O00000000000O0
19960 0  pp.42-62

VIEW ON 4-DIMENSIONAL SMALL
CONTRACTIONS AND FLIPS
— LA TORRE PENDENTE —

YASUYUKI KACHI

Ochanomizu University
Otsuka, Tokyo 112, Japan

This note is a survey of the article [Kac3]. We work everything over C.

The Mintmal Model Program is a device {or telling us a procedure how to approach
a minimal model starting from a given algebraic variety, by a sequence of special
birational transforms;

X — X -+ Xo-- — X, = Xmin

([Kawl,2,3,6], (Kol], [Mo1,2], [Re0,1], [S1,2]). For surfaces, this mechanism has been
classically known by the works of the Italian school (Enriques, Castelnuovo, et.al) in
the 19 century, followed by the modernization of Zariski. In fact this case the process
is quite simple, just to repeat contracting (—1)-curves to reach the minimal model
Xmin of X. In dimension 3 or more however it came a hard obstacle, the appear-
ance of so-called small contractions or flipping contractions, meaning those birational
contractions contracting cycles of codimensions at least 2 (Definition below). These
are pretty complicated to handle with, and it turned out that the achievement of the
whole program is concentrated on investigating this kind of birational morphisms (see
[Rel], [Kaw2]). For a detailed explanation of the story see for instance [KaMaMa).
Here let us just give the precise definition of those small contractions:

Definition. (Flips)

Let g: X — Y be a proper birational morphisin between normal algebraic varieties
(or normal analytic spaces) of dimension n. Let E := Excg, B := g(E).

X has at worst terminal singularities([Rel]),
Assume dinE <n -2, and
—Kx is g-ample (namely (K x .C) <0 whenever ¢(C) is a point.)
Then g is called a small contraction, or a flipping contraction.
If there exists another proper birational morphism X+ g—+) Y (with the common
target space Y}, with ET := Exc g™, such that
X7 has at worst terminal singularities,
dimE+t <n -2, and
Kx+ is gt-ample,



then g% is called the flip of g.

By abuse of language sometimes the composite birational map (transform) g+ —!

: X —» Xtisalso called a flip. -

°g

The first concrete example of such a transform is given by P. Francia [Fral. In
general, to find such g* is a very hard question, aund the Programn, combined with
Kawamata-Shokurov contraction theorem, says the existence problem of minimal
models has been reduced, in an arbitrary dimension, to the following couple of state-
ments called the flip conjecture:

Flip Conjecture. ,
(E) (Ezistence) For a small contraction g the flip g% exists.

(T) (Termination) There is no infinite sequence of flips (starting from a projective
X):
X Xt s Xttty

This is still conjectural in n > 4, n > 5, respectively.

In n = 3, the statement (T) is first proved by Shokurov [S1], while (E) is also
investigated by several people, especially Tsunoda, Shokurov, and Kawamata [Kaw3]
proved this for the case of semi-stable degenerations of surfaces. By applying the
criterion of [Kaw3], Mori [Mo2] then settled this for the general case in n = 3, and
this way the existence of minimal models has been solved affirmatively in dimension
3.

In dimension 4 on the contrary, very little is known in this direction. Actually
(T) is generalized by Kawamata-Matsuda-Matsuki ((KaMaMa] §5), while as for (E)
nothing definite has been known since the characterization theorem of Kawamata
[Kaw4] in 1989 for the smooth 4-fold case. To state his result let us make one
convention;

Assumption. As long as the existence part (E) is concerned, the problemn is local
on Y, so we may assume that X is a sufficiently small analytic neighborhood of the
compact, connected exceptional locus E.

Theorem 0.1 (Kawamata [Kaw4]).

Let g: X D E = Y D B be a small contraction as in the previous definition.
Assume that X is a smooth 4-fold. Then

E~P? Bs|-Kx|=0 Ngx=O0p(-1)%.

Also the flip gt of g exists. —

Remark 0.2. The linear system | — 2Ky | has a mnember with only rational singu-
larities. —

To complete the Program however we ought to deal with the singular case, to be
precise the case that X has terminal singularities. The aim of this talk is to give
some generalization of Theorem 0.1 in this direction (see also [Kac2]). We should
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say although at this moment we are still in a primary stage, the first feature of this
business has been mostly worked out by the main result today.

