Y

S2(0,9) = 0,4,9, S2(6:0) = a(z)0,9

where z,z € X, a € K(P,£). In particular, S3(0:9) = 0,9 (Vy € Y). By taking
mod I we obtain a representation of G((P, £) ® k). This is a standard realisation of a
representation of G((P, £} ® k), which is known to be irreducible if k is algebraically
closed [Mumford66-67, I,Theorem 2]. [

See [Nakamura96] for the definition of G((P,£) ® k') and a similar lemma in the
general case.

7. EMBEDDING THEOREM

The following theorem in the nonsingular case might be known to specialists, which
was communicated to the author by T. Katsura with a complete proof.

Theorem 7.1. Let A be an abelian variety over an algebraically closed field k, L
an ample invertible sheaf on A. Suppose that the reduced Heisenberg group H(L)
contains the group A, of all n-torsion points of A for some n (> 3)'* prime to the
characteristic of k. Then L is very ample.

"This is the same as the condition thal any elementary divisor of H(L) is at least in the strong
sense.
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Proof. Let A(L) be the polarisation homomorphism A(L)(z) = T;L ® L™! (z € A),
H(L) := Ker ¢, the reduced Heisenberg group and ey, the Weil pairing. By definition
it is clear that H(L) is a subgroup of H(L"). Let A, be the group of all n-torsions of
A. By the assumption A, C H(L). Since epn(z,y) = er{z,y)* =1 (Vz,y € 4,), L*
descends to A/A, =~ A by [Mumford66-67, 1, p.291]. That is, there exists an ample
invertible sheal M on A such that L* = {n,)*(M) where n4 is the multiplication
morphism of A by n. By [Mumford74, p.59],

L™ = (na)"M = MU+ g g2 (A1) =02

where 7 is the inversion of A.

Next we will prove that L = (M’)" for some ample invertible sheaf M’ on A. For
this we will prove *(M)®@M ! € Pic°(A). First note that i*NQN = (i+id4)*"N = 1,4
(trivial bundle on A) for any N € Pic®(A), hence :*N = N~'. Then for any = € A,
we have

AT M)(z) = " (A(M)(i(2))) = —~A(M)(-z) = A(M)(z).

Hence i*M ® M~' € Pic®(A). Since Pic’(A) is a divisible group, there exists an
invertible sheaf G’ € Pic®(A) such that L = (M @ G')". By Lefschetz’s theorem, L is
very ample because n > 3. O

We can also prove

Theorem 7.2. Let (Py, Lo) be a polarised stable quasi-abelian variety over an alge-
braically closed field k, H(Py,Lo) the reduced Heisenberg group. Suppose that any
elementary divisor of the finite abelian group H(P,, Lo) is at least three in the strong
sense, then the complete linear system |Lo| is base-point free. If the Delaunay decom-
position Del( Py) is simplicially generating,'® hence in particular if the dimension of
the toric part of Py is less than 5§, then Ly ts very ample.

8. STABILITY

8.1. Let { Py, Lo) be a stable quasi-abelian variety over k. Suppose that L is very
ample. Then for any positive integer n we have an epimorphism

$u : STHO(Py, Lo) — H( Py, L7)
which determines a point of the Grassmannian variety. Let n(g) := n? deg(Ly).
By taking the Pliicker coordinates we obtain a point of the projective space

n(g)

g "R SmHO(Py, £o) — " HO(Py, £2) =~ E.

Y¥Let a; (i € I) be Delaunay vectors of o with 0 € o, C(0,0) = ¥,y Rya;. ”Simplicially
generating” means roughly that the semi group C(0,0) N X is generated by a; [AN9S, 1.12].
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(9) . . .
We call ‘A ¢n, the n-th Hilbert point of (Py, L£q). 1t is not difficult to see that ¢, is
. o) .
a G(Py, Lo)-equivariant homomorphism so that so is A ¢n. Since G(Py, Lp) has no
. . . . (o) , . . .
nontrivial one dimensional representation, A ¢ s G( Py, Lo)-invariant.

By Lemma 6.10 the following is a corollary to [Kempf78].

Theorem 8.2. Let (P, Lo) be a polarised stable quasi-abelian variety over an alge-
braically closed field k. Then the Hilbert points of (Fy, L) are stable if the charac-
teristic of k and deg Lo are coprime and if Ly is very ample.

