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ABsTRAcT. We ÅëormpaÅëtify Åëanonically the moduli sÅëheme of abelian schemes over
Z[ÅqN, 11N] by introducing the noncommutative level structures. Any degenerate
abelian scheme on the boundary of the compactification is one of our models -
projectively stable quasi-abelian schemes. A degenerate abelian scheme is asymp-
totically Kempf-stable if and only if it is a projectively $table quasi-abelian scheme.

e. INTRObgCTION.

  This is a continuation of the previous report Stability of degenerate abelian vart'eties

in the proceedings of Kinosaki symposium 1996.
  The purpose of the present article is to report on a reeent progress in the problem
of arithmetic compactification of the moduli of abelian varieties.

  We introduce the notion of projectively stable quasi-abelian schemes and prove
Kempf-stability of their Hilbert points (Theorem O.2). We also prove existence of the
projective reduced-fine-moduli $cheme of projectively stable quasi-abelian schemes
(Theorem e.4) over ZIÅqN,1/N] where ÅqN i$ a pr!!nitive N-th root of uRity. This is a

natural geemetric compactracatioR ef a modu}i sckeme eÅí abeliaR varieties. See also
[A}exeev96] fe! the principally pe}aTlsed (tgfically) $ta})le quasi-abeliaR varieeies.

  If we are glxgeR Faltings-Chai's degelleratioB data {FC9e] there are two canoRical
choices of fiat projective degenerating families of abelian varieties (P,L) and (Q,L)
where ((?,L) is the most rmaive choice and (P,L) is the norrnalisation of (Q,L) after
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IKU NAKAMURA

some base ckange. The fo1}owingis the stab}e reduction theerem of abelian varietles
proved in [AN96].

Theorem O.1. Let R be a eomplete discrete valuation m"ng with the fractien field
k(s) ang (G.,Ln) be g pegart'seg a5ekan vgriety ever k(n). Then a#er a suita5ie
flnite ramified cover Spec R' . Spec R it can be completed to a flat projective scheme
(P,Åí) (or (([?,L)? over R' with a relatively ample invertible sheafC extending ",.

  We Åëa}k5e clesed fibre (Pe,Åíe) (resp. ({?e,Åíe)) a torica}}y stab}e qiiasi-a5ell&R
variety (abbr. SQAV) respectively a projectively stable quasi-abeliaxx scheme (abbr.
PSQAS). We note (Po,Lo) or (qo,Lo) if the dimension is less than five. (Po,Lo) is
always reduced, while (Qe,Lo) can be nonreduced if the dimension is greater than
fcur. ((?g,Åíe) determige$ (Pe,Åíe) ttniguely but tke cegverse ls gRkmowR.
  By applying [Kempf78, Corollary 5.1] we will prove

Theorem O.2. Let (Qo,Åío) be a projectively stable guasi-abelian scheme over an
glge5raieally closed Seld k. Snppese the character2'stic of k ang N := degCe!(g!)
are copme'me. If r(e,Åí) & k is very ampie, then the n-th normaiised Hiibert point of
(Qo,Co) has a closed SL(N, k)-orbit, i and it is Mumford-semistable for any large n.

  It seefns that we caRRot expect any similaT theorem for (Po,Åíe) except Mttmford-
semi$tability. The fol}owing is all &xxalogue of IGieseker82] and [Mumford77].

Theorem O.3. Let k be an algebraically closed fiegd and K a finite abelian group of
erder N 2eith emi.(K) ) 3 2 such that the charactetistic ef k and N are cepsime.
Suppose that a k-scheme (Z,L) is smoothable into an abelian variety (A,M) with
kerA(M) tÅrt K$KV where KV :== Homz(K,G.). Then the following are eguivalent.

