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1 Introduction

Conjecture 1.1 (since 1992) G C SL(n,C) is a finite subgroup. Assume that
the quotient X = C*/G has a crepant resolution f: Y — X (this just means
that Ky =0, so that Y is a “noncompact Calabi-Yau manifold”). Then there
ezist “natural” byections

{irreducible representations of G} — basis of H*(Y, Z) (1)
{conjugacy classes of G} — basis of H.(Y,Z) (2)

As a slogan “representation theory of G = homology theory of Y 7.
Moreover, these bijections satisfy “certain compatibilities”

character table of G duality
. A d
McKay quiver cup product

As you can see, the statement is still too vague because I don’t say what
“natural” means, and what “compatibilities” to expect. At present it seems
most useful to think of this statement as pointer towards the truth, rather than
the truth itself (compare Main Conjecture 4.1).

The conjecture is known for n = 2 (Kleinian quotient singularities, Du Val
singularities). McKay’s original treatment was mainly combinatorics [McK].
The other important proof is that of Gonzales-Sprinberg and Verdier [GSp-V],
who introduced the GSp—-V or tautological sheaves, also my main hope for the
correspondence (1).

For n = 3 a weak version of the correspondence (2) is proved in [IR]. We
hope that a modification of this idea will work in general for (2); for details, see

§3.

Contents This is a rough write-up of my lecture at Kinosaki and two lectures
at RIMS workshops in Dec 1996, on work in progress that has not yet reached
any really worthwhile conclusion, but contains lots of fun calculations. History
of Vafa’s formula, how McKay correspondence relates to mirror symmetry. The
main aim is to give numerical examples of how the McKay correspondences



(1) and (2) must work, and to restate Conjecture 1.1 as a tautology, like the
cohomology or K-theory of projective space P" (see Main Conjecture 4.1). In-
troduction to Nakamura’s results on the Hilbert scheme of G-clusters.

Credits Very recent results of I. Nakamura on G-Hilb, who sent me a first
draft of [N3] and many helpful explanations. Joint work with Y. Ito. Moral
support and invaluable suggestions of S. Mukai. Support Sep-Nov 1996 by the
British Council-Japanese Ministry of Education exchange scheme, and from
Dec 1996 by Nagoya Univ., Graduate School of Polymathematics.

1.1 History

Around 1986 Vafa and others defined the stringy Euler number for a finite group
G acting on a manifold M:

estring(M, G) = crazy formula (you’d better forget it!)

= Z e(Xu) x #{conjugacy classes in H}. (*)
HCG

Here X = M/(G, and X is stratified by stabiliser subgroups: for a subgroup
H C G, set

My ={Q € M|Stabg Q = H},
XH = ‘II'(MH)
= {P € X|for Q € 7~ }(P), Stabg Q is conjugate to H}.

The sum in (*) runs over all subgroups H, and e(Xg) is the ordinary Euler
number. The mathematical formulation () is due to Hirzebruch-Héfer [HH]
and Roan [Roan]. If M = C” and G C GL(n,C) only fixes the origin, then the
closure of each X g is contractible, so that only the origin {0} = X¢ contributes
to the sum in (%), and

estring(C”, G) = #{conjugacy classes in G}.
At the same time, Vafa and others conjectured the following:

Conjecture 1.2 (“physicists’ Euler number conjecture”) In appropriate
circumstances,

estring(M, G) = Euler number of minimal resolution of M/G.

The context is string theory of M = CY 3-fold, and the G action on M
is Gorenstein, meaning that it fixes a global basis s € wy = O(Kny) = Om
(dualising sheaf wps = Q). In particular, for any point Q@ € M, the stabiliser
subgroup is in SL(ToM).

At that time, the physicists possibly didn’t know that there was a genera-
tion of algebraic geometers working on minimal models of 3-folds, and possibly



naively assumed that in their cases, there exists a unique minimal resolution
Y — X = M/G, so that eging(M,G) = e(Y). A number of smart-alec 3-folders
raised various instinctive objections, that a miniral model may not exist, is usu-
ally not unique etc.

However, it turns out that the physicists were actually nearer the mark. One
of the points of these lectures is that, in flat contradiction to the official 3-fold
ideology of the last 15 years, in many cases of interest, there is a distinguished
crepant resolution, namely Nakamura’s G-Hilbert scheme.

My guess of the McKay correspondences follow on naturally from Vafa’s
conjecture, by the following logic. If M = C”, then one sees easily that for
any reasonable resolution of singularities Y — X = C"/G, the cohomology is
spanned by algebraic cycles, so that

e(Y) = Z HPP = 4t{algebraic cycles of Y}.
It seems unlikely that we could prove the numerical concidence
e(Y) = #{conjugacy classes of G}

without setting up some kind of bijection between the two sets. [IR] does so for

G C SL(3,0).

1.2 Relation with mirror symmetry, applications
Consider:

(a) the search for mirror pairs;

(b) Vafa’s conjecture;

(c) conjectural McKay correspondence;

(d) speculative theory of equivariant mirror symmetry (G-mirror symmetry).

Historically, (a) led to (b), (b) led to (c¢), and logically (c) implies (b). I have
long speculated that (c) is connected to (d), and maybe even that it would
eventually be proved in terms of (d). The point is that up to now, the known
proofs of the McKay correspondence (even in 2 dimensions) rely on the explicit
classification of the groups, plus quite detailed calculations, and it would be
very interesting to get more direct relations.

I suggest below in §4 that the McKay correspondence can be derived in
tautological terms. If this works, it will have applications to (d). Some trivial
aspects of this are already contained in Candelas and others’ example of the
mirror of the quintic 3-fold [C], where you could take intermediate quotients
in the (Z/5)* Galois tower. My suggestion is that G-mirror symmetry should
relate pairs of CYs with group actions, and include the character theory of
finite groups as the zero dimensional case. I guess you’re supposed to add
an analog of “complexified Kahler parameters” to the conjugacy classes, and
“complex moduli” to the irreducible representations. Another application (more
speculative, this one) might be to wake up a few algebraists.



1.3 Conjecture 1.1, (1) or (2), which is better?

I initially proposed Conjecture 1.1 in 1992 in terms of irreducible representa-
tions, an analog of the formulations of McKay and of [GSp-V]. I was persuaded
by social pressure around the Trento conference and by my coauthor Yukari
Ito to switch to (2); its advantage is that the two sides are naturally graded,
and we could prove a theorem [IR]. Batyrev and Kontsevich and others have
argued more recently that (2) is the more fundamental statement. However, the
version of correspondence (2) in cohomology stated in [IR] gives a Q-basis only:
the crepant divisors do not base H%(Y,Z) in general: fractional combinations of
them turn up as ¢;(£) for line bundles on Y that are eigensheaves of the group
action, that is, GSp-V sheaves for 1-dimensional representations of G.

