
DOESCHOW GROUP HAVE A SPACE STRUCTURE?

SHUN-ICHI KIMURA

ABsTRAcT. Let S be a surface with pg(S) År O. In 1969, Mumford
proved that its Chow group CH.S is Rot "finite dimensional" , so it
is Ret represexxtable by aR algebraic variety. in thl$ artiele, we give

some evide#ce tkat Ckow grogp mlgh# kave some space strgcture,
motiv&#ing "s to try to defifie a Revv Rotioit of "Spaces".
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1. A BRIEF HISTORY OF SPACE

1. Grothendieck defined the notion of scheme$, which has been the
  standard notion of "spaces" for algebraic geometers for 30 years,
  The Rotioit of schemes shou}d be clear to the reader of this article.
2. M. AytlR aRd KiraLsox [lll defiged the Ro{ion of algebralc spaces.

  [l]kls RotioR is based oR Yelleda'$ Lercma: Let C be a category,
  and consider the covarlant fullctor from e to Kem(eOP,Sets) (the
  category of contravariant functors from e to Sets) which sends
  X to Hom(?,X). Then Yoneda's Lemrna says that this functor
  is fuIIy faithful, mamely, any category e can be embedded in the
  category Hom(C"P,Sets) as a subcategory. In particular, it im-
  plies that Hom(C"P, Sets) is the universal ambient category which
  contains e as a subcategory.
    So the idea of Artin aRd KRgtsoB l$ to find "good objects"
  IR this amblent categery, which loeks like spftces (fgr example,
  cevered by schemes 6tale or ftat locally). k} this way, they cou}d

1991 Mathematics Stibjeet Classification.

                            1
14C.

- 63-

代数幾何学シンポジウム記録

1996年度   pp.63-73



2 SHUN-ICHI KIMURA 

represent Moishezon spaces which could not be represented by 
schemes. 

3. Deligne and Mumford [3] proposed a different idea, namely then 
tion of algebraic stacks. They tried to solve the moduli problem 
(in particular, the moduli of stable curves, but their idea works 
for just any moduli) . Let M be the moduli of something (e.g., 
stalbe curves, stable vector bundlesヲ etc.),then we expect that 
the set Hom(X, M) corresponds one-to-one to the family of that 
something, parametrized by X. They observed that the family of 
stable curves, for example, is not just a set, but could be under-
stood better as a groupoid (a set with an extra structure, namely, 
some elements may have automorphisms). So they replaced the 
Sets in the definition of algebraic spaces with (iroupoids, to rep-
resent the moduli problem by space-like objects. 

4. In 1969, Mumford found an evidence that Chow group cannot 
have any space structure like 1～3 above in general (he called 
the phenomenon “infinite dimensionality”of the Chow group). 
For example, when S is a surface with p9 ( S) > 0, then its Chow 
group does not have a space structure, as we will see later. 

The goal of this article is to give an evidence that Chow groups still 
behave like spaces, and convince the reader that we need to extend the 
notion of spaces to understand the Chow groups. 

2. CHOW GROUP 

In this article, we work over the base field C. 

Definition 2.1. Let X beαnαlgebraic variety. Its subvarietiesαre 

closed integral subschemes of X (or the closures of scheme theoretic 

points of X with reduced scheme structures). 

Definition 2.2. Algebraic cycles on Xαre formαl finite lineαr com-
binations of sub叩 rietiesof X 仰ithQ-coefficients or Z-coei芦C

like α ＝~二 ni[Vi］.陥Eηαll Vi包αT、Ed-diηnen 
Theαlgebr、αicCνcles on X form αηαdditiりEgroupJαnd we denote it bν 
Z*(X)J or for d-cyclesJ Zd(X). 

