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O. INTRODUCTION.

O.1. We aim at compactifying canonically the moduli of abelian varieties in a way
simi]ar to the Murnford-De]igne compactification by stable curves of the moduli of
curves, against general belief since Mumford that there exists no canonical (unique
in some sense) compactification of the moduli of abelian varieties.
  Our idea dates back to over twenty years ago, when the works of [Namikawa76],
[Nakamura75] and Ueno [unpublished] pursued the same idea as now through con-
struction of certain kinds of degenerating families of abelian varieties. We may be
allowed to mention or emphasize that before knowing Mumford' jdea we (Namikawa
and the author) had sta,rted our consideration and had obtained the primitive idea
of stable quasi-abelian varieties through analytic N6ron models, and canonical em-
bedding of abelian varieties by the theta functions, though the final formulation of

the construction followed Mun)ford's method.

  Very recently Alexeev and the author IAN96] retook up the problem, defined "sta-
ble quasi-abelian varieties" over any field and proved a stable reduction theorem as
a first step towards compactification of the moduli over Z. In this collaboration
[AN96], first, we discussed the problem over any discrete valuation ring possibly in

mixed characteristics, and second, we solved some problems in arbitrary dimension
which have been left unsolved in dimension greater than four because of the difliculty

arising from certain polyhedral decompositjon called Delaunay decomposition.
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2 IKU NAKAMURA 

Later [Alexeev96] proved existe恥 Gof the coarse moduli scl悶 neprojective over Z 
through a rather complicated definition of the functor. 

In the present article we report the Hilbert-stability (Theorem 0.5) of stable quasi 
abelian varieties in some limited cases. This approach also will lead us to a proof of 
exi山肌eof coarse or fine rnodt出 sci間前 of stable qu硝 i-abelianvarieties (Theorem 
0.6). 

Let us recall the stable r記<luctiontheorem. For comparison we sもartwith the 
classical stable reduction theorem of (Neron and) Grothe吋 ieckin the semi abelian 
version, hence not in the projective but in the quasi-projective version, which has 
been proved in [SGA7]. See a r毛sumるbyDeligne [SGA7, Expose I.pp. 1-24] for a 
short proof of it. 

Theorem 0.2. Let R be a complete discrete vαluation ring with the fraction field 

I< and (GK.C-K) beαpolarised abeliαn variety over ]{. Then aβer a suitable βnite 
ramified cover Spec R’→ Spec R it can be extended to a semi abelian group scheme G 
over R'. Namely there exists a polarised group sche附（G, £) such thαt (G,£)RI<’＝ 
(GK，£κ） R ］｛’and the special五ber00 is connectedαnd an extension of an abeliαn 
scheme by a (split) tor泊。むerthe residue field R' /I'，必 εreI' is the maximal idεal 

of R'. 

We avoided the notion of cubical invertible sheaves in the above theorem for sim-

plifying the statement. See for instance i詰B85,p. 40, 1.1. (ii)]. 
We now rec品JIthe 自tablereduction theorem [AN96, Theorem 0.1] of abelian vari-

eties in the projective version, not in the semi叩 abelia.nversion. 

Theorem 0.3. Let R be a cοmplete discrete 11aluation ring with the Jrαction field 

[( and (GK，ικ） beαpolarisedαbelian 叩 rietyover /(. Then 4βer a suitableβnite 

ramポedεG智erSpec R’→ Spec R it caηbe completed iηG canonical w匂 toa fiat 

projective scheme ( P, C) over R' withαn ample invertible sheafιextendingιKR／（’． 
Let （九，£0)be a special fiber of the family (P,C). We c札JIthe polar、

ety （九’ιo)a polαrised stαble q包αsi搬凪belianva1、iεty（山br.SQAV) over the residue 
field k of R. Although the statement of Th日orem0.3 is somewhat vague at this 
moment, the object （九，乙。） we obtained is very concrete. This is a”very" canonical 
limit of a polarised abelian variety. The reason why we call it”very”canonical is 
intuitively th札tit is a geometric realis叫ionof limits of canonically chosen thei乱 func-
tions degenerating moderately, or I would say that they are singular varieties which 

are the closest to a nonsingular abeli札nvariety among degenerate abelian varieties 
[Namikawa76],[Nakamura75]. 

Theorem 0.4. [AN96] Any stable quas同 belian開 rietyover a field k is 

(1）αcon川 cted,reduced，。ore川 tein,
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STABILITY 

(2) (possibly) reducible si吋 1山Tprojective variety 

(3) with trivial dualisi吋 sheaf,

3 

( 4) whose struct1川 sof 川、educiblecomponentsαnd geometric coη：figuration of ir-

reducible components are given byαso】 calledDelaunay decomposition. 

(5) The invertible sheαf Lo is叩 1ple，山 icedιfis very ample for Nとg+ 2. 
(6) For N > 0, h0（九，ιf/)= h0(PK, £1i) = deg(LK )N9 
(7) For N > 0, hi（九，ιi/)= 0 (i > 0). 

[Nakamura96] proved, in some limited cas巴s,in particular, in all cases of dimension 
g三4that the Hilbert points of the stable quasi-abelian variety (Po，ι。） are stable 
(but not necessarily properly-stable) in the s巴nseof Murr 
need Oηlν to白pplνtheres山 of[Kempf78). Th 1gh the result of the theorem is 
unfortunately partial, the absolute majority of stable quasi abelian varieties (over 
ninety percent of the population, I guess）叫ぉfythe condition of the theorem by 
もakingan etale cover. See Theorem 7.2 for the precise statement. 

Theorem 0.5. Let (P0,.C0) be a polαrised stable quas同 beliαnuαriety over an alge-

braicαlly closed field k. Then the Hilbert points of （九3ι。） are stableザthechαrac-
teristic of k and deg £0 are co prime and ifι。isve叩 αmple.

As a consequence of stability we prove 

Theorem 0.6. Let k be anαlgebraically closed field ofαηu characteristic. Let J( be 
αfinite abelian group，αny of whose elementary dii府orsis at least three in the strong 

sense1 and whose order is coprime to the characte1・istic of k. Then the f1mctor2 of 

stable quasi-abelian varieties of dimension g ::; 4 with level structure J( is coarsely 

represented byαprojective scheme over k. 

We should mention that the above coarse moduli scheme parιmatrises the isomor-
phism classes of stable quasi-abelian varieties with level structures forgotten. In order 
to pamametrise the isomorphism classes with level山、1川町eswe will need Sp(K) 
cover of the moduli in Theorem 0.6 or Mori Keel or some other versions of existence 
of quotients. The cases g三5s巴emsto require a somewhat more di飴culttreatment. 
Though our result is still very immature, the above form of the representability as 
well as a simple form of the functor would be a desirable goal of the theory. 