These lectures return to (1), passing via K-theory; in this context, the nat-
ural structure on the right hand side of (1) is not the grading of H*, but the
filiration of KyY. In fact, my thoughts on (2) in general are, to be honest, in a
bit of a mess at present (see §3 and §6 below).

2 First examples

These preliminary examples illustrate the following points:

1. To construct a resolution of a quotient singularity C* /G, and a very ample
linear system on 1t, rather than tnvariant rational functions, it is more
efficient to use ratios of covariants, that is, ratios of functions in the same
character space. This leads directly to the Hilbert scheme as a natural
candidate for a resolution.

2. Functions in a given character space p define a tautological sheaf F, on
the resolution Y — X, and in simple examples, you easily cook up com-
binations of Chern classes of the F, to base the cohomology of Y.

Figure 1: Ey and F, are the image of the z and y axes

I fix the following notation: G C GL(n,C) is a finite subgroup, X = C*/G

the quotient, and Y — X a crepant resolution (if it exists). For a given cyclic

(or Abelian) group, I choose eigencoordinates z1,...,z, or z,y,2,... on C". 1
1

write -(a1,...,a,) for the cyclic group Z/r action given by z; — £%z;, where
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¢ = exp(2ni/r) = fixed primitive rth root of 1. Other notation, for example the
lattice L = Z"+Z-%(ay, ..., a,) of weights, and the junior simplex Ajynior C Lg
are as in {IR].

Example 2.1 The quotient singularily %(1, —1). The notation means the cyclic
group G = Z/r acting on C% by (z,y) — (cz,e""'y). Everyone knows the
invarianl monomials u = z",v = zy,w = y", the quotient map

C? = X = C?/G = Du Val singularity A,_; : (uw = v") C C3, (3)

and the successive blowups that give the resolution’ Y — X and its chain of —2-
curves K1, ..., Er_y (Figure 1). However, the new point to note is that each FE;
is naturally parametrised by the ratio = : y =*. More precisely, an affine piece
Y; CY of the resolution is given by C? with parameters A, u, and the equations

Tl = il and zy = Ap (4)

l,i — /\yrvi’ Yy
define the G-invariant rational map C? —— Y; (quotient map and resolution al
one go).

The ratio z* : y"™* defines a linear system |L(i)] on Y, with inlersection
numbers

L(3)- E; = ;5 (Kronecker 6).

Thus, writing L(1) for the corresponding sheaf or line bundle gives a natural
one-to-one correspondence from nonirivial characters of G to line bundles on'Y
whose first Chern classes ¢1(L(i)) € H*(Y,Z) give the dual basis to the natural
basis [F;] of Ho(Y,Z).

Example 2.2 One way of generalising Example 2.1 to dimension 3. Let
1 1 1 ” 2 '
G=(-(1,-1,0),~(0,1,-1),~(~1,0,1,) } = (Z/r)* C SL(3,C)
T r r

be the mazrimal diagonal Abelian group of exponent r. Then the first quadrant
of Lg has an obuvious triangulation by regular simplicial cones that are basic
for L and have vertexes in the junior simplex Ajynior. By toric geometry and
the standard discrepancy calculation [YPG], this triangulation defines a crepant
resolution Y — X = C*/G.

sFrom now on, restrict for simplicity to the case T = 5 (featured on the
mirror of the quintic [C]), whose triangulation is illustrated in Figure 2. X =
C3/G has lines of Du Val singularities A4 = %(l,wl) along the 3 coordinate
azes, the fized locuses of the 3 generating subgroups %(1,—1,0) elc., of G. As
lustrated in Figure 3, the resolution’Y has 3 chains of 4 ruled surfaces over the
coordinate azes of X, and 6 del Pezzo surfaces of degree 6 (“regular hexagons™)
over the origin. Every ezceplional curve stratum in the resolution is a (—1,—1)
curve.



(6,0,0) .
)

Figure 2: Triangulation of Ajunior in Example 2.2

Functions on the quotient X = C3/G are given by G-invariant polynomials,
k[X] = C[z,y, z]°. To get more funclions on'Y (and a projective embedding of
Y ), consider the following ratios of monomials in the same eigenspace of the G
aclion:

' : (y2)*' fori=1,...,4, and permutations of z,y, z. (5)

Each ratio (§) defines a free linear system on Y, and all together, they define a
relative embedding of Y into a producl of many copies of P'. For ezample, as
shown in Figure 4, the toric stratum et (2,2,1) is a del Pezzo surface of degree
6 embedded by the 3 ratios 23 : y22?, y3 : £22? and 2% : zy (having product the
trivial retio 1 : 1). Figure 4 shows two affine pieces of Y, of which the right-
hand one is C® with coordinates ), jt,v related to z,y,z by a sel of equatlions
generalising (4):

23 = gz’ PP = pvg?
y! = puzz 222 = M and zyz = Apv. (6)
24 = vy z2y? = 2l

Denote the linear system |z* : (y2)°~%| by |L(z*)|, and similarly for permu-
tations of z,y,z. The sum of all the |L(z')| is very ample on Y, but their first
Chern classes do not span H2(Y,Z). To see this, recall the del Pezzo surface S
of degree 6, the 3 point blowup of P? familiar from Cremona and Maz Noether’s
elementary quadratic transformation. It has 3 maps to P! and 2 maps to P?;
wrile ey, eq, €3 for the divisor classes of the maps to P!, and fy, f; for the maps
to P2, Then clearly,

e1,€3,€3,f1,fo span H?(Se,Z),
with the single relation e + ez + e3 = fi + fa.

()
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Figure 3: The resolution corresponding to the triangulation of Figure 2

For Sg one of the hezagons of Figure 3, the 3 maps to P! are provided by certain
of the linear systems |L(z*)|. The two maps to P? are provided by other character
spaces: for example, for the (2,2,1) hezagon of Figure 4, f1 and f, are given by
the linear systems |L(z3y)| and |L(zy®)| corresponding respectively lo the ratios

1 1 1
2,4,,.3 ..3,2 d 3.,2,4.,3,2) _ . .
(:cz .:cy.yz) an (:cy ty°z .:cz) (:czz‘*':csy.y:’z?)'