One can parametrize algebraic cycles by algebraic varieties. For ex-
ample, when V is a closed subscheme of X ×T and assume that the 
morphism V→T is flat. Then for each tεTぅ院：＝ Vn(X×｛t})c x 
determines an algebraic cycle (counting the multiplicities). Hilbert 
schemes are universal among such parametrizations. Chow varieties 
are also known to parametrize algebraic cycles. 
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FINITE DIMENSIONAL CHOW GROUP 3 

Definition 2.3. 昨'henther、eisαfαmily ofαlgebraic cycles on X ! 

pα7・αmetrizedby lP'1} then we identifyαηy twoαlgebr，αic cycles in the 

family. イThisis αnαnαlogy of homotopy inαlgebraic topology} where 
we identify two objects pαrametrized by the closed inter叩 l/=[0,1).) 
Wegener，αte equivαle nee陀 lαtionby this indentz戸cation｝ αndcαll it ra-
tional equivalence. The group ofαlgebraic cycles on X modulo rationαl 
equivαfence is cαlied Chow group｝ αnd denoted by C H*X. We denote 

the d-cycles pαrt by CHdX. 

Remark 2.4. Each subvariety of an algebraci variety is topological 
cycleヲsoalgebraic cycles determine topological cycles. If two algebraic 
cycles are rationally equivalentう thenthey are parametrized by 1P'1, so 
they are homotopic, hence homologically equivalent. Therefore, there 
is a natural map C Hd(X）→H刈X),which is called the cycle map. 
Cylce maps are not surjective nor injective in general. When X is 
connected, H，。（X)= Zヲandfor αε C H0(X), deg（α） is its image in Z 
by the cycle map. 

Example 2.5. Let C be an algebraic curve. Then Theorem of Abel-
Jacobi says that there is a morphism snc→J(C）う wheresnc = 

n-times 

C×C×・・・× C/6nis the n-th symmetric product of C, and J(C) 
the Jacobian variety of C. Moreover, when n is large enough, then 
snc is a projective bundle over J(C). 

Because there are no rational curves on Abelian varieties, two points 
on snc can be connected by a (chain of) rational curves if and only if 
they have the same image in J ( C). Using this fact, one can show that 
CHo(C) ~ ZEBJ(C), and J(C) is exactly the degree 0 part in CH0(C). 

When X is an algebraic surface with p9(X) > 0, in 1969 in [14), 
Mumford proved that C H，。（X)is “infinite dimensional" in the following 
sense: Consider the set theoretic map sn X →C H0(X), and assume 
that W c Sn X is mapped to one point in C H0(X), then Mumford 
proved that dim(W）三 η. If C H0X is representable by an algebraic 
variety, then it implies that dim C H0(X）三n(for all n!), hence the 
naming “in五nitedimensional". 

Remark 2.6. Conversely, when Xis an algebraic surface with p9(X) = 

0, then Bloch conjectures that C H0(X）竺 ZEBAlb(X).In general, there 
is a canonical s吋ectionC H0(X）→ZEB Alb(X). The kernel of this 
map is called the Albanese Kernel. 

Side Story 2.7. In some Cαses, Bloch包conjectureis verz戸ed.In pαr-

ti culαr, Minase-Miz叫αmi[12) found αn exαmple ofαηαlgebr，αic sur-
fαce X of general type with p9(X) = 0αnd CH0(X) = Z. Roughly, this 
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4 SHUN-ICHI KIMURA 

means thatαny two points in the n-th sνmmetric product sn xαre con-
nected byαchαin of rationαl c包rvesin the symmetriC product. On the 

other hαnd) when Xis αsurfαce of general type) its sνmmetric products 

αreαlso of gener，αl type (by Riemαnn-Roch)) hence rationαl curves do 
not cover sn X. So therで isno rational curve through a generic point. 

昨7hαtタsgoing on? 

