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1 Introduction

Conjecture 1.1 (since 1992) G C SL(n, (C) is a finite subgroup. Assume that
the quotient X = Cn/G has a crepant resolution f: Y - X (this -1'ust means
that Ky = O, so that Y is a "noncompact Calabi-Yau manifold"?. Then there
exist "natural" bijections

{irreducible representations of G}

       {conjugacy classes of G}

As a slogan "representation theory ofG =
Moreover, these bil'ections satisfy "certain

. basis of H'(Y, Z)

- basis of H.(Y, Z)

homology theory
compatibilities"

of Y ".

(1)

(2)

character table of G

     McKay quiver
}- {  duality

  cup product

   As you can see, the statement is still too vague because I don't say what
" natural" means, and what "compatibilities" to expect. At present it seems
most useful to think of this statement as pointer towards the truth, rather than
the truth itself (compare Main Conjecture 4.1).
   [I]he conjecture is known for n = 2 (Kleinian quotient singularities, Du Val
singularities). McKay's original treatment was mainly combinatorics [McK].
The other important proof is that of Gonzales-Sprinberg and Verdier [GSp-V],
who introduced the GSp-V or tautological sheaves, also my main hope for the
correspondence (1).
   For n = 3 a weak version of the correspondence (2) is proved in [IR]. We
hope that a modification of this idea will work in general for (2); for details, see

g3.

Contents This is a rough write-up of my lecture at Kinosaki and two lectures
at RIMS workshops in Dec 1996, on work in progress that has not yet reached
any really worthwhile conclusion, but contains lots of fun calculations. History

of Vafa's formula, how McKay correspondence relates to mirror symmetry. The
main aim is to give numerical examples of how the McKay correspondences
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(1) and (2) must work, and to restate Conjecture 1.1 as a tautology, like the
cohomology or K-theory of projective space P" (see Main Conjecture 4.1). In-
troduction to Nakamura's results on the Hilbert scherne of G-clusters.

Credits Very recent results of I. Nakamura on G-Hilb, who sent me a first
draft of IN3] and many helpfu} exp}aRatioRs. 3oint work with \. Ito. Moral
support and iRvaluable suggesÅíions gf S. Mukai. Support Sep-Nov l996 by the
BrlLisk Cog#cil-japame$e M}gistry ef gdljcatic# exckaRge scheme, and from
Dee 1996 by Nagoya Univ,, Graduate School of Polymathematics.

1.1 History
Around 1986 Vafa and others defined the stringy Euler nttmber for a finite group

G acting on a manifold M:

         estring(M, G) xe crazy formula (you'd better forget it!)

                    ex Z) e(XH)Å~ #{conjugacy classes in ff}. (*)

                      HcG

   gere X = M!G, and X is skatptee by stabiliser suiÅrgroups: for a sgbgrogp

Hc G, $et

       MH = {Q GM1 StabGQ= H},
        XH = T(Mll)
           = {P G XIfor (? E r-i(P), StabGQ is c,onjugat,e to H}.

The sum in (*) runs over all subgroups H, and e(.XN) is the ordinary Euler
number. The mathematical formulation (*) is due to Hirzebruch-H6fer [HH]
aRd Roan [Roan]. If M : (Cn and G c GL(n, (C) on}y fixes the orlgiR, theB the
c}osure of each Xg i$ centractlble, so tha# oll}y the origi" {e} = XG cg}itribntes
Lo the sit#} iR (*), aitd

               estring(Åën , G) == #{conjugaey classe$ in G}.

   At the same time, Vafa and others conjectured the following:

Conjecture 1.2 ("physicists' Euler number conjecture") In appropriate
circumstances,

       estring(M, G) rm Euler number of minimal resolution of M/G.

   The coRtext is strii}g theory of M = C\ 3-fold, and the G aetioR oR M
is GoreRst•e!R, meanii}g tkat iL fixes a g}eba} basis s ff wM = O(KM) or OM
(dgalisiRg sheaf wM : st3M). k particglar, for aRy point Q E M, the stabiliser

subgroup is in SL(TQM).
   At that time, the physicists possibly didn't know that there was a genera-
tion of algebraic geometers working on minimal models of 3-folds, and possibly
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naively assumed that in their cases, there exists a unique minimal resolution
Y - X = M/G, so that e,t,ing(M,G) = e(Y). A number of smart-alec 3-folder$
raised various instinctive objections, that a minimal model may not exist, is usu-

aliy itot unique etc.

   However, it turns ogt tkat tke pkyslcists were actgally kearer {•ke mark. Oite
of the points of these lectures i,s that, in fiat contradiction to the oMcial 3-fold
ideology of the last 15 years, in many cases of int,erest, there is a distinguished

crepant resolution, namely Nakamura's G-Hilbert scheme.
   My guess of the McKay correspondences follow on naturally from Vafa's
conjecture, by the fo}lewlfig }ogic. If .M = ([", tkeR oRe see$ easi}y thaÅí for
any reasomab}e rese}utioll ef siiigularitles Y ---, X = C"IG, tke cokomolegy is
spanned by algebraic cycles, so that

              e(Y) = 2 HP'pu == #{algebraiÅë cycles of Y}.

   It seems lln}ikely that we could prove the numerical coRÅëidence

                  e(Y) = #{coajugacy classes ef G}

without setting up some kind of bijection between the two sets. [IR] does so for

(] c SL(3, (C).

1.2 RelatieR with mirrer symmetry, applicatiexs

Consider:

 (a) the search for mirror pairs;

 (b) Vafa's conjecture;

 (c) ceajectttra} McKay correspoftdeRee;

 (d) speculative theory of equivariant mirror symmetry (G-mirror symmetry).

Historically, (a) led to (b), (b) led to (c), and logically (c) implies (b). I have.

Iong speculated that (c) is connected to (d), and maybe even that it would
eventua}}y be proved iR teTms of (d). The point is that up to now, the kRowit
preefs gf tke McKay cerrespoi}dence (eveit ik 2 dimeftsieRs) rely oR the exp}ick
classification of the groups, pius quite detailed calculations, ar}d it would be
very interesting to get more diTect relations.

   I suggest below in S4 that the McKay correspondence can be derived in
tautological terms. If this works, it will have applications to (d). Some trivial
aspeet•s of this are already contaiRed lk CaRdelas aRd ethers' examp}e of t}}e
mirrer of the quint}c 3-fold [C], wkere yeu could take intermediate quotients
in the (Z/5)3 Galois tower. My suggestion is that G-mirror symmetry should
relate pairs of CYs with group actions, and include the character theory of
finite groups as the zero dimensional case. I guess you'Te supposed to add
an analog of "comp}exified Kah}er parameter$" t/o the conjugacy c}asses, and
" cQmplex modg}i" to tke }rreducib}e represeittatiolts. ARother app}ieaÅíioR (mere

specu}atiye, this one) might be to wake llp a few algebraists.
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1.3 Conjecture 1.1, (1) or (2), which is better?