One of our main tool is the deformation theory for contractions, and the following
conditions provide the test case on which this technique runs fairly well:

Assumption A.

(A-1) X has only isolated (terminal or rational) complete intersection singularities,
and

(A-2) (Existence of “Good bi-elephants”)

| — 2Ky | contains a member which has a rational singularity.

Main Theorem ([Kac3]). Let X D E L5 Y be a flipping contraction from a
4-fold X with Assumption A. Assume Sing X # (. Then

E’ZP2, BS‘-*K)(IZW, NE/XﬁO]PZGBOpa(—'Q).

Moreover it carries an inductive structure involving a chain of blow-ups (which we
call ‘La Torre Pendente’, see 5.3), and in particular the flip g% ezists.

Remark. Also the case that (A-2) fails we mostly worked out, and this is closely
related to the classification of minimal resolutions of hyperplane-sections of (1, —3)-
curves due to S. Katz-D. R. Morrison [KaMo] and Kawamata [Kaw7]. See §6 A.

Contents

§1. E~P? Bs|—-Kx|=0.
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§6. Concluding remarks.
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§1. E ~ P2, Bs|— Kx| = 0.

In this section we collect several immediate consequences from a general theory.
Proposition 1.1. Under the Assumption (A-1),
(1) (Kawamata [Kaw4], Andreatta-Wisniewski [AW])

Bs | - Kx| =0,
(2) E ~ P2

(2) follows from (1) plus the following generalization of Mori’s dimension count of
Hilbert schemes parametrizing rational curves on a variety:

Theorem 1.2 (J. Kolldr [Ko3]).

Let X be an algebraic variety (or an analytic space) which has only complete in-
tersection singularities and C a rational curve on X. Assume C ¢ Sing X. Then

dimHom(P', X)i4) > dim X + (-Kx . C),
where a: P! — C C X is the normalization.

The rest is proved exactly in the same manner as in Kawainata’s proof [Kaw4].
§2. EP(X D E), NE/X» width g.

In this section we prepare three items measuring g, the numerical invariant e p(X D
E) (local), the normal bundle Ng,x (global), and the width (local-global).

Definition 2.1. (Local Invariant ep(X D E))

Let (X, P) be an isolated complete intersection singularity, and £ C X a smooth
closed subspace. Define:

ep(X D E) == dimp &rty, (U ® O, Op). —

This relates Mori’s invariant ip(1) which was used to solve Flip Conjecture in dimen-
sion 3. These in fact coincide when E is a curve. So ours provides a cohomological
interpritation of ip(1). The advantage is that we can calculate this invariant explic-
itly out of the given set of defining equations. For simplicity we state it only for
hypersurface singularities, and for the general case we refer the rcader to [Kac3] §3.

Formula 2.2. Let (X,P) > E be as above. Assume that (X, P) is a hypersurface

singularity. Write down the equation in ((Cf; ) ,0) as

X ={f(z,y) =0} D E={y1=... =y, = 0},
f= Z yi - gi(z) + hiz,y) (h(z,y) € (v)?).

Then
EP(Z o E) = lgth C{"‘L}/(gl» vg‘l)



Definition 2.3. (Normal Bundle)
Let I be the ideal of E in Ox. Define:

Ng/x = Homo,(Ig/IE, Op).

This is automatically a locally free Og-module of rank 2 so we call it the Normal
Bundle of E in X.

We are able to determine Ng,x uniquely as follows;

Theorem 2.4. Under the assumptions (A-1), (A-2), assume furthermore Sing X #
0. Then

NE/X ~ Op2 @ Opz(—Z).

To show the theorem first by Van de Ven’s characterization of uniform verctor bundles
[Va], it is enough to show

Ng/x ® Op ~ Op1 @ Op1(—2) (for all lines | C E).
On the other hand thanks to the condition (A-2) we have
Ng/x ® O, ~ Op1(a;) ® Op1(br), o —by] < 2.