1This means that [{ = Z/e1Z c・ 0 ・cZ/e9Z, niei!e2I・・・ je9,3壬H

2See section 9. 
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4 IKU NAKAMURA 
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1. EXAMPLES-ELLIPTIC CむRVES

1.1. Let us start with an elementary example. Let us look at the following degener糊

ation of nonsingular elliptic curves・-a variant of the Tate curve. 
In what follows we assume that R is a complete discrete valuation ring, J the 

maximal ideal of R, s a generator of I and S := Spec R. The residue field R/ I of R 
is乱（notnecessarily algebraically closed) field k. 

For k = 0, 1, 2 w的 define

fh(s, w) = L e((3m十k)2r /6十（3m+k)z)
m旺Z

＝む s(3叶 k)2w3m÷k 

m旺忠

where e(?) = exp(2れ？）， and s日 e(r/6),w = e(z). We consider Ok as (a lifting to 
the間前 universalcovering of) a f川 ctionconverging in the J-adic topology. This is a 
canonical choice In the analytic category they are 品川lyticsections of an (relatively 
arrがり i部 ertiblesheaf ζR3 of elliptic curvεs Eい） over a punctured disc. Ho問 ver
the argument below is justi五edin the algebraic category as well. 

SinceζR3 is very ample, the image by Ok is an elliptic curve over J(, whose equation 
is known as a Hesse cubic in P2. By the represent札tiontheory of Heisenberg group 
[Mumford66-67, I,p.350] it is well known that 

E(s ） ：時十 o~ ÷ B~ = 3μ(s)OoB1B2 

whereμ( s) is a so-called tl政 aconstant ( theta-zeroval田） given explicitly (and clearly) 
by 

。；（s, 1) + Br ( s, 1）十月（s, 1) 
1i( s) = 

30o(s, 1)01(s, 1）九（s, 1) 

In fact, the Heisenberg group transforms Bk in essentially two different manners 

00 r-; Oo,01 r-; (301,02 r-; (1B2 

。0H 81 H 82 H 00 
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ST、'ABILITY 5 

where (3 is a primitive cube root of unity. As is easily seen the above equation 
is the (almost!) unique possibility of the equation i川 aria川 under山田巴 actions.
This elliptic curve is a universal elliptic curve with level three structure3 . It has 
山

if ~t(s) =j; oo or p(s)3労1. If p(s) = oo ar ;i(s)3山 1,then the curve E(s) is a 
union of three line皐withthree ordinary double points, say a 3-gon of rational curves. 

The curve carries込山いnalvery ample invertil必 sheafんご 0(1). We note that 

h0(E(O），ζ。） = 3 = ~（ Z/3Z) by Theorem 0.4. 
We also see that there exists a unit 11 in R such that l/μ(s) = 3us2, u = 1 mod l刷

In this sense E( s) isα Tate curve with multiplicative period q = s6. 

It might be instructive to compute the limit E(O), as p(s) tends to infinity, when 
the parameter s approaches zero, from the view point of Neron model -a geometric 
realization of theta functions in this case. 

The Neron model over S' of the relative elliptic curve E （立 aone-dimensional 
abelian scheme over J<) in this case has a special fiber isomorphic to Gm×（Z/3Z), 
which is a Zariski open subset of the 3-gon x0x1x2 = 0. The last fact is checked by 
setting w = sa, s3a and s5a for nonzero Gξ R ¥I, where we also d邑reto con必 er

Gξ 土；＝ R/ I for brevit）人 Letus set w = sa. Then we a悦 seethat 

。。（s,sα）口 2:=s9m2+3ma3m 

mEZ 

1 + s6α－3十812α3十830α－6十・．．

fJ1 (s, sα）出 2二ρm+l)2十3m十1α3m+l

mEZ 

Zζs2α 十s2α－2+ 82oa4十 820αイ十・．．

B2（いα）ぉ乞 s(3m+2)2+3m+2α3m十2

mEZ 
α← 1十s6az÷812a-4十・ー－

Therefore we have in P2 

！日［fJk(s,sα）！っ~［l 十 o(s),O 十 o(s), l /a十o(s)] 

ニ［l,0, 1／αl 

Similarly we see 

3See 1.3 for level struct註res.

Ii弘［fJk(s,s3a)] = [O, l/a, l] 

！~：,16 !Bk ( s, s5α）］ = (1／α， 1, O] 
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6 !KU NAKAMURA 

TABLE 1. Stability of reduced cubic curves 

curves (siぉg.)

smooth elliptic 
3-gon 
irred. a node 
a triple point 

stability 

properly stable 
日t札blenot properly stable 
semi stable not日table
unstable 

Stab. gr. 

finite 
2吟 dim

Z/2お
2‘dim 

In addition, if we put wニ a,wヱ＝s2a or w = s4a, then we see that 

lirr6 [Ok(s,s0α）］ = [1,0,0] 

li:1'6 [Ok(s,s2α）］ = [0,0,1] 

1日［Ok(s,s4a)J= [O, 1,0] 

In the geometric invariant theory the cubic x0x1x2 = 0 is stable but not properly 
stable (MFK, p.80]. In fact, the 3-gon has a two di附 nsio叫 stabilizergroup c:::: G~，， 
while prope日
p.37]. 
The stability of the cubic is also proved by using Kempf’s criterion [Kempf78] as 

well as by Gieseker’S method [Gieseker82]. The purpose of the present article is to 
generalize this fact-to prove (or simply to report) Theorem 0.5. 

1.2. Now we look at another example, which shows in fact that the very ampleness 
condition of ι。inTheorem 0.5 is necessary for stability. Let us define 

九＝ 2= s9叫m-1)+6mkw3前十k (k = 0,1,2) 
mEZ 

These theta fur 
a canonical choice in the present C札se.We see easily 

。。（O,w)= 1十 w3

191(0, w) = w 

れ（0，叫＝ w2 

Hence the limit curve is a rational ct川 ewith an ordinary double point [l, 0, OJ 4 

C(O): xi＋忽：＝ XoX1X 

The fu民 tio泊。k(O,w)are sectio出 of£~ (c:::: 0(1)), wlぽ eζ0,an inve必 blesheaf 
on C(O) with degん＝ 1, is ample but not very ample, whileι；is very arnr市.We 

2We do not know the equation of C(s). 
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STABILITY 7 

note that h0(C(O），ι；）ニ 3by Theorem 0.4. The cubic curve C(O) is semi-stable but 
not stable. The elliptic curve C( s) is also a Tate curve with multiplicative period 
q = ss. 

We note that the stability in [MFK,p.80] of a cubic curve is just stability (Hilbert 
stability) of the third Hilbert point of lhe cubic curve. Therefore Theorem 0.5 seems 

to be the best possible. 

