O00000000000O0
19960 0 pp.63-73

DOES CHOW GROUP HAVE A SPACE STRUCTURE?
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ABSTRACT. Let S be a surface with p,(S) > 0. In 1969, Mumford
proved that its Chow group C'H..S is not “finite dimensional”, so it
is not representable by an algebraic variety. In this article, we give
some evidence that Chow group might have some space structure,
motivating us to try to define a new notion of “Spaces”.
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1. A BRIEF HISTORY OF SPACE

1. Grothendieck defined the notion of schemes, which has been the

standard notion of “spaces” for algebraic geometers for 30 years.
The notion of schemes should be clear to the reader of this article.

. M. Artin and Knutson [11] defined the notion of algebraic spaces.

This notion is based on Yoneda’s Lemma: Let C be a category,
and consider the covariant functor from C to Hom(C?, Sets) (the
category of contravariant functors from C to Sets) which sends
X to Hom(?, X). Then Yoneda’s Lemma says that this functor
is fully faithful, namely, any category C can be embedded in the
category Hom(C, Sets) as a subcategory. In particular, it im-
plies that Hom(C?, Sets) is the universal ambient category which
contains C as a subcategory.

So the idea of Artin and Knutson is to find “good objects”
in this ambient category, which looks like spaces (for example,
covered by schemes étale or flat locally) . In this way, they could
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2 SHUN-ICHI KIMURA

represent Moishezon spaces which could not be represented by
schemes. '

3. Deligne and Mumford [3] proposed a different idea, namely the no-
tion of algebraic stacks. They tried to solve the moduli problem
(in particular, the moduli of stable curves, but their idea works
for just any moduli) . Let M be the moduli of something (e.g.,
stalbe curves, stable vector bundles, etc.), then we expect that
the set Hom(X, M) corresponds one-to-one to the family of that
something, parametrized by X. They observed that the family of
stable curves, for example, is not just a set, but could be under-
stood better as a groupoid (a set with an extra structure, namely,
some elements may have automorphisms). So they replaced the
Sets in the definition of algebraic spaces with Groupoids, to rep-
resent the moduli problem by space-like objects.

4. In 1969, Mumford found an evidence that Chow group cannot
have any space structure like 1 ~ 3 above in general (he called
the phenomenon “infinite dimensionality” of the Chow group).
For example, when S is a surface with p,(S) > 0, then its Chow
group does not have a space structure, as we will see later.

The goal of this article is to give an evidence that Chow groups still
behave like spaces, and convince the reader that we need to extend the
notion of spaces to understand the Chow groups.

2. CHOW GROUP

In this article, we work over the base field C.

Definition 2.1. Let X be an algebraic variety. Its subvarieties are
closed integral subschemes of X (or the closures of scheme theoretic
points of X with reduced scheme structures).

Definition 2.2. Algebraic cycles on X are formal finite linear com-
binations of subvarieties of X (with Q-coefficients or Z-coefficients),
like o = > n;[Vi]. When all V;’s are d-dimensional, a is called d-cycle.
The algebraic cycles on X form an additive group, and we denote it by
Z.(X), or for d-cycles, Z4(X).

One can parametrize algebraic cycles by algebraic varieties. For ex-
ample, when V is a closed subscheme of X x T and assume that the
morphism V' — T is flat. Then foreacht € T, V; :=VN(X x{t}) C X
determines an algebraic cycle (counting the multiplicities). Hilbert
schemes are universal among such parametrizations. Chow varieties
are also known to parametrize algebraic cycles.
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Definition 2.3. When there is a family of algebraic cycles on X,
parametrized by P!, then we identify any two algebraic cycles in the
family. (This is an analogy of homotopy in algebraic topology, where
we identify two objects parametrized by the closed interval I = [0,1].)
We generate equivalence relation by this indentification, and call it ra-
tional equivalence. The group of algebraic cycles on X modulo rational
equivalence is called Chow group, and denoted by CH.X. We denote
the d-cycles part by CH X .