So by taking a general D € | — Kx|, [ := DN E, it suffices to rule out the possibility
Nyp ~ Op1(—1)®2. This can be done by the following theorem;

Theorem 2.5 (Generalization of Yo. Namikawa’s ‘local moduli’ [Nam3]).
Let
Uu % v — A
U U U
Uy 7 Vi — {t}
be a 1-parameter family of birational contractions p,: Uy — V; between 3-folds;

dimU; = dimV, = 3, over the disc A = {t|[|t] < 1}. Assume the following con-
ditions:

(1) C:=Excpo~P! xA
such that the second projection C — A coincides with o|c
Excy ~ P'x A elexe A
U U U
Ci := Excyp, = P! —s {t}
(2) (Ky,.C;)=0 (foralite A), and

(3) U has only isolated rational complete intersection singularities such that

# # SingU C Cy.



Then fort # 0,
Ne,u, # Opi(-1)%%

Remark. As argued above we are not allowed to put any condition on the singular-
ity of the 3-fold Uy, but just on the singularity of the ambient 4-fold U{. Here recall
an example of M. Reid [Re3]: there exists a 4-dimnensional terminal isolated hyper-
surface singularity whose general hyperplane-section is a ‘K 3-singularity’, which is in
fact an irrational singularity. This shows that in dimension 4, terminal singularities
form a broad category, which makes 4-dimensional contractions more complicated
to handle with. So now let us put extra condition on trial that Uy has at worst
terminal singularities (= ¢DV-singularities). Then the conclusion of the theorem
is known as a special case of Yo. Namikawa's local moduli {Nam3], whose proof is
mainly based on the structure of versal deformation spaces of Du Val singularities
developed by Brieskorn [B] et.al. For the general case however this method is not
applicable, and we run instead the deformation theory for contractions (see §3 for
the precise formulations). The profit is that this methodology does not require any
particular kind of assumptions on the given defining equations but enables us to dis-
cuss under enough generality. This thus brings us a hope to overcome complexity of
4-dimensional terminal singularities.

To define the third item width, we for a while turn back to 3-fold contractions,
especially those which are called flopping contractions ([Rel], ¢f. [Ko2]).

2.6. Let U -£5 V be a birational contraction of a smooth 3-fold U with
C~Exco~=P', (Ky.C)=0.
Such a contraction is called a flopping contraction. Assume moreover that
Ncyy =~ Ops @ Opi(—2)
((0, ~2)-curve). Recall the fundamental theorem of M. Reid:

Theorem 2.7 (M. Reid [Rel}).

There exists an integer m > 2 such that
(a) The “pagoda” [Rel] terminates after m successive blow-ups, or alternatively
(b) V,Q) ~ {r179 + 23 + 23 =0}. —

Definition 2.8. (Reid [Rel}, for dim 3)
Define the width of the contraction ¢ to be

width ¢ :=m. —

Remark. Also for (—1, —1)-curves, i.e., those contractions ¢: U D C ~ P! “vs
Q with Ngjy ~ Op1(—1)®2, put width p :=1. —

There is an interpretation of this invariant from another point of view:



Theorem 2.9 (H. Laufer,R. Friedman [Fri], H. Clemens, ¢f. Yo. Namikawa [Nan3}).

Let U D C~P' 5 V 35 Q be as in 2.6, then there ezists a 1-parameter defor-
mation {U, £ Viltea of ¢ such that ¢, contracts m = width ¢ disjoint union of
{~1,—~1)-curves from a smooth U (t #0). -

Now it is time to define the width also for our original 4-fold contraction.

Definition 2.10. (for dim 4)

Let X DE~P* 2 Y 5Q bea flipping contraction of a 4-fold X satisfying
the assumptions (A-1),(A-2). Take a general smooth member D € | — Kx|, let

l:=DNE (aline in E). By Theorem 2.4, D DI EiL ¢(D) 3 Q gives a contraction
of the (0, —2)-curve !, so define:

width g := width g|p. —

§3. DEFORMATION THEORY.

Let X D E~P? 23 ¥ 5 Q be a flipping contraction satisfying (A-1), (A-2), as
usual. In this section we discuss deformations of g. There are two steps to describe
the deformations, the first one is cohoinological, the other is complex analytic.