1.3. Here we would like to remind the readers of the classical analytic theory. Let 
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Let H be the upper half plane { TεC; Im(r) > O}, on which f(3) acts by 

αT十b
Tト→ 一ー一一一一一．

CT十d

Then H has four cusps =, 0, 1 and 2 on the 日 tionalboundary { =} U Q of H, which 
are inequivalent under f(3). These cusps correspond in the paragraph 1.1 to the 
points fl = = or p3 = 1, or in geometric terms, the four 3 gons of rational curves. 

Let F( T) be an elliptic curve with periods 1 and T. The level three structure on 
F( T) is by defini lion a choice of basis of 3-di vision points of F( T), wh巴rea natural 

choice is e1：ニ ｛zニ1/3}and 匂ニ ｛z= r/3}. With an identification F(r(s)) = E(s), 
they will be e1 := [1, (3, OJ and e2 = [O, 1, 1] on E(s) wl悶 ethe zero z = 0 of the 
elliptic curve is chosen to be e0 = [l, -1, OJ, while 白isa primitive cubic root of unity. 

The qr叫 ientcurve M；：ニ H/f(3)is a rational curve with four points deleted, 
which can be compactified into a smooth rational curve M3 by adding four cusps 
mentioned above. The curve /113 admits over it a universal generalized elliptic curve 
S3 with level three structure, which is just a minimal cornpactification of the Neron 
model over M3 of the universal elliptic curve S3×M3 Mf. The complex surface S3 is 
perhaps more familiar as Shioda elliptic modular surface of level three. 

For a smooth elliptic curve with T -=/: i, (3 there are exactly 12 choices of level three 
stn川町es,which are in fact classified by PSL(2,F3) := SL(2,F3）／｛土1｝（ど A4)・

The level three山 uctureson a 3 gon are classified by the coset of PS L(2, F 3) by the 
image of the stabilizer subgro叩 Stab(oo）／土Ic::: Z/3Z in PSL(2, Z). This is because 
the巴ffectof the different choice of e2 is cancelled out by nontrivial automorphisms 
of lines in the 3-gon. Therefore for th巴 3-gonof rational curves there are exactly four 
inequivalent choices of level three structures. This explains existence of four cusps in 

A九 orequivalently four 3-gons of the form E(s), in other words, four singular fibers 
of S3・

W巴1・emarkthat there are six or four choices of level three structures on the elliptic 

Cl川 ewith T = i or T = (3. This shows that rationality of M1 := H/ SL(2, Z) U { CXJ} 
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8 IKU NAKAMURA 

and M3 is consistent with the Hurwitz formula 

2・0-2口 12(20-2）十4(3-1）十4(3-l）十6(2-1). 

2. CUBICAL STRUCTUR記S

Let us give a very brief summary of cubical structures here. 

2.1. Let A be an abelian scheme over an algebraically closed field k, L an invertible 
sheaf on A. Then the theorem of the sq凶 r巴［Mumford74,p.59, Corollary 4] says 

r；十百L0 L ~ r;(L) 0 r;(L) 

for any point x, yξ A. Let A(L) := m事（L)0pj(L)-10月（L）叩 1on A2 :=A×A where 
m: (x,y) 1-7 x十U Then we see by using the theorem of the cube [Mumford74, p.89) 
that the invertible she札veson A3 

θバL）ぉ（mx 1)* A(L) 0 p;3A(Lt1 0 p;3A(Lt1 

6以L）訪れ× m)*A(L) 0 p~2A(L)-1 0 p;3A(Lt1 

are trivial. The pair of the above two sheaves 012(£) and O以L)together with their 
trivialisations fixed is a cubical str山 tureon L. See [Bree時3,Introduction and §1). 

One can rephrase theゆovefact as follows. Let N := T;(L) 0 L-1. Then NE  
Pic0(A) = A1 ~Ext( A, Gm)・ Therefore N ¥ {O} is an extension of A by a split torus 
Gm, which admits an abeli札口 group scher田 町ucture.Moreover T;(N）乞 Nfor any 
uε A(k). 

It seems that the cubical structure of L is an intrinsic manifestation of this fact 
without referring to translation by k-points of A. 

2.2. Let G be a semi-abelian scheme over a (complete）ぬcretevaluation ring. As-
sume for simplicityもhatG is a group S-scheme over an abelian S-scheme A with any 
fiber乙splittorus. Namely we have an exact sequence of group schemes 

l→T..!.+G:!'__, A→O 

where T is a split S-torus. 
Cubical structures on G are defined in a way similar to the above. However we 

have to assume triviality of the sheaves 812( L) and 023( L) in general contrary to the 
case of abelian schern肌

There is an equivalence betw巴enthe category of cubical Gm-torsors and the cate-
gory of rigidified invertible sheaves (rigidified along the unit of G) where a Gm-torsor・
is a line bundle (associated with an invertible sheaf) minus zero sectio孔 Thismeans 
that there is one to one correspondence between a cubical invertible sheaf and a 
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STABILITY 9 

rigidified invertible sheaf on a semi-abelian group scheme. Any rigidified invertible 
sheaf on G has a unique cu bi cal 山 ucture[Bre巴n83,Proposition 2.4). 

Moreover by [Breen83, p.38, Proposition 3.10], [MB85, p.37, 7.2.2], the category of 
cubical Gm-torsors on G with restriction to T trivial is equivalent to that of cubical 
Gm torsors on A. We note that this fact is proved essentially by using Ros巴nlicht’s
lemma [SGA7, p.265, VIII, Lemm巴 4.1].

However by our assumption that T is a split torus, the restriction to T of any 
invertible sheaf of G is always trivial. Therefore the categories of cubical Gm-torsors 
on G and of cubical Gm torsors on A are equivalent. This means that for any cubical 
invertible sheaf L on G there exists a unique cubical invertible sheaf M such that 
7r* ( M) = L. If L is ample5, then M is ample a吋 vie巴 versa6.

3. DEGENERATION DATA 

The purpose of this section is to sketch the description of degenerations of abelian 
varieties given by Falti時 SChai[FC90, 11.4.1,5.1]. See also [AN96, section two). 

Notation 3.1. a) Risa Noether n normal integral dom n complete with respect to 

an ideal I = VJ, S = Spec R，品＝ SpecR/ I, [(is the fraction field andη ＝Spec I< 
is the generic point. 