Remark 2.4. Each subvariety of an algebraci variety is topological
cycle, so algebraic cycles determine topological cycles. If two algebraic
cycles are rationally equivalent, then they are parametrized by P!, so
they are homotopic, hence homologically equivalent. Therefore, there
is a natural map CHy(X) — Hjq(X), which is called the cycle map.
Cylce maps are not surjective nor injective in general. When X is
connected, Ho(X) = Z, and for a € CHy(X), deg(a) is its image in Z
by the cycle map.

Example 2.5. Let C be an algebraic curve. Then Theorem of Abel-

Jacobi says that there is a morphism S"C — J(C), where S*C =
n—times

CxCx--xC/6, is the n-th symmetric product of C, and J(C)

the Jacobian variety of C'. Moreover, when n is large enough, then

S™C is a projective bundle over J(C).

Because there are no rational curves on Abelian varieties, two points
on S™C can be connected by a (chain of) rational curves if and only if
they have the same image in J(C'). Using this fact, one can show that
CHo(C) ~Z @ J(C),and J(C) is exactly the degree 0 part in C Ho(C).

When X is an algebraic surface with p,(X) > 0, in 1969 in [14],
Mumford proved that C' Ho( X) is “infinite dimensional” in the following
sense: Consider the set theoretic map S"X — CHy(X), and assume
that W C S™X is mapped to one point in CHy(X), then Mumford
proved that dim(W) < n. If CHyX is representable by an algebraic
variety, then it implies that dim CHo(X) > n (for all n!), hence the
naming “infinite dimensional”.

Remark 2.6. Conversely, when X is an algebraic surface with p,(X) =
0, then Bloch conjectures that C Ho(X) ~ Z® Alb(X). In general, there

is a canonical surjection C' Ho(X) — Z & Alb(X). The kernel of this
map is called the Albanese Kernel.

Side Story 2.7. In some cases, Bloch’s conjecture is verified. In par-
ticular, Minase-Mizukami [12] found an example of an algebraic sur-

face X of general type with p,(X) =0 and CHy(X) = Z. Roughly, this
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means that any two points in the n-th symmetric product S™X are con-
nected by a chain of rational curves in the symmetric product. On the
other hand, when X is a surface of general type, its symmetric products
are also of general type (by Riemann-Roch), hence rational curves do
not cover S™X. So there is no rational curve through a generic point.

What’s going on?

The answer is this: Fiz a point P € X, which determines an tmbed-
ding S™X — S™' X by “addition” of the point P. [terating this imbed-
ding, for any n < N, we have an imbedding S"X — SN X. When N is
large enough compared to n, then any two points in S™X are connected
by a chain of rational curves in SNX. In other words, consider S X
as the inductive limit of the symmetric products, then S®X behaves
like a unirational variety.

So Bloch’s conjecture implies that the geometric genus p, X of a sur-
face X controlls the “Kodaira dimension” of S*X.

Let us look closely the behavior of C'HyX when X is an algebraic
surface with p,(X) > 0. Let X = C x D, where C and D are algebraic
curves with g(C) > 0, g(D) > 0, hence py(X) = ¢(C)g(D) > 0, so by
Mumford’s result, C Hy(X) is not representable by a finite dimensional
variety. In this case, there is a canonical morphism C HyC ®7zC HoD —
CHoX which sends [P] ® [Q] — [(P,Q)]. It is surjective, because
C Ho(C x D) is generated by [(P,Q)]-

Now we know that C Ho(C') ~ Z$J(C'), we can decompose the tensor
product (Z&J(C))@z(ZHJ (D)) = ZH(J(C)BJ(D))S(J(C)®zJ(D)).