I initially proposed Conjecture 1.1 in 1992 in terms of irreducible representa-
tions, an analog of the formulations of McKay and of [GSp-V]. I was persuaded
by social pressure around the Trento conference and by my coauthor Yukari
Ito to switch to (2); its advantage is that the two sides are naturally graded,
and we could prove a theorem [IR]. Batyrev and Kontsevich and others have
argued more recently that (2) is the more fundamental statement. However, the
version of correspondence (2) in cohomology stated in [IR] gives a Q-basis only:
the crepant divisors do not base H2(Y, Z) in general: fractiona} combinations of

them turn up as ci(L) for line bundles on Y that are eigensheaves of the group
action, that is, GSp-V sheaves for 1--dimensional representations of G.
   These lectures return to (1), passing via K-theory; in this context, the nat-
ural structure on the right hand side of (1) is not the grading of H', but the
filtration of KoY. In fact, my thoughts on (2) in general are, to be honest, in a
bit of a mess at present (see S3 and S6 below).

2 First examples

These preliminary examples illustrate the following points:

  1. To construct a resolution of a quotient singularity C"/G, and a very ample
    linear system on it, rather than invariant rational functions, it is more
    eMcient to use ratios of eovariants, that is, ratios of functions in the same
    character space. This leads directly to the Hilbert scheme as a natural
    candidate for a resolution.

2. Functions in a given character space p define a tautological sheaf -p on
  the resolution Y - X, and in simple examples, you easily cook up com-
  binations of Chern classes of the fp to base the cohomology of Y.

xKÅqAY

Eo

EIl

        -EhL.,. IPI

.

(Åqp-

x s NN

tee

tL"r-i

Figure 1: ]E]o and E. are the image of the x and y axes

I fix the following notation: G C GL(n,(C) is a finite subgroup, X =
the quotient, and Y - X a crepant resolution (if it exists). For a given
(or Abelian) group,I choose eigencoordinates xi,...,xn or x,y,z,... on
write I(ai,...,an) for the cyclic group Z/r action given by xi H e"txi,

cn/G
cyclic

Cn. I
where
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e = exp(2Ti/r) = fixed primitive rth root of 1. 0ther notation, for example the
lattice L == Zn +:Z•"(ai, . . . , a.) of weights, and thejunior simplex Ajunior C LR

are as in [IR].

Examp}e 2.1 The auotient singugarity ;(1,-1). The notation means the eyclic
greup G = Z/r acting en ([)2 by (x,y) H (ex,er-iy). Everyene fonews the
invgrigni ?i}enemials zz : xr,v = xy,w = y', the gttotient map

      Åë2 - X : Åë2 /G wyww Vzz Val singala ri'iy A.-i : (uw = v') c C3, (3)

and the successive blowups that give the resolutionY oj X and its chain of -2-
curves Ei,...,Er-i (Fiyure 1?. However, the new point to note is that eaeh Ei
is naturalgy parametrised by the ratio xt : y"t. More precisely, an'afiine piece
Yi cY of the resolntion is given by (C2 with parameters A,p, and the eguations

             xi -im Ayr-i, y"-i+i=ltxi-i and xy :AIt (4)

define the G-invariant rational map C2 -. Yi (gntotient map and resolution at
ene ge?.

   The rgke =' : yrwwt de#nes a linear sy$iem IL(i)I on Y, with interseciign

numbers

                    L(i) • Ej = 6i,• (Kronecker 6?.

Thus, writing L(i) for the corresponding sheaf or line bundle gives a natural
one-to-one correspondence from nontm'vial charaeters ofG to line bundles on Y
whose first Chern classes ci(,C(i)) E H2(Y, Z) give the dual basis to the natural

basis [Ei] of H2(Y, Z).

Example 2.2 0ne way of generaiisin,g Exampge 2.1 te di?nension 3. Let

      G == Åq;(1, -l,e), l, (g, l, -i), ;(-l, g, l,)År =: (Z/r)2 c SL(3, {l )

be the maximal diagonal Abelian group of eTponent r. Then the first guadrant
of LR has an obviou$ tn'angulation by regular simplicial cones that are basic
for L and have vertexes in the 1'unior simplex Aj..ti.r. By toric geometry and
the standard discrepancy calculation [YPG7, this triangulation deLfines a crepant

resolution Y - X = C"/C.
   jFrom now on, restrict for simplicity to the case r = 5 (featured on the
mirror of the guintic !CY?, whose triangulation is illustrated in Figure 2. X =
C3!G hffs lines of Pu Vat $ingulgrities A4 = g(l,-i) along ihe 3 ceerdinate
gres, She j7=ed gecuses of the g generGting su5greups g(2,-l,e) eie., ef G. As

ilinsirgteg in Figure S, 'She reseix{ien Y kg$ 3 ehains ef4 r#led sttrfaees ever the
eeerdinaSe axes ef X, and 5 dei Pezie szzrfaees ef degree 5 ("reguiar hexagcns"?
over the origin. ffvery exceptionai curve stratum in the resolution is a (-1, -1)

curve.
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(4,t,o)

(IE,o QÅr

1t)

(o,S,o) , ...' '••,
      Figure 2: [riangulation of Ajunior in

i

      tt
      tl
       t'

          t"ttt!

       ' '- X•1.
ÅqO, O, !;') ,, ! x,

Exarnple 2.2

   Funciiens en the guetient X = Åë3!G gre given by G-invariant peiynemials,
k{X] = Cl$,y,z]g. Te get mere fuaeSiens en Y (gnd a prepactive em5edding ef
:Y?, ceRsiger ihe feUewing raties ef fngggmiais in the san;e eigenspace of tke G

         xi:(yx)5"-i fori--- 1,...,4, andpermutations ofx,y,z. (5)

Each ratio (5) defines a free linear system on Y, and all together, they define a
relative embedding ofY into a product of many copies efPi. For example, as
shown in Figure I, the toric stratum at (2,2,1) is a del Pezzo surface of degree
6 embedded by the 3 ratios x3 :y2z2, y3 :x2z2 and x4 :xy (having product the
trivial ratio 1: 1). Figure g shews two aLtfine pieces of Y, of which the ri'ght-
hand ene is Åq{)3 with ceerdinates A,#,y reiated te x,y,z by a set of eguatiens

ge#ergiisi#g (4?;

          x3 : Ay2z2 y3z3 . ptyx2
          y4 : sircz x2z2 = Avy3 and xyz=Apv. (6)
          z4 = tixy x2y2 = AIiz3

   Denote the linear system Ixi : (yz)5-il by IL(xi)1, and similarly for permu-

tations ofx,y,z. The sum of all the IL(x')I is very ample on Y, but their first
Chern classes do not span H2(Y, Z). To see this, recalt the del Pezzo surface S6
of degree 6, the 3 point btowup of P2 familiar from Cremona and Max IVoether's
elementary guadratic transformation. It has 3 maps to Pi and e maps to P2i
wrt' te ei,e2,e3 fer the divi$or elasses of the maps te gei, and A,f2 fer the maps
te P2. Then cleariy,

                   ei,e2,e3,A,f2 spGn U2(S6,rz),
                                                                  Åq7)
              with the single relation ei + e2 + e3 me A + f2•
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X's
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x"'

Figure 3: The resolution corresponding to the triangulation of Figure 2

For S6 one of the hexagons of Figure 3, the 3 maps to Pi are provided by certain
of the linearsystems IL(xi)l. The two rnaps to P2 are provided by other character

spaces: for exampte, for the (2,2, 1) hexagon of Figure 4, fi and f2 are given by
the linearsystems IL(x3y)1 and IL(xy3)1 corresponding respectively to the ratios