3.0. {a) (Cohomological)
Recall the Grothendieck spectral sequence applied to the composite of two functors

Rg. and RHom( - ,Ox):
E} = RPg. &xt], (0%, 0x) == E":=Ext} (%, Ox)
( =HP*(Rg, o RHom)(2k, Ox)).

Let us write down the edge sequence:

0 — R'g.Tx — Exty (%, 0x) -5 g. Extp, (2, Ox)

— 9. Tx =5 Ext} (2, Ox).

(Necdless to say, when X is smooth the arrows marked by *, ** are both isomor-
phisms, and &t} (%, 0x) =0.)

The homomorphisin o describes the infinitesimal deformation of X in the first
order. To see the actual holomorphic deformation of X we need the following complex
analytic description;

(b) (Complex analytic) {Kuranishi space)

There is a natural holomorphic mmap

Def X T J] Def(X,P)
P;€Sing X



from the global Kuranishi space Def X to the product of the local Kuranishi spaces
Def(X, F;).

Fact. (1) (dy)o = a,
Zariski tangent space T'perx,0 ™ Ext(lgx (Q}(, Ox),
Tper(x,P;),0 ~ &ty (U, Ox ).

(2) The ‘Obstruction’ lies in Ext(sz (024, Ox). In particular, if Extéx (24, 0x)=0
then Def X is smooth (unobstructedness). —

Remark. (Kollir-Mori [KoMo}, ¢f. Ran [Ral}]))

Given a deformation of X: X — A, there exists an induced deformnation Y of Y
Y — A and a morphism G: X — Y (which is compatible with X — A, Y — A) such
that G|x, = g.

(This is essentially based on the vanishing Rig,Ox =0 (i > 1).) —

In our specific case, the most satisfactory situation is achieved. The following
theorem asserts that X has enough deformations;

Theorem 3.1.  Let g be satisfying (A-1) and (A-2). Then
R?q.Tx = Ext’(Q%,0x)=0. O

(The proof requires the structure of Ng;x (Theorem 2.4), where the assumption
(A-2) is essentially used.)
Corollary 3.2. Def X is smooth, and v is surjective. O

Practically, this implies;

Corollary 3.3.  (Globalization of local deformations)

Let {P1,...,Pn} = Sing X. Assume that a local deformation U; = A of a neigh-
borhood U; 3 P; in X for each i is given, then there exists a global deformation

w: X > A
of X such that for a neighborhood V; 3 P; in X,

o|lv, = Given U; - A. a

Remark. This fails if we drop (A-2). —
Fact. (Upper-semi-continuity)

For a general t € A, X, 25 Y, again gives a swmall contraction satisfying (A-1)
and (A-2), contracting a certain number of disjoint P?’s. —
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Corollary 3.4 (the existence of a smoothing) (Relative 4-dimensional version of Yo.
Namikawa [Naml], ¢f. M. Gross [G1]).

There exists a defornation X = Y = A (= (X, LN Yi)iea) such that X, is smooth
fort#0. O

Roughly speaking, in algebraic geometry deformation theory is divided into two
categories; (i) Deformation of a variety X itself, this is parametrized by Kuranishi
space Def X, and (ii) Deformation of an object attached with a fized variety X
(e.g. subschemes or coherent sheaves on X, morphisms Z — X, etc.), these are
parametrized by Hilbert schemes or those variants. In our context however we need
a little more delicate treatment, that is, we ought to look at the behavior of E under
deformations of X. To do this we formulate something to be called deformations
of pairs (X, E), consisting of a variety X together with a subscheme E. This can
be done in our specific situation by introducing ‘extra-subscheme structure’ on E
affiliated with the given deformation of X, as follows;

3.5. (Subscheme structure Ej for a deformation X — A)
Let Exc g; =: E; = [[(P?);, and consider the structure morphism of the relative
1
Hilbert scheme:
Hilbae/y/a,18) = &,

parametrizing deformations of E; (N.B. not a connected comnponent of E;) inside the
family X — Y — A. X is naturally an isomorphism, so define Ey to be the closed
subscheme associated to the point A~1(0) € Hilbx,y/a 5. This is supported on
E =Excg;

red(Ey) = E ~ P2,

So from now on let us distinguish Ey from E. Also this subscheme Ey depends on
the given deformation p: A — Def X, so sometimes write specifically Ey = Ef if any
confusion is likely. (For instance in the case p = 0, i.e., ¥ = X x A, then Ef is cqual
to the reduced E.)