For each surface Sg, the generators ey, eq, €3, f1, fo correspond lo cerlain char-
acters of G. For example, if I choose the 3 generators é(l,—l,O), %(0, 1,-1)

and £(—1,0,1) of G, the characters of z,y, 2 are

. er e es| fr fa
g 31’ 22 P |28y 2y
_1 and my (2,2,1) hezagon has 3 2 0| 2 3

1 1
-1 0 1 0 3 3
2 0 41 2 4

Moreover, you see easily thal the relations (7) actually hold in H*(Y,Z), not
just in H?*(Se,Z).

Represent each character of G by a monomial z™ (such as z' or z3y); this
corresponds lo a free linear system |L(z™)| on Y, tn much the same way as the
L(z* : (yz) %) or L(z22% : 23y : y322) just described.



Figure 4: Two affine pieces near the hexagon at (3,1,1)

Now the McKay correspondence (1) of Conjecture 1.1 is the following recipe:
monomial z™ v line bundle L(z™) v ¢, (L(z™)) € H*(Y,Z).

These elements generate H2(Y,Z), with one relation of the form (7) for every
regular hexagon S¢ of the piclure. Moreover, each relation (7) gives an element

ca(L(e1) ® L(e2) @ Lles)) — c2(L(f1) @ L(f2)) € HA(Y, Z), (8)
which is the dual element to [S¢} € Ha(Y,Z). Indeed,

c2(L(er) ® L(ez) ® L(es)) - S¢ = erex + eres + ezes = 3,
and co(L(f1) @ L(f2)) - Se = [if2 = 2.

I draw the McKay correspondence resulting from this cookery in Figure 5: each
edge F = P! is labelled by the linear system L(z™) with L(z™)-E =1, and each
hexagon Sg by 2 characlers corresponding to the two exira generators [y, f2 of
H?(Ss,Z) with the relation which gives the dual element of HY(Y,Z).

One of the morals of this example is that we get a basis of cohomology in
terms of Chern classes of virtual sums of tautological bundles; this suggests using
the tautological bundles to base the K-theory of Y, and passing from K-theory
to cohomology by Chern classes or Chern characters. In fact, the combinations
used in (8) were fixed up to have zero first Chern class, exactly what you must
do if you want the second Chern character to come out an integral class.

Example 2.3 This all goes through much the same for all r (bul apparently
not for dimension n > 4).

3 Ito—Reid, and the direct correspondence (2)

A group G C SL(n,C) has a natural filtration by age. Namely, any element
g € G can be put in diagonal form by choosing z4,...,z, to be eigencoordinates



Figure 5: McKay correspondence

of g. We write g = 1(ay,...,an) to mean that
g:(z1,2a,...,2,) — (% 21,6%2q,...,6%x,),

where € = exp(2ni/r) = fixed primitive rth root of 1, and a; € [0,1,...,n ~ 1].
Toric geometry tells us to consider the lattice

1
L:Z"-{-Z;(al,...,an)
(more generally for A C G an Abelian group, we would add in lots of vec-
tors %(al, ...,ap) for each ¢ € A). This consists of weightings on the z;, so
that the invartant monomials have integral weights. Then for any element

b = %(bl,...,bn) € L with all b; > 0 (that is, b in the positive quadrant),
define

age(b) = ;1? Z b;.

In particular, for ¢ = %(al, ...,an) in the unit cube,

age(g) = % Za;;

this is obviously an integer (because g € SL(n,C)) in the range [0,n — 1), and
this defines the age filtration.



Now any primitive vector b = %(bl, ...,yby) € L and in the positive quadrant
defines a monomial veluation v, on the function field k(X) of X. Furthermore,
the standard discrepancy calculation (see [YPG]) says that

disc(vp) = age(b) — 1.

Reminder: The discrepancy disc vp means that if I make a blowup W, — X so
that vj is the valuation at a prime divisor F, C Wy, then Kw, = K x+disc(vy)Fj.
Note also that junior means age = 1, and crepant means discrepancy = 0. Any
other questions?

The valuation b defines a locus E} = centre(vy) C Y. Consider only weight-
ings b such that vy is the valuation of Ey C Y; this means that if I blow up Y
along Ej, and Fy is the exceptional divisor, then v, is the valuation associated
with the prime divisor F, C Y. Since Y is crepant, the adjunction formula for
a blowup gives

disc(vp) = codim Ey — 1, that is, codim Ey = age(b).
In [IR], we uses this idea to give a bijection
{junior conjugacy classes of G} — {crepant valuations of X}

which gave us a basis of H*(Y,Q), and we dealt with H*(Y,Q) by Poincaré
duality. Thus [IR] only used the valuation theoretic construction

bn—>vbr—>Eb

for b in the junior simplex Ajynior. However, the same idea obviously extends
to give a correspondence from certain “good” elements b to a set of locuses in
Y which generate H.(Y,Z). Thus the idea for the direct correspondence (2) is

G > g — collection of suitable b

+— collection of locuses E, C Y.

The first step is by a mysterious cookery, which I only indicate by the labelling in
the two examples of §6 below (it should be possible to extract a good conjectural
statement from this data).

4 Tautological sheaves and the main conjecture

These lectures are mainly concerned with providing experimental data for a suit-
ably rephrased Conjecture 1.1, (1). In this section, I speculate on a framework
to explain what is going on, that might eventually lead to a proof.

The following is the main idea of [GSp-V]. Given G C SL(n,C), we choose
once and for all a complete set of irreducible representations p: G — GL(V,). 1
use T, to view sheaves on C" such as the structure sheaf O¢» as sheaves on the
quotient m: C* — X. Since X is affine, these are really simply modules over

10



k[X] = k[C™], so I usually omit m,. Note that k(C") is a Galois extension
of k(X), so that, by the cyclic element theorem of Galois theory, it is the
regular representation of G, that is, k(C"*) = k(X)[G]; thus #.O¢-~ is generically
isomorphic to the regular representation Ox[G]. For each p, set

.7:; = I{Om(Vp,OCn )G

Then F, ® V, C Oc~ is the character subsheaf corresponding to V,; by the
usual decomposition of the regular representation, ¥, is a sheaf of Ox-modules
of rank degp. And there is a canonical decomposition

Ocr = Z.’F;, ®V, as Ox[G] modules.

p

Now let f: Y — X be a given resolution. Each .7-'[’) has a birational transform
F, on Y. This means that F, is the torsion free sheaf of Oy modules generated
by F,, or if you prefer, ¥, = f*F, /(torsion).