(x2z4 : x3y : y3z2) and (xy3 y2 z4 x3z2) = (xi4 xgy y31z2)

For each surface S6, the generators ei,e2,e3,fi,f2 correspond to certain
acters of G. For example, if I choose the 3 generators g(1,-1,O), g(O,1

and g(-1,O,1) of G, the characters ofx,y,z are

char-

,-1)

x y z

 1 -1 O
 O 1 -1
- 1 O 1

and my (2,2, 1) hexagon has

el e2 e3 fi f2

x3 y3 z4 X3y

3 2 o 2 3

o 3 1 1 3

2 o 4 2 4

Moreover, you see easily that the relations (7] actually hold in H2(Y, Z),
1'ust in H2(S6,Z).
   Represent each character ofG by a monomialxM (such as xi orx3y?;
corresponds to a free linear system IL(xM)l on Y, in much the same way as
L(xi :(yz)"-i) or L(x2z4:x3y:y3z2) j'ust described.

not

this

the
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                  Figure 4: Two affine pieces near the hexagon at (3,1,1)

   New the McKay correspondence (V of Cen]'eeture 1.1 is the following recipe:

       monomial xM F-+ tine bundle L(xM) fe-" ci(L(xM)) E H2(Y, Z).

These elements generate Hr2(Y, Z), with one relation of the form (7? for every
reguiarkexagen S6 cf the Fic{gre. Mereever, eaeh reiatien (7] gives an eieme?it

        c2(L(ei) e L(e2) e L(e3)) - c2(L(A) e L(h)) G H`(y, Z), (s)

which is the dual element to {S6] e U4(Y, Z). Jndeed,

          c2(L(ei)0 L(e2) e L(e3)) • S6 = eie2 + ete3 -}- e2e3 == 3,

            and c2(L(fi) e L(h)) • S6 = fi f2 = 2•

i draw {he McKgy cgrrespegdence res#Sting frem {kis ceekeTg in 1;'igitre 5; eaeh
edgeE! twi is tabeiled by the iinearsystem L(xM) with L(xM)•ff : 1, and each

hexagon S6 by 2 characters corresponding to ihe two extra generators A,h of
H2(S6,Z) with the relation which gives the dual element ofH4(Y, Z).

   One of the morals of this example is t}iat we get a basis of cohomology }n
terms of Chern classes of virtual sums of tautelogical bundles; this suggests using

the tautological bundles to base the K-theory of Y, and passing from K-theory
to eokemology by Ckewa classes or Ckera cliaracters. In fact, the combiRatlons
used in (8) were fixed up to have zero fust Chern class, exactly what you must
do if you war)t the second Chern Åëharact,er to come out an integral class.

Example 2.3 This aK sees througk. fi}ttch the same for aK r (but gpparentiy
net for dimension n ) 4].

3 Ite-Reid, and the direct correspendence (2)

A group G c SL(n,C) has a natural filtration by age. Namely, any element
g ff G can be put in diagonal form by choosing xi,. . . ,xn to be eige.ncoordinates
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                   Figure 5: McKay correspondence

                               '              'ofg. We writeg= +(ai,...,a.) to mean that

             g:(Xl,x2)...,xn)H(ealxl,ea2x21...Jeanxn)}

where e = exp(2Tilr) = fixed primitive rth root of 1, and ai E [O, 1, . . . ,n - 1].

Toric geometry tells us to consider the lattice

                      L= Zn + Z!(ai,...,an)

                                r
(more generally for A c G an Abelian group, we would add in lots of vec-
tors }(ai,...,an) for each g E A). This consists of weightings on the xi, so

that the invariant monomials have integral weights. Then for any element
b = l(bi,...,bn) E L with all bi i}l O (that is, b in the positive quadrant),
define

                                 1                         age(b) = F2bi•

   In particular, for g = "(ai,.. . ,a.) in the unit cube,

                                 1                         age(g) = F 2 ai ;

this is obviously an integer (because g E SL(n,(C)) in the range [O,n - 1), and
this defines the age filtration.
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   Now any primitive vector b = "(bi, . . . , b.) E L and in the positive quadrant

defines a monomial valuation vb on the function field k(X) of X. Furthermore,
the standard discreparicy calculation (see [YPG]) says that

                        disc(vb) = age(b) - 1.

Reminder: The discrepancydisc vb means that ifI make a blowup Wb - X so
that vb i$ tke va}uatloxx at a prime di\iser Fb C Wb, then Kw, == KxÅÄdisc(vb)Fs.

Ngte alse tkat junier meai}s age = l, aftd crepanS meaits discrepaRcy = g. ARy

otker questioRs?
   The va}uation 5 defines a }ocus il]b = ceittre(vbÅr C Y, Consider only weight-

ings b such that vb is the valuation of Eb c Y; this rneans that ifI blow up Y
along Eb, and Fb is the excep.vtional divisor, then vb is the valuation associated

with the prime divisor Fb cr Y. Since Y is crepant, the adjunction formula for

a blowup gives

         disc(vb)= codimEb-1, that is, codimEb :age(b).

   IR [IR], we uses this idea to give a bijection

       {jgnier cenjugacy classe$ ef C} - {crepant va}uatioits of X}

which gave us a basis of H2(Y,@), and we dea}t with if4(Y, ((2) by PoiRcar6
dua}ity. Thus [IR] only used the valuation theoretic construÅëtion

                           bH vb H Eb

for b in the junior sirnplex Aj..i... However, the sarne idea obviously extends
to give a correspondence from certain "good" elements b to a set of locuses in
Y which generate H.(Y, Z). Thus the idea for the direct correspondence (2) is

                 G D g N collectioR of suitab}e 5

                      }-+ collectieit ef locgses ffb C Y.

[l]he first step is by a mysterious cookery, which l oRly indicate by the labelling in

the two examples of g6 below (it shou}d be possible to extract a good conjectural
statement from this data).

4 Tautological sheaves and the main conjecture

These lectures are mainly concerned with providing experimental data for a suit-
ably rephrased Conjecture. 1.1, (1). In this sectien, I speÅëulate on a framework

to explain what is going on, that might eveBtua}ly lead to a prooÅí
   Tke followiBg is the maiR idea ef [GSp-V]. GiveR G c SL(n, ÅqC), we cboese
eitce aRd fer all a complete set of irredBcib}e represeptatiefts s: G - GL(Vfi). I

use T* to vievF sheave$ oxx C" such as the structure sheaf OÅën as sheaves oR the

quotient T: C" - X. Since X is afine, these are real}y simp}y modules over
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k[X] = k[(C"]G, so I usually omit T.. Note that k((C") is a Galois extension

of k(X), so that, by the cyclic element theorem of Galois theory, it is the
regular representation of G, that is, k((C") = le(X)[G]; thus T*Ocn is generically

isomorphic to the regular representation Ox [G]. For each p, set

                        1'S := Hom(Vp, Oc.)G

Then 1'S op Vp c Ocn is the character subsheaf corresponding to Vp; by the
usual decomposition of the regular representation, .lrS is a sheaf of Ox-modules

of rank degp. And there is a canonical decomposition

                 Ocn = Z lrS X V, as Ox [G] modules.