Theαnswer is this: Fixαpoint Pε X) which determinesαn imbed-
ding sn x→5n+1x 旬、ddition”。fthe point P. Iterating this imbed-

ding) for αny n < N) we hαυtαn imbedding sn x→SNX. W百enN is 
lαrge enough compα問 dto n) then any two points in sn xαre connected 
byαchαm of rationαl curりesin SN X. In other words) consider S00 X 

αs the inducti開 limitof the symmetric productsァ thenS00 X behαves 
likeαunir，αti onαl uαriety. 

So Bloch也conjectureimplies that the geometric genus p9X ofαsur-

fαce X contrails the“Kodαira dimension”。fS00X. 

Let us look closely the behavior of C H0X when X is an algebraic 
surface with p9(X) > 0. Let X = C×D, where C and D are algebraic 
curves with g( C) > 0ラ g(D)> 0, hence p9(X) = g(C)g(D) > 0, so by 
Mumfordうsrest出う CH0(X) is not representable by a finite dimensional 
variety. In this case, there is a canonical morphism C HoC RzC H0D→ 
CHoX which sends [P] R [Q］ト→［（P,Q)]. It is surjective, because 
CHo(C×D) is generated by [(PラQ)].

Now we know that C H0( C) ~ ZE9J( C）ぅ wecan decompose the tensor 
product (ZEBJ(C))Rz(ZEBJ(D)) = ZEB(J(C)E9J(D))EB(J(C)RzJ(D)). 

The first term Z maps isomorphically to the degree part Zin C H0(X), 

and the second term also maps isomorphically to Alb(X). Because 
these two terms are finite dimensional, Mumford、sresult implies that 
the image of J( C）③zJ(D) is not 0. But one can observe that J(C)Rz 
J(D) is totally chaos. For exampleぅpicka generic point P E J( C) and 
五xitヲthenthe image of J ( D）竺｛P}R J(D) in CH0(X) is not 0. But 
when Q E J(D) is a torsion point, then P R Q = 0 in J(C) Rz J(D). 
The induced topology on J( C）③zJ(D) is the trivial topology (the 01向
open sets are cf> and the whole set). 

So we cannot expect any classical topology on C H0Xう evenfor 
generic point, hence it cannot be represented by schemes, algebraic 
spacesう noralgebraic stacks. 

The rest of this article is devoted to show that there might be some 
space structure on C H0(X). 
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FINITE DIMENSIONAL CHOW GROUP 5 

3. CORRESPONDENCES 

There are many homology theories for smooth projective algebraic 

varieties. For exampleぅChowgroups, usual homology groupsヲK-theoryヲ

etale homology theoryヲetc.All these homology theories have common 
properties. For exampleう theyare functorial; when f : X →Y is a 
morphism, then we have morphisms J* and f * for the homology theo-
ries. Also when αεX is an algebraic cycle, then we have intersection 
product operation α・？.

Let X and Y be varietiesヲ andf : X →Y an morphismう πx:

X×Y→X and 7ry : X×Y→Y the projectionsうthenfor the homology 

theories above, we can recover J* and f * by f勺＝ πx*([f1] ・π予？）， and 
f* ＝πy*([r 1l ・η？）， where [f 1] is the graph s山 varietyof f in X ×Y. 

From the interpretation aboveヲwerealize that if we replace [ff] with 
any algebraic cycle αεX×Y, we still have some morphism仇 and
α＊. This leads to the following definition. 

Definition 3.1. Define correspondence from X to Y to hαnαlgebraic 

cycle αE  CH*(X×Y). We hαve morphisms仇 αnd♂ forthe ho国

mology theories1 whenever they hαve push-f orwαrdsαnd pull-bαcks for 
smooth projective morphismsαnd intersection products with αlgebriαic 
cycles. We denote it byα：X トY.

Remark 3.2. Samuel’s theorem [17] says that rational equivalence is 
the五nestequivalence relation in algebraic cyclesヲwhichadmits pull-
backsラ push-forwards,and the intersection products. This justi五esour 
choice thatαis taken from the Chow group rather than the group of 
algebraic cycles. 

