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ABSTRACT. We compactify canonically the moduli scheme of abelian schemes over
Z[{n,1/N] by introducing the noncommutative level structures. Any degenerate
abelian scheme on the boundary of the compactification is one of our models —
projectively stable quasi-abelian schemes. A degenerate abelian scheme is asymp-
totically Kempf-stable if and only if it is a projectively stable quasi-abelian scheme.

0. INTRODUCTION.

This is a continuation of the previous report Stability of degenerate abelian varieties
in the proceedings of Kinosaki symposium 1996.

The purpose of the present article is to report on a recent progress in the problem
of arithmetic compactification of the moduli of abelian varieties.

We introduce the notion of projectively stable quasi-abelian schemes and prove
Kempf-stability of their Hilbert points (Theorem 0.2). We also prove existence of the
projective reduced-fine-moduli scheme of projectively stable quasi-abelian schemes
(Theorem 0.4) over Z[(n,1/N] where (y is a primitive N-th root of unity. This is a
natural geometric compactification of a moduli scheme of abelian varieties. See also
[Alexeev96] for the principally polarised (torically) stable quasi-abelian varieties.

If we are given Faltings-Chai’s degeneration data [FC90] there are two canonical
choices of flat projective degenerating families of abelian varieties (P, £) and (@, £)
where (@, £) is the most naive choice and (P, L) is the normalisation of (@, £) after
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some base change. The following is the stable reduction theorem of abelian varieties
proved in [AN96].

Theorem 0.1. Let R be a complete discrete valuation ring with the fraction field
k(n) and (G, L,) be a polarised abelian variety over k(n). Then after a suitable
finite ramified cover Spec R' — Spec R it can be completed to a flat projective scheme
(P, L) (or (Q, L)) over R' with a relatively ample invertible sheaf L extending L.,.

We call the closed fibre (Py, Lo) (resp. (Qo,Lo)) a torically stable quasi-abelian
variety (abbr. SQAV) respectively a projectively stable quasi-abelian scheme (abbr.
PSQAS). We note (P, Lo) = (Qo, Lo) if the dimension is less than five. (P, Lo) is
always reduced, while (Qo, Lo) can be nonreduced if the dimension is greater than
four. (Qo,Lo) determines (Py, Lo) uniquely but the converse is unknown.

By applying [Kempf78, Corollary 5.1] we will prove

Theorem 0.2. Let (Qo, Lo) be a projectively stable quasi-abelian scheme over an
algebraically closed field k. Suppose the characteristic of k and N := deg Ly/(g!)
are coprime. If I(Q, L) ® k is very ample, then the n-th normalised Hilbert point of
(Qo, Lo) has a closed SL(N, k)-orbit, ! and it is Mumford-semistable for any large n.

It seems that we cannot expect any similar theorem for (Fy, £o) except Mumford-
semistability. The following is an analogue of [Gieseker82] and [Mumford77].

Theorem 0.3. Let k be an algebraically closed field and K a finite abelian group of
order N with emin(K) > 3 ? such that the characteristic of k and N are coprime.
Suppose that a k-scheme (Z,L) is smoothable into an abelian variety (A, M) with
ker \(M) ~ K & KV where K¥ := Homgz(K, Gy,). Then the following are equivalent.
(1) (Z,L) is a projectively stable quasi-abelian scheme
(2) Aut(Z, L) contains a subgroup of SL1(N, k) weight-one isomorphic to G(K)?
(3) the n-th Hilbert point of (Z, L) is Kempf-stable for any large n
where G(K) is a central extension of K @ K by the cyclic group pn of all the N-th
roots of unity.

The group G(K) is noncommutative of order N3, which is a natural substitute for
the classical (in general infinite) Heisenberg group of abelian varieties. The group al-
gebra k[KV] of the dual group KV over k is an irreducible G(K )-module of weight one.
The k-module I'(@Q, £) ® k is isomorphic to k[KV] as a G(K)-module. If eyin(K) > 3,
any PSQAS (Qo, Lo) over k is embedded into the projective space P(k[K"]) (Theo-
rem 5.3). Hence any PSQAS (Qo, Lo) over k has a linearlised action of G(K). Thus

1We call it Kempf-stable. See Section 7 for normalised Hilbert points.

2emin(-K) =e if K~ GBLIZ/e;Z, C,‘lei+1.
3SLy(N,k) = {g € GL(N,k);det g = £1}. See 6.3 for weight-one isomorphisms.
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we are led to the notion of level G(K)-structures on PSQAS’s generalising the clas-
sical notion of level structures on abelian varieties to formulate the moduli problem

for PSQAS’s.

Theorem 0.4. Let K be a finite abelian group of order N with emin(K) > 3. The
functor of g-dimensional projectively stable quasi-abelian schemes with level G(K)-
structure is reductively-represented by a projective scheme SQgx over Z[(n,1/N].

We prove Theorem 0.4 with the help of Theorem 0.3 and Schur’s lemma for irre-
ducible G(K)-modules of weight one.

In Section 1 we discuss Hesse cubics as an example of projectively stable quasi-
abelian schemes with rigid structures. We will show our main idea for the proof of
Theorem 0.3 in this particular case in detail. In the rest of the article we discuss the
general case without proofs.

Acknowledgment. We would like to thank T. Kajiwara for constant discussions
and advices.

1. AN EXAMPLE—HESSE CUBICS

1.1. Let us start with Hesse cubics to illustrate our theory. For simplicity we consider
an algebraically closed field k of characteristic # 3 and (3 a primitive cube root of
1. Let K = KV = Z/3Z and H(K) := K & K and Let V[K] be the group algebra
of KV over Z[(3,1/3], that is, the algebra generated by v(8) (8 € KV) subject
to the group relation. Let G(K) be a central extension of H(K) := K & KV by
ps = {c € k;* =1}
1—pu3—>G(K)— HK)—0
whose group law of G(K) is defined by

(1) (a,2z,@) - (b,w,B) = (abB(2),z + w,a + B)

(2) (a,b € p3,z,w € K, e, f € KY)
Then G(K) operates upon V(K) by

(3) U(K)(a,z,a)(v(f)) = aB(z)v(B + a)
In other words, for 3 =10,1,2

(4) U(K)(1,0,1)(v(B)) = v(B +1) = o™(v(8))

(5) U(K)(1,1,0)(v(8)) = ¢*v(8)

(6) U(K)(a,0,0)(v(8)) = av(B)
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Let R := k[[s]], I = sR the maximal ideal of R, k(n) := k((s)) the fraction field of
R. Let S := Spec R, 0 the closed point of S, and 5 the generic point of S.
A Hesse cubic we consider first is a subscheme Z of P}, x P% defined by

s*(zy + 23 4+ 23) — 320712, = 0

where we have chosen s? in order to make theta series expression simpler.

The closed fibre Zy is a 3-gon, in other words, a union of 3 lines with 3 nodes,
while the generic fibre Z, is a smooth elliptic curve with a natural very ample sheaf
Ly = Ogz,(1).

The elliptic curve Z, has 9 sections = 3Z, (all 3-torsion points)

e : (Tg,Z1,22) = (0,1,-1), €;:=(-1,0,1), e;:=(1,-1,0)
€3 = (07 ly_C)v €4 1= (“C7Oa 1), €5 = (lv-CaO)
€6 == (Oy 1,_42), €7 1= (-—42,0, 1)7 €g = (1$_4270)

Let C; : z; = 0 be a line and let G := E\ C,UC;. Then G is a semi-abelian scheme
with G, ~ Z, and Go ~ G, a split torus.

Let K := {ep,e3,¢6} ~ Z/3Z and KV := {eg,€1,€2} =~ Z/3Z. Let A(L,) : G, —

G =~ G, (Gt := Pic’(G,) the dual abelian scheme of G,) be a polarisation morphism.
Since A(L,) is the multiplication by 3, we have

K(L,):=kerAL,)=3Z,=K® K"
Let G(L,) be a central extension
1 — psy, — G(L,) = K(L,)— 0

We call G(£,) the finite Heisenberg group of (Z,,L,). We see K(L,) ~ K & KV,
G(L,) ~ G(K) as étale group schemes over k(7)) (hence essentially as discrete groups).

The R-free module I'(G, £) has a basis 25 (§ € K¥ = {0,1,2}). There is a G(K)-
isomorphism ¢* of V(K) ® R and I'(G, L) defined by ¢*(v(8)) = zz through the
isomorphism G(£,) ~ G(K).

A remarkable fact is that T'(G,, £,) is by Mumford an irreducible G(£,)-module,
unique up to equivalence, such that the center us, acts as scalar multiplication. This
implies by Schur’s lemma that if we fix the matrix form of the action U(K) of G(£,),
then the basis of I'(G,, £,) is uniquely determined up to constant multiple, in other
words, if we let ys be another basis of I'(G,,, £,) with the same form of U(K) as zg,
then yg = czs for some c € K.