                        p
   Now let f: Y - X be agiven resolution. Each 1'S has a birationaltransform
.lrp on Y. This means that lrp is the torsion free sheaf of Oy modules generated
by fS, or if you prefer, f, = f'-S/(torsion).

   The sheaves -p are the GSp-V sheaves, or the tautological sheaves of Y.
Note that by definition, the 1p are generated by their HO.

Conjecture 4.1 (Main conjecture) Under appropm'ate cireumstanees, the
tautological sheaves Tp form a Z-basis of the Grothendieck group Ko(CohY),
and a certain cookery with their Chern classes leads to a Z-basis ofH'(Y, Z). A
stightly stronger conj'eeture is that the JF' p form a Z-basis of the derived categor3t

D'(CohY)•

Remark 4.2 "Appropriate circumstances" in the conl'ecture include all cases
when G c SL(n,C) andY = G-Hilb is a crepant resolution. In this case, these
tautological sheaves .1' p have lots ofgood properties (see g5?. But flops should not

make too much difference to the statement - one expects a flopped variety Y' to
have more or tess the same homology and cohomology as Y, at least additively.

Example 4.3 X(1,...,1) (with n faetors?. The quotient X is the cone on
the nth Veronese embedding of lP"}-i, and the resolution Y is the anticanonical
bundle of P"'i, containing the exceptional divisor P"-i with normal bundle
O(-n) = wpn. The tautological sheaves are

                        o, o(1), . . . , o(n - 1).

That is, these are sheaves on Y restricting down to the first n multiples ofO(1)
on P"-i. It is well known that these sheaves form a Z-basis ofthe Grothendieck
group Ko(P"'i). It is a standard (not quite triviaij bit of cookery with Chern
classes and Chern characters to go from this to a Z-basis of H'(P"-i,Z).

Remark 4.4 Recall the original
Apn-i C IP'nffi Å~ Pn-i is defined

              sA =2xl aa.,

(1977? Beilinson diagonal trick: the diagonal
by the section

E P: Opn-i(1) op p5Tpn-i(-1).
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Therefore, it follows (tautologically? that the derived category Db(CohPn-i)

(hence also the K theory Ko? has two "dual" bases

       o, 9i (1), . . . , 9"-i(n - 1) vs. O, O(-1), . . . ,O(-(n - 1)).

Lame attempt to prove Conjecture 4.1
Step I The resolution Y - X is the quotient A/H of an open set A c CN
by a connected algebraic group H. In other words, by adding extra variables in
a suitable way, we can arrange to make the finite quotient X = C"/G equal to
the quotient CN/H of a bigger space by the action of a connected group H (the
quotient singularities arise from jumps in the stabiliser group of the H-action);

moreover, we can arrange to obtain the resolution Y - X by first deleting a
set of "unstable" points of (CN and then taking the new quotient A/H. For
example, the Veronese cone singularity of Example 4.3 is Åën+i divided by

             (C' i) A: (xi,...,xn;z) H (Axi,...,Ax.;A-nz).

(Obvious if you think about the ring of invariants). The finite group Z/n is the

stabiliser group of a point of the z-axis. The blowup is the quotient A/C' , where
A = Åë"+i X z-axis. (Because at every point of A, at least one of the xi irE O, so
the invariant ratios xJ•/xi are defined locally as functions on the quotient.)

Step II Most optimistic form: the Beilinson diagonal trick may apply to a
quotient of the form obtained in Step I. That is, the diagonal Ay c Y Å~ Y has
ideal sheaf ZA. resolved by an exact sequence in which all the other sheaves are
of the form 1:i Xgi = p: 1iXpEgi, where the -i and gi are combinations of the
tautological bundles.
   It's easy enough to get an expression for the tangent sheaf of Y, in terms
of an Euler sequence arising by pushdown and taking invariants from the exact
sequence of vector bundles over A

                    Lie(H)-TA.f*(Ty) --- O, (9)
where imLie(H) is the foliation by H-orbits. Maybe one can define a filtration
of this sequence corresponding to characters, and write the equations of Ay in
terms of successive sections of twists of the graded pieces. For example, the
resolution Y in Example 4.3 is an affine bundle over Pn-i, and the diagonal in
Y is defined by first taking the pullback of the diagonal of IEpti-i (defined by

the section Åí x:•0/axi E Opn-i(1)XTpn-i(-1), the classic caLge of the Beilinson
trick), then taking the relative diagonal of the line bundle O(-n) over Pn-i.

Step III The sheaves 1i or 9i appearing in a Beilinson resolution form two
sets of generators of the derived category Db(Coh Y). Indeed, for a sheaf on

Y, taking p:, tensoring with the diagonal OA., then taking p2, is the identity
operation. However, a Beilinson resolution means that OA. is equal in the
appropriate derived category to a complex of sheaves of the form 1 i X gi . (This
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is atautology, like saying that if V is a vector space, and fi E V, gi di V'
e}emeRts sllck tkat idy = Åí figi, tkeit fi ai}d gi spall V ai}d V'.)
   It, should be possible to go from this to a basis of Db(Coh Y) by an argument

involving Serre duality and the assumption Ky ex O. In this context, it is
eelevaBt to xxote t}}at tke Bei}insoii trick leads to }iRe bur}d}es in the TaBge
K Åq .TTi S O as one of the dual bases (for Pn-i, I believe a}so in all the other

known cases).

5 Generalities on G-Hilb

The next sections follow Nakamura's ideas and results, to the effect that the
Hilbert scheme of G--orbits often provides a preferred resolution of quotient
sikg"laritie$ (see [N2]-[N3], [INI]-[IN3])l tke resu}ts here are mostly dtte te
him. I write M = Cn, and let G c GL(n, Åë) be a finite subgroup.

Befinkion 5.1 G-xxi}b is the fine med#li spaee of G-eiusters Z C M.
   "ere a G-cluster means a subscheme Z with defining ideal Zz C OM and
structure sheafOz : OM/Xz, having the properties:

  1. Z is a cluster (that is, a O--dimensional subscheme?. (Reauest to 90%o
     of the audience: please suggest a reasona61e translation of cluster into
     Chinese chgraciers (heitf g5out teRdait, cf. seidait -- censteilatien, as in
     the Pleiades cluster??

  2. Z is G-invaR'ani.

  3. degZ :N=IGI•

  4. 0z ar le[G] (the regular representation ef Gj. For exampie, Z eontd be a
     general orbit ofG consisting of N distinct points.

Remark 5,2 i. A quoiient set M/G is traditionaiiy caiied an orbit space,
     and that's exactly what G-HilbM is - the space of clusters of M whieh
     are scheme theoretic erbits ofG.

  2. There is a canonical morphism G-HilbM ajF M/G, part of the general
     nonsense of "ilbert an,d Chow sehemes; G-Hilb parametrises Z by ceR-
     sidering ihe ideaifz C OM as a point of the Grassmannian, whereas the
     corresponding point of M/G is constructed from the set of hyperplanes (in
     some embedding M c--a- Pia"ge? that interseet Z.