Definition 3.3. For correspondencesα：X トYαnd(3 : Yトz!we 

define their composition (3 oα ：X トZto beπxz＊（巧yα ・1l"yz{3),wher、E

πX Yぅ作xzαηdπYZ  αre the projections from X ×Y×z. 

Remark 3.4. It is e剖 yto check that ((3 oα）本二品0仇 and((3 oα）＊＝ 
a* o (3*. 

Correspondences are generalizations of morphisms between smooth 
projective varieties, so we have a category whose objects are smooth 
projective varieties and whose morphisms are correspondences. In this 
category, the identity map is ［ムx］εCH*(X×X).

4. MOTIVES 

We need to introduce the notion of motives. In the rest of this paper, 
all the Chow group have rational coe伍cients.
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6 SHUN-ICHI KIMURA 

Conjecture 4.1. (Grothe叫ieck-Mi附 e)Let X bε an n-dimensional 

projective complex manifold. Consider the cyclεmap 

CHn(X×X）→ H2n(X×X,Q) =EB民（X,Q) 0 H2n-i(X, Q) 

αnd look αt the imαge of the diαgonαl subvariety ［ムxLαndsee how 

it decomposes. In H2n(X×X,Q), ［ムx]= α。＋ αq＋・・・＋ α2nwhere 
αzεHi(X,Q) 0 H2n-i(X,Q). Grothendieck [5] conjectured thαtαll 
theseαi'sαreαlgebraic cycles, nαmely thereαreαlgebraic cycles iii E 
CHn(X×X) such that theyαremαpped toαt by the cycle mαp. 

Murre [15] conjectured that these preimαges iii can be tαken so that 

ん0ii - ~ 0 ( i # j）ヲ
j-lai (i=j). 

Mur宅T

（α2n）車F so it givesα“cαnonicαl" decomposition for αny homology the-
ory, corresponding to the dimension decomposition of the topologicαl 
homology group. 

Example 4.2. When dimX = 1, Murre’s conjecture holds: ［ムx]= 
[P×X] ＋（［ムx]-[P×X]-[X×P])+ [X×P], where Pis any closed 
point on X. This decomposition gives the decomposition of the Chow 
group mto 

CH*(X) =ZEB J(X) EB CH1(X) 

where the first two terms are decomposition of C H0(X). 

The correspondences iii gives "a direct summand" of the variety in 
terms of “universal”homology theory. 

Definition 4.3. Defineαmo ti町 tobeαpαir (Xヲα）where X isα 
smooth projective凶 riety，αndαECH*(X×X) such thatαoα ＝α 
αs correspondences. 

In this definition, the condition αoα ＝αroughly means that αis a 
projector to a "direct summand" of X. Hence the motive (X，α） is a 
“slice”of X. 

Definition 4.4. For motives (X，α）α吋（Y,/3), we define their direct 
sumαnd tensor product by 

(X，α） EB (Y, /3）：二（XIIY，αE /3) 
αnd 
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FINITE DIMENSIONAL CHOW GROUP 7 

(Xぅα）@ (Y,;3) := (X×Y，α×;3). 

Definition 4.5. Morphism between motives f : (Xぅα）→ （Y,;3) isα 
correspondence f : X トY which sαtisfies f二 foα ＝／） of. When 
M=(X，α） isαmotive, then its identity morphism isα：Xトx.
Definition 4.6. lVhen X is αsmooth projective variety, then the mo-
tive of X is defined to be Mx：二 （Xヲ［ムx])(the "whole sliceつ.When 
f:X→Y isαmorphism of smooth projective vα門eties,then it induces 

[!]: Mx→My. 

Definition 4. 7. 間 enXisα仰向e,the m伽 es(X, [X×P]), 
(X, ［ムx]-[P×X]-[X×P］） αば （X,[P×X］） αredenoted αs h0(X), 
h1(X）αnd h2(X）問spectively.