1.2. Now we extend the above action of G(L,) to that over S. This is done in fact
in an obvious manner in this case. However in order to suggest the construction in
the general case we proceed as follows.
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Let 0 : (29,21, 22) — (22, Zo, 21) be a transformation of P2. We see e3;1x = 0*(es;)
for k=0,1,2. Let
GH = U'@eKVO‘ﬁ(G)

and K%(L,) (resp. Ks(L,)) the closure (to be precise, the flat closure) of Ks(£,) in
G" (resp. G). Let G&(L,) (resp. Gs(L,)) be the central extension of K%(L,) (resp.
Ks(L,)) by pas :={a € Gn,s;0* =1}

1= pas— GHS(‘Cn) - K.nS‘(‘Cn) —0

1 — pa,s — Gs(Ly) = Ks(Ly) — 0
It is easy to see

G" = Z \ Sing(Z)
Sing(Z,) = (1,0,0) U (0,1,0) U (0,0,1)
KY(L,) = {e:;0 < i <8} ~ (Z/3Z)2
Ks(L,) = {eo,e3,es} U {€in;1 #0,3,6} ~(Z/3Z)s
KLL)NZo = {e;;0 <i <8} @ (R/I) =~ (Z/3Z)®* = 9 points
Ks(L£,) N Zo = {eo, €3,e6} ® (R/I) ~ Z/3Z = 3 points
The theory of Mumford and Moret-Bailly says that

Lemma 1.3. I'(G, £) = I(Z, L) = Rzo+ Rz, + Rz, is an irreducible G(L,,)-module
of weight one (= center acting as scalar multiplication) in the sense that any proper

GL(L,)-submodule T(G, L) is of the form JT(G, L) for an ideal J of R.
The action of G&(L,) are the same as U(K) of G(L,).

1.4. By the theory in SGA III we see that the formal completion Gy, is a formal
split torus
Gfor jad Gm X Spf R
over Spf R because Gy is a split torus G,,. We note then that Ly, is trivial on the
split torus because any invertible sheaf on the split torus is trivial. Hence we see
zg € F(G L) - F Gfor,[:for H Rw®
z€Z

where w is the coordinate such that G,, ~ Spec k[w”;z € Z]. By using the represen-
tation theory of Gs(L,) (not of G%(L,)) Faltings-Chai constructed a degeneration
data (an algebraic analogue of coefficients of theta series). This means that (after
some normalisations of various parameters) on the formal completion Gy, the coordi-
nate zg can be expressed as theta series with a suitable parameter ¢ = s-(a unit in R)
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25 = Os(t,w) = 3 tC P (8= 0,1,2)
meZ

With the notation in §2 Faltings-Chai’s degeneration data are given by
(7 a(z) =1, be,y) =t*
In particular a(z+y) = a(z)a(y)b(z,y) € k(n). The parameters s and ¢ are related
by s? = A(t) = t?- (a unit in R) via the theta relation
A@) (65 + 63 + 65) — 3056,0, = 0

1.5. Starting from the degeneration data (7), we can construct two kinds of model
families (P, £) and (@, £). (@, £) is the algebraisation of the formal quotient

(Qfora O(l)for)/{sy; Yy (S 3Z}

where
Q =ProjR, R := Rla(z)w®d,z € Z)
Sy (a(z)w®?) = a(z + y)w™t¥ (y € 3Z)

Let P be the normalisation of §, L the pull back of O(1) to P and (P, L) the

algebraisation of the formal quotient of (P;o,, L',fo,) /{Sy;y € 3Z}. Hence (P, L) is the
normalisation of (@, £). In this case (P,£) ~ (@, £). In dimension > 5, P and Q
can be different.

Definition 1.6. (@, L) (resp. the closed fibre (Qo, Lo) of (@, L)) is called a projec-
tively stable quasi abelian scheme over S (resp. over k). For brevity we call each a

PSQAS over S or k.

In order to explain our idea of the proof of Theorem 0.3 let us define;
Definition 1.7. Let G(K) := U(K)G(K) and G(Z,L) = G'Fg([,l,). The sextuplet
(Z,£,G(Z,L),V,,p) is called a cubic curve over S with a rigid G(K )-structure if

(i) ¢: Z - P(V(K)® R) ~ P% is a closed S-immersion
@) V=TI(Z,L)=¢(V(K)®R)
(iii) p is an isomorphism of G(K)s onto G(Z, L) given by
p(g) = G($")U(K)(g) = (¢") - U(K)(g) - (")

We denote the sextuplet (Z,£,G(Z,L),V,¢,p) by (Z,4,p)ria. We call also the

closed fibre (Zg, ¢o, ¢o)ric ® k a cubic curve over k with a rigid G(K)-structure.
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We note

Lemma 1.8. A cubic curve (Z, 4, p)ric (with a rigid G(K)-structure) over S is S-
isomorphic to a Hesse cubic

po(zd + 23 + 23) — 31 zoz122 = 0

for some [uo, ] € P.

Proof. The space S*(V(K)Y) of all cubic polynomials is 10 dimensional, which is
decomposed into 8 one-dimensional G(K)-modules V(xx) (k=1,---,8) and 1 two-
dimensional G(K)-module V(xo) where x ranges over the set of all the 9 characters of
G(K). V(xo) is spanned by z3+ z3 + 23 and zoz12,. Hence (Z, ¢, p)ric is isomorphic
to either a Hesse cubic as above or a cubic curve Cy defined by fr € V(xx), where
fi = 3 + (323 + (223 for instance. It is easy to see that Cj is also isomorphic to
a Hesse cubic by enlarging R if necessary. Let us forget these special cases because
they have no nonconstant moduli. O

1.9. Now we will give a different proof of Lemma 1.8 by the argument applicable
to the general case. Suppose we are given an arbitrary cubic curve (Z, L) such that
(Z,,L,) is a smooth cubic curve over S with ker A(L,) ~ H(K)s where K = Z/3Z.
Suppose that (Z, L) has a rigid G(K)-structure (¢, pz). In other words, we are given,
first of all, the action pz of G(Z,L) ~ G(K)s extending that of G(Z,,L,) ~ G(K),
on I'(Z,,L,) = I'(Z,£) ® k(). T(Z,L) is a unique irreducible G(K)s-module of
weight one by Lemma 1.3, there is a basis z(f) (8 € KV) of I'(Z, L) such that

(8) pz(a,z,a)(2(B)) = af(z)e(B + ) V(e,z,a) € G(K)s

The embedding ¢ of (Z, L) into P(V(K) ® R) is induced from the isomorphism
¢ V(K)®R — TI'(Z,L). Since V(K) is generated by v(8) (8 € KV), ¢*(v(B)) is
a linear combination of z(8). However the condition that (¢, pz) is a rigid G(K)-
structure means that ¢* is given by z(8) = ¢*(v(fB)).

Let us however suppose that we do not know the structure of (Zy, £o). What we
are going to do is to show that (Zy, Lo) is isomorphic to the closed fibre of the flat
projective family (@, £) we can construct from the degeneration data of (Z,,L,).

Let (G, L) be a semi-abelian scheme extending (G, L,) := (Z,,L,) over S, say a
connected Néron model of G, by taking a finite base change of S if necessary. By
Faltings-Chai we have a degeneration data a(z) and b(z,y) so that we can construct
as before two flat projective schemes (P, £) and (@, L) such that

(i) Gc P,
(ii) (Py, L) 2 (Gn, £g) 2 (@, L)
(iii) P is the normalisation of @

(iv) T(Q, L) is very ample
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(v) T(P,L) ~T(G,L) ~T(@, L)

(v1) the action of G(Z,,L,) ~ G(K), on G, extends to (P,£) and (@, L) as the
action of (an analogue of) G%(L,) ~ G(K)s so that T'(Q, £) is an irreducible
G%(L,) ~ G(K)s-module of weight one.

Hence again by Lemma 1.3 there is a basis 6(8) (8 € KV), unique up to scalar

)

multiple, which are transformed under G(K)s as in (3) and (8). In fact, we have
from the construction of P and Q

(9) 8(8) = 3 a(B+a)ute
a€3Z
The action of G(Q, £) extending that of G(Z,, L,) is given by
(10) pe(a,z,@)(0(B)) = aB(2)6(8 + @)

We can show that a rigid G(K)-structure (¢,, p,) on (Q,,L,) extends to a rigid
G(K)-structure (3, pg) on (Q,L). This implies that v is the embedding of (Q, L)
into P% given by 8(8) = ¢*(v(8)) where v(8) € V(K) as before.