Definition. (Universal subscheme E*.)
Let Ige be the defining ideal of Ef in Ox (or in Oy). Define

— J* — 4 —
Ipe=1Ip= () I.
p: A-Def X

Theorem 3.6 (Crucial observation).
(1) mult. E§ = (the number of connected components of Ey) fort # 0,
(2) E& has no embedded primary components. ]

The assertion (1) says each branch of Hilbx/y/a (5] — A (N.B. not Hilby sy, (£,

X Ain turn) contributes the multiplicity of Ey by 1. (It does not happen such as
a degeneration of Veronese surface P? < P% onto a quadruple plane.)

3.7 (Mori's L-deformation versus our deformation).
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In [Mo2] Mori gives a proof of the surjectivity of v in dimension 3 by complex analytic
methods, including an essential use of implicit function thieorem (among some other
more exquisit things). His mehod is to focus on a single irreducible component of
Exc g¢, and to disregard else. Ours on the other hand is more algebraic, what we do
is to reduce the problem to the vanishing R%2g,Tx = 0 (which is no more automatic
in dimension 4). We deal with all irreducible components simultaneously after a
deformation by looking at the subscheme E¥, which inherits informations from all of
those components. This reduces the task analyzing local classfication of singularities
to an elementary commutative algebra (§4).

§4. SPECIFY SINGULARITIES (X, P) D E.
In this section we specify the possible singularities of X appearing on E. The

following is the main result of this section:

Theorem 4.1. #Sing X =1.
Let Sing X = {P}, thenep(X D E)=1.

There are three steps to show the theorem;
(a) Assume emb. codim.(X, P) = 2 to derive a contradiction,
(b) Assume (X, P) is a hypersurface singularity, to deduce ep(X D E) =1, and
(c) #Sing X =1.

Here (a) and (b) are essentially based on the same idea, and the proof is quite
parallel. In fact in (a) we deal with a submodule M of C{zy,z2}®?, generated by 4
coefficient vectors, determined by 2 equations {f1, f2}, with 6 variables (zy,- -, zg),
while in (b) deal with an ideal G of C{z1, 22}, generated by 3 coefficients, determined
by a single equation f, with 5 variables (z1,-- - ,s). So in this section we only outline
the proof of (b) (Proposition 4.2), and also (¢) (Proposition 4.4).

Proposition 4.2.

Assume that (X, P) is a hypersurface singularity. Then ep(X D E) = 1.
First we may write down

(C°,0) D (X, P) = {f(zy, ..., w5) = 0}
> FE 2{2}3:.’1}4:1‘5‘—‘0},

f(z) = ga(z1,72) - T3 + ga(Ty, T2) - Ta + gs(x1, T2) - T5
+h(z1, ..., T5), h € (z3, 74, z5)%.

Let G := (g3, 94,95) C C{z1,72}. By abuse of notation, denote the pull backs of Ig-,
Ig, by the surjection

Clzy, - 25} = C{zr,--,a5}/(f) = Ox.p

11
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by the same symbol, so that

f € Ig. CIEO CC{:L'l,"' ,113'5}.

Lemma. (1) gs € (g3,91) (after a suitable permutation of {3,4,5}).

(2) f(z) = (ga(z1,32) + ha(z)) - 73 + (9421, T2) + ha(z)) - 4
+zk (k> 2)
(.’L‘i : hi € (‘TBa T4, J“5)2)'
(3) IE“ = ($3)$4"T§)'

Proof. (1) Recall that Ig. has no embedded primes, and
radical(/g.) = (3, T4, Z5).
If (1) is not true, then z3, x4, 25 € Ig-, that is,
Igs = (23,24, Ts5)

which is reduced, a contradiction.
(2) and (3) follow from (1). O

Proof of Proposition 4.2. Assume ep(X D FE)} > 2, to get a contradiction.

By Formula 2.2, ep(X D F) = lgthC{z1,z2}/G, so we may assume z ¢ G, say.
Consider a local deformation

{f(z)+t-z3 =0}.