Definition 4.8. Let M = (Xうα）beαmotiv 
theo旬 then附 deft附 thehomologνof M by H(M) ：＝弘（H(X)).

Example 4.9. Let C be a curve, and hi( C) be as in Definition 4.6. 
Then H*(hi(C)) ＝民（X)for the topological homology. Also 

[ZcCH1(C) (i=O) 

CH*(hi(X)) = { J(C) c CH1(C) (i = 1) 
tzc en。（C) (i=2) 

5. BIVARIANT SPACE 

Some motives behave like the motives of some varieties. We define 
such motives as“bivariant spaces”う de五nedas follows. 

Definition 5.1. Bivariant Space isαmotive M with the morphisms 
りthediαgonal mαpムM:M→M@M
ii) the structure mαpπM:M→Mpt 
which mαkes the following diαgrams commute. 

、、‘，，，y

tEA 
J’aE‘、～

M i旦＋ M@M  

M=  M 

M~旦＋ M@M  

M=  M 

(2) 

n
3
 

no 
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M ~ M&>A1 

(3) 
1
3
1
1
V
 

M
 

A
 

M
 

ム③
 

M
 

，d
 

i
l
l－
↓
 

M&JM －…一一→ M &JMRM 
ムM ②idM

Example 5.2. When Xis a smooth projective variety, then (Xヲ［~x])
has a canonical bivariant space structure. 

Definition 5.3. Let f : M →N be a morphism of motives.ザhenM 

and Nαre bivαT叩ntspαces) then f isαmorphfr;m of bivαriant spαces 
when the following diagrαms commute. 

(5) 

M ＿＿！＿→N 

Mptニ＝ Mpt

M 一一f一一＋ N 

Jlrf 0 M 一一→ N&JN
fRf 

(4) 

Example 5.4. When f: X→Y is a morphism of smooth projective 
varietiesぅ then[!] : Mx→My is a morphism of bivariant spaces. 
In general, morphisms of bivariant spaces between motives of smooth 
varieties do not alway日comefrom morphisms of schemes [8］ヲ［9].

Theorem 5.5. Let X beαsmooth projective variety) and A an Abelian 
uαriety. Theη we hαve 

狂omBivarian均 aces(Jlrfx ヲ MA）~ Hom Varieties(X, A)/Torsion 

wherεtorsion is the group of the constant mor" hisms to the torsion 
points. 

The proof is in [8］.註.oughidea goes like this: Let α：Mx→MA 
be a morphism of bivariant spaces. Consider αι CH峨（X ×A)as 
an element of the Chow group, and consider X ×A to be a relative 
Abelian scheme over X. Then we can de五nethe Pontrjagin products 
in CH*(X×A) by the group scheme structure, and can define 

（α…1 )2 （α1  )3 （α－ 1)4 
log（α）：＝（α－ 1）一一一一一＋一一一一一一一一一十・・・

2 3 4 
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FINITE DIMENSIONAL CHO、VGROUP 9 

where the power is de自nedby the Pontrjagin products. Then the 
diagram ( 4) implies that all but finite terms vanish (hence this infinite 

sum makes sen吋ヲ andthe diagram (5) implies that 2xxh log（α）＝ 2α， 
where 2xxA二 idx×2A:(X×A）→（X ×A) the multiplication by 
2. Then Mukai-Beauville's Fourier transform [13] and [1] sends log（α） 
to F(log（α））ヲ whichis a class of topologically trivial line bundle on 

X ×A, which determines a morphism from X to A. 
We have to divide it by the torsion, because we tensor the Chow 

group with Q. 

Theorem 5.6. (Sherrr 
h1(C）αS in Definition 4-7. Then the motive of the Jαco biαn叩 rietyis 
isomorphic to the symmetricαlgebra of h1(C), namely間 hαve

MJ(C) ~ Sym市i(C).