We will assume that R is a complete discrete valuation ring complete with respect 
to the maximal ideal I-adic topology. We will denote by k = R/ I the re副 uefield. 

b) G / S is a semiabelian scheme of relative正limensiong w比habelian generic fibre 

Gη （with a chosen unit section). The special fibre G0 is a semiabelian scheme over 
k, namely an extension of an abelian scheme A0 of relative dimension g’by a torus 
T0 of relative dimension gペダ十g＂ニ 9・Weassume T0 to be split, and this always 
holds after a finite base change of S. 

c）ιis a rigidified ample i肝 ertiblesheaf on G 7 

d) Associated to G/S and乙arethe formal sci児err

inver一tiblesheafιf。r= limι ③R/ In. The scheme Gro ..自tsinto an exact s巴quence

。→ Tror→Gror竺＇！｛ Aror→O 

By the theory of cubical structures [B悶 n83][MB85, p.40, Theorem 1.1 (ii)] there 
exists a unique cubical structure onι （viewed as a Gm-torsor), which induces a 

cubical structure of the sheafιfor-

5 For global sections fε JI0(G, L") G1 is affine an<l forms a base of Zariski topology of G for 
n>O 

6Note thatπis affine. 
7See Remark 3.2 

円
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10 IKU NAKAMURA 

Thenζfor is descended to a unique cubical ample invertible sheaf入イforon A for, that 
is，ιforニ πfor（ん1rar)8. Since there exists an ample sheaf on Afori Afor is algebraisable. 
Namely by the algebraisation theorem of Grothendieck tl磁 eexists an abeli子n~－ 
scheme A with aぉampleinvertible sheaf M s吋 lthat the formal completion (A, M) 

of (A,M) is (AforiMfor)・ 
By our assumption that T0 is a b日plittorus, Tr。ris札 formalS吋）littorus by [SGA3, 

IX, Theorらm3.6], [FC90, 2.2]. Let X be the character group of Tror・, Then by setting 
T：ニ Homz(X, Gm), T algebraises Tro，・

The sequ認 ceO吋 Trar→Grar吋 Afor→0 is also algebraisable because the exterト
sion class of it is given by an element of Ext(Afori Tro，）乞 Ext(A, T) (FC90, p.34]. 
The dual abelian variety a; is al目。 extendedto品開miabelianS－舵 hemeG1 by taking 

the connected Neron model 9 after taking finite ramified cover of S if necessary. See 
[SGA7, I, p.20 Appendice]. Then simila均 wesee that the dual aior is algebrai叫巾

Namely there exists a semiabelian scheme Gt such that the formal completion of Gt 
is isomorphic to Gror・ Thむswe obtain the so called Raynaud extensions for・Grorand 

GLr 

Q→T→G.'!.+ A→0 

0→yt→（jt.::.: At→Q 

plus the homomorphisms c : X→At, ct :Y→A decoding them. In other words, cξ 
Hom(X,At) ~ Ext(A,T) and ct E Hom(Y,A）αおxt(At, T1) describe the extension 
classes of semiabelian schemes O札口dGt respecti四 ly.
e) Finally, the polarisation入（£η）: Gη→ G!, in山 cesa morphism入； G→ G1by 

the UI山 ersalproperty of Neron model of G~. It induces also a formal morphism入伽：

Gfor→Gi0., which defines two polarisationsゆ： Y→X and入A口入（M):A→At. 
Since we are given the formal morphism入forithe extension classes of Gror and G}0, are 
co仰 atibleby AA1o，ニ入（M)rorso that Cfor</J ＝λA1o, cf0,. After algebr ai削 ionit follows 
that cゆ＝入Ad.From this it follows that the formal morphism入foris algebraised into 
a morphism from G onto G1. 

Remark 3.2. Note that if R is a discrete valuation ring with the ~uotient field /{ 
th削 accordingto the semistable reduction theorem any abelian variety GK over /{ 
c札口 be extended to a semiabelian scheme G over R as the connected Neron model 
of GK, so the condition b) above is no restriction. Moreover since by taking a finite 
extension of /{ if necessary there exists an invertil巾 sheafII E Pic0( GK) such tl叫
the invertible sheaf CK  RJI is symmetric, namely i＊（ζK RII）ね乙K RJI for the 

8This is true b日causeTror is a split torus. Otherwise we need to take a symmetric invertible 
βfor 0 [-1］・£rorfor descent. 

日Wemean by the connected Neron model the Neron model with closed fiber irreducible. 
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STABILITY 11 

involution i = [-l]aK of GK 川 Th巴reforewe can ass川 ie介omthe start thαtιk is 
symmetric，αmple and rigidified along the zero section. CK associates to some Cartier 
divisor, which extends uniquely to a smooth scheme G“ Thereforeιk extends to a 
symmetric invertible sheaf on G uniquely because G0 is irreducible. On the Oもher 

｝問

inv邑rtiblesheaf for some n > 0 ifζ五， issyr王imetricand ample. Since £瓦：satis長εsthe 
condition in this case, the extensionζis ample. 

3.3. The space of tl川乱 fur川 ionsI'(Gη，ιη） on the generic fibre is embedded into 
f(GronC伽）雪 I<.The latter has the tor凶 action.Therefore, every theta function 

oεf(G'l，ιη） can be written as a Fourier series of eige凶 mctions,and this series 
should converge in the /-adic topology. The theorem of Failings and Chai says thaι 
the coe侃cientsof these Fourier series satisfy the same functional equations as in the 
classical complex analytic case. 

We restrict ourselves to the totally (or maximally）必generatecase, that is the case 

when Ao (and i淑
ζfor is trivial on 1f.01" and therefore 

I'(Gη，ι1)) r( G, £） ~I< --. r( Gro,, c伽 ）c;;I<=

JJ r(S, Os）型K・wxニ H/{ wx 
xEX " xEX 

Tl悶 efore,every theta function B E f( Gη，£η） can be written as a formal Fourier 
power senes 

withむ （8）ξ ／（.

。＝乞 σx(B)wx
ZξX  

Theorem 3.4. [Faltings-Cliai90] There exists a functionα：Y→ ／（＊ and a bilinεar 
function b : Y×X→K事 withthe following properties: 

(1）α（ν十 Z 十 w）α（y）α（z）α（ω）＝ α（ν十 z）α（z十 ω）α（ω十ν）¥:/y,z, w E三 Y (in 
partic1山 r，α（0)=I). 

(2) b(y,z) = b(z,y）口 α（ν十z）α（ytlα（z)-1 ¥:/y,z E Y 

(3) b(y, y）εI l:/y労0,equivalently, for every n之0α（ν）ε／＂ J or almostαll 
y E y 

10See the proof of Theorem 7. l. 
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12 IKU NAKAMURA 

( 4) The f{ -vector spαce r(G,1，ιη） is ident~戸ed with the vector space of Fourier 
series () that satisfy ぴぉ十世（yJ(B)＝α（ν）b(y, x）σx( B). 

Defini主ion3.5. We define the functions A : Y→ Z，β ：Y×X → Z鉛 delements 
b(y, x）εR＊， 忌（y）εR*by 

B(y, x）二 val.(b（ν，x)), A(y) ＝叫

b(y) x）二 b(y，広）sB（ν’Z

for some rεHom z(X, Z). It is easy to see that B is biline品r.

We note that B is positive defin山 byTheorem 3.4 (3). 