The sheaves F, are the GSp-V sheaves, or the tautological sheaves of Y.
Note that by definition, the F, are generated by their H°.

Conjecture 4.1 (Main conjecture) Under appropriate circumstances, the
tautological sheaves F, form a Z-basis of the Grothendieck group Ko(CohY),
and a certain cookery with their Chern classes leads to a Z-basis of H*(Y,Z). A
slightly stronger conjecture is that the F, form a Z-basis of the derived category
D*(CohY).

Remark 4.2 “Appropriate circumstances” in the conjecture include all cases
when G C SL(n,C) and Y = G-Hilb is a crepant resolution. In this case, these
tautological sheaves F, have lots of good properties (see §5). But flops should not
make too much difference to the statement — one expects a flopped variety Y’ to
have more or less the same homology and cohomology as Y, at least additively.

Example 4.3 1(1,...,1) (with n factors). The quotient X 1s the cone on
the nth Veronese embedding of P~} and the resolution Y is the anticanonical
bundle of P*~1 containing the ezceptional divisor P*~! with normal bundle
O(—n) = wpn. The tautological sheaves are

0,0(1),...,0(n—1).

That s, these are sheaves on Y restricting down to the first n multiples of O(1)
on P*~1. It is well known that these sheaves form a Z-basis of the Grothendieck
group Ko(P"1). It is a standard (not quite trivial) bit of cookery with Chern
classes and Chern characters to go from this to a Z-basis of H*(P"~1,7Z).

Remark 4.4 Recall the original (1977) Beilinson diagonal trick: the diagonal
Apn—1 C P71 x P71 45 defined by the section

0 . «
sa = ZI;EZ € p10pn-1(1) ® Py Tpn-1(—1).

11



Therefore, it follows (tautologically) that the derived category D°(CohP"~!)
(hence also the K theory Kq) has two “dual” bases

0,Q11),..., Q" (n—-1) v O,0(-1),...,0(=(n—1)).

Lame attempt to prove Conjecture 4.1

Step I The resolution ¥ — X is the quotient A/H of an open set A C cN
by a connected algebraic group H. In other words, by adding extra variables in
a suitable way, we can arrange to make the finite quotient X = C"/G equal to
the quotient CV /H of a bigger space by the action of a connected group H (the
quotient singularities arise from jumps in the stabiliser group of the H-action);
moreover, we can arrange to obtain the resolution ¥ — X by first deleting a
set of “unstable” points of CV and then taking the new quotient A/H. For
example, the Veronese cone singularity of Example 4.3 is C"*! divided by

C oA (21, yzn;2) — (Az1,..., Azp; A7 2).

(Obvious if you think about the ring of invariants). The finite group Z/n is the
stabiliser group of a point of the z-axis. The blowup is the quotient A/C*, where
A = C"*t1\ z-axis. (Because at every point of A, at least one of the z; # 0, so
the invariant ratios z;/z; are defined locally as functions on the quotient.)

Step II Most optimistic form: the Beilinson diagonal trick may apply to a
quotient of the form obtained in Step I. That is, the diagonal Ay C Y x Y has
ideal sheaf Za, resolved by an exact sequence in which all the other sheaves are
of the form F; ®G; = pi F; @ p3G;, where the F; and G; are combinations of the
tautological bundles.

It’s easy enough to get an expression for the tangent sheaf of Y, in terms
of an Euler sequence arising by pushdown and taking invariants from the exact
sequence of vector bundles over A

Lie(H) = T4 — f*(Ty) — 0, 9)

where im Lie( H ) is the foliation by H-orbits. Maybe one can define a filtration
of this sequence corresponding to characters, and write the equations of Ay in
terms of successive sections of twists of the graded pieces. For example, the
resolution Y in Example 4.3 is an affine bundle over P"~! and the diagonal in
Y is defined by first taking the pullback of the diagonal of P"~! (defined by
the section 3 2/8/0z; € Opn-1(1) ® Tpr-1(—1), the classic case of the Beilinson
trick), then taking the relative diagonal of the line bundle O(—n) over P*~1.

Step III The sheaves F; or G; appearing in a Beilinson resolution form two
sets of generators of the derived category D*(CohY). Indeed, for a sheaf on
Y, taking p;, tensoring with the diagonal Oa,,, then taking ps. is the identity
operation. However, a Beilinson resolution means that Qa, is equal in the
appropriate derived category to a complex of sheaves of the form F; 8G;. (This

12



is a tautology, like saying that if V is a vector space, and f; € V, ¢; € V*
elements such that idy = )_ fig;, then f; and g; span V and V*.)

It should be possible to go from this to a basis of D?(Coh Y') by an argument
involving Serre duality and the assumption Ky = 0. In this context, it is
relevant to note that the Beilinson trick leads to line bundles in the range
K < F; < O as one of the dual bases (for P"~1, I believe also in all the other
known cases).

5 Generalities on G-Hilb

The next sections follow Nakamura’s ideas and results, to the effect that the
Hilbert scheme of G-orbits often provides a preferred resolution of quotient
singularities (see [N1J-[N3], [IN1]-[IN3]); the results here are mostly due to
him. I write M = C”, and let G C GL(n,C) be a finite subgroup.

Definition 5.1 G-Hilb is the fine moduli space of G-clusters Z C M.
Here a G-cluster means a subscheme Z with defining ideal Tz C Opy and
structure sheaf Oz = Our/Tz, having the properties:

1. Z is a cluster (that is, a 0-dimensional subscheme). (Request to 90%
of the audience: please suggest a reasonable translation of cluster into

Chinese characters (how about tendan, cf. seidan = constellation, as in
the Pleiades cluster?)

2. Z 1s G-mvariant.
3. degZ = N =|G|.

4. Oz = k[G] (the regular representation of G). For ezample, Z could be a
general orbit of G consisting of N distinct points.

Remark 5.2 1. A quotient set M/G is traditionally called an orbit space,
and that’s ezxactly what G-Hilb M is - the space of clusters of M which
are scheme theoretic orbits of G.

2. There ts a canonical morphism G-Hilb M — M/G, part of the general
nonsense of Hilbert and Chow schemes: G-Hilb parametrises Z by con-
stdering the ideal T; C Opp as a point of the Grassmannian, whereas the
corresponding point of M/G is constructed from the set of hyperplanes (in
some embedding M — P'%79¢) that intersect Z.