The embeddings ¢ and % induce natural morphisms Hilb(¢) and Hilb(y) from
Spec R into the Hilbert scheme Hilbb{™,

(1) Hilb(¢) : Spec R — HilbE(™
(12) Hilb(¢) : Spec B — Hilbﬁﬁ")

where P(n) = 3n. There exists an isomorphism f : (@,,L,) =~ (Z,,L,) so that
f*:1(Z,,L,) — IT(Q,,L,) is an isomorphism. By the construction of (@, L), f* is
G(K)-equivariant, that is, f*(p;(g)(z)) = po(9)f*(z) (Vz € T(Z,,L,)). Since both
pz(g) and pg(g) have the same matrix expression, say, B(g) with regards to the basis
z(B) and 6(v), we see

(13) FB(g) = B(g)F (Vg € G(K))

where F is the matrix expression of f* with regards to z(3) and (). Since B(g) =
U(K)(g) and U(K) is an irreducible representation of G(K), F is a scalar matrix by
Schur’s lemma. It follows that f*(z(83)) = cf(8) for some nonzero ¢ € k(7).

Thus we have Hilb(4), = Hilb(),, or equivalently ¢(Z,) = ¥(Q,) C P2. It follows

from separatedness of Hilbig") that Hilb(¢) = Hilb(¥).

This implies that (Z,£) ~ (@, £). In particular, (Zy, Lo) ~ (Qo, Lo)-
This proves the following

Theorem 1.10. Any cubic curve (Z,L) over S with a rigid G(K)-structure is iso-
morphic to a projectively stable quasi abelian scheme (Q,L) which is constructed
from the degeneration data of a smooth cubic curve (Z,,L,) over k(n). In particular
(Zo,Lo) == (Qo, Lo)-
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The above argument works as well in arbitrary dimension and it is a key to the
proof of Theorem 0.3 and Theorem 0.4.

1.11. The above argument also implies that the functor of cubic curves (Z, L) with
rigid G(K) structures or with an action of G(K) on I'(Z, £) as above is represented
by a projective scheme SQy z/3z. In fact, the universal subscheme (Z, £) is given by
the Hesse cubic

po(zs + 23 4+ 23) — 3pizoz12, = 0
so that
SQ1,2/32 = Py, 173 := Proj(Z[(s, 1/3][uo, 1))

TABLE 1. Stability of reduced cubic curves

curves (sing.) stability stab. gr.
smooth elliptic properly stable finite
3-gon Kempf-stable/not properly stable 2-dim
irred. a node  semi-stable/not Kempf-stable Z/2Z
a triple point  unstable 2-dim

1.12. Why does the above argument work ? Apart from the actual proofs, the real
reason behind the argument is GIT-stability, we believe. The stability in [MFK,p.80]
of a cubic curve is the stability of the third Hilbert point of it. By Table 1, a 3-gon
is Kempf-stable, that is, by definition it has a closed SL(3, k)-orbit.

Lemma 1.13. Let (Z,L) be a cubic curve over k.
(i) IfT(Z,L) is an irreducible G(K)-module, then any n-th Hilbert point of (Z, L)
is Kempf-stable, that is, they have closed SL(3,k)-orbits
(ii) Any smooth cubic curve or 3-gon is Kempf-stable. It is therefore Mumford-
semistable, but the 3-gon is not Mumford-stable.

We will see by applying [Kempf78) that Lemma 1.13 follows from Lemma 1.3. Asis
concerned about construction of fine moduli schemes, we need no stability theorems
like Lemma 1.13. However it is Theorem 0.3 that led us to the formulation of the
functor SQ, k in Sections 8-10.
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2. DEGENERATION DATA

The purpose of this section is to sketch the description of degenerations of abelian
varieties given by Faltings-Chai [FC90, I1.4.1,5.1] and Moret-Bailly [MB85, IV-VT].
See also [AN96, Section 2]. We follows mainly the notation of [FC90].

2.1. Let R be a complete discrete valuation ring, § = Spec R. Let K be the fraction
field of R, 7 the generic point of S and k = R/I the residue field.

Suppose that we are given an abelian scheme G, over K. Then by Grothendieck’s
Stable reduction theorem [SGA7] (See also [SGAT7, Expédse I pp. 1-24]) G, can be
extended to a semiabelian scheme G over R as the connected Néron model of G, by
taking a finite extension of K if necessary. Moreover by taking a finite extension of
K if necessary there exists an invertible sheaf H € Pic®(G,) such that £, ® H is
symmetric, namely :*(£, ® H) = L, ® H for the involution i = [-1]g, of G,.

Therefore we may assume from the start that £, is symmetric, ample and rigidified
along the unit section. The invertible sheaf £, associates to some Cartier divisor,
which extends uniquely to a smooth scheme G. Therefore £, extends to G uniquely
because Gy is irreducible. See [MB85, II, 1.1]. On the other hand by [Raynaud70,
p.158 XI, 1.2 and p.170 XI 1.13} L3 extends to G as an ample invertible sheaf for
some n > 0 if £, is symmetric and ample. Since L, satisfles the condition in this
case, the extension £ is ample and symmetric.

Thus for a given an abelian scheme G, over K we have a semiabelian S-scheme
G of relative dimension g with generic fibre G, (with a chosen unit section), £ a
rigidified relatively ample invertible sheaf on G. The special fibre Gy is a semiabelian
scheme over k, namely an extension of an abelian scheme Ag of relative dimension
¢’ by a torus Tj of relative dimension ¢, ¢’ + ¢" = g. We assume T to be split by
taking a finite base change of 5, in other words, by taking a finite extension of K if
necessary and the integral closure of R in it and by repeating the same construction
as above.

2.2. Associated to G and L are the formal scheme G¢, = imG ® R/I™ and an
invertible sheaf Lo = im £ ® R/I™. The scheme Gy, fits into an exact sequence

x
1— Tfor - Gfor iy Afor —0

where Ag,, is a formal abelian scheme. By the theory of cubical structures [Breen83]
[MB85, p.40, Theorem 1.1 (ii)] there exists a unique cubical structure on £ (viewed
as a G,-torsor), which induces a cubical structure of the sheaf L.

Then Lg,; is descended to a unique cubical ample invertible sheaf Mg, on Ag,., that

218
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is, Lgor = g, (Mior) *. Since there exists an ample sheaf on Agr, Asor is algebraisable.
In other words by the algebraisation theorem of Grothendieck [EGA, III, 5.4.5] there
exists an abelian S-scheme A with an ample invertible sheaf M such that the formal
completion (A, M) of (4, M) is (Agors Mier).

By our assumption that T is a k-split torus, T, is a formal S-split torus by [SGA3,
IX, Théorem 3.6], [FC90, 2.2]. Let X be the character group of Ty,;. Then by setting
T := Hom z(X,Gy,), T algebraises Tr,.

The sequence 1 — Ty — Gior— Afor — 0 is also algebraisable because the exten-
sion class of it is given by an element of Ext(Asor, Ttor) = Ext(A,T) [FCI0, p.34]. The
dual abelian scheme G} is also extended to a semiabelian S-scheme G* by taking the
connected Néron model ° after taking a finite ramified cover of S if necessary. Then
similarly we see that G§_ is algebraisable. Namely there exists a semiabelian scheme

G! such that (G")sor = Gior- Thus we obtain the so called Raynaud extensions for
Gior and Gi,

1-T—->G5H A0

15T oG5 A0
plus the homomorphisms ¢ : X — A*(R), ¢! : Y — A(R) decoding them. In other
words, ¢ € Hom (X, AY(R)) ~ Ext(4,T) and ¢ € Hom(Y, A(R)) ~ Ext(4',T")

describe the extension classes of semiabelian schemes G and Gt respectively.

2.3. Let A(L,) : G, = G} be the polarisation morphism. Then by the universal
property of the (connected) Néron model G* of G! we have an extension A : G — G*
of A(L,) . This gives rise to a formal morphism Agr : Gior — G¥,;, Which is algebraised
into a morphism X : G — G' because Gy, and GL_ are quasi-projective [EGA, III,
5.4.1]. Since T is affine and A' is projective, X(T') is the identity of A’ so that we have a
morphism Ar := X;T : T — T*. Similarly we have a morphism A4 := A(M): A — A*
such that Ay = (%))

Let K(L,) be the kernel of A\(L,). Let G(L,) (the Heisenberg group) be the central
extension of K(L,) by G, x with the commutator form equal to the Weil pairing
e, See [Mumford74]. There is an exact sequence

1= Gk — G(Ly) = K(Ly) =0

By [MB85, V, 2.5.5], we see that I'(G,, £,) is an irreducible G(L,)-module of weight
one, unique up to isomorphism by taking a finite extension of K if necessary. The

4This is true because T, is a split torus. Otherwise we need to take a symmetric invertible sheaf
Lsor ® [~1]* Lgor for descent.