This can be globalized thanks to Corollary 3.3, let Ey be the associated closed sub-
scheme structure. By the previous Lemma,

IE'O = (-'33’374@?) (TL 2 2)a

Ig, = (z3+t-es, tqa +teq,zp +t-e5) ( for some e;(x,t)).

Write down the condition “f +¢- x5 € Ig,”;

(%) J@x)+t-zo=& (z3+t-es)+ € (vg+t-eq) + &5 (2F + t-e5)
(for some &;(z,t)).

By comparing both-hand sides, it follows that

(4.2.1) & -e; contains ¢-z3 as a monomial (¢: unit), for some i = 3,4 or 5.
Claim. In (4.2.1),1 = 5.

Proof. : Assume i == 4, say, to get a contradiction. Rewrite (*);

f@)+t-za=E (za+t-es)+ (cr-ma+ &) (Ta+cat)+ & (z8 +1tees).



Put t = 0, then it is easily seen that f(z) contains ¢;z274 as a monomial (¢;: a unit),
a contradiction to our assumption z3 ¢ G. Hence the Claim.

Now we know that
(4.2.2) &5 - es contains ¢ - zz as a monomial.

By Lemma, &5 must be a unit. Thus Ig, is expressed as;
Ig, = (z3+t-es, x4 +t-eq,zf + ¢ -tz3) (¢’ : unit).

This implies that Ej is irreducible, smooth for ¢ # 0, and the multiplicity of Ey is
n > 2. These contradict Theorem 3.6. (O

Corollary 4.3 ((A-1) + (A-2) = cO.D.P’s only).

(X, P) >~ {z123 + T2z4 + 27" = 0}
DE={z3=24=1x5 =0}. 0

This suggests that possible singularities appearing on flipping countractions are rather
limted.

The remaiuing thing to prove is the following;
Proposition 4.4. #SingX =1. m = widthg.

Pf. Assume P, P’ € Sing X (P # P’) to get a contradiction. Consider the global
deformation of X (Coroliary 3.3) given locally by

{ {z123 + 2974 + 2" +t =0} (near P),
{y1ys + yoya + y& + t* =0} (near P').

Then
{za=z4=2 +t=0} (near P},
E, ~ {ya=va= Hl(ys + ¢it) =0}
i€

(#I=m > 2) (near P').

Let £ .= |J E, then
tea

@ (near P),
E (near I'),

which contradicts the nature that Sing £ has to be Zariski closed.

Sing £ = {

To see the second assertion, consider the deformation
{123 + 2224 + 25" + 1t = 0},

then we will find m = width g by taking a general D € | — Kx|, applying Theorem
2.9 (Laufer, Friedman, Clemens). [J
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§5. How 1o FLIP?

In this section we prove the existence of flip g*: X+ — Y of g: X —» Y. Our
strategy is to construct a sequence X(™} — X(m-1 _, ... 5 ¥ =X X0 = ¥
of blow-ups and to see that X (™ dominates the required flip, as is done for 3-fold
flopping contractions by M. Reid [Rel]. So ours actually gives even a geometrically
explicit way of constructing flips.

Proposition 5.1. Let X D E ~ P> £5 Y 5 Q be as usual, satisfying (A-1),
(A-2). Let

X Lix
be the blow-up of X with the center E. Let F := Exc f. Then —Kx is (go f)-ample,
p(X/Y) = 2, and the other extremal ray of NE(X/Y) determines a flipping con-
traction B

XoE~P L Y20

satisfying the assumptions (A-1), (A-2), with

width7 = width g — 1.

Outline of Proof. A priori there are two possibilities. That is, besides the one in
the conclusion of the theorem, there might be the case:
(*) =K is (go f)-nef but not (go f)-ample, the other extremal ray determines a
Hopping contraction which contracts rulings of a ruled surface isomorphic to ; :=
P(Op: & Op:(—1)), sitting in F as a birational section of the fibration F ﬁ—'& E ~P?
(cf. [Ma)).