The first term Z maps isomorphically to the degree part Z in C' Ho(.X),
and the second term also maps isomorphically to Alb(X). Because
these two terms are finite dimensional, Mumford’s result implies that
the image of J(C)®zJ(D) is not 0. But one can observe that J(C')®z
J(D) is totally chaos. For example, pick a generic point P € J(C) and
fix it, then the image of J(D) ~ {P} ® J(D) in C Hp(X) is not 0. But
when @) € J(D) is a torsion point, then P ® Q = 0 in J(C) ®@z J(D).
The induced topology on J(C')®zJ(D) is the trivial topology (the only
open sets are ¢ and the whole set).

So we cannot expect any classical topology on CHypX, even for
generic point, hence it cannot be represented by schemes, algebraic
spaces, nor algebraic stacks.

The rest of this article is devoted to show that there might be some
space structure on C Ho(X).
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3. CORRESPONDENCES

There are many homology theories for smooth projective algebraic
varieties. For example, Chow groups, usual homology groups, K-theory,
étale homology theory, etc. All these homology theories have common
properties. For example, they are functorial; when f : X — Y is a
morphism, then we have morphisms f* and f, for the homology theo-
ries. Also when o € X is an algebraic cycle, then we have intersection
product operation a-?.

Let X and Y be varieties, and f : X — Y an morphism, 7x :
XxY — X and my : X XY — Y the projections, then for the homology
theories above, we can recover f* and f. by f*7 = mx.([I's]- 73 7), and
fe=myu([Lf] - m%7), where [I'f] is the graph subvariety of f in X x Y.

From the interpretation above, we realize that if we replace [[';] with
any algebraic cycle o € X x Y, we still have some morphism «. and
o*. This leads to the following definition.

Definition 3.1. Define correspondence from X toY to be an algebraic
cycle a € CH. (X xY). We have morphisms a. and o* for the ho-
mology theories, whenever they have push-forwards and pull-backs for
smooth projective morphisms and intersection products with algebraic

cycles. We denote itbya: X FY.

Remark 3.2. Samuel’s theorem [17] says that rational equivalence is
the finest equivalence relation in algebraic cycles, which admits pull-
backs, push-forwards, and the intersection products. This justifies our
choice that a is taken from the Chow group rather than the group of
algebraic cycles.

Definition 3.3. For correspondences a : X FY and B : Y + Z, we
define their composition Boa : X & Z to be mx z.(mxya -7y z0), where
Txy,Txz and Ty z are the projections from X x Y x Z.

Remark 3.4. It is easy to check that (Boa). = fuoa, and (Boa)* =
o* o 3%

Correspondences are generalizations of morphisms between smooth
projective varieties, so we have a category whose objects are smooth
projective varieties and whose morphisms are correspondences. In this
category, the identity map is [Ax] € CH.(X x X).

4. MOTIVES

We need to introduce the notion of motives. In the rest of this paper,
all the Chow group have rational coefficients.
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Conjecture 4.1. (Grothendieck-Murre) Let X be an n-dimensional
projective complex manifold. Consider the cycle map

CHa(X x X) = Han(X x X,Q) = P Hi(X,Q) ® Hon—i(X, Q)

and look at the image of the diagonal subvariety [Ax], and see how
it decomposes. In Hyn(X x X,Q), [Ax] = a0+ ag + -+ + a2, where
a; € Hi(X,Q) ® Hyn—i(X,Q). Grothendieck [5] conjectured that all
these a;’s are algebraic cycles, namely there are algebraic cycles a; €
CH,(X x X) such that they are mapped to a; by the cycle map.

Murre [15] conjectured that these preimages a; can be taken so that

a;0a; = 9 (Z ?é])’
a; (z = ]).

Murre’s conjecture implies that id = [Ax]. = (ao)« + (a1)« + -+ +
(azn)«, SO it gives a “canonical” decomposition for any homology the-
ory, corresponding to the dimension decomposition of the topological
homology group.

Example 4.2. When dim X = 1, Murre’s conjecture holds: [Ax]| =
[P x X]+ ([Ax] =[P x X]—[X x P])+[X x P], where P is any closed
point on X. This decomposition gives the decomposition of the Chow
group into

CH(X)=Z® J(X)® CHi(X)

where the first two terms are decomposition of C Ho(X).