SWe mean by the connected Néron model the identity connected component of the Néron model
(with connected closed fibre).
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G(L,)-module structure of I'(G,, L,) is known by [MB85, V, 3.4] and [Mumford74,
§23] regardless of the characteristic of K and rank K(L,).

2.4. The space of theta functions I'(G,, £,) on the generic fibre is embedded into
I'(Giers Lior) @r K. Since the latter has the torus action, every theta function 8 €
T'(G,, L,) can be written as a Fourier series of eigenfunctions, and this series converges
in the I-adic topology. The theorem of Faltings and Chai says that the coefficients
of these Fourier series satisfy the same equations as in the classical complex analytic
case.

2.5. First we consider the totally degenerate case, that is the case when A, (and
hence A) is trivial. Then Giyr = Tgor and G = T. The invertible sheaf Ly, is trivial
on Ti,r, and therefore

F(G,,, ‘Cﬂ) = F(Ga‘c) % k(fl) = F(Gfory ‘Cfor) % k(’l) = 1_!{ k(’]) - w®

Therefore, every theta function 8 € I'(G,,L,) can be written as a formal Fourier
power series 8§ = Y. x 0,(8)w® with o,(8) € k(7).

Theorem 2.6. [Faltings—Chai%0] There ezists a function a: Y — K* and a bilinear
function b:Y x X — K* with the following properties:
(1) by, 2) = b(z,y) = a(y + 2)a(y)'a(2)”! (Vy,z €Y)
(2) b(y,y) € I (Vy #0), and for everyn > 0, a(y) € I" for almost ally €Y
(3) The K-vector space T'(G,, L,) is identified with the vector space of Fourier
series 0 that satisfy 0,4.4(,)(0) = a(y)b(y, z)o(9).

Definition 2.7. The functions b and a can be extended respectively to X x X and
X so that the previous relations between b and a are still true on X x X. Then we
define the functions A: X - Z, B: X x X — Z and b(y,z) € R*, a(y) € R* by

B(y,z) = valy(b(y, 7)), dA(e)(z) = B(a,z) +r(z)/2
A(z) = valy(a(z)) = B(z,z)/2+ r(z)/2
by, z) = by, 2)sP0?),  a(z) = a(z)sBE@D+@)/2

for some r € Homgz(X,Z). We set ap = amod I and b, = bmod I. Therefore
ao(z),bo(z,y) € k* for any z,y € X. B is positive definite by Theorem 2.6 (2).
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3. CONSTRUCTION OF (P, L)

3.1. We continue to consider the totally degenerate case. For simplicity we identify
¢ :Y — X as the inclusion. We define

R:= Rla(z)w®¥;z € X] ~ R[¢¥;z € X],
6: .= SB(:,:)/2+T(I)/2w:, 6::: == €:+c/€c
Cx,c c = sB(a(a),z)+r(I)/2wI (l' +ce C(C, 0'))

where R is the graded algebra with deg(a(z Jw®9) = 1 and dega = 0 for a € R, while
o € Star(c,Delp) is a maximal-dimensional Delaunay cell with z + ¢ € C(c, o).
Let Q := PI‘O](R) and P the normalisation of (). We define an action Sy on Q by

Sy(a(z)w"d) = a(z +y)w™*d (y €Y)

S, induces a natural action of P, which we denote by the same S,. Let £ be
Oproj(1) on @ and its pull back to P.

Theorem 3.2. There ezists a flat projective S-scheme (P, L) suclk that the formal
completion (Pior, Lior) of it along the closed fibre is isomorphic to (Peor, Ltor)/Y .

Definition 3.3. If we take a suitable finite base change, we can assume F, to be
reduced [AN96]. Then we call the closed fibre (P, £o) of the flat projective family
(P, L) a polarised stable quasi-abelian variety over k := R/I.

Remark 3.4. The space I'(G,,£L}) = T(G, L") @ K ° is identified with the subspace
of T'(Gror, L3,;) ® K consisting of Fourier series s = 3. ey Ouiny(s)w’t™ such that

Ouany(s) = a(y)"b(y, 2)0u(s),0.(s) € K (e X,Vy €Y)
We see that I'(P,, L}) = I'(G,, L]) so that G, = P,.

We note that G is the semi-abelian scheme we started from, while P is the projec-
tive scheme we constructed with the degeneration data of G.

Gy is irreducible, so that the extension of £, to G is unique. T(G,, £}) = (G, £L*)® K follows
from it.
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3.5. Now we choose an embedding G C P. Let G := Uzex/y Sz(G). Then Glis a
group scheme. Let e(z) := S;(e). Then S, = T.(;) (translation of G! by e(z)) on G".
Let K%(L,) be the flat closure of K(£,) in G!. Then we see that K%(L,) is finite.

Lemma 3.6. We define a morphism A(Lo) : G§ — Pic®(Qo) by
MLo)(a) = T; (Lo) ® L5
for any U-valued point a of GY, U any k-scheme. Then K(Qo, Lo) = ker M(Lo).

Definition 3.7. The abelian Heisenberg group scheme K (P, L) is defined to be Hs(L,).
The Heisenberg group scheme G(P, L) is a central extension of K(P, L) by G, s, and
the following is exact;

1-G,s—G(PL)— K(PL)—0.

We note G(P, L) ® K = G(G,,L,) :=G(L,), K(P,£)® K = K(G,,L,) :== K(L,).
We define G( Py, Lo) :=G(P,L) ® k and K (P, Lo) := K(P,L)Q k.

4. THE STRUCTURE OF (@, L)

4.1. We consider the totally degenerate case. From Section 3 we recall
R:= Rla(z)w"d;z € X] ~ R[t.9;z € X]
¢, = BEDN@ 2z e e e
Sy (a(z)w™) = a(z + y)w ™9
Let Q := Proj Rand £ := 05(1).

The construction of the quotient (Q, £) := (@, £)/Y is quite similar to [Mumford72].
See also [AN96] and Theorem 3.2.

Theorem 4.2.
(1) Let (Qo,Lo) be the closed fibre of (Q,L£). Then Qo is a scheme locally of finite

type with infinitely many irreducible components. The restriction of Lo to any
irreducible component of Qo is very ample.
(2) (Qo,L0)/Y is a projective scheme over k.

(3) (Qsor, Ltor)/Y is a flat projective formal S-scheme.
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(4) There ezists a flat projective S-scheme (Q, L) such that the formal completion
(Qfory Lsor) of it along the closed fibre is isomorphic to (Qtory Lsor)/ Y -
(5) (P, L) ts the normalisation of (Q,L) (by a suitable base change).

By Remark 3.4 and a similar consideration (P, £,) =~ (@n, £;) =~ (Gy, L,).

Definition 4.3. We call the closed fibre (Qo, £o) of (@, £) a projectively stable quasi-
abelian scheme over k := R/I.

Definition 4.4. We define K(Q,£) := K(P,£) and G(Q, £) := G(P,L). Similarly
we set K(Qo, Lo) = K(Po,l:o) and g(Qo, Lo) = g(Po,Lo).

The abelian Heisenberg group scheme K(Qo,Lo) of (Qo,Lo) operates upon (o
while the Heisenberg group scheme G(Qo, Lo) of (Qo, Lo) operates upon (Qo, Lo) so
that upon H°(@, L) ® k, which is an irreducible G(Qo, Lo)-module of weight one by
Lemma 4.5. We also note

Lemma 4.5.
(1) (P, L) =T(Q,£) =T'(G, £).
(2) I(Q, L) is an irreducidle G(Q, L)-module of weight one
(3) If k is algebraically closed, then I'(Qo, L) is an irreducible G(Qo, Lo)-module
of weight one.

5. PROJECTIVE EMBEDDINGS

We consider only the case where L is a separable polarisation, that is, d :=
deg L/(g!) is prime to the characteristic of k¥ := R/I. With the notation in Sec-
tion 2 suppose that d := deg L, /(g!) is a separable polarisation of G,. Then by the
discussion in §2 d; := rank K(£,)™ and d, = rank K(M) are prime to the charac-
teristic of k. In particular, M is also a separable polarisation of the abelian scheme
A, the abelian part of the Raynaud sequence of G.

Definition 5.1. Let K be a totally isotropic subgroup scheme of K(Qo, Lo). Since
rank K is prime to the characteristic to k£, K is an étale group scheme so that
K(Qo,Lo) ~ K&KV, and K = ®7_,Z/e;Z and e;le;4,. The minimal (resp. maximal)
elementary divisor emin(K(Qo,Lo)) (resp. emax(K(Qo,Lo))) is defined by

emin(K) = emin(K(Qm £0)) = €y, ema.x(K) = CM(K(Qo,Lo)) = €g-
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Theorem 5.2. Let A be an abelian variety over an algebraically closed field k, L an
ample invertible sheaf on A with deg L/g!:= (L9)/g! prime to the characteristic of k
and K(L) :=ker A\(L). If emn(K(L)) 2 3, L is very ample.