3. If r: M — M/G is the quotient morphism, and P € M /G a ramification
point, the scheme theoretic fibre n* P is always much too fat; over such a
point, a point of G-Hilb M adds the data of a subscheme Z of the right
length.

13



4. I hope we don’t need to know anything at all about Hilb™N M (all clusters
of degree N = |G|), which is pathological if N,m > 3. Morally, G-Hilb is
a moduli space of poinits of X = M /G, and the right way to think about it
should be as a birational change of GIT quotient of M/G.

Conjecture 5.3 (Nakamura) (i) Hilb% M is irreducible.

(i1) For G C SL(3,C), Y = G-HilbC?® — X = C3/G 1s a crepant resolution of
singularities. (This is mostly proved, see (N3] and below.)

(i) For G C SL(n,C), if a crepant resolution of C*/G exists, then G-HilbC?

s a crepant resolution.

(i) If N is normal in G and T = G/N then HilbT HilbY = G-Hilb.

Remark 5.4 Forn > 4, a crepant resolution Y — X usually does not ezist, bul
the cases when it does seem to be rather important. As Mukai remarks, a famous
theorem of Chevalley, Shephard and Todd says that for G C GL(n,C), the
quotient C" /G is nonsingular if and only if G is generated by quasireflections.
Since we want to view G-Hilb C™ as a different way of constructing the quotient,
the question of characterising G for which G-Hilb C™ is nonsingular {or crepant
over C*/G) is a natural generalisation. We know that the answer is yes for
groups G C SL(2,C), probably also SL(3,C), so by analogy with Shephard-Todd,
I conjecture that it is also yes for groups generated by subgroups in G C SL(2,C)
or SL(3,C). For cyclic coprime groups %(a,b,c, ), based on not much evidence,
I guess there 1s a crepant resolution off there are %(r — 1) junior elements, that
is, ezactly one third of the internal poinis of (1 lie on the junior simplex (see
[IR]); this is very rare — by volume, you expect appror 4 middle-aged elements
for each junior one (as in most math departments). An easy example to play
with 1s }(1,1,1,—3), which obviously has a crepant resolution

r.o.T, T T
il ToTL T T , .
<= the simplez <([3],[3],[3],r 3[3]),(1000),(0100),(0010)> is basic
&> r=1 mod3.

For more examples, see also [DHZ].

Proposition 5.5 (Properties of G-Hilb) Assume Conjecture 5.3, (1). (In
most cases of present inlerest, one proves that G-Hilb is a nonsingular varietly
by direct calculation; alternatively, if Conjecture 5.3, (1) fails, replace Hilb® M
by the irreducible component birational to M/G.)

(1) The tautological sheaves F, on Y are generated by their H®.
(2) They are vector bundles.
(3) Their first Chern classes or determinant line bundles

L, =detF, = c1(F,)

define free linear systems |L,| according to (1), and are therefore nef.
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(4) Any strictly positive combination ) a,L, of the L, is ample on Y.

(5) These properties characterise G-Hilb among varieties birational to X (or
the irreducible component). .

Remark 5.6 If G C SL(n,C) and M = C*, and Y = G-Hilb M is nonsingular,
the McKay correspondence says in particular that the L, span PicY = H2(Y, Z)
(this much is proved). In the 3-fold case, when Y is a crepant resolution, (3-
4) resolve the contradiction with the expectation of 3-folders, because they show
how G-Hilb is distinguished among all crepant resolutions of X. For if we flip
Y in some curve C C Y, then by (4) we know that LC > 0 for some L = L,,
and it follows that the flipped curve C' CY' has L,C' < 0. Thus (1-3) do not
hold on Y'.

Proof Write Y = G-Hilb M. By definition of the Hilbert scheme, there exists
a universal cluster Z C Y x M, whose first projection p: Z — Y is finite, with
every fibre a G-cluster Z. Now from the defining properties of clusters p,Oz
is locally isomorphic to Oy [G], the regular representation of G over Oy. In
particular, it is locally free, and therefore so are its irreducible factors ¥, @ V,.
Since Z C M = C™, the polynomial ring k¥[M] maps surjectively to every Oz,
so that p,@7z is generated by its H®. This proves (1-3).
For any G-cluster Z € G-Hilb M, the defining exact sequence

0—-IZz —0¢cr -0z —0 (10)
splits as a direct sum of exact sequences (I omit 7, remember):
0—-*IZYP—>.7:;,®V,,—->FZYP®VP——>O

Therefore Z is uniquely determined by the set of surjective maps F, — Fz,.
This proves (4).

I now explain (5). The linear systems |L,| are birational in nature, coming
from linear systems of Weil divisors |L,|x on the quotient X = M /G, and their
birational transforms on any partial resolution Y’ — X. Now (5) says there
is a unique model Y on which these linear systems are all free and their sum
is very ample: namely, for a single linear system, the blowup, and for several,
the birational component of the fibre product of the blowups. This also gives a
plausibility argument for Conjecture 5.3, (iii): if we believe in the existence of
one crepant resolution Y, and we admit the doctrine of flops from Mori theory,
we should be able to flop our way from Y’ to another model ¥ on which the
|L,ly are all free linear systems. (This is not a proof: a priori, if the L, are
dependent in PicY, a flop that makes one nef might mess up the nefdom of
another. However, it seems that the dependences are quite restricted (compare
the discussion at the end of Example 6.2). Q.E.D.

I go through these properties again in the Abelian case, which is fun in its
own right, and useful for the examples in §6. Then an irreducible representation
p is an element of the dual group

G= {homomorphisms a: G — rth roots of 1 in c*},
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where r is the exponent of G. I write Ox(a) for the eigensheaf, and Ly (a) for
the tautological line bundle on Y (previously ¥, and F, respectively).
For any Z, the sequence (10) splits as

0 —>€Bma — EB(’)X(a) — @ka — 0 (sum over a € @),

where k, is the 1-dimensional representation corresponding to a (because of the
assumption Oz = k[G]). Thus a G-cluster is exactly the same thing as a set of
maximal subsheaves

mg C Ox(a), one for every a € (A},

subject to the condition that ) my, is an ideal in O¢n, that is, that mqOx (b) C
Ox(a+b) for every a,b € G.