This however is ruled out this way; consider the deformation X of X given locally
by:

{z123 + zomy + 28" +t7 = 0}.
Then Hilby/y/a (] consists of rn irreducible components, all of which isomorphically
dominate A through:
Hilb,y/y/A’[E] — A

Take one irreducible component and consider the corresponding irreducible compo-
nent £ of £ = ExcG; & ~ P? x A. Blow XY up with the center £,. Then we see that
the rulings (*) never go outside of Xy, that is, they deform exactly with 1 dimen-
sional paraneters, while according to Theoremn 1.2 (Mori, Kollar) they must deform
with at least 2 dimensional parameters, a contradiction. O

Corollary 5.2 (Existence of the flip).

For g with the assuptions (A-1), (A-2), the flip g% exists.
Proof.  Induction on m = widthg. The case m = 1 is nothing but Theorem 0.1 due
to Kawamata [Kawd]. O

To see a more concrete description, let us follow all the induction steps successively
upstreams, then we eventually arrive m = 1, and get the following architecture:

14
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5.3. This should be compared to M. Reid’s Pagoda [Rel], not only because the
pattern of the construction of the flip and the flop look similar, but this construction
in fact contains Pagoda in the following way: In the above picture let us take a
general smooth D € | — K x| (so that D N Sing X = 0), and let

D:D(O)FD(I)F(’—D(nl)—)—)D(l)+—)D(0)+:D+

be the proper transforms of X in every stage. Then this indeed forins Pagoda [Re*],

‘D+

and in particular D* 75 gt(D™) gives the flop of D — 9l g(D) (see also §2). As is
easily seen Pagoda is symmetric with respect to the flop operation, while ours is no
more symmetric with respect to the flip. So with a great esteem for Reid’s humor of
this lovely naming, by special grace we name this La Torre Pendente, meaning The
Leaning Tower of Pisa, Italy.

§6. CONCLUDING REMARKS.

6.A. What if drop (A-2)?

Proposition 6.A.1. Let X D E 25 Y 5 Q be a flipping contraction. Let us
assume (A-1) but no (A-2). Then E ~ P? and

NE/Xﬁopﬂ(l)ﬂaO]pn(—B). O
Remark 6.A.2. Even the irreducibility of F in this case is not casy.

Question 6.A.3. Is Def X smooth, or equivalently, does the ‘T'-lifting’ property
(Ran [Ra2], Kawamata [Kaw5], Namikawa [Nam2], Gross [G2]) hold?

6.A.4 (Suggested to us by M. Gross).

Take a hyperplane-section H := (s)o for (0 #)s € H°(Ig), so that X D H D E.
M. Gross indicated that it might be helpful to understand X through the knowledge
of H. Actually this makes things fairly coutrollable, and we are in progress based on
this idea. Meanwhile, not even a single example of a contraction g as in Proposition
6.A.1 has yet been observed so far. In fact on this line we got a partial negative
answer toward the existence of such flipping contraction (Corollary 6.A.10 below).

Proposition 6.A.5. Sy := Sing H is purely I-dimensional, and Sy € |Op2(3)].
(Here a general Sy maynot necessarily be reduced or irreducible.)

Question 6.A.6. Let A := {Sy}y C |Op2(3)] be the sublinear systemn consisting of
all such Sp’s. How does A look like? How much is dim A?

6.A.7. Let D € | — Kx| be a general member, then D D l:=DNFE glo, 9(D) 3> Q
gives a contraction of the (1, —3)-curve ! (see also [L]). Now because of the surjectivity
of the homomorphism H®(Ox) — H°(Op), an information of hyperplane-sections
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of D D ! inherits that of X D E. Sa it is natural to ask the saine question as Question
6.A.6 for (1, —3)-curves first.

The following gives an example in dimension 3 that the linear system in question
does not mave at all:

Observation 6.A.8. LetU D> C ~ P! — V 3 @ be a contraction of (1,-3)-
curve C; Ngjy = Opi(1) @ Opi(—3). According to [KaMo] (cf. [Kaw7]), for a
general sgen € H(Ic), the minimal resolution graph [Rel] corresponding to (sgen)o
is of type either Dy, Eg, Ey or Eg. Let us assume that it is Eg, then again by [KaMo]
either #Sing(sge")o = 2 or 3 set theoretically. Let us assume it is 3. Then there
ezists a set of points {x;y, z} C C such that Sing(s)e = {z,y, z}, independent of the
choice of any s #£0. O . ~

I quite recently learned from H. Takagi the following, which is the firsthand result
on the plot of 6.A.4;
Proposition 6.A.9 (H. Takagi).