Proof. G( Py, Lo) operates linearly on H%( Py, L) keeping the Hilbert points of ( Py, Lo)
invariant. Since H°(Pp, Lo) is an irreducible G(Ps, Lo)-module by Lemma 6.10,
G( Py, Lo) N SL(deg(Lo), k) is contained in no parabolic subgroup of SL(deg(Lo), k).
By [Kempf78, Corollary 5.1], the Hilbert points of (P, Lo) are stable in the sense of
Mumford. [O

This is enough for constructing the complete moduli of abelian varieties up to di-
mension 4 in the subsequent formulation. As we remarked in the end of the paragraph
1.1, the Hilbert points of (Fy, Ly) is not necessarily properly stable.

By [Kempf78] Chow-stability of the image of (P, Lo) follows similarly under the
same assumptions.

9. MoDULI

The folloWing definition of SQAV, k(= SQAV;?,TP‘)”’W) will simplify §QAVY, in
[Alexeev96).

Definition 9.1. Let H be a finite abelian group, ey : H x H — k* a skew symmetric
bimultiplicative form. The pair (H,ey) is called « symplectic finite abelian group if
ey is nondegenerate. If (H,ey) be a symplectic finite abelian group, then there
exists a maximal totally isotropic subgroup K of H such that H ~ K @ K and
I >~ Homg(K, k). Hence in particular |H| = |K|*

Conversely let K be a finite abelian group. We set K := Homgz(K,k*) and H :=
H(K)=K®K. Wedefine ey : Hx H — k* by eg(a®a,b® ) = a(b)f(a)™" where
a,be K,a,B¢€ K. Then it is clear that (H, ep) is a symplectic finite abelian group.
We denote ey by i when it is necessary to emphasize dependence on K.

Let G(K) be a group defined by the group law

(a,z,a) - (bw,B) = (abf(z),zw,aB)
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where a,b € k, z,w € K and «, 8 € K. Tt is clear that G(K) contains K as a level
subgroup, that is, as a maximal isotropic subgroup.

Suppose that the characteristic of k and the order |K| of K are coprime.

Definition 9.2. A triple (P, £,K) is called a polarised stable quasi-abelian variety
over k with level structure K if the following conditions are satisified

(1) (P, L) is a polarised stable quasi-abelian variety over &
(2) Let G(P, L) be the total Heisenberg group of (P, £) with Weil paumg ec. Then
the triple (Q(P L£),K, ec) is isomorphic to (G(K), K, {x).

The condition (2) implies that || = deg L.
Given a noetherian k-scheme T', (P, £,K) is called a polarised stable quasi-abelian
scheme of relative dimension g over T with level structure K if

(1) (P, L) is a flat proper T-scheme with a relatively ample invertible sheaf L,

(2) K is a flat finite reduced subgroup scheme of Auty(P, L)

(3) for any geometric point s of T', (Ps,L;) is a polarised stable quasi-abelian
variety of dimension ¢ over k(s) with level structure Ky ~ K.

The condition (3} implies
(g(Psa‘CS)va,eﬁa) = (g(Ks)JCM[/Cs) =~ (g(I{):I{a el\)
We define a functor SQAV, k (= SQAV, ") as follows. For any noetherian
k-scheme T, we set
SQAVY, k(T) = the set of polarised stable quasi-abelian T'-schemes
(P,L£,K) of relative dimension ¢ with level structure K
modulo T'-isom with K forgotten.
As the readers may see, the part modulo T'—isom with K forgotten is unnatural in
the definition of the functor, which should be replaced by modulo T—isom. Therefore

the formulation here might be changed in the near future.
It follows from Theorem 8.2 and Mumford [MFK94].

Theorem 9.3. Let k be an algebraically closed field. Suppose that the characteristic
of k and the order of K is coprime and that any elementary divisor of K is at least
3 in the strong sense *5. Then the functor SQAV, k is coarsely represented by a
projective scheme over k if g < 4.

Projectivity (and properness) follows from [MFK94] and Theorem 0.3 plus the
definition by Lemma 6.8.

15Gee Theorem 0.6.

— 160 —
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Let (., be a primitive e,-th root of unity. By modifying the above functor into the
over-Z((,,,1/|K|}-version '® | and by applying {Seshadri77, Theorems 2,3,4,pp.263-
269] we infer from the above theorem

Theorem 9.4. Suppose that g < 4 and any elementary divisor of K is at least § in
the strong sense. Then the functor SQAV, k is coursely represented by a projective
scheme over Z[(,,, 1/|K|].
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