The correspondences é; gives “a direct summand” of the variety in
terms of “universal” homology theory.

Definition 4.3. Define a motive to be a pair (X,a) where X is a
smooth projective variety, and o € CH.(X x X) such that a o a = «
as correspondences.

In this definition, the condition a o @ = a roughly means that o is a
projector to a “direct summand” of X. Hence the motive (X, ) is a

“slice” of X.

Definition 4.4. For motives (X, @) and (Y, 3), we define their direct
sum and tensor product by

(X,a)® (V,8):=(X1Y,all )

and
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(X,0) ®(Y,5) :=(X xY,a x B).

Definition 4.5. Morphism between motives f : (X,a) — (Y,0) is a
correspondence f : X b Y which satisfies f = foa = o f. When
M = (X, a) is a motive, then its identity morphism is o : X F X.

Definition 4.6. When X is a smooth projective variety, then the mo-
tive of X is defined to be Mx := (X, [Ax]) (the “whole slice”). When
f: X =Y is a morphism of smooth projective varieties, then it induces

[f] : MX - My.

Definition 4.7. When X is a curve, the motives (X,[X x P|),
(X,[Ax] =[P x X]—[X x P]) and (X, [P x X]) are denoted as h°(X),
hY(X) and h*(X) respectively.

Definition 4.8. Let M = (X,a) be a motive, and H be a homology
theory, then we define the homology of M by H(M) := a.(H(X)).

Example 4.9. Let C be a curve, and h‘(C) be as in Definition 4.6.
Then H.(h'(C)) = H;(X) for the topological homology. Also
Z C CH,(C) (t=0)
CH.(R(X)) =4 J(C) C CHy(C) (i=1)
Z C CHo(C) (1=2)

5. BIVARIANT SPACE

Some motives behave like the motives of some varieties. We define
such motives as “bivariant spaces”, defined as follows.

Definition 5.1. Bivariant Space is a motive M with the morphisms
i) the diagonal map App : M - M Q@ M
it) the structure map mar : M — M,
which makes the following diagrams commute.

M 2y Mo M
(1) z‘dMl lz’dmw

M— M
M 22, Mo M
M— M
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M AM, MeM

(3) AMl lidM®AM

MM —— MMM
Ap®idy

Example 5.2. When X is a smooth projective variety, then (X, [Ax])
has a canonical bivariant space structure.

Definition 5.3. Let f: M — N be a morphism of motives. When M
and N are bivariant spaces, then f is a morphism of bivariant spaces
when the following diagrams commute.

M -1y N

(4) ”TM‘L J{“N

Mpt Mpt

g Wl L

MM — NN
fof

Example 5.4. When f: X — Y is a morphism of smooth projective
varieties, then [f] : Mx — My is a morphism of bivariant spaces.
In general, morphisms of bivariant spaces between motives of smooth
varieties do not always come from morphisms of schemes [8], [9].

Theorem 5.5. Let X be a smooth projective variety, and A an Abelian
variety. Then we have

Hom BivarianfSpaces(A’ny MA) ~ Hom Varéeties()(» A)/TOT‘SiOTl

where torsion ts the group of the constant morphisms to the torsion
points.

The proof is in [8]. Rough idea goes like this: Let o : Mx — My
be a morphism of bivariant spaces. Consider a € CH.(X x A) as
an element of the Chow group, and consider X x A to be a relative
Abelian scheme over X. Then we can define the Pontrjagin products
in CH.(X x A) by the group scheme structure, and can define

log(a) ::(a_1)_(a;1) _*_((151)3’_(01;1)

A70 JIo—
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where the power is defined by the Pontrjagin products. Then the
diagram (4) implies that all but finite terms vanish (hence this infinite
sum makes sense), and the diagram (5) implies that 2x x 4« log(a) = 2¢,
where 2xy4 = 1dx x 24 : (X x A) = (X x A) the multiplication by
2. Then Mukai-Beauville’s Fourier transform [13] and [1] sends log(c)
to F(log(a)), which is a class of topologically trivial line bundle on
X x A, which determines a morphism from X to A.