4. CONS’rnuc’fION OF （久£）

4.1. From (AN96], (Nanぬawa76]we recall that 

Alg：口 R［α（x)wx-O;xξX]

c:::: R［~x-0; xξX］， ι：＝SB（叫）／2十r(x)/210x

(x,c ：日ふれ／~c =SB（α（σ），x）十r(x)/210x (x十cξ C(c，σ））

P；口 normalizationof Proj(Alg) 

s；（α（x )t♂19）ぉ α（x十y)wx÷的 l19

where Alg is the graded algebra with deg（α（x)u《？） = 1 and deg a = 0 for aε R. 
The endomorphisms; induces a natural action of P, which we denote by the same 

letter Sy. Let £ be the pull back of Op叫（1)to P. 

Then our conslr肌 tionof (P，ι） (AN96] can be stated in the following 

Theorem 4.2. 

(1) Let （九，ん） be the closed fibre of ( P，乙）． The r叫 riιlionof Lo to αny zr阿倍

ducible component of P0 is ample 11. 

11 P is the normalization of Proj so thatζ邑m畠Y詰otbe very ample. 
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(2) For n large enough, nY acts on P0 freely so that the quotient P0/nY isα 
scheme 。•f fin山 typeover k covered with (the isomorphic images of) affine 

守的 subsetsof九.The i空むertibleshεaf £0 is dε5εεおdedto仰 iη官er、tibleshea f 
ιo/nY on the quotiεηt Pol 
componε叫tsof P0 dom山』tesPo／ηY  so thatιo／ηY isαmple and （九3ιo)/nγ
tια1】rojectivescheme over k. 

(3) （九，.C0)/Yis a quotient of a projective k-scheme of （凡，ι。）／nYby a finite 
group Y/nY so that it isαprojective scheme over k 12. 

( 4) (1ミor，ζfor)/Y is a ff.at projective formal S-scheme. 

(5) There existsαβαt projective S・scheme( P, .C) such that the formal co叫 J/etzon

(Pror，ιfor) of it along the closed fibre is iso仰 rphicto (Pfoo Lfor)/Y. 

Proof. (5) follows from the algeb玲 i詰ationtheorem of Grotl認 ndieck.The民主iis clear 
from the statements. 日

Remark 4.3.’I'he above construction is still insufficient because the closed fibre Po 
can be nonreduced. We need to take a certain finite ramified cover Lo obtain a reduced 
closed fibre. The modific品ionis not dif五cultbut only technical, so we omit it her・e.
See [AN96]. By the modification we obtain Theorems 0.3 0ふ

5. DELAUNAY DECOMPOSITION 

Definition 5.1. Let B be a symmetric positive definite integral g×g-matrix, which 
determines a distance II llB on the Euclidean space X R・ For an arbitraryαεXn we 
S札ythat a lattice elementαξX isα－nearest if 

IIα ー α!Is日 min{lib－αlls;b EX} 

We define a (closed) B-Dela閥均 CεIIa (or simply a Delaunay cell if B is under-
Sもood)to be the巾 附iconvex hull of all lattice ele口
α正： Xn. Note that for a given Delaunay cell σthe element αi日uniquelydefined 
only ifσhas the maximal possible dimension, equ乱lto g. In this case we sometirn削

callα the centre or the hole of σ， 

Tυgether all theβ－Delaunay cells constitute a locally五nitedecomposition of Xn 
i1氏。 infinitelymany hoロndedconvex polyhedra which we c品IIthe B-Delmmay de-
composition Deis. 

12C0/nY is descended to Po/Y. 
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14 IKU NAKAMURA 

Remark 5.2. It is clear from the definition that the Delaunay decomposition is 
invariant under translation by the lattice X and that the 0-dimensional cells are 
precisely the elements of X. 

日efinition5.3. For a given B物 Delaunaycell σconsider all αe X R that defineσ． 
They themselves form a locally closed bounded convex polyhedron which we denote 
Vo汽り andcall an open B－ぬronoicεll (even tho略 hit is only locally closed). We 
denote the closure of this cell by Vor（σ）. All the closed B-Voronoi cells make a 
(closed) polyhedral 防 ronoideco叩 ositionVorB of XR・

5.4. As we vary the bilinεar form B, the corresponding decompositions DelB and 
Vor B themselves change. Since the vertices of DelB are all in X, it is clear that 
DelB have a discrete set of values. The Voronoi decompositions, however, have some 
continuous moduli. The Delaun札yand Voronoi decompositions are dual, with respect 
to B, in the following sense: 

Lemma 5.5. 

( 1) The natural mapsσ H  V（σ）， a-日 D（δ）define a one-to-o川 corresponde川 t

between closed Delaunay and Voronoi cells; 

(2) dimσ 十dimV（σ）=dimδ 十dimD（δ）= g; 
(3) Tζσ i.ff V（σ） c V(r）， 手cδ i.ffD（めcD(f); 
(4) forεεY theεε11 V（ε） is a g-dime出 ionalpolyhedroお withvertiεes at centers 

α（σ） ｝ 叫 ereσgoesover all maximal-dimensional cells containing c; 
( 5) for an arbitn町 yDelaunay cellσthe cell V（ぴ） isαpolyhedron with vert附 sat 

centersα（ぴ）， whereσgoes over all maximal-dimensional cells containing all 

of the vertices ofσ． 

Proof. Straightforward. See also [Namikawa76］.日

Delaunay decompositions enter the theory through the following 

Theorem 5.6. Let fもbethe centrαlβbre of the fiat family ( P.，乙）.Letσ，T be Delαt十

ηay cells 民 theDelaunay dec01砂 ositionDel(P) con官spondingto （久£｝

(1) For eachσthere exists a T-in叩 riantsubscheme 0（σ） of the ceηtral fibre Po 
which is a torus of dimension dimσ over k, 

(2）σC T ijf 0（σ） is contained in O(r), 
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(3) For each a there existsαt川 queclosed subscheme 11（σ） which is the clo』ure
of 0（σ） and has dimension dimσ over k, 

('1) (Jc T iff V（σ） isεo的 inedin V(T), 

(5）九＝ Uσ正Oel(P)modY V（σ） 

See [Namikawa76], [AN96]. 

6. HEISENBERG GROUP OF (P, £) 

We will prove 

Lemma 6.1. Bνchoosingαsuitable finite extension k’of I<ザnecessary,the finite 
group X/Y ope問 tesfreely on (P, £) 0 R’via Sz (z EX) defined below. The quot'ient 
(Pquot，ムuot）：ニ（P,£)0 R’／（X/Y) is a proper flat family of principally polarised 13 
stable quasi-abelian varieties OむerSpec R' where R’is the integral closure of R in J('. 

Proof. We define an algebra homomorphism s; n (zεX) of Alg @R’／I叶 1by the 
same formula as [AN96]; 

s；」忌（x）ι。｝店長（x 十 z ）~x÷z{} mod I'"+l 

s; n((x,c）出る（z,x )(x,c+z mod I叶 1.