Theorem 5.3. Let (Qo,Lo) be a polarised projectively stable quasi-abelian scheme
over an algebraically closed field k, and K(Qo,Lo) the abelian Heisenberg group. If
emin(K (Qo, Lo)) 2 3, then I'(Q, L) ® k is very ample, a fortiori Lo is very ample.

The proof of Theorem is basically the same as in dim < 4. We omit the details.
See [Nakamura97).

Definition 5.4. Let k = R/I, I maximal. Let (Qq, Lo) be a projective stable quasi-
abelian k-scheme. We call a k-submodule V of I'(Qo, Lo) @ Delaunay k-submodule
ifV =T(Q,L) ® k. We note that I'(Q, L) ® k is generated by a sum of monomials
€. with T'(Ao, M,) coefficients (a € Del(o)(Qo,[,o)), and it is the unique irreducible
G(Qo, Lo)-submodule of I'(Qo, Lo) with the property. We note that it is also a very
ample k-submodule of I'(Qo, £o). By Theorem 4.5 we recall I'(Q, £)®k = I'(P, L) ®k.

6. G(K) AND V(K)
Let ¢ := {x be a primitive N-th root of unity and Oy := Z[¢,1/N]. 7

Definition 6.1. Let K be a constant finite abelian group On-scheme of rank N with
emin(K) 2 3. Let KY := Homp, (K, G 0,) be the Cartier dual of K. We set H :=
H(K)=K®K" and defineey : Hx H — G 0, by eg(z0a,wd ) = B(z)a(w)™?
where z,w € K, o, 3 € KY. We denote ey by £x when it is necessary to emphasize
dependence on K.

Let pun := Spec On[z]/(z¥ — 1) be the group scheme of N-th roots of unity in
Opn. We define G(K) by G(K) := {(a,z,a);a € pn,z € K,a € KV} endowed with
a group law

(a,z,0) (b,w,B) = (abB(z),z + w,a + B)
where a,b € pun, z,w € K and o, 8 € KV. It is clear that G(K) contains K as a level
subgroup scheme, that is, the image of K in H(K) is a maximally isotropic subgroup
scheme with respect to ey.

Let V(K) be the group algebra On[K"] of K over Oy, and an On-basis v(x)
(x € KY) of V(K). The group scheme G(K) acts upon V(K) by

U(K)(a, 2, 0)(v(x)) = ax(2)v(x + a)-

"In fact, we can take { = (,_,, instead of {x by a more careful argument.
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where a € un, z € K and o € K. We define a subgroup scheme G(K) of an
algebraic group On-scheme GL(V(K)) by

G(K) = {U(K)(9);9 € G(K)}

Lemma 6.2. Let Spec k be a point of SpecOn. Then V(K) ® k is an irreducible
G(K)-module of weight one, unique up to equivalence.

Proof. We imitate the argument in [Mumford66]. Let V be a G(K)-k-module of
weight one. Let V(x) be the maximal k-submodule of V such that K operates on V()
by a character x € KV. There is a xo such that V(xo) # 0. Let 0 # v(xo0) € V(xo0)-
Then we set v(x) := (1,0,x—Xo0) - v(xo0) € V(x) and define V; to be the k-submodule
of V spanned by v(x) (Vx € K). We see

(a,z,0)-v(x) = (a,0,a) - (1,2,0) - v(x)
= ax()olx + )
This proves Vo ~ V(K) ® k. It follows that V ~ (V(K) @ k)dms V/dime Vo 3

Definition 6.3. Let R be a complete discrete valuation ring over Oy with k = R/I
and S := Spec R. For a PSQAS (Q, £) over S, we define G(Q, £) to be the central

extension of K(Q, L) by puny with commutator form el hence the following is exact
l—pns — G(Qaﬁ) - K(Q"C) -0

If (K(Q,L),ek) ~ (H(K)s,fxs) for a PSQAS (Q,L) over S, then G(K)s is
weight-one isomorphic to G(Q, L), in other words (by definition), there is an iso-
morphism p : G(K)s — G(Q, L) such that p is the identity on the centre un,s. Let
G(@ny L) = G(Q, L) ® k(n), G(Qo, Lo) :=G(Q, L) ® .

We choose and fix an arbitrary weight-one isomorphism p : G(K)® k ~ G(Qo, Lo)-
By Lemma 6.2 there is a k-isomorphism ¢(p)* : V(K) @k - V =T(Q,£) ® k such
that

U(p(9))(6(p)"(w)) = ¢(p)"U(K)(g)(w) (Vg € G(K),Vw € V(K))
where U is the action of G(Qo,Lo) on V. Let 8(x) := ¢(p)*(v(x)) (x € KV). By
Schur’s lemma ¢(p)* is unique up to a scalar multiple so that there is a unique closed
immersion ¢(p) of (Qo, Lo) into P(V(K) ® k) as above for a given p. The stabiliser
group Stab(¢(p)(Qo)) in GL(V(K) ® k) contains G(K) ® k.

Let ¢ : Qo = P(V(K) ® k) be any closed k-immersion. Then there is a unique
h € GL(V(K)® k) such that ¢ = & - ¢(p). Then Stab(¢(Qo)) contains hG(K)h1.

Let Z = ¢(Qo) and L := Op(v(k)ek)(1)jz. Then we can naturally identify G(Z, L) =
hG(K)h™1.
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7. KEMPF-STABILITY

7.1. Let (Qo, Lo) be a projectively stable quasi-abelian scheme over k. Suppose that
V® .= T(Q,L) ® k is very ample. Hence (Qo,Lo) is a closed subscheme of the
projective space (P,Op(1)) where P = P(V°). Let I be the ideal of Op defining
(Qo,Lo). Then by Serre vanishing theorem there exists a sufficiently large ng such
that H'(P,I ® Op(n)) = 0 for n > no. Hence we have an epimorphism

¢ 1 STT(Q, £) ® k — T'(Qo, £3)
The epimorphism ¢, determines a point of the Grassmannian variety. Let n(g) :=
n? deg(Lo). By taking the Pliicker coordinates we obtain a point n}i])gbn of the pro-
jective space P(n}f)S"I‘(Q, LYR k)

n(g)

6. "RST(Q, L) @ k — "RT(Qo, £3) = k.

We call n}{])d)n the n-th normalised Hilbert point of (Qo,Lo), which we denote by
hilb,(Qo, Lo). U T'(Qo, Lo) = I'(Q, £) ® k, for instance if Qo = Pp, then hilb,(Qo, Lo)
is just the n-th Hilbert point of (Qo, Lo) in the usual sense.

We say that hilb,(Qo,Lo) is Kempf-stable if it has a closed SL.(V°)-orbit.

By Lemma 6.2 the following is a corollary to [Kempf78, Corollary 5.1].

Theorem 7.2. Let (Qo,Lo) be a polarised projectively stable quasi-abelian scheme
over an algebraically closed field k. Suppose that the characteristic of k and deg Lo :=
(£9)/g! are coprime. IfT(Q, L) ®k is very ample, then hilb,(Qo, Lo) is Kempf-stable
for all large n. & In particular it is Mumford-semistable.

Proof. Let V° := I'(Q,L) ® k. Let SL.(V°) be a subgroup of GL(V°) consisting
of elements with determinant +1. We note that closedness of the orbits for the
actions of SL or SLy are equivalent to each other because [SLy(V°); SL(V®)] is
finite. G(Qo,Lo) operates on ['(Qo, Lo) keeping VO stable so that hilb,(Qo,Lo) is
G(Qo, Lo)-invariant. Since V© is an irreducible G(Qo, Lo) (~ G(K) ® k)-module
by Lemma 6.2, G(Qo, Lo) is contained in no parabolic subgroup of SL+(V°). By
applying [Kempf78, Corollary 5.1] to SL4(V°), we see that h:lb,(Qo, Lo) has a closed
SLy(V®) orbit. They are semistable in the sense of Mumford by [Seshadri77, p. 252,
Proposition 6 (1)]. O

8Theorem 7.2 seems to be true without the assumption on deg Lo.
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The (normalised) Hilbert points of (Qo, Lo) are not necessarily properly stable, for
instance a 3-gon of rational curves.