Now it is an easy exercise to see that the Hilbert scheme parametrising
maximal subsheaves of Ox(a) is the blowup of X in Ox(a), which I write
Bl, X — X, and in particular, it is birational. It follows that G-Hilb is contained
in the product of these blowups:

G-Hilb ¢ [[Bl. X (*)

(where the product is the fibre product over X of all the Bl, X for a € CA?), and
is the locus defined in this product by the ideal condition:

maOx(b) COx(a+1b) for every a,b € G (%)

(this obviously defines an ideal of Bl, x x Bly).

By contruction of a blowup, each Bl, has a tautological sheaf O,(1), which
is relatively ample on Bl,. The tautological sheaves on G-Hilb are simply the
restrictions of the O, (1) to the subvariety (*). This proves (1-4) again. Q.E.D.

Remark 5.7 The fibre product in () is usually reducible, with big components
over the origin (the product of the exceptional locuses of the Bl ). However, it
ts fairly plausible that the relations (xx) define an irreducible subvariety. This
is the reason for Conjecture 5.3, (1).

6 Examples of Hilbert schemes

More experimental data, to support the following conclusions:

() Y = G-Hilb can be calculated directly from the definition; for 3-fold
Gorenstein quotients, it gives a crepant resolution, distinguished from
other models as embedded in projective space by ratios of functions in
the same character spaces.

(b) Conjecture 1.1 can be verified in detail in numerically complicated cases.

It amounts to a funny labelling by a € G of curves and surfaces on the
resolution.
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(c) The relations in PicY between the tautological line bundles, whose ¢
give higher dimensional cohomology classes, come from equalities between
products of monomial ideals.

Example 6.1 Ezamples 2.1-2.2 are G-Hilbert schemes. In fact the equations
(4) and (6) were written out to define G-clusters.

Nezt, it ts a pleasant surprise to note that the famous Jung-Hirzebruch con-
tinued fraction resolution of the surface cyclic quotient singularity %(1,q) is the
G-Hilbert scheme (Z/r)-Hilb C2. To save notation, and to leave the reader a de-
lightful exercise, I only do the ezample (1,2), where 5/2 = [3,2] = 3—1/2; the
invariant monomials and weightings are as in Figure 6. As usual, X = C?/G
and Y — X 1s the minimal resolution, with two exceptional curves £, and E;
with E? = —2, E2 = —3. In toric geomelry, E; corresponds to (3,1) (as a

Figure 6: Newton polygons (a) of invariant monomials and (b) of weights

vertez of the Newton polygon (b) in the lattice of weights, or a ray of the fan
defining the resolution Y ); the parameter along E; = P! is z : y3. Similarly,
E, corresponds to (1,2) and has parameler 2* : y. Ezactly as in Figure 1 and
(1), a neighbourhood Yy of the point Ey N Ey is C? with parameters A, pt, and

the rational map C? —— Y, is determined by equations analogous to ({):

2=)y, v =pz, and 2y’ =M. (11)
These equations define a G-cluster Z: for a basts of Oz = k[z,y]/((11)) is given
by 1,y,y%, x,zy. Every G-cluster is given by these equations, or by one of the
following other two types: z° = M,y = p'z? orz = N'y3,y® = u”; the 3 cases
correspond to the 3 affine pieces with coordinales by A, u, etc. coveringY. The
generic G-cluster is G - (a,b) with a,b # 0; all the equations

22 =a® 1y =a%, zy?=ab? y® =b° b2’ =a’y, ay® =tz

vanish on G - (a,b), and since a,b # 0, generators of its ideal can be chosen in
lots of different ways from among these, including the 3 stated forms.

The ratio ¢ : y° along Ey and z? : y along E> define free linear systems
[L(D)], |L(2)] on Y corresponding to the two characters 1,2 of G = 7[5, with

L) Ev=1  L2)-E1=0
L) E=0 " L) E,=1

These two give a dual basis of H*(Y,Z), a truncated McKay correspondence.
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Exercise—Problem The case of general %(‘Lq) can be done likewise; see for
example [R], p. 220 for the notation, and compare also [IN2]. Problem: I believe
that the minimum resolution of the other surface quotient singularities 1s also a
G-Hilbert scheme. The best way of proving this may not be to compute G-Hilb
echaustively. In the SL(2,C) case, Ito and Nakamura get the result Ky = 0
automatically, because the moduli space G-Hilb carries a symplectic form.

The toric treatment of G-Hilb

From now on, I deal mainly with isolated Gorenstein cyclic quotient 3-fold
singularities %(a,b,c), where a,b,c are coprime tor anda+b+c=r. If G
is Abelian diagonal, then X is obviously toric; however, it turns out that so is
the G-Hilbert scheme. There are two proofs; the better proof is that due to
Nakamura, described in §7. I now give a garbled sketch of the first proof: I
claim that the G-Hilbert scheme G-Hilb C" = Y (X) is the toric variety given by
the fan ¥, the “simultaneous dual Newton polygon” of the eigensheaves Ox(a),
defined thus:

for every character a € 6', write Ox(a) for the eigenspace of a,
L(a) for the set of monomial minimal generators of Ox (a), and con-
struct the Newton polyhedron Newton(L(a)) in the space of mono-
mials. Then ¥ is the fan in the space of weights consisting of the
cones (A;,...,Ay) where the A; are weights having a common min-
imum in every L(a). This means that the I-skeleton X! consists of
weights A which either support a wall (= (n — 1)-dimensional face)
of Newton(L(a)) for some a, or which support positive dimensional
faces of a number of L({a;) whose product is n — 1 dimensional (in
other words, ratios between monomials in the various L(a;) which
are minima for A generate a function field of dimension n — 1).
Then (4;,...,Ax) i1s a cone of £ if and only if {A;} is a complete
set of weights in ©! having a common minimum in every L(a); and
(Ay,..., Ax) has dimension d if and only if the ratio between these
minima span an {n — d) dimensional space.

This definition is algorithmic, but quite awkward to use in calculations: you have
to list the minimal generators in each character space, and figure out where each
weight A; takes its least values; when n = 3, you soon note that the key point
is the ratios like 23y : z° between two monomials on an edge of the Newton
boundary.