It is clear that each s; n is an algebra homomorphism. Since s; n is degree欄

preservi時， S;n(lRR'/I"'十1)c:::: l@R’／I叶 I Si川 es; n (n三0)are compatible札n

comm1泣it壱swith aタ；｛宮 εY),we have an R’／ 1m+1-isomorphism of ( P，ζ） 0 R'/I’n+l, 
which we denote by Sz,n・ Therefore we have an H.人isomorphismof ( Pfor，ζfor) 0 R'. 
Hence by the algebraisation theorem of Grothendieck, it is algebraised by an R仁

isomorphism s. of (P，ι） 0 R’. It is also clear that the finite group X/Y operates 
on （久ι）⑧R'f聞のlyvia the algel川 isedactio山 S.and these give a descent data for 
(P, £) 0 R'. The間 stfollows from [AN96J and the theory of desce札口

Remark 6. 2. If Go is a k-split torus, (in fact, this is the case for a suitable extension 

k’of I<), G is an algebraic R’－split torus, and it is an open s山肌hemeof P 0 R’ 
[AN96, 3.13]. Hence we may assume for sin叫1plicityti】atthere exi自tsa g-di 

Dela1 ay CεIIσ0 such tl凶 Gξσ0and rel. i瓜 0（σo)= G② k'. In other words, 

。＝ Spec R'[(:,6; xξC(O，σ。）ηX]

13The term principally polarised means that h0(Pquot＞ぷquot)=1. 
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16 !KU NAKAMURA 

wl同 reC(O，σ。） is the cone spanned by Delaunay vectors ofσ0 starti時 fromthe vertex 
0 of σ0・Forsimplicity we assume (or introduce the notatio吋wx：詰 （x,o,

(x,O = 8B(a(uo),x）十巾）fzwx= w"' (Vxε C(O，σo) n X), 

which is equivalent to the following 

B（α（σ。），x）十r(x)/2= 0 (VxεX). 

In what follows we also assume the equation. 

Definition 6.3. It is clear that the lattice X is spanned by C(O，σ。） n X. Hence 
G is an R'-torus Spec R’［wx; x E X]. We denote G by G（σ。）.By [Mumford72] the 

quotient of G（σ。）rorby the periods Y is algebra附 dinto a semi-abelian gro叩 scheme
over R', wl山hwe denote by G（ぴ。）.By [Mumford72] G（σ昌弘（口九） is indepe吋 ent
of the choice of正To・

Lemma 6.4. Assume that B : Y x X→ Z extends to a bilinear form B : X×X 叶 z.
We define a r・valuedpoint s(z) of p by s(z）事（wx)＝る（z, x )sB(z,x）（出； b(z,x)).Then 
s(z) is algebraised by an R'-valued point s(z) of P and S, is induced斤omtranslation 
ofG可② K’持s(z)@f（人

Proof. By R巴mark6.2 we are given a R仁valuedpoint e of P, which gives rise to a 
formal R' -valued yoint eeor of Rい.By the Remark 6.2 we may assume that a lifting 
er町 ： SpecR’→ PRR’of er，町 isgiven by e;or(wx）ヰ 1(Vxε Xト

It is easy to see from the おおlitionthat s(z) is an R'-valued point of P. In fact, 
五（z）市（（x,-z）二五（z)*(s8＜ー叩｝ωつおる（z,x). Th巴nwe have s(z)n：口五（z)mod I’n+1 E 

PRR'/I’n十1,hence a formal R'-valued point s(z)ror of Pror・ Since it is proper over n’ 
we have an algebraisation s(z), an W『 val田 dpoint of P. Next we define translation 

Ts(z) by s( z) as follows. First we de 

Tミz）」（x,c）：る（z,x)(x，叶zmod l'n十1

1 because by definition (x,c = s8（α（σ），x）十r(x)f2wxif m十ιξσ.Henιe T，五（z),nis define< 

on(P,l）⑧R'/l 
S判 B (VyξY). Moreover since Tj(•J 

to an action乙（z),nof (P，ζ）②R'/l ， 
By algebraisatioぞtheore毘乙（z),foris algebr、aisedinもO an action丸（z)on (P，ζ〉③ R

Since s;((x,o) = b(z, x）心，Zlr;(z),for口 s;,for>hence 1~ （ z) = s.・口
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Remark 6.5. s(z) is a R'-valued poi川 ofG（σ。－ z）” This conft出時 factcomes 
from our notational convention s;((x,o）二割引x）（，，，叶れ in other words, Sz(U(c）） ζ 

U(c-z). 

Definition 6.6. For札町一valuedpoint αof G（σ。） we define translation a《：：tionTα 

叩 onP by αas follows. S叩 posetl川 αisgiven by品 R'-v乱luedpoint a of G（σG ） 
＆事（w＂＇） ニ α（芯） εR＇＊ ：記 R'¥l'wlぽ巴 αξHo口1(X,R同） = G（σo)(R'). 1、i悶enwe de伝n

T；’η（ (x,c) ＝α（忽Kx’G mod I叶 1.

It is clear tl川 s;,nT~，n = T~， n s;,n (VyξY). Hence T;,n de附吋sto a morphism 

from P R R'/l叶 1to itself. By algebrai叫 iontheor日m,we have an algebraisation 
Tα ：PRR’→ P② R', which we call translation byα． 

Definition 6. 7. By modifying slightly (Mumford66 67] we define a functor from the 
category (Schemes/ K) to the category (Sets) 

H(G11，£η）（T) = ｛九 εAutr(G1)(T));zεGη（T), T；（ιr) ~ιr} 

for a scheme T over [{. Since ιis ample, this functor is r 
group subscl:同αrr of Aut(Gη）， which we denote by H(Gη，ιη）. By [ibid.] if K is 
algebraically closed and if cl込出cteristicJ( and d := deg［，ηare copri治 e,H(G,1，ζη ） 
is a fir 
[Mu .1ford66一67,I, I】‘289].In fact, it is isomorphic to ker A（ιη） where A（ι，） : Gη→ 
011 is the polaris品ionmorphism by ι1／・Itfollows that there exists a suitable finite 
exien日ionk’of J( such that H ( G,,, £71)(1¥') is 。forder d2. Therefore by choosi時白山h
an extension k’we m札yass川 11ethat H(Gηlη）(I＼勺 isof order d2 for an arbitrary 
finite extension J(" of K'. 

Lemma 6.8. Bぎchoosinga suitable fiπite extension ／｛’of iイザnecessary,with the 

notation 'in Lemma 6.4 and Definition 6.6 we define 

Theη 

J( ( (P, £）③R’）；＝｛工的izε X/Y} 

I<((P,£) R R'): = {Tαiαε G(R＇），α（y) = 1 (VyεY)} 

H((P, £）②R’）：＝ K((P，ι）R R’） EB K((P，ι） 0 R'). 

H((P，ι） R R') RI<’コ H(G11，ιη）（K').