8. RIGID G(K)-STRUCTURES

8.1. In what follows we consider only separable polarisations £,, that is, d :=
deg £, /(g!) is prime to the characteristic of k¥ := R/I. Then d; := rank K(L,)™
and d, = rank K (M) are prime to the characteristic of k. In particular, M is also
a separable polarisation of the abelian scheme A, the abelian part of the Raynaud
sequence of G.

Definition 8.2. Let Oy = Z[({,1/N] and K a constant finite abelian group On-
scheme of rank N. Let Spec k be a (not necessarily closed) point of Spec On. Suppose
emin(K ) > 3. A triple (Qo, Lo, Vo) is called a g-dimensional K-symplectic projectively
stable quasi-abelian scheme over k or a K-symplectic PSQAS over k if

(1) (Qo, Lo) is a g-dimensional projectively stable quasi-abelian scheme over k, a
closed fibre of some (@, L) in Theorem 4.2,
(2) G(Qo, Lo) ® k is weight-one isomorphic to G(K) ® k.
(3) Vo ® k is the theta k-module of (Qo, Lo) ® k °
where k is the algebraic closure of k. See Definition ?? resp. Definition 5.4 for
G(Qo, Lo) resp. theta modules.

Lemma 8.3. Let T be an irreducible On-scheme, : (A,L) — T a polarised abelian
T-scheme, A* := Pic’(A/T) and ML) : A — A! the polarisation morphism. Assume
that L, is a separable polarisation for any geometric point s € T. Then there erists
a finite étale covering f : T* — T and a constant finite abelian subgroup T*-scheme
K71+ of ker \(Lz») such that (ker \(Lt+),(ef)7-) ~ (K @ KV, {x)r~ where €& is the
Weil pairing on ker A(L).

Proof. We have an exact sequence of group schemes

0 — kerA(L) — A D 4t 0.

By the assumption A(L), = A(L,) is étale for any geometric point s of T so that
ML) is étale. Therefore ker \(L) is étale and finite over T. Let T” be one of the

°If the following conjecture for N = 1 is affirmatively solved, this datum is removed
Conjecture: HY(Qq,LY) =0 for ¢, N > 0.
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irreducible components of ker A(L) with 7" %% T. Then ker A(L)7+ has a new section
over T'. By repeating the same argument we see that there exists an irreducible
On-scheme T* étale and finite over T such that ker A(Ly+) = ker A(L)z- is a con-
stant finite group scheme. The Weil pairing (eX)r+ is a symplectic bilinear form
on ker A(L7+) with values in px, which is therefore constant on T™. Hence there
exists a totally isotropic constant subgroup T*-scheme K7. of ker A(L)r+ such that
(ker \(L7+),e%.) ~ (K & K",k )r-. This proves Lemma. 0

Lemma 8.4. Let T be an irreducible On-scheme, w : (A,L) — T a polarised abelian
T-scheme. Suppose that there exists a constant finite abelian subgroup T-scheme Kr
of ker \(L) such that (ker A(L),eF) ~ (K @ KV,€x)7. Then there exists an invertible
Or-module M with trivial G(K)r-action such that 7, (L) ~ M ®o, V(K).

Proof. Let G(A, L) be the central extension of ker A\(L) with commutator form L.
By the assumption there exists a weight one isomorphism p : G(K)r — G(A4, L) of
group T-schemes.

Let s be a closed point of T', U an affine open subset of T' with s € U. It follows that
through p 7.(L) is a G(K)r-module of weight one with the centre of G(K)r acting
upon 7.(L) by scalar multiplication. By Lemma 6.2 7.(L) ® k(s) ~ V(K) Qo k(s)
as G(K)r ® k(s)-modules for any closed point s € T. Therefore the action of an
abelian group K7(T) on w.(L) is diagonalised locally because any eigenvalue of the
action of K7(T') belongs to Or. This implies that there exists an open affine covering
{U;} of T such that m.(L) ®o, Oy, ~ Oy, ®o, V(K) as G(K)y,-modules. Let
U(K); = loy, ® U(K) be the action of G(K)y, on Oy, ®oy V(K). It follows that
there is a one-cocycle £;x € H'({Ujr}, GL(Or Qo V(K))) such that

U(K)i(9)tx = 6;:U(K)i(g) (Vg € G(K)r(T))

on Uj, := U; N Uy. Hence U(K)(9)lix = 4;xU(K)(g). Therefore £;; is a scalar
matrix by Schur’s lemma, so that £;x € H'({U;c},0%), which defines an invertible
Or-module M. This proves Lemma. 0O

Corollary 8.5. Let anything be as in Lemma 8.4. Then there exist a closed T-
immersion ¢ : A — P(V(K) Qoy Or), a weight-one isomorphism p : G(K)r —
G(A, L) and an invertible Op-module M such that

(1) L = ¢*(Op(vx)(1) Qox Or);

(2) m(L) = ¢"(M ®oy V(K)),

(3) pRk=G(¢") - (UK) ® k) for any geometric point Spec k of T

228

20



21
STABILITY

where G(¢*)(g) = ¢*g(¢")" for g € G(K) := U(K)G(K) and T'(Opw(xy (1)) is
identified with V(K).

Definition 8.6. Let Spec k be a point of Spec O, (Z, L, V) a K-symplectic PSQAS
over k. A rigid G(K)-structure (¢, p) on (Z,L,V) is a pair of a closed k-immersion
¢:Z — P(V(K)Q® k) and a weight-one isomorphism p : G(K) ®o, k — G(Z,L)
such that

(1) L = ¢*(Opv(xyer) (1)),

(2) ¢*: V(K)®k ~ V is a k-linear isomorphism,

3) p=G(¢") - (U(K) Qoy k)
where G(8")(g) = (¢")g(¢")™" for any g € G(K).

If a K-symplectic PSQAS (Z, L, V) has a rigid G(K)-structure (¢, p), then ¢ =
é(p) by the remark in 6.3. Evidently L and V are uniquely determined by ¢. We
denote (Z,L,G(Z,L),V,¢,p) by (Z, ¢, p)rig-

Lemma 8.7. Let Speck be a point of Spec Oy. Any K-symplectic PAQAS (Z,L,V)
over k has a unique rigid G(K)-structure ¢.

Proof. By definition we are given an isomorphism p : G(K) ~ G(Z, L). It suffices to
choose a closed k-immersion ¢(p) : Z — P(V(K) ®o, k) by ¢(p)*(v(x)) = 0(x) (x €
KV) with the notation in Definition 6.3. Uniqueness follows from Lemma 6.2. O

Definition 8.8. Let (Z;, L;,G(Z;, L;), V;, ¢;, p;) be k-PSQAS’s with rigid C_r'(K)—_structures
(:=1,2). (Z;, Li,G(Z;, L;), V;, ¢:, p:;) are isomorphic as k-PSQAS’s with rigid G(K)-
structures if there is a k-isomorphism f : Z; ~ Z, such that

(1) Ly = f*La, Vi = V4,

(2) G(¢1) = G(f) - G(¢3)
where G(f*)(g) = f*g(f*)! for any g € G(Z,, L,).

In this case we write (Z1, ¢1, p1)ric =~ (Z2, 2, p2)rig- By (2) we have G(Z,,L,) =
G(f*)G(Z,, Ly).

Lemma 8.9. Let (Z;, ¢:, pi)ric be k-PSQAS’s (i = 1,2). Then (Zy,é1,p1)ric =~
(Z3, 2, p2)ri iff there is a k-isomorphism f: Zy ~ Z, with ¢; = ¢, - f.
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Proof. First we prove if part. Definition 8.8 (1) is clear from the uniqueness of theta
modules. (2) is clear.

Next we prove only if part. By Definition 8.8 (1) and by the very-ampleness of
V; there is an h € GL(V(K) ® k) such that ¢} - h = f*- ¢; € Hom(V(K) ® k, V}) .
Hence G(¢7)G(h) = G(f*)- G(¢3). It follows from Definition 8.8 (2) that G(k) is the
identity, i.e., h-g = g-h for any g € G(K). By Schur’s lemma, & is a scalar multiple
of the identity so that ¢; = ¢5- f. O

Corollary 8.10. If epin(K) > 3, then Aut ((Z, 4, p)ri) is trivial.

9. THE SCHEME SQ, x

9.1. Let K be a constant finite abelian group Op-scheme with ep;n(K) > 3 and
N := rank o K. Let P(n) := n?N, Sy := SpecOy and let H, g := Hilbi:(") be
the Hilbert scheme parametrising all projective subschemes of P := P(V(K)) with
their Hilbert polynomial P(n), (Z,k,Lg k) the universal subscheme over H, x and
T : Zgk — Hyk the natural morphism. Let i : (Z,x,L,x) — P(V(K)) xsy Hyx
be the natural (given) closed immersion of the universal subscheme Z; x over Hy k.
We remark that Hy x and Z, x are On-schemes by [FGA, 221, Théoréme 3.1]. In
this section we will define an On-subscheme SQ, x of H, ¥ which ought to be the
moduli scheme. See [MFK94, Proposition 7.3, pp.132-134].