  3. ijT: M - M/G is the quotient morphism, andP E M/G a ramification
     point, the schen}e theoretic fibre g'P is always n}uch teo fat; ever such a
     point, a peint of G-llilbM adds ihe data ef a subscheme Z of the righi
     length.
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  4. Ihope we don't need to know anythzng at all about HilbNM (all clusters

     of degree N = IGI?, whzch is pathological if N,m ) 3. MoraUy, G-Hilb is
     a moduli space ofpoints ofX = M/G, and the right way to think about it
     should be as a birational change of GIT quotient of M/G.

Conjecture 5.3 (Nakamura) (i? HilbGM is irreducible.

 (ii? ForG c SL(3,C), Y = G-Hilb C3 -X = C3/G is a crepant resolution of
     singularities. (This is mostly proved, see IIV37 and below.?

 (iii? ForGC SL(n,C), if a crepant resolution of (Cn/G exists, then G-IIilbCn
     is a erepant resolution.

 (iv? ifN is normal in G andT= G/IV then HilbT HilbN = G-Hilb.

Remark 5.4 Forn ) 4, a erepant resolutionY .X usually does not exist, but
the cases when it does seem to be ratherimportant. As il4ukai remarks, a famous
theorem of Chevalley, Shephard and Todd says that for C c GL(n,([)), the
quotient Cn/G is nonsingular if and only 2f G is generated by guasireflections.
Sinee we want to view G-Hilb (C" as a different way of constructing the quotient,
the question of characterising G for which G-Hilb C" is nonsingular (or crepant
over (C"/G? is a naturalgeneralisation. We know that the answer is yes for
groupsG c SL(2, (C), probably also SL(3, ([ ), so by analogy with Shephard-Todd,
I conj'ecture that it is also yes forgroups generated by subgroups in G c SL(2, (C)
orSL(3,C). For cyclic coprime groups ;(a,b,c, d), based on not much evidence,
Iguess there is a crepant resolution iff there are g(r- 1) 1'unior elements, that

is, exactly one third of the internal points of D lie on the junior simplex (see

IIRD; this is very rare - by voluTne, you expect approx 4 middle-aged elements
for eaeh 1'unior one (as in most math departments?. An easy example to play
with is ;(1,1,1,-3), which obviously has a crepant resolution

   o the simplex Åq([g],[g],[g],r-3[g]),(looo),(oloo),(oolo)År zs basic

   o r!1 mod 3.
For more examples, see also IDffZ7.

Proposition 5.5 (Properties of G-Hilb) Assume Conj'ecture 5.3, (0. (In
most cases ofpresent interest, one proves that G-Hilb is a nonsingular variety
by direct calculationi alternatively, if Conj'ecture 5.3, (1? fails, replace HilbGM

by the irreducible eomponent birational to M/G.?

 (1? The tautologicalsheaves jF'p on Y are generated by their HO.

 (2? They are vector bundles.

 (3? Their first Chern classes or determinant line bundles

                           Lp = det lrp = ci(1'p)

     define free linear systems ILpl aecording to (1?, and are therefore nef.
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 (4? Any strictly positive combination ZapL, of the Lp is ample on Y.

 (5? These properties charaeterise G-Hilb aniong varieties birational to X (or

     the irreducible component?. -
Remark 5.6 ifGc SL(n,C) andM = C", andY = G-HilbM is nonsingular,
the McKay correspondence says in particular that the Lp span Pic Y = H2(Y, Z)
(this much is proved?. In the S-fold case, when Y is a crepant resolution, (3-
4? resolve the contradietion with the expectation of 3-folders, because they show

how G--Hilb is distinguished among all crepant resolutions ofX. For if we flip

Y in some curveCcY, then by (4? we know that LC ÅrO forsome L= Lp,
and it follows that the flipped curve C' c Y' has L'pC' Åq O. Thus (1-3? do not
hold on y'.

Proof Write Y = G-Hilb M. By definition of the Hilbert scheme, there exists
a universal cluster Z c Y Å~ M, whose first projection p: Z - Y is finite, with
every fibre a G-cluster Z. Now from the defining properties of clusters p,Oz
is locally isomorphic to Oy[G], the regular representation of G over Oy. In
particular, it is locally free, and therefore so are its irreducible factors 1' p op Vp.

Since Z c M = C", the polynomial ring k[M] maps surjectively to every Oz,
so that p,Oz is generated by its HO. This proves (1-3). .
   For any G-cluster Z E G-Hilb M, the defining exact sequence

                      O---+ lz-Ocn-Oz .O (10)
splits as a direct sum of exact sequences (I omit T., remember):

                  O --+ Tz,p - j['S op Vp - Fz,p X Vp -O

Therefore Z is uniquely determined by the set of surjective maps JCp - Fz,p.
This proves (4).
   I now explain (5). The linear systems ILpl are birational in nature, coming
from linear systems of Weil divisors ILplx on the quotient X = M/G, and their
birational transforms on any partial resolution Y' - X. Now (5) says there
is a unique model Y on which these linear systems are all free and their sum
is very ample: namely, for a single linear system, the blowup, and for severa},
the birational component of the fibre product of the blowups. This also gives a
plausibility argument for Conjecture 5.3, (iii): if we believe in the existence of
one crepant resolution Y', and we admit the doctrine of flops from Mori theory,
we should be ab}e to flop our way from Y' to another model Y on which the
ILp[y are all free linear systems. (This is not a proof: a priori, if the Lp are

dependent in PicY, a fiop that makes one nef might mess up the nefdom of
another. However, it seems that the dependences are quite restricted (compare
the discussion at the end of Example 6.2). Q.E.D.
   I go through these properties again in the Abelian case, which is fun in its
own right, and usefu1 for the examples in S6. Then an irreducible representation

p is an element of the dual group

           a= {homomorphisms a: G- rth roots of 1 in C"},

-  28 -

15



where r is the exponent of C. I write Ox(a) for the eigcmsheaf, and Åíy(a) for
the tautological line buridle on Y (previously JIrS and Jrcp respectively).

   For any Z, the sequence (10) splits as

       e.Oma -eOx(a) - (D ka -o (sum over aE O),

where k. is the l-dinaensional representatieR correspoi}ÅqSing to a (because of the

assumptioR 0z = klG]). Thus & G.clusteT is exact}y the same tking as a set ef
maxima} subsheaves

                                              A                 Ma C Ox(a), oite for every a ff (V,

subject to the condition that X m. is an ideal in Ocn, that is, that m.Ox(b) C
                      AOx(a + b) for every a,b G G.
   Now it is an easy exereise to see that the Hilbert scheme parametrising
maximal subsheaves of Ox(a) is the blowup of X in Ox(a), which I write
Bl. X - X, and in particular, it is birational. It follows that G-Hilb is contained

in the product of these blowups:

                         G'HilbCll BlaX (*)
(where tke proeect ls the fibre prodgct ovee X of all tke B}. X for a E a), aRd

is the locus defined in thls product by the idea} condition:

                                                 ,"K               maOx (b) C Ox (a +b) for every a,b ff C (**)

(this obviously defines an ideal of Bl. Å~x Blb)•

   By contruction of a blowup, each Bl. has a tautological sheaf O.(1), which
is relatively ample on Bl.. The tautological sheaves on G-Hilb are simply the
restrictions of the O.(1) t,o the subvariety (*). This provctss (1-4) again. Q.E.D.