Moreover the Weil pairing oη JI（（久ζ）RR’） is giveねるぎ

tιRR’（（丸（z),Tα），（九（wl>Tf3)) ＝α（w）月（z)-1.
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18 IKU NAKAMURA 

Proof. Recall that Sz二九（z)(zεX) by Lemma 6.4. It is clear that Sy （νεY  
induces identity transformation of P 0 R’so that K((P，乙） 0 R’）乞 X/Y. Let 
αε G(R’）. Then we have 

r;s；（α（x)wxi9) ＝α（x十z）α（x十z)wx+z19

s;r；（α（x)wxi9) ＝α（x)a(x十z)w叶 zi9.

Hence T; s; = s;r; if and only ifα（z) = 1. Moreover r;s; = S;T; ('Vz E Y) if 
and only if r; descends to (Pron .Cror)0R' and is algebraised by algebraisation theorem 
into an isomorphism of ( P，ι） 0 R', equivalently (P, T;(.C)) 0 R’乞 （P，ι）0R'.Itis
also easy to see that r; s; ＝α（z)S;1: on .C. Therefore we have 

ει0R’（（T.（ゅTα）， (Ts（山 i,T!l)) : = s;r:s:r;(s;r:t1(s:r；）一1

＝α（w),6(zt1 

Lemma follows from JH(G11，乙η）（K')I= IX/Yl2 and [Mumford66-67, I, p.310］.口

Definition 6.9. We call H((P,.C) 0 R’） the reduced Heisenberg group of of (P，ι） 
The total Heisenberg group Q((P，ι）0R’） of (P, .C) is a central extension of H((P，ι）0 
R') by R’＼ 

l→R同→ Q((P，ι）⑧R’）→ H((P，ι）③R＇）→ 1' 

The group structure of Q((P，ι） 0R’） is defined by 

（α，T.（ゆ T")・ (b, T.（凶 l,T!l))= （αb,6(z), T，（叶山l,Tc.!l)

Usually the Weil pairing eι0R', a skew symmetric bin叫 tiplicativeform on H ( ( P，ι）0 
R') is defined [Mumford66-67, I,p.293] by 

tι0R'（（え（小Tα）， (Ts（山 l>T!l)) = [(1，乙（ゅ九），（l,Ts（凶 l>T!l))] 

＝α（叫,6(zt1

where [u, v] := uvu-1v-1 is the commutator for u，υε Q((P，乙）③R’）.This coincides 
with the above Lemma 6.8. The Weil pairing is clearly nondegenerate. 

A subgroup /{ of H((P，ι） 0 R') is called isotropic (resp. maximally isotropic) if 
Eι0R’＝ 1 on k×／｛ (resp. if it is isotropic and maximal among isotropic su bgro叩 s). 

A subgroup /{ of Q((P，ι）② R’） is called a level subgro叩 ifkη （R川） = { 1} and 
if the image /{ of /{ is maximally isotropic. Any le~］ subgroup /{ is of order 
deg（乙） = IX/YI. The image ]( of a level subgroup /{ is called a reduced level 
subgro叩 ofH((P，ι） 0 R'). 
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As an abstract group II((P, .C）⑧めど （X(Y)EB2and Q((P，ι）③ k’） is a ce山 11 
extension of it by k 
9((P，ι）③k') has a unique irreducible representation of weight one (Mumford66 67, 

I,Theorem 2J where we say that the representation h制 weightn if the centre k円

operates by the scalar multiplication of n th power. 
In the功。vedefinitions, we omit Rk' from the notation if (Po，ζ0) is defined over 

an algebraically closed field k. 

Lemma 6.10. Assume thαt k is algebraically closed. Then H0( P, .C) is an問、educible
9(P，ι）－mod1山 ofweight one. 

Proof. We recall 

ea;：＝乞a(x十ぎ）wx+y
yEY 

s;(ex19) =ex甘え S~ （ Ox19 ） ニ α（ x)Ox19

wl悶 ex,zξ x，αε I<(P，ι）. In pa凶ic叫ar,s;(ox19）説 Ox'!?(VyεY). By taki 
mod I we obtain a represent札tionof 9( ( P, .C）⑧k). This is品目ta吋 ardrealisation of a 
representation of 9((P, .C) R k ), which is known to be irre山 cibleif k is algebraically 
closed [Mumford66-67, !,Theorem 2］.口

See [Nakamura96] for the definition of 9((P，乙）Rk’）川da similar lemma in the 
general case. 

7. EMBEDDING THEOREM 

The following theorem in the nonsingular case might be known to specialists, which 
was communicated to the author by T. Katsura with a complete proof. 

Theorem 7 .1. Let A be anαbelian variety over an algebr，αically closedβeld k, L 
anαmple invertible sheα：f on A. Suppose that thεredu d He附 ηbεrgg叩 upH(L) 
coηtαins the gr、oupAn 。＇fall rトtorsionpoints of A for some n （と 3)14prime to the 
characteristic of k. Then L is very ample. 

14This is the same舗もhecondition that anyε！er蹴以arydivisor of JI ( L) is at le邑sti詰もhestro註

sensε． 
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20 IKU NAKAMURA 

Proof. Let A(L) be the pοJar‘ 

JJ(L）；口 KerゆLthe reduced Reisen！湖、ggroup and eL the Weil pairing. By definition 
it is clear that H(L) is as山gro叩 ofH ( L n). Let An be the group of all n-torsions of 
A. By the assumption A日 CH(L). Since ein(x,y) ＝εL(x, y)n口 1(Vx, y E An), Ln 
恥scendsto A/ A礼 ~A by [Mumford66-67, I, p.291]. Tl川 is,tl悶 eexists an u叩 le
invertible sheaf Af on A 鉛 chtt凶 Ln＝いA）可M)where符A is the multiplication 
morphism of A by仏 By[Mumford74, p.59], 

Ln口 （nA）‘lv/'.::::'. .Af(n2+n)/2②♂（M)(n2-n)/2 

where i is the inversion of A. 
Next we will prove that L = ( Mγfor some ample invertible sheaf M' on A. For 

this we will prove♂（M)0M-1 E Pic0(A). First note that i叩 RN= (i十idA）明 ＝IA
(trivial bundle on A) for any NξPic0（ペ）， he紅 ε♂N= N-1. The註 forany zε A, 
we have 

A(i・M）（りお♂（A(lv/)(i(x)))= -i¥(M)(-x) = i¥(M)(x). 
Hence i* 111 0 M-1εPiι。（A).Since Pic0(A) is a divisible group, there exists an 

invertible sheaf G’E Pic0(A) such that L = (iv/ 0 G’r. By Lefscl叫 z’stheorem, L is 
very ample because nと3. 口

We can also prove 

Theorem 7.2. Let （凡，ん） be a polarised stable quasi-abelian 叩 rietyover an algか

braically closed field k, ll (Pa，ん） the reduced Heisenberg group. S叩posethat any 
elementary divisor of the finite abelian gro叩 H(Po，£。） is at least three in the strong 
sense, then the complete linear system lι。1is base-point free. If the Delαunay decom欄

position Del（九） is simplicially generating, 15 hence in particularザthedimensioη。f
the tori’c part of P0 is less than 5, thenι0 is veryαmple. 