Since emin(K) > 3, any K-symplectic PSQAS (Qo, Lo, Vo) over k is a closed point
of Hy k¢ by choosing any isomorphism Vi >~ V(K) ®c,, k in view of Theorem 5.3.

Let U be the open maximal subscheme of H, x such that « is smooth, which is a
On-subscheme of H, x by [EGA, IV, Corollaire 6.8.7]. Suppose that a fibre of 7 over
a geometric point s of U is an abelian variety with ker A(Ly ks) ~ H(K) ®o, k(s).
Let U, be a connected component of U containing s, and Z; := Z, g XH,x U1- By
the base change U, of U; we may assume Z, := Z; Xy, U, has a section e over Us.
For instance choose U, = Z;.

By [MFK94, Theorem 6.14] Z, is an abelian scheme over U, with e unit section. It
follows from Lemma 8.3 that any geometric fibre of Z;, a fortiori, of Z; is an abelian
variety with ker A(Ly xs) ~ H(K) ®o, k(s). Since U; is an Oy-scheme, there exists
an open Oy-subscheme U, of U such that any abelian variety fibre of H, x with
ker AM(Lg,k,s) ~ H(K)Qoy k(s) is isomorphic to a geometric fiber of 7 over Uy k. Let
W,k be the closure of (U i )rea in Hy g with reduced structure.
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Remark 9.2. Let 7 : (A,L) := (Z,,k,Lgx) XH,x Us = Uz be a polarised abelian
scheme over an irreducible component U; of U, k. By Lemmas 8.3, 8.4 and Corol-
lary 8.5, there exist an On-scheme T, a closed T-immersion ¢ : Ay — P(V(K))r
and a weight-one isomorphism p : G(K)r — G(A, L) such that p = G(¢*)U(K)r.
Hence there is an On-morphism Hilb(¢) : T — U, k such that

(6(4), Or()yg0a)) @ k(s) = Hilb(8)(s) € Uy (k(s)
0 ® k(s) = G((6 ® K(s))")U(K)r @ k(s))

for any geometric point s of T

Definition 9.3. By Remark 9.2 (plus some argument) there exists an Opn-subscheme
Ay x of Ug kg such that
(1) G((Zgk, Lyx) XH,x Ask) ® k(s) = G(K) ®o, k(s) for any geometric point
s of Ay x and
(2) any geometric fiber of 7 over U, k is isomorphic to a geometric fiber of = over
A k.

The natural representation U(K) : G(K) — G(K) induces a weight-one isomor-
phism pg g : G(K)a, x ~ G((Zgx, Lo x) XH,x Agx). We also note by Remark 9.2
that for any abelian scheme (A, L) € U, (k) over a closed field k, there is a closed
immersion ¢ : A — P(V(K) ® k) such that (¢(A4), Op(1)44)) € Agx (k).

We define SQ), x to be the closure of A, x in Hy g, i.e., the minimal (reduced)
closed On-subscheme of H, x containing (Ag x)rea- Let Z_f,% = ZoK XHy,x SQq K>
and let 7, x : Z;’:?( — SQg.x be the natural projection.

Theorem 9.4. SQ, i is a projective On-subscheme of W, g pointwise fized by G(K)
such that for any geometric point Spec k of Spec Oy,

_ (. (2,3, U(K)) is an abelian variety .
(1) Aok (k)= {(Z’L) € Wy (k); with a rigid G(K)-structure [k-isom.

Z,1,U(K)) is a PSQAS k .
(2) SQux(k) = {(Z,L) e W) o ) e et } k-isom.

where i is the natural inclusion of Z into P(V(K) @ k).
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Proof. By Definition 9.3 Ay g is an Op-subscheme of W, k satisfying the condition
that (Z,L) € A, x(k) is an abelian variety with G(Z, L) = G(K), hence (Z,1,U(K))
is an abelian variety with a rigid G(K)-structure. Thus (1) is true. It follows that
(Z,L) is fixed by the action of G(K) so that A, k (k) is pointwise fixed by the induced
action of G(K) upon H, k. It follows from it that SQ, k is an On-subscheme of W, x
pointwise fixed by G(K).

Let R be a complete discrete valuation ring with fraction field k(7), n the generic
point of S := Spec R. Suppose that we are given a flat R-subscheme (Z,L) of
(Zg.x *xH,x SQqgx) ®oy R such that (Z,, L,) is a polarised abelian scheme (possibly
with no unit section). Let 7 be the inclusion immersion of (Z, L) into P(V(K) ® R).
The subgroup scheme G(K)s of SL+(V(K) ® R) stabilises (Z,L). By choosing a
suitable ramified cover of S if necessary we may assume by Theorem 0.1 and Defi-
nition ?? that we have a projective flat family (W, M) with a rigid G(K)-structure
(¢, p) over S such that (W,, M,)) >~ (Z,, L,) and the closed fibre (W, My) is a PSQAS.
Since we start from the given (Z, L) in order to construct (W, M), we may assume
that (Z,, i, U(K)n)ric = (Wy, &5, pn)ric. In fact, the rigid structure (W, 4, p)rig
was constructed by extending (W, ¢,, py)rig. This part is clear from Sections 2-4,
Paragraph 3.5 and Definition ??. Hence there is by Lemma 8.9 a k(7)-isomorphism
f:Z, — W, such that i, = ¢, - f, that is, i,(Z,) = ¢,(W,). Since : and ¢ are closed
S-immersions respectively, they induce natural morphisms Hilb(z) and Hilb(¢) from
Spec R into SQ, x by the universal property of Hy . It follows from i, = ¢, - f that
we have Hilb(¢,) = Hilb(¢,) : Spec k() — SQq k. Since SQ, k is projective (sepa-
rated), we have Hilb(7) = Hilb(¢) [EGA, 1I, 7.2.3]. This implies that i(Z) = ¢(W), a
fOT‘tiOT‘i, Zo(Zo) = ¢0(Wo) Hence Z() ~ Wo, (Z(),ig, U(K)) isa k*PSQAS with a I’lgld
G(K)-structure by the uniqueness of G(Zo, Lo), which follows from Lemma 3.6. This
proves (2). O

Definition 9.5. Now we define the relative n-th Hilbert point hilb,. Let 7 : Z, x —
H, x be the natural morphism, and let

V:=0pg,, ®ox V(K), Vn:=m(0z, «(n)).

We note that V, is locally free of rank n(g) := n9N for sufficiently large n > ng. Let
én : SV — V), be the natural epimorphism for n > ng. Thus we have a morphism

hilb, := n}f)zbn of Hy x into the projective space Plarge = P(n%)S"V(K)). For any

large n > ng hilb, is a closed On-immersion of H, k. For a geometric fibre (Z, L) of
7 we call hilb,(Z, L) the n-th Hilbert point of (Z, L).
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Theorem 9.6. Let Speck be a geometric point of Spec Oy and (Z,L) € H,k(k).
Suppose emin(K) > 3 and that (Z,L) is smoothable into an abelian variety (A, M)
with ker A\(M) ~ H(K) @ k. Then the following are equivalent.

(1) (Z,L) is a K-symplectic PSQAS over k,

(2) Aut(Z,L) contains a subgroup of SL+(V(K) ® k) weight-one isomorphic to
G(K) ®k,

(3) hilb,(Z,L) '° is Kempf-stable for any large n > ng.

Proof. (2) follows from (1) by Definition 6.3. (3) follows from (2) by [Kempf78,
Corollary 5.1]. It remains to prove that (3) implies (1). We choose and fix a large
n. Suppose (3) and that (Z, L) is smoothable into an abelian variety with ker A ~
K @ KV. It follows (Z,L) € W, kx(k). By (3) hilb,(Z, L) is Mumford-semistable. By
[Seshadri77, p. 269, Remark 8] there is a categorical quotient

W, x N hilb7! (Page(SemiStable)) /SL(V (K))

which is a projective On-scheme. By [Seshadri77, p. 269, Theorem 4] and the (@, £)-
version of Stable reduction theorem (Theorem 0.1) the closure of the SL(V(K) ® k)-
orbit of (Z,L) intersects the SL(V(K) ® k)-orbit of a PSQAS (W,M). By the
assumption (3) the orbit of (Z, L) is closed. Therefore the orbit of (Z, L) is that of
(W,M), hence (Z,L) is a PSQAS. O

10. REDUCED-FINE-MODULI

Definition 10.1. Let Oy := Z[(,1/N]. For a contravariant functor F over Oy a
reduced Opn-scheme M is said to be a reduced-fine-moduli scheme over Oy of F or
we say that F is reductively-represented over Oy by M if the following conditions
are satisfied;

(a) fm(T): F(T) — Homg(T, M) is a bijection for a reduced Op-scheme T

(b) fm(T)-F(h) = Hom(h, M)- far(U) for an On-morphism h : T — U of reduced
On-schemes T,U

(c) if there is another reduced On-scheme N satisfying (a) and (b), then there
exists a unique On-morphism v : M — N such that fy = Hom(%) - fu.