Remark 5.7 The fibre produet in (*? is us#ally red#eibge, with 5ig components
ever Ske erigin (ihe predzzet of tke exeeptienai iecscses ef the B}.]. fffizgever, ii

is fairSy pgaxsigie thaS the reiatiens (**? ge#ne an irredttci5ie subvarieSy. Thi$

is the reasen fer Cen]'ecture 5.3, (f?.

6 Examples ofHilbert schemes
More experimental data, to support the following conclusions:

 (a) Y = G-Hilb can be Åëalculated directly from the definition; for 3-fold
     Gorenstein quotients, it gives a crepant resolution, distinguished from
     other medels as embedded in projective space 'by ratios of functiens in
     tke same character spaces.

 (b) Coajecture l.l Åëan be verified iR detaiXll ram}ericcrelly complicated cases.
     It amounts to a funny labe}ling by a E a of curves and surfaces on t}}e

     reso}ution.
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 (c) [l]ke re}ations iit Pic}" beÅíweeR tke tauto}egical liite bukd}es, w'itose c2

     give higher dimensional cohomology ciasse$, come from equalities between
     products of monomial ideals,

Example 6.1 ffxamples 2.1-2.2 are G-Hilbert schemes. In fact the eguations
(4? gng (5] were ztFritteR eut te define G-clasters.

   Next, it is a pleasant s#rprise te nete that the fameus Jitng---,llirzebrzieh een-
tinued fraction resolution of the surface cyctic quotient singularity ;(1,q) is the

G-Hilbert seheme (Z/r)-Hilb C2. To save notation, andto leave the reader a de-
lightful exercise, J only do the example g(1,2), where 5/2 = [3,2] = 3-1/2,' the
invariant monomials and weighting$ are as in Figure 5. As usuat, X = C2/(I;
and Y - X is the miRi?}}ai resetstieR, wiih twe exeepSignai curz}es ffi gnd llV2
with Ei2 = -2, E22 = -3. In torie geemetry, Ei cerrespondb' to (3,i) (asa

x5

X3y

  .xy"

(a)

 "r
y

(o, Jr)

(l,2)
     (3, l)
          (s,e)

(b)

Figure 6: Newton polygons (a) of invariant monomials aitd (b) of weights

ver"tex of the Newton polygon (b? in the lattice of weights, or a ray of the fan
defining the resolution Y?,' the parameter along Ei ! Pi is x : y3. Similarly,
E2 corTesponds to (1,2) and has parameter x2:y. Exactly as in Figure 1 and
(4?, a neighbo2trhood Yi of the point Ei n E2 is C2 with parameters A,pt, and
the rgtigngl map C2 -. Yi is detey'i}}iReg by ecuakon$ gnalegous te (":

                 x2=Ay, y3=iix, and xy2=Ait. (ii)
These eguations define a G-cluster Z: fora basis ofOz = k[x, y]/((11)) is given
by 1,y, y2,x,xy. Ever3t G-ctuster is given by these eguations, or by one of the
foUowing other two types: x5 -ww A',y : ;t'x2 or x = A"y3,y5 nm t.t"; the 3 cases

cerrespend io the $ aptne pieces with eeerginaSes 5y A,#, etc. cevering Y. The
generie G-eluster is G • (a, 5) with a,b l g; aii the eguatiens

      x5 = a5, x3y = a3b, xy2 = ab2, y5 = b5, bx2 = a2y, ay3 = b3x

vanish on G-(a,b), and since a,b 7! O, generators of its ideal can be chosen in
loSs of different ways from amen.g th,ese, including 'She ge stated forn}s.

   Tke rgke x: y3 gSgng Ei and x2 :y agong E2 geSne free Enegr systems
IL(1)i, IL(2X en Y correspending to the twe charaeters i,2 ef Gf = Z/5, with

                                      L(2) • Ei =O                   L(1)•Ei ur 1
                                 and
                   L(1)JE2 :O L(2)•E2=1
The$e twe give a dzzgS ggsis ef N2(Y, Z), g ir2tncated McKay c'orrespeRgence.
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Exercise-Psceblem The cas'e of general S(1,g) can be gene kkeuese,' see for
exampie IR7, p. e2g for th,e neiaiion, and cern.pare also gfN27. Probgem: f beket'e

that the minimum resol?ttion of thff other sitrface quotiEent singularities is also a

(3!-llilbert scheme. The best way ofproving tht,s may 7?.ot be to corrtpute G-Hilb

exhauskveiy. fn ihe SIj(2,Åë) case, Re an,d .;Veskam,#,ra get Ske resui{ Ji'y :g
atttomaiicagiy, beca'use the moduti space G-Hi}b carries a sympiectic form.

The toric treatment of G-Hilb

From now on, I deal /rnain}y with isolated Gorenstein cyclic quotient 3-foid
singularities }(a,b,c), where a,b,c are coprirne to r and a+b+e = r. If G
is Abelian diagonal, then X is obviously toric; hovv'ever, it turns out that sc) is

the G-gilbeye schexie. Theye are two proefel tke bett{/.r preof is that due eo
Nakamura, described in g7. I now give a garbled sketch of the first proof: I
claim that the G-Hilbert scheme G-Hilb Cn r Y(.V,) is t/he toric variety given by
the fan X, the `Csimlllt,aiieous dual NewtoR polygon" of the eigenshe.aves Ox(a),

defined tkus:

                           A     for every character a E 6, write Ox(a) for the eigenspace of a,
     L(a) for the set of monomial minima] generators of Ox(a), nmd con-
     skuct the Newton polyhedroi} NewtoR(sc(G)) in t}ie space ef mo#o-
     miais. Thell Z is the fan in the space of weights consisting of the
     cones ÅqAi, . . . ,AkÅr where the Ai are weights having a common min-
     imum in every L(a). This means that• t,he 1-skeleton Åíi consists of
     weights A wklch eit}}er sllpport a wall ( = (n - lÅr-(iimegsioita} face)

     of Newton(L(a)) for some a, or which support positive dimensionai
     faces of a number of L(a)•) vv'hose proczluct is n - 1 dimensional (in

     other words, ratio$ between monomiu,}s in the various L(a2') which
     are miiiima fer A geReraee a fuficgioi} fie}d ef dimeRsio# n - O.
     Then ÅqAi,...,AkÅr is a cone of E if and only if {Ai} is a complete
     set of weights in Xi having a common rninimum in every L(a); and
     ÅqAi,...,AkÅr has dimensioB d if and on}y if the ratio betweea these
     miiilma spafi an (n - d) dimeBsiofia} svÅrace.

This definition is algorithmic, but quite awkward to use i,n calculations: you have
to list the minimal generators in each character space, ai)d figure out where each

weighÅí Ai takes i{is }east val#es{ wkex n = 3, yoll seeR i}ote that t}}e key pok}S
is the ratios Iike x3y : z5 between two monomia}s on an edge of the Newton

boundary.