Sketch proof Because Oz = k[G] for Z € G-Hilb, for every character a of
G, the generators of L(a) map surjectively to the 1-dimensional character space
k4, so there is a well defined ratio between the generators of 7z (a). This means
that for fixed Z and every L(a), we mark one monomial s, = z™(%:%) € L(a) as
the minimum of all the valuations Ay, ..., A; spanning a cone, and, using it as
a generator, we get the invariant ratios =™ /s, as regular functions on G-Hilb
near 7.
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B, :(ak+l}z;-/) 3k-34n)
=4, &

A= (4,2, 730)
«=0,.2k

Figure 7: G-Hilb for %(1,2, —3). B, is joined to Ag;.2, Agi.1, Az

Example 6.2 Consider %(1,2,—3) where 1 = 6k + 1. The quotient X =
C3/(Z/r) is toric, and the G-Hilberl scheme is given by the triangulation of
the first quadrant of Figure 7. This can be proved by carrying out the above
proof explicitly. I omil the laborious details, concenlrating on one poinil: how
does the Hilbert scheme construclion choose one iriangulation in preference lo
another? For simplicity, consider only r = 13, so the triangulation simplifies
to Figure 8. How do I know to join (8,3,2)—(2,4,7) by a cone g, rather than
(7,1,56)—(3,6,4)? By calculating 2 x 2 minors of (§32), we see that the pa-
rameler on the corresponding line E, € Y should be the ratio zz? : y*, where
z22,y* € L(B). The Newton polygon of L(8) is shown in Figure 8. (The figure
is nol planar: zz? and y* are “lower”.) Here (2,4,7) and (8,3,2) have minima
on the two planes as indicated, with common minima on zz% and y*, so that the
linear system |zz? : y*| can be free on L,. But (7,1,5) and (3,6,4) don’t have
a common minimimum here: (7,1,5) prefers y* only, and (3,6,4) prefers zz?
only. If I join (7,1,6)—(3,6,4), the linear system |zz? : y*| would have that
line as base locus.

The resolution is as in Figure 9. The McKay correspondence marks each
excepiional siratum: a line L parametrised by a ratio z™* : z™3 is marked by
the common characler space of z™! ™2, In other words, a linear system such
as zz% : y* corresponds to a tautological line bundle L(zz? : y*) = L(8) with
c1(L(8))-L=1.
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28 28y aty? a2y
(2,4,7)
22 y223

(8,3,2)

o &

51309 Figure 8 G-Hilb for (1,2, 10). Why join (8,3,2)—(2,4,7)?

The surfaces are marked by relations between the ¢1(L(7)). In this case,
because there are no heragons, these all arise from surjective maps Ox (i) ®
Ox{j) ~» Ox (i+ 7). For ezample, generators of the character spaces 1,2,3 are
given by monomials (wrillen oul as Newton polygons)

3 8
L y7 z? y 1:2 4 xé; v
9 4 z°z% y°z
L(l) Yz , L(2) Toxz , L(3). i ,
24 28
L2

and clearly L(1) ® L(2) — L(3). (Thus L(3) is not aclive in the resolution,
in facl he’s completely useless, so it’s natural to promote him 1o senior.) This
means that on the resolution

ai(£(3) = £(1) = £(2)) = 0,
and c2(L(3) — L(1) — L£(2)) is the dual class to the top left surface in Figure 9

Example 6.3 The G-Hilbert scheme for %(1,5,31) is given by the triangula-
tion in Figure 10, which also indicates the labelling by characters of the McKay
correspondence. I confine myself o a few comments: on the right-hand side of
Figure 10,

(1,5,31)~(4,8,20) are joined by the ratio z*z :y’
(8,3,26)~(23,4,10) are joined by the ratio z*z :y'*

for reasons similar to those ezplained just under Figure 8. The resolution has
3 regular hezagons (del Pezzo surfaces Sg), coming from the regular triangular
patlern on the lefi-hand side of Figure 10. Tilings by reqular hexagons appear
quite ofien among the exceptional surfaces of the Hilbert scheme resolution Y,
as we saw in Figure 8. The reason for this is taken up again ail the end of §7,
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1

Figure 9: The McKay correspondence fo; 15(1,2,10)

see Figure 11. The cohomology classes dual to these 3§ surfaces are given as in
(8) by taking cy of the relation ey + ey + e3 — fi — fa, where the f, fa are the
characters written in each liitle hezagonal boz of Figure 10, and e1,eq,e3 are the
characters marking the 8 lines through the boz. The relation ey +estes = fi+fo
can also be expressed as equalily between {wo products of monomial ideals.

7 Nakamura’s proof that GG-Hilb is a crepant res-
olution

Theorem 7.1 (Nakamura, very recent) For G a finite diagonal subgroup of
SL(3,C), Y = G-Hilb — X = C3/G is a crepant resolution.

Proof I start from the McKay quiver of G with the 3 given characters a, b, ¢,
corresponding to the eigencoordinates z, y, z, satisfying a+b+c = 0; to get the
full symmetry, draw this as a doubly periodic tesselation of the plane by regular
hexagons, labelled by characters in G:

2b
b a+b 2a+b

(12)
264+ 2¢ b+ ¢ 0 a 2a Ja

[4 a—+c¢
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Figure 10: The McKay correspondence for 3 (1,5, 31)

corresponding to the monomials

The whole of this business is contained one way or another in the hexagonal
figure (12), together with its period lattice I1, and the many different possible
ways of choosing nice fundamental domains for the periodicities; that is, we are
doing Escher periodic jigsaws patterns on a fixed honeycomb background. First
of all, note that the periodicity of (12) is exactly the lattice of invariant Laurent
monomials modulo zyz. Call this I1.

22



The proof of Nakamura’s theorem follows from the following proposition:

Proposition 7.2 For every G-cluster Z, the defining equations (that s, the
generators of Iyz) can be writlen as 7 equations in one of the two following
forms: either

xa+d+1 — /\ybzf yb+lzf+1 —_ ;tl/:lia+d

yhretl = pacgd 2otgd+l = Apybte  and  zyz = Ay, )
c+f+1 a,,e at+1l,e+1 __ ct+f

z =vzy 4Ty = Apz

for some a,b,c,d,e, f >0, or

xa+d — 137yb—lzf—1 ybzf — al.a+d—1
yhte = ayzs1gd-! 2% = Byttel and zyz=afy, (1)
getf — aﬂxa—lye—l xaye — ,yzc+f—1 .

for some a,b,c,d,e, f > 1.