Let X D E~P? -4 Y 3Q be as in Proposition 6.A.1, and H as in 6.A.4. Then
(1) A general H has at most canonical singularities.
(2) A has a fized component.

This, combined with the purity of Sy (Proposition 6.A.5), and an argument of
[Kaw7], proves:

Corollary 6.A.10. Let X D F ~P? 23 Y 3 Q be as in Proposition 6.A.1. We
say that g is of type D4, FEg, E7, Eg if the graph of the (1, —3)-curve D D l:=DNE
for a general D € | ~ Kx| is of the corresponding type.

Then g cannot be of type Dy. O

6.B. What if drop (A-1)7

Question 6.B.1. Generalize our framework to the case X is a ‘LCIQ’ (=locally
complete intersection quotient) 4-fold (in the sense of J. Kollar [Ko4}), that is, X has
only isolated singularities and for each P € Sing X there exists a local finite cover

(X,P) + (X, P)

wlhich is étale in codimension 1 such that ()Af , 13) is a complete intersection singularity.

This is motivated by the following example;

Example 6.B.2 (Mukai, Reid [Re2], see [Kac3] §8).
There exists a flipping contraction X D F v > Q@ from a 4-fold X with
1
only an isolated singularity, Sing X = {P}, and (X, P) =~ 5(1, 1,1,1) (that is, the

quotient singularity of (C*,0) divided by the involution z — —2). The exceptional
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locus E is isomorphic to a singular quadric cone, so this time Theorem 1.2 (Kolldr) no
louger holds. This contraction is constructed as one which factors a certain extremal
contraction from a 4-fold to a 3-fold admitting a 2-dimensional fiber. See [Kac3] §8
for a detailed description (cf. {Kacl]). '

Here is a relevant question;

Question 6.B.3. Let X O C be an analytic space, containing a (complete) rational
curve C, with C ¢ Sing X. Assume that for any P € Sing X N C, the analytic germ
(X, P) does not admit a cover (X, P) ¢— (X, P) which is étale in codimension 1 and
is of degree > 1. Then is the same fo‘rn'mla as in Theorem 1.2 hold?

6.B.4. In the general case, the Bug-eyed cover (Kollar [Kod]) or the associated
algebraic stack (Artin, Deligne-Mumford); X® — X, might perhaps say something.
(See [KeM°®], [BF], [Vi].) Especially, is it possible to construct something like an
‘equivariant deformation’ of fb?

6.C (Gross’ covering trick).

6.C.1 (M. Gross).

M. Gross observed an alternative way of producing our series of contractions. Start
from the Kawamata contraction X D E~P2 -&, Y > Q@ as in Theorem 0.1; X is a
smooth 4-fold, and Ng/x ~ Op2(—1)®2. Take a hyperplane-section H as in 6.A.4.
If H is chosen general enough, then H has only one singular point which is O.D.P.
Regard X as the total space of the deformation of H:

X — A

U U

H — 0
Take the base-change by A = A, t — t™, to get a flipping contraction g satisfying
(A-1) plus (A-2), with width g = m. Also if we take H which has a singularity along
a line on E, then we get an example of a flipping contraction X>E ~P2 Y
where X has 1-dimensional singular locus, a line of E’.

In general, the condition {A-2) is preserved through this operation, so a contraction
g as in 6.A.1, if any, is considered to be sitting on an entirely different lines.

6.D (Ando’s description of g, (Y, Q)).

Ando gave a description of a flipping contraction g with (A-1), (A-2), as well as
the singularity (Y, Q) and the flip g* which we classified, by means of an explicit
coordinate expression, after H. Laufer [L] in dimension 3.

Theorem 6.D.1 (T. Ando).
Let X D E~P? 23 Y 5Q be satisfying (A-1), (A-2), with widthg = m. Then
(Y,Q) ~ {z176 = Tazs, T4Ts = (¥3 — T )ze, T174 = (T3 — T3")T3} C (C°,0).

Blow up of Y with the ideal (x3,74,7s) (resp. (T1,x3)) recovers g (resp. g7 ). O
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