8. STABIUTY 

8.1. Let （凡ζ。） be a stable中山－abelianvariety over k. Suppose that £0 is very 
ample. Then for any positive integer n we have an epimorphism 

私： snH0(P0，ι。｝叶 Ho（九，ι；｝
which determines a point of the G rassmannian variety. Let n(g) ：＝ η9 deg（£。）．

By taking ihe Piliιker coordinates we obtain a point of the projective space 

n(g) n(g) ,. n(g）ハ
八弘：八 S"l/0（九， ζ。）→八万υ（ Po ，£~）：：：：：：：： k. 

15Let a; (i E I) be Dela川 ayveιtors ofσwith oεσ，C(O，σ）＝乞係IR＋日卜 ”Sirnplicially 
伊 1訂以i時”蹴ansroughly tt同もi措 semigro枝pC(O,a)nXisge琵erate<lby ai [AN告6,1.12]. 
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n(g) 
We call 八仇 then-th Hilbert point of （九？ι。） • It is not difficult to see that仇 is

n(g) 
a 9（九，ι。）－equivarianthomomorphism so that so is八仇.Since 9(P0, £0) has no 

n(g) 
nontrivial one dimensional representation，八仇 isQ(Po，ι。）ーinvariant.

By Lemma 6.10 the following is a corollary to [Kempf78]. 

Theorem 8.2. Let （九，lo)beαpolarised stable quasi-abeli仰 Uαrietyover仰 αlge-
braically closed field k. Then the Hilbert points of （九？ι。） α1・estableザthechαrac-
teristic of k and deg 乙0 are cop1・ime aηdザ乙0 is very ample. 

Proof. 9(P0, ［。） operat回 linear匂onH0（凡，ι。） keeping the Hilbert points of （九，ι。）
invariant. Since H0( P0，ι。） is an irre出 cibleQ(Po，ι。）－moduleby Lemma 6.10, 
9（凡，lo)n SL(deg（ι。）, k) is contained in no parabolic subgroup of SL( deg（ι。），k ). 

By [Kempf78, Corollary 5.1], the Hilbert points of （九，［0)are stable in the sense of 
Mumford. 口

This is enough for constructing the complete moduli of abelian varieties up to di-
mension 4 in the subsequent formulation. As we remarked in the end of the paragraph 
1.1, the Hilbert points of （九ん） is not nece岱 arilyproper stable. 

By [Kempf78] Chow-stability of the image of （九，£0)follows similarly under the 
same assumptions. 

9. MODULI 

The following definition of SQAν9,K(= SQAν；~；：：porary) will simplify SQA九in
[ Alexeev96]. 

Definition 9.1. Let H be a finite abelian group, Cfi : JI x H→r a skew symmetric 
bimultiplicative form. The pair ( H, efl) is called a sy叫山cticβniteabelian gro叩 if
eH i白 川町legenerate. If (JI, eH) be a symplectic finite abelian gro叩， thenthere 

e:cists a maximal totally isotropic subgroup ]( of JI such that H ~ ]( EB ]( and 
]( ~ Homz(K, k*). Hence in particular IHI= IKl2. 

Conversely let ]( be a finite abelian group. We set ]( := Homz(K, k*) and JI := 

H(K) = ](EB K. We define eH : JI×H→r by eu（αEBa,bEB/3) ＝α（ b）戸（α）1 where 

a,bεK，α＇J3ε］（. Then it is clear that (JI, Cfi) is a syr:叩 lecticfinite abelian group. 
We denote eH by f,K when it is necessary to emphasize dependence on K. 

Let Q(K) be a group defii <l by the group law 

（α，z，α）・（b，叫 /3)= （αbj3(z), zw，α/3) 
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where a, bξk,z,wEKand α，f3ξK. It is clear that Q(K) contains J( as a level 
subgroupヲ thatis, as a maximal isotropic subgroup. 

Suppose that the characteristic of k and the order jKj of／｛ αre coprime. 

Definition 9.2. A triple (P，ικ） is called a polarised stable ~uasi-abelian variety 
over k with level struεture fピifthe following conditions are satisified 

(1) (P,£) is a polarised stable quasi-abelian variety over k 
(2) Let Q(P, .C) be the total Heisenberg group of (P, .C) with Weil pairing ec. Then 

thεtriple (Q(P，乙），K,ec) is isomorplおお（Q(K),](, fK ). 

The condition (2) implies that Iκ｜口 degL.
Given a noetherian k-scheme T, ( P，ι3ょ：） is called a polarised stable q凶 si-abelian

scheme of relative dimension g over T with level structure ]( if 

(1) ( P, .C) is a fiat proper 'I℃scheme with a relatively ample invertible sheaf ι3 
(2）瓦 is＆食品会nite詑 ducedsubgroup scheme of A叫r(P,.C)
(3) for any geometric point s of 1', (P., .C.) is a pola巾吋 stablequasi-abelian 

variety of dimension g over k( s) with level山 uctureんど I<.

The condition (3) implies 

(9（九，.c.），κ.，eん）ご (Q（κ.），仏，tん） α(Q(lイ），K,fK)

We define a functor S♀Aν凶（＝ SQAν；~~por副·y) as follows. For any noetherian 

k scheme T, we set 

SQAV9,K(T) = the set of polarised stable quasi-abelian T-schemes 

(P，ικ） of relative di附 nsiong with level町山tureK 

modulo T-isom with K forgotten. 

As the readers may see, the part mod11lo T-isom withκfor gotten is unnatural in 
the definition of the functor, which should be replaced by modulo T-isom. Therefore 
the formulation here might be changed in the near future. 

It follows from Theorem 8.2 and Mumford [MFK94]. 

Theorem 9.3. Let k be mαlgebraically closed field. Suppose that the characteristic 

of k and the order of K is coprimeαnd thatαny elementary divisor of]( is at least 
3 in the strong seηse 15. Then the functor S QAνg,K is COαrsely represented bνα 

projecti惚 schemeover k if g ~ミ，1.

Projectivity (and properness) follows from [MFK9'1] and「rheorem0.3 I山日 the
definition by Lemma 6.8. 

15See Theorem 0.6 
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Let (00 be a primitive e9 th root of unity. By modifying the above functor into the 

over-Z［（中l/jKj]-version16 , and by applying (Seshadri77, Theorems 2,3,4,pp.263叩

269] we infer 色、omthe above theorem 

Theorem 9.4. Suppose that g ~ 4 and any elementary divisor of]( isαt least 3 in 
the strong sense. Then the functor SQAνg,K is CO“rsely represented by a projective 

scheme over Z[(09, 1/jKj]. 
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