It is clear that a reduced-fine-moduli scheme is unique if there exists.

10This is understood as a normalised Hilbert point.
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Definition 10.2. Let Speck be a point of Spec On. A level G(K)-structure (¢, p) on
a PSQAS (Z,L,V) over k is a pair of a closed k-immersion ¢ : Z — P(V(K) Qo k)
and a weight-one isomorphism p : G(K) ®o, k — G(Z, L) such that

(1) L = ¢*(Opv)eoy k) (1))

(2) ¢*: V(K)Qo, k >~V is a k-linear isomorphism,

(3) p is equivalent to G(¢*)U(K) in Homi g.san (G(K) ®oy k, GL(V)).

We denote a PSQAS (Z, L, V) with a level G(K) structure (¢, p) by (Z, ¢, p)Lev.

Two k-PSQAS’s (Z;, L;,G(Z;, L;), Vi, ¢i, pi) (2 = 1,2) with level G(K) structures
are isomorphic if there is a k-isomorphism f : Z; ~ Z, such that

(1) Ly = Ly, Vi = f*Vs,

(2) ;1 =G(f) - p2
where G(f*)(g) = f*g(f*)7" for any g € G(Z3, L»).

If we are given (Z, ¢, p)LEv, by Lemma 6.2, there is a unique k-closed immersion

#(p): Z - P(V(K) Qo, k) such that G(¢(p)*)U(K) = p, i.e.,
p(9)(¢(p)"(w)) = ¢(p)"U(K)(9)(w) (Vg € G(K),Vw € V(K))

We note that (Z, ¢(p), p)riG is a unique PSQAS with a rigid G(K)-structure such
that (Z, ¢(p), P)Lev = (Z, ¢, p)LEV-

Definition 10.3. Given a noetherian On-scheme T, (Q, £, G(Q, L), V, ¢, p) is called
a projectively stable quasi-abelian T-scheme of relative dimension g with a level
G(K)-structure if
(1) @ is a flat proper T-scheme with a relatively ample invertible sheaf £,
(i1) ¢ is a closed T-immersion of Q into P(V(K) o, Or),
(iii) (Q L) is a finite flat group T-scheme operating upon (@, L)
(iv) p: G(K)r — G(Q, L) is a weight-one isomorphism of group T-schemes
(v) for any geometric point s of T, (Qs, ¢, ps) is a projectively stable quasi-abelian
scheme of dimension g over k( ) with a level G(K)-structure, !

(vi) £ = ¢*(Opx)(1) ®oy Or) and V = ¢*(V(K) ®0o, Or).

We denote (@, £,G(Q,L),V,¢,p) by (Q, d, p)Lev for brevity. If further any fibre
(Qs, b5, p5) in (iv) is a PSQAS with a rigid G(K)-structure, then we call the sextu-
plet (@, L,G(Q,L),V,d,p) a projectively stable quasi-abelian T-scheme with a rigid
G(K)-structure and we denote it by (Q, ¢, p)ric-

Definition 10.4. For T-PSQAS’s (Q:, ¢:, p:)Lev (2 = 1,2) with level G(K)-structures,

we define (Q1, 1, p1)Lev =~ (Q2, $2, p2)LEv if there exist a T-isomorphism f : @) —
Q@ and an Or-invertible sheaf M such that

11This implies G(Q;, L) = G(Q, L) ® k(s) for any point s € T
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(1) ¢1(V(K) Qoy O1) = M Qo f*¢5(V(K) ®oy Or),

(2) p1=G(f*) - p2

For T-PSQAS’s (Qi, ¢i, pi)ric (3 = 1,2) with rigid G(K)-structures, we define
(@1, 1, p1)mic =~ (Q2, ¢2, p2)ric by one of the following equivalent conditions; 12

(1) (Q1, 1, p1)LEV = (Q2, 92, p2)LEV

(2) there is a T-isomorphism f : @; — @, such that ¢, = ¢, - f,

(3) there is a T-isomorphism f : @1 — @2 such that

$1(V(K) ®oy Or) = f*¢3(V(K) Qoy Or) and G(47) = G(f*) - G(43)

We define the functors §Q, x and S Q?,I,? as follows. For any noetherian S-scheme

T, we set

S§Q, kx(T) = the set of projectively stable quasi-abelian
T -schemes (@, ¢, p)Lgv of relative dimension g

with level G(K)-structures modulo T -isom

S Q?ff?(T) = the set of projectively stable quasi-abelian
T -schemes (@, ¢, p)rig of relative dimension g

with rigid G(K)-structures modulo T -isom.

Theorem 10.5. Let N =rank K. If eqn(K) > 3, then the functor SQ, x is reduc-
tively represented by a projective scheme SQy x over Z[(n,1/N].

Proof. First we prove Qg x ~ SQ?}?. Suppose we are given a T-PSQAS (Q, ¢, p)LEvV
with a level G(K)-structure. Let {U; = Spec R;} be an open affine covering and
Vu, = V; ®g, Oy, for some R;-free module V;. We have a collection of weight-one
isomorphisms p; : G(K )y, = G(Qu;, Lu,). By the condition (iv) and by Lemma 6.2,
by choosing a finer open covering of {U;} if necessary, there is a collection of A; €
GL(V;) such that pi(g) = AG(")U(K)()AT (Yo € G(K)u,(U). Let o(p); =
A;¢*. Then ¢(p)! induces a closed U;-immersion of Qy, into P(V(K) ®o, Ov;) such
that pi(g) = G(8(p)})U(K)(g). On U;NU;, we have p;(g) = p;(g) so that G(¢(p);) =
G(#(p);). Hence by Schur’s lemma there is a scalar £;; € GL(V(K) ®s Oy,;) such
that ¢(p); = £&;¢(p);-

It follows that there is a closed T-immersion ¢(p) of @ into P(V(K)) and an
invertible Oz-module M := {{;;} € H'(O%) such that ¢(p)*(V(K)®oyOr) =VOM
and p = G(¢(p)*)U(K). Then (Q, ¢(p), p)ric is a unique T-PSQAS with a rigid
G(K)-structure such that (Q, ¢(p), p)LEv =~ (Q, ¢, p)LEV. It follows SQ x ~ SQE’II?.

12Equivalence is proved in the same manner as in Lemma 8.9.
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It remains to prove that SQNE is reductively represented by SQ, k. Let T be
a reduced Opn-scheme. Suppose we are given a projectively stable quasi-abelian T-
scheme (Z, ¢, p)ri with a rigid G(K )-structure. Then ¢ : Z — P(V(K) ®o,, Or) is
a closed immersion of Z so that we have a natural T-morphism Hilb(¢) : T — H, x
which factors through SQ, x by Theorem 9.4 (2). Moreover Z = Hilb(qﬂ)*(ZgS}) =
Z % X5Q,x T by the universal property of Z, k. Hence the map (Z,4,p)ric —
Hllb(qb) is bijective. This shows & RIG(T) = Homg(T, SQ, k). The second condition
(b) in Definition 10.1 is clear. Suppose that another M satisfies the conditions (a)
and (b) in Definition 10.1. Since there is a flat projective scheme Z 'k over SQ,x,
we have by the condition (a) for M a unique On-morphism ¢ : SQg,K — M such
that Hom%N( M) = Hom(¢) - Homo, (T, SQq,x) for any reduced T. This proves
that S is reductlvely represented by SQ,x. O

10.6. Let V = Zzo + Zz, + Zz;. Let P := P(S3(VV)) be the projective space of
ternary cubic forms on V. Let U be an open subscheme of P consisting of curves
with at worst a unique nodal singularity. The categorical quotient of U by SL(3)
is P}, which is a coarse moduli scheme of the functor of smooth elliptic curves
and a rational curve with a node. However as we saw above, we have a different
kind of compactification SQ,(z/3z), a reduced-fine-moduli scheme over Z[(3,1/3] of
one-dimensional PSQAS’s with level G(Z/3Z)-structures. The universal subscheme
Zf,?z /az) 1s given by the Hesse cubic

po(zd + 23 + 23) ~ 3oz 12, = 0

which is known as Shioda’s elliptic modular surface of level three. We note that

SQ1,z/32) ~ P(Z[(3,1/3) o, p11])-
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