Proof of Theorem 7.1, assuming the proposition Nakamura’s theorem
follows easily, because G-Hilb is a union of copies of C3 with coordinates A, p, v
(or , 3,7), therefore nonsingular. Every affine chart is birational to X, because
it contains points with none of A, u, » = 0 (or none of o, 8,7 = 0). Moreover, an
easy linear algebra calculation shows that the equations (1) or (]) correspond
to basic triangles of the junior simplex, so that each affine chart of G-Hilb is
crepant over X. In more detail:

Case (1) Write out the 3 x 3 matrix of exponents of the first three equations

of (I):

a+d+1 =b —~f
—d b+e+1 —c
—a —e c+ f+1

(note that each of the 3 columns add to 1, more less equivalent to the junior
condition). The 2 x 2 minors of this give the 3 vertexes

P=(bc+bf+ef+b+tct+e+f+1, acted+df+d, ab+ae+de+a),
Q=(bc+bf+ef+b, actcd+df+a+d+c+f+1, ab+ae+de+te),
R=(bc+bf+ef+f, actecd+df+b, ab+ae+deta+b+d+e+]l).

The triangle PQR “points upwards”, in the sense that

P is closest to (1,0,0),
@ is closest to (0,1,0),
R is closest to (0,0,1).

The 3 given ratios z®+9+1 : 422/ etc. correspond to the 3 sides of triangle PQR.
In any case, all the vertexes belong to the junior simplex, so that this piece of
G-Hilb is crepant over X .
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Case (|) Write out the exponents of the second set of three equations:

—(a+d)+1 b f
d —(b+e)+1 ¢
a e —(c+f)+1

again, each of the 3 columns add to 1, and the 2 x 2 minors of this give the 3
vertexes

P=(bct+bf+ef—-b-c—e~f+1,ac+cd+ df —d, ab+ ae+de —a),
Q=(bc+bf+ef —bactecd+df —a—d—c—f+1,ab+ ae+de—e),
R=(be+bf+ef—fiactcd+df —bab+ae+de —a—-b—-d—e+1),

all of which again belong to the junior simplex, so this affine chart is also crepant
over X. This time the triangle PQR “points downwards”, in the sense that

P is furthest from (1,0,0),
@ is furthest from (0, 1,0),
R is furthest from (0,0, 1).

The 3 given ratios z®t9~1 : y¥2f etc. again correspond to the 3 sides. Q.E.D.
for the theorem, assuming the proposition.

Proof of Proposition 7.2 Most of this is very geometric: any reasonable
choice of monomials in z,y, 2 whose classes in Oz form a basis is given by a
polygonal region M of the honeycomb figure (12) satisfying 2 conditions:

(i) in each of the 3 triants (triangular sector) it is concave, that is, a down-
wards staircase: because it is a Newton polygon for an ideal;

(i1) it is a fundamental domain of the periodicity lattice II: because we assume
that Oz = k[G], therefore every character appears exactly once.

The condition (ii) means that M and its translates by Il tesselate the plane,
so they form a kind of jigsaw pattern like the Escher periodic patterns. However,
in each of the 3 principal directions corresponding to the a, b, and e-axes, there
is only one acute angle, namely the summit at the end of the a-axis (etc.).
Therefore M can only have one valley (concave angle) in the b,c triant. As
a result, there is only one geometric shape for the polygon M, the tripod or
mitsuya (3 valleys, or 3 arrows) of Figure L.

I introduce some terminology: the tripod M has 3 summaits at the end of
the axis of monomials z*, and 3 triants or sectors of 120° containing monomials
z'y. Each triant has one valley and two shoulders (incidentally, the 6 shoulders
give the socle of Oz).

Remark 7.3 There are degenerate cases when some of the valleys or summits
are trivial (for ezample, a = 0 in T). The most degenerate case s a straight
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lines, when Oz 1s based by powers of z (say), and the equations boil down to
y=2',z = x’ (the r-corner of the resolution). I omit discussion of these cases,
since the equations of the cluster Z are always a lot simpler.

I ooo
oI ooo
ocooIooo
ool oooooo
ool oooooo
000 IIIIITII (Figure I)
ocoooloooooo
ocooJloo
oIloo
I oo

Thus there is only one “geometric” solution to the Escher jigsaw puzzle,
namely

ITIIIIIIII
tuuJluuvuuwuuuuuuuau
uulunu
I ooo uluu
oIl ooo ITuu Ivvy
ooIooo vIivvy
ooloooooo vvIvvy
coloooooo vvIvvvVvVvy . .. (Figure II)
000IIIIIII vvIv
cooolooooo0oo0o vv
oolIoo v Vv
oI oo
I oo

In particular, the external sides (going out to the 3 summits) are equal
plus-or-minus 1 to the opposite internal sides (going in to the 3 valleys).

However, the geometric statement of Figure IT 1s only exact for closed poly-
gons, whereas our tripods are Newton polygons spanned by integer points, and
are separated by a thin “demilitarised zone” between the integer points. When
you consider the tripods together with the integer lattices, 1t turns out that there
are two completely different ways in which the three shoulders of neighbouring
tripods can fit together, namely

either (1)

yyyye

yyvyz
XXX2zz

X X X zZ 2Z
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where the last y is just after the last x, and the shoulder of the z is level with
the top row of x

or (])

Yyyyzz

Yyyzz
XXXz 2z

X X X z 2z

where the last y is just before the last x and the top row of x is just below the
shoulder of the z.
The two different forms (1) and (]) come from this patching.

Remark 7.4 (Algorithm for G-Hilb) Nakemura [N3] gives an algorithm to
compute G-Hilb in this case as a toric variety. This can be viewed as a way
of classifying all the possible tripods in terms of elementary operations, which
correspond lo the 0-strata and the I-strala of the toric variety G-Hilb. You pass
from an 1 tripod to a | one by shaving off a layer of integer poinis one thick
around one valley (assumed to have thickness > 1), and glueing it back around
the opposite summit. And vice versa to go from | {6 7. You can start from
anywhere you like, for ezample from the z-corner (see Remark 7.3).

Nakamura’s algorithm applied to the statemnent in Proposition 7.2 expressed
in terms of the fan triangulating the junior simplez, gives that if { and a,b,c,d,
e,f >k > 2 (say) then you can cross any wall of the “upwards” triangle of
the fan to get a new | coordinate patch with o’ )b, c/,d',¢',f' > k — 1, which
corresponds to a “downwards” triangle, and vice-versa. It follows that the first
triangle is surrounded by a patch of width k — 1 which is triangulated by the
regular triangular lattice, so that the resolution has a corresponding paich of
regular hezagons (that is, del Pezzo surfaces of degree 6). Figure 12 shows the
McKay quiver of 31—7(1,5,31) and the fundamental domain corresponding to the
equations of G-clusters

=2tz oyt = pxd®, 2 =valy, ete

on the coordinate chart of the resoluiion of 31—7(1,5,31) corresponding to the
starred triangle of Figure 10.
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