We have to divide it by the torsion, because we tensor the Chow
group with Q.

Theorem 5.6. (Shermenev [18]) Let C' be a curve, and take the motive
h'(C) as in Definition 4.7. Then the motive of the Jacobian variety is
isomorphic to the symmetric algebra of h*(C), namely we have

MJ(C) ~ Sym*hl(C')
Recall that CH.(h*(C)) = J(C) by Example 4.9. We can recover

the space structure of its Chow group (as an algebraic space, extending
the category of smooth projecitve varieties) by Theorems 5.5 and 5.6.

6. REPRESENTING THE SPACE

Now, let us come back to the case X = C x D where C and D
are smooth projective curves of positive genera, and consider the mo-
tive M = h'(C) ® h'(D). We assume that there are no non-trivial
morphisms between the Jacobians J(C') and J(D), so that CH.(M)
is exactly the Albanese Kernel in C'Ho(X). This part is non-zero and
“infinite dimensional” by Mumford’s theorem.

Proposition 6.1. Let us consider the wedge product of the motive M.
My (k =4g(C)g(D))

kAL ~
Then we have \* M {0 (k > 49(C)g(D))

Proof. Shermenev’s result implies that

My (i =2g(C))
0 (i > 2¢(C))
and similarly for D. From this, one can prove the proposition mimick-

ing the proof that the tensor product of two finite dimensional vector
spaces is again finite dimensional. For details, see {7] O

Sym'h'(C) = {

On the other hand, Sym*M # 0 for any large k, hence in order to
mimic the case of curves, it is natural to use the exterior algebra rather
than the symmetric algebra.
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Proposition 6.2. The ezterior algebra \* M has a structure of bi-
variant space. '

Proof. Let M be the dual motive of M (which turns out to be isomor-
phic to M). Then we have the canonical morphism A' M @ A’ M —
A7’ M, whose dual gives A\* M — Ditir A'M ® N\’ M, which de-
termines the diagonal map A"M — A" M ® A" M. Also the isomor-
phism /\49(0)9(0) M ~ M,; determines my. One can easily check the
axioms. O

We hope that C H.(M) is a space, and the bivariant space A" M at
least approximates the space structure. We have some evidence:

Theorem 6.3. 1. We have a canonical isomorphism

Hom BivariantSpace(Mpt, /\ M) - CH*(M)

Hence, when'Y is a smooth projective variety, for a pointy € Y
and a morphism of bivariant spaces
f € HomBiuariantSpace(MY7/\* M)J f(y) is deﬁnEd as the element
of CH,(M) which corresponds to the composition M,y — My —
A" M.

2. For f € HomBivariantSpace(MYa /\l‘t M)) f =0 lf and Only sz(y) =
0 for all the closed pointsy € Y.

3. When f € Hompiariantspace(My, N\” M), there ezist two mor-
phisms F,G : Y — S™(X), and a birational map Y — Y such
that for anyy €Y, take any preimage §j € Y, then F(§)—G(§) =

Conversely, when F,G : Y — S™(X) are morphisms, with Y —
Y birational, and if F(§) — G(§) as above is always contained
in CH.(M), then there exists unique f : Y — bigwedge*M as
bivariant spaces such that F(3) — G(g) = f(y).

Proof. For the most part, we can simply mimic the proof of Theorem
5.5. In this case, we do not have to divide by the torsion, because
Roitman’s theorem [16] implies that there are no torsion in C H.(M).
For a € Hompivariantspace( My, \* M), the Fourier transform of log(a)
determines an element 3 € CH*(Y x C x D), such that 8 = Y n;[V]]
with each V; generically flat over Y. This information determines two
rational maps (gathering the positive coefficient part and the negative
coefficient part) F,G : Y — S™X. For details, see [10] 0O
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