Sketck proof Becatt$e C}z = k'[C] for Z G Åq.7-&lb, for every ckaracter a of
G, the generat/ors of L(a) map surjectively to the 1-dimensional charact/er space
lea, so there is a well defined ratio between the generators of Zz(a). This means
tkat for fixed Z alld every L(a), we mark e!}e i/r}oBomlal s. = xM(Z,") E L(a) as

the minimum of a}khe va}uaÅíioRs f4i, . . . , f3k spaRRiBg a ceBe, aiid, usiRg k as
a generator, we get the invariant ratios x'n' /$, as regular functions on G-Hilb
near Z.
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3k-3iaÅr
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ke o)

%
qp,V

                              A (:,j 2, r-3 e))

(l211rtO .c=([) 2k
            Figure 7: G-Hilb for l(1,2, -3), B, is joined to A2iww2,A2i--•i,A2t

 Example 6.2 Consider "(1,2,-3) where r = 6k+1, The gu6tient X =
 C31(Z/r) is toric, and the G-llilbert scheme is given by the triangulation of

 the first guadrant of Figure 7. This can be proved by carrying eut the above
 preef expliei{iy. I emit the ia5erious detaiis, cencentrating en ene peini: kow
 dees ike ffii5ert scheme ceRsiraeiien c5"gse gne iria?}guiatien in preierence to
 anether9 F"r simpiic#y, eensider enly pt = l3, $o the triangutaiion simpESes
 te ]7igure 8. ffow do i know te j'oin (8,3,2)-(2,4,7) by a eene ff, rather than
 (7,l,5)-(3,6,4)? By calcuiaiing 2Å~2 minors of(g24), we see that the pa-
 rameter on the corresponding line E. E Y should be the ratio xz2 : y4, where
 xi2,y4 E L(8). The Newton polygon of L(8) is shown in JP'igure 8. (The figure
 is notplanar: xi2 andy4 are "lower".? Here (2,4,7) and(8,3,2) have minima
 on the two planes as indicated, with common minima on xx2 and y4, so that the
 linear system lxz2:y41 can be free on L.. But (7,1,5) and (3,6,4) don't have
 a common minimimum here: (7,1,5) prefers y4 only, and (3,6,4) prefers xz2
 eniy. Jf I ]'oin (7,l,5)-(3,6,4), ihe iinear sysiem Ixz2 : y4I wouid have that

 Sine gs 5ase iecus.

    Tke resgi#iion is as in Figure g. The MeKay correspendence mgrks eaeh
 exeepiienai sirat#m: a iine L par6meirised by a ratio xMi : :M2 is marked "y
 the cemmen character space ofxM',xM2. In other words, a linearsystem such
 as xz2 : y4 corresponds to a tautological line bundle L(xz2 : y4) = L(8) with

 ci(,C(8)) -L = 1.
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   x6y x4y2 x2y3

     (2,4,7)

       xx2
ÅqO,o,13? (8,3,2)

y4

y2z3

z6

                                   N

          (I21l3t`D) Figure 8: G-Hilb for il,T(1,2,10). Why join (8,3,2)-(2,4,7)?

   The surfaces are marked by relations between the ci(L(i)). In this case,
because there are no hexagons, these aU arise from sunjective maps Ox(i) X
Ox(1') -" Ox(i+J'). For example, generators of the character spaces 1,2,3 are
given by monomials (written out as IVewton polygons?

                                                 38       L(1) :, y2, Y7, L(2) i,2,4 Y, L(3) i,2,,Z,` ;3YiY,

                                                l

and clearly L(1)XL(2) -" L(3). (Thus L(3) is not active in the resoluiion,
in fact he's completety useless, so it's naturat to promote him to senior.? This

means that on the resolvtion

                      ci(L(3) - L(1) - ,C(2)) ., O,

and c2(L(3) - ,C(1)-L(2)) is the dual class to the top le,fZ surface in Figure 9

Example 6.3 The G-Hilbert scheme for lt(1,5,31) is given by the triangula-
tion in Figure 10, which also indicates the labelling by characters of the McKay

correspondence. I confine myself to a few comments: on the right-hand side of
Figure 10,

            (1,5,31)-(4,8,20) are 1'oined by the ratio x4z:y7

           (8,3,26)-(23,4,10) are 1'oined by the ratio x2i:yi4

for reasons similar to those explained j'ust under Figure 8. The resolution has
3 regularhexagons (del Pezzo surfaces S6), coming from the regular triangular
pattern on the lefl-hand side of Figure 10. Tilings by regular hexagons appear
guite oflen among the exceptional surfaces of the IIilbert scheme resolution Y,
as we saw in .F"igure 9. The reason for this is taken up again at the end ofS7,
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Figure 9: "I'he McKay correspondence for sltT(l,2, 10)

see Fis#re ". Tke cohemelegy cjasses duai te ikese 3sttrfaces aTe giveR as in
(8] 5y takiRg c2 of tke relaSien ei +e2ÅÄe3-A- f2, wkere i5e fi,f2 gre ihe
characters wrf#en in each iittle ltexagonal 5ox of Figuf-e iO, and ei,e2,e3 are,the

characters marking the S lines through the box. The relationei+e2+e3 = fi+f2
can also be expressed as eauality between two products of monomial ideals.

7 Nakamura's proofthat G-Hilb is a crepant res-
olution

Theorem 7.1 (Nakamura,
SL(3, C), Y = G-Klb -, X ==

very recei}t) .FDrG a .finite diagenaisubgroup of
C31G i$ a erepanl resolution.

Preof l start from the McKay guiverof G wlth tl]e 3 given characters a,5,e,
corresponding to the eigencoordlnates x, tJ, i, satisfying a " b + c = O; to get the
full symmetry, draw this as a doubly periodic tesselation of the plane by regular
hexagons, labelled by cliaracters in a:

t--

2b

•4•  2b -y 2c 5 -i- c

b

e

 a+b 2a+b

e a 2a
G+e

3a
(12)
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Figure 10: The McKay correspondence for Å}
37

(1,5,31)

correspondin g to the monomials

y2z2

y2

Yl

y

z

1

xy

xz

x

X2y

x2 x3

-- ;

The whole of this business is contained one way or another in the hexagonal
figure (12), together with its period lattice H, and the many different possible

ways of choosing nice fundamental dpmains for the periodicities; that is, we are

doing Escher periodic jigsaws patterns on a fixed honeycomb background. First
of all, note that ,the periodicity of (12) is exactly the lattice of invariant Laurent

monomials modulo xyi. Call this fi.
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The proof of Nakamura's theorem follows from the following proposition:

Proposition 7.2
generators of Zz?
forms: either

        xa+d+1 =
        yb+e+1 ..
        zC+f+1 =

For every G-eluster Z, the defining equations (that is, the
can be written as 7 equations in one of the two following

Aybzf
pazCxd

vxa ye

for some a, b, c, d, e,f 2 O; or

       xa+d ,. fi7yb-lzf-1
       yb+e ,. a7zc-lxd-1
       zC+f = aBxa'lye-i

for some a, b, c, d, e, f 2 1.

yb+lzf+1 = pvxa+d
zc+ixd+i == Auyb+e and xyz=Aitu,
xa+l ye+1 = AllzC+f

ybzf . orxa+d-1
zcxd = Pyb+e'i and xyz = aPor,
xaye ., orze+f-1 .