Recall that CH*(h1(C)) = J(C) by Example 4.9. We can recover 
the space structure of its Chow group (as an algebraic spaceぅextending
the category of smooth projecitve varieties) by Theorems 5.5 and 5.6. 

6. REPRESENTING THE SPACE 

Now, let us come back to the case X = C ×D where C and D 
are smooth projective curves of positive generaう andconsider the mo-
tive M = h1( C) @ h1(D). We assume that there are no non-trivial 

morphisms between the Jacobians J(C) and J(D）う sothat CH*(M) 
is exactly the Albanese Kernel in CH0(X). This part is non-zero and 
"in白iitedimensional門 byMumfordうstheorem. 

Proposition 6.1. Let us consider the wedge product of the motive M. 

Then we have /¥k M ~ J Mpt (k = 49(C)g(D)) 
ハ（0 (k > 4g(C)g(D)) 

Proof. Shermenev’s result implies that 

J M t ( i = 2g( C)) 
Symih1(C) = < 

( ( i > 2g( C)) 

and similarly for D. From this, one can prove the proposition mimick-
ing the proof that the tensor product of two finite dimensional vector 
spaces is again finite dimensional. For details，間［7］ 口

On the other handう Symk凡1-/= 0 for any large k, hence in order to 
mimic the case of curves, it is natural to use the exterior algebra rather 
than the symmetric algebra. 
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10 SHUN-ICHI KIMURA 

Proposition 6.2. The exteriorαlgebra八＊M hαsα structure of bi-

vαriαnt spαce. 

Proof. Let M be the dual motive of M (which turns out to be isomor-

phic to M). Then we have the canonical morphism八tMR八iM→
八i+jl弘whosedual gives八KM →E9i+j=k八SMR八jM, which de-

termines the diagonal map八＊M →八本MR八事M.Also the isomor-

phism八49(C)g(D)M '.::::'. Mpt determines πM・ Onecan easily check the 
axioms. 口

We hope that C H*(M) is a space, and the bivariant space八本M at 
least approximates the space structure. We have some evidence: 

Theorem 6.3. 1. We hαveαcanonicαl isomorphism 

噛巳

Hom BivariantSpαce(Mpt，八M）竺 Cι（M)

Hence, when Y is αsmooth projective variety, for αpointy E Y 

αndαmorphism of bivariαnt spaces 

fε HomBivariantSpαce(My，八淑M),J(y) is definedαs the element 

oJCH*(M）叫 ichcorresponds to the composition M｛叶→ My→ 
八本M.

2. For fε HomBivariantSpαce(My，八本M),f = 0ザαndonlyザJ（ν）＝
0 for αll the closed points uε Y. 

3. 陥 enfε HomBivα，・iαntSpαce 

phisms FヲG:Y→sn(X）， αndαbirationαl mαp Y→Y such 

thαt for αny y E Y, tαkeαny preimαge f)εY, then F(f)) -G(f)) = 

f （ν）εCHo(M) c C H，。（X).
Conversely, when F, G : Y→Sn(X）αre morphisms, with Y→ 

Y birationαl，αndザF(f))-G(f)）αsαhove isαlwαys contained 
in C H*(M), then there exists unique f : Y→bigwedgeサ1as 

bi叩 riantspαces such that F(f)) -G(f)) = f （ν）． 

Proof. For the most part, we can simply mimic the proof of Theorem 
5.5. In this case, we do not have to divide by the torsion, because 
Roitman’s theorem [16) implies that there are no torsion in C H*(M). 

For αε HomBivarian均 αce(My，八＊M), the Fourier transform of log（α） 
determines an element 9ε CH2(Y×C×D), such that /3 = ?= ni[Vi] 

with each Vi generically flat over Y. This information determines two 
rational maps (gathering the positive coe伍cientpart and the negative 
coe缶cientpart) F, G : Y→sn X. For details, see [10］口
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