(T)

(l)

Proof of Theorem 7.1, assuming the proposition Nakamura's theorem
follows easily, because G-Hilb is a union of copies of (C3 with coordinates A, ", v

(or a, P, 7), therefore nonsingular. Every affine chart is birational to X, because
it contains points with none of A, pt, y = O (or none of a, B, 7 = O). Moreover, an

easy linear algebra calculation shows that the equations (T) or (t) correspond
to basic triangles of the junior simplex, so that each aMne chart of G-Hilb is

crepant over X. In more detail:

Case (T) Write out the 3 x 3 matrix of exponents of the first three equations
of (I):

                   a+d+1 -b -f
                      -d b+e+1 -c
                      -a -e c+f+1
(note that each of the 3 columns add to 1, more less equivalent to the junior
condition). The 2 x 2 minors of this give the 3 vertexes

P=(bc+bf+ef+b+c+e+f+1, ac+cd+df+d, ab+ae+de+a),
Q=(bc+bf+ef+b, ac+cd+df+a+d+c+f+1, ab+ae+de+e),
R=(bc+bf+ef+f, ac+cd+df+b, ab+ae+de+a+b+d+e+1).
   The triangle PQR "points upwards", in the sense that

                       P is closest to (1,O,O),

                       Q is closest to (O,1,O),

                       R is closest to (O,O, 1).

The 3 given ratios xa+d+i : ybzf , etc. correspond to the 3 sides of triangle PQR.

In any case, all the vertexes belong to the junior simplex, so that this piece of

G-Hilb is crepant over X.
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Case (D Write out the exponents of the second set of three equations:

               -(a+d) +1 b f
                    d -(b+e) +1 c
                    a e -(c+f) +1
again, each ef the 3 columns add to 1, and the 2Å~2 minors of t•his give the 3

vertexes

  P= (5cÅÄ 5f ÅÄ ef-5-e-e-fÅÄ l, gc+ cd+ df - d, ab " ge ÅÄ ge - a),

  Q= (5e + bf + ef - b, ac -l- cd + df -a- d- e-f" i, ab + ae + de - e),

  R= (bc+ bf + ef -Lae+ cd+ df - b, ab + ae + de -a-b- d- e+ 1),

all of which again belong to the junior simplex, so this aMrie chart is also crepant

over X. This time the t/riangle PQR "points downwards", in the sense that

                     P is furthest from (1,O,O),

                     Q is furthest from (O,1,O),

                     R is furthest from (e,e, l).

[{'he 3 giveR ratios xa"dwwi : ybY, etc. agaiR correspe#d to tke 3 sldes. Q.E.D.

for the theorem, assuming the propositioR.

Proof of Proposition 7.2 Most of this is very geometric: any reasonable
choice of monomials in x,y,z whose classes in Oz form, a basis is given by a
polygonal region M of the honeycomb figure (12) sati$fying 2 conditions:

  (i) in each of the 3 t,riants (triangular sector) it is concave, t,hat is, a down-

    wards staircase: becuuse it is a Newton polygon for an ideal;

 (ii) it is a fundamental domain of the periodicity }at•#iee ff: because we assume

    tkat ez = le[C], tl}erefo:e every ckaracter appears exactly okge.

   [l]he eeRditloit (ii) meafis that ?Yf aitd its translates by ff t,esselate the p}aRe,

so they form a kind ofjigsaw pattern like the Escher periodic patterns. However,
in each of the 3 principal directions corresponding tQ t,he a, b, and c-axes, there

is only one acute angle, namely the summit at the e.nd of the a-axis (etc.).
Therefore M can only have one valley (concave angle) in the b,c triant. As
a result, there is only one geometric shape for the polysron M, the tripod or
mitsuya (3 valleys, or 3 arrows) of Figure I.

   I introduce some terininology: the tripod M has 3 summits at the end of
the axis of monomials uf , and 3 triants or sectors of 1200 cont,aining monomials
xi ssS'  . Each triaRt• has one valley aRd twe sheugders (incidental}y, the 6 shoulders

give tke sceie of Oz).

Remark 7.3 There are degenerate cases wh,en $eme of 'the valieys or summits
are triviai (for example, a rm O zn V. The most degenefxtte case is a straight
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lines, when Oz is based by powers ofx (say?, and the equations boil down to
y = x',z = xj (the x-corner of the resolution?. I omit discussion of these cases,

since the eguations of the cluster Z are always a lot simpter.

 rooo
olooo
oo!ooo
oo!oooooo
 eo!ooeooo
oeo!!:::Xl
ooe!oooooo
ooloo

 oloo
 Ioo

(Figure !)

 Thus there is only one "
namely

geometric" solution to t/he Escher jigsaw puzzle,

     ". XXIIII!!!!
     uuuXuuuuuuuuuuu
     uuZuu !ego "Zuu
o!eoo Iuu IvvvooTooo vlvvvooloooooo vvlvvv
 ooloooooo vvlvvvvvv."
ooollrXXXX vvlv

oooloooooo vv ."
ooloo vv oloo
 Ioo

(Figure IT)

 IR particula?, tke exterita} sides (geigg ogt to ehe 3 summ}ts) aye equa}
p}lls--or-minus l to tke opposite iRterita} side$ (goiRg in eo tke 3 valleys).

 Howeyer, the geometric statement of Figure Il is only exaet for clesed poly-
gons, whereas our tripods are Newton polygons spanned by integer points, and
are separated by a thirm "demilitarised zone" between the integer points. When
you consider the tripods together with the integer lattice$, it turns out that there

are two completely different ways in which the three shoulders of neighbouring
tripods can fit together, narnely

 either (T)

yyyyz
yyyz
xxxzz
xxxzz
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where the last y is just after the last x, and the shoulder of the z is level with

the top row of x
   or (t)

        yyyzz
         yyzz
        xxxzz
         xxxzz
where the last y is just before the last x and the top row of x is just below the

shoulder ofthe z.
   The two different forms (T) and (l) come from this patching.

Remark 7.4 (Algorithm for G-Hilb) Nakamura IN31 gives an algom'thm to
compute G-Hilb in this case as a toric variety. This can be viewed as a way
of classifying all the possible tripods in terms of elementary operations, which

correspond to the O-strata and the 1-strata of the toric variety G-Hilb. You pass

from an T tripod to al one by shaving off a layer of integer points one thick
around one valley (assumed to have thickness 2 1?, and glueing it back around
the opposite su7n7nit. And vice versa to go from l to T. You can start from
anywhere you like, for example from the x-corner (see Remark 7. 3?.
   IVakamura 's algorithm applied to the statement in Proposition 7.2 expressed
in terms of the fan triangulating the ]'unior simplex, gives that ifT and a,b, c, d,

e,f }l k 12r 2 (say? then you can cross any wall of the "upwards" trt'angle of
the fan to get a new l coordinate patch with a',b',c',d',e',f' }il le - 1, which

corresponds to a "downwards" triangle, and vice-versa. Jt follows that the first
tr2'angle is surrounded by a pateh of width k - 1 which is triangulated by the
regular triangular lattice, so that the resolution has a corresponding patch of
regularhexagons (that is, del Pezzo surfaces of degree 6?. Figure 12 shows the
McKay guiver of i"tT(1,5,31) and the fundamental domain corresponding to the

equations ofG-clusters

               x4 = Ay2 z, y4 == Itxz3, z5 = ux2y, etc.

on the coordinate chart of the resolution of sltt(1,5,31) corresponding to the

starred triangle of Figure 10.
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