  (1) (Z,L) is a projectiveiy $table gua$i-abelian scheme
  (2) Aut(Z,L) eontains a subgroup ofSLÅ}(N, k) weight-one isomorphic to G(K)3
   (3) the n-th ,Nrilbert point of (Z, L) is Kernpf-stable for any large n

where G(K) is a central extension of K O KV by the cyclic group paN of all the N-th
reets ef unity.

  The group G(K) is noncommutative of order N3, which is a natural substitute for
the classical (in general infinite) Heisenberg group of abelian varieties. The group al-
gebra klKV] of the dual gfoup K" over k ls &R irreducible G(K)-module ef weigkt oRe.
The k-module r(e,L) Xk is isomorphic to k[K"] as a G(K)-module. If e,.in(K) ) 3,
any PSQAS (Oo,Lo) over k is embedded into the projective space P(k[KV]) (Theo-
rem 5.3). Hence any PSQAS (Qe,Åío) over k has a linearlised actioxx of G(K). Thus

!We call it Kernpf-stable. See Section 7 for normalised fiilbert points.
2ernin(K) = ei if K 2t ef•.iZleiZ, eilei+i-

3SLde(N,k) = {g E GL(N,k);detg = L 1}. See 6.3 for weight-one isomorphisms.

210

2



STABILITY

we are led to the notion of level G(K)-structures on PSQAS's generalising the clas-
sical notion of level structures on abelian varieties to formulate the moduli problem

for PSQAS's.

Theorem g.4. Let K 5e g fcnite a5eiian group ef erder N with ewh(K) ) 3. The
funetor ofg-dimensional projectiveiy stabie gtta$i-abelian schemes with level G(K)-
strttcture is reductively-represented by a proj'ective scheme S(2,,K over Z[ÅqN, 1/,IV].

  We prove Theorem O.4 with the help of Theorem O.3 and Schur's lemma for irre-
ducible G(K)-modules of weight one.
  Ixx SectieR l we discuss Hes$e Åëub!cs as aR examp}e of projectively stable quasi-
abeiian schemes with rigid structures. We wM show our main idea for the proof of
Theorem O.3 in this particular case in detail. In the rest of the article we discuss the

general case without proofs.

Acknowledgment. We would like to thank T. Kajiwara for constant discussions
akd adviees,

1. AN EXAMPLE-HESSE CUBICS

1.2. Let us stari wkh Hes$e cubics to !}lustrate our theoyy. For simplicity we ceRsider
an algebraica}ly c}o$ed field k of characteristic pt 3 and C3 a primitive cube root of

1. Let K = KV me Z13Z and H(K) := Ke KV and Let V[K] be the group algebra
of KV over Z[C3,1/3], that is, the algebra generated by v(P) (B E KV) subject
to the group relation. Let G(K) be a central extension of H(K) ;= KO KV by
#3 :ww {c E k; c3 = 1}

                      l -, ps3 -,F G(K) . H(K) -g
whose group law of G(K) is defined by

(1) (a, z, a) • (b, w, B) = (abfi(z),x+ w,a+ B)

(2) (a,bG pa3, i,wE K, a,PE KV)
  TheB G(K) operates gpoR Y(K) by

(3) U(K) (a, x, a)(v(6))=afi (x)v(P+a)
  In other words, for P= O,1,2

(4) U(K)(l,e,1)(v(5))=v(6+1)=a'(v(B))
(5) U(K)(l,l,e)(v(5))-Åqfiv(B)
(6) U(K)(a,O, O)(v(fi)) == av(fi)
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  ilet R := k[[s]], f = sR the maximal ideal of R, k(") := k((s)) the fraction fieid of

R. Let S := Spec R, O the closed point of S, and ny the generic point of S.
  A Hesse cubic we consider first is a subscheme Z of Ph Å~ Pft defined by

                      s2(x3g + x? + xi) - 3xoxix2 = g

where we have chosen s2 ln erder to make theta series expressioll s!mpler.

  The closed fibre Zo is a 3-gon, in other words, a union of 3 liues with 3 nodes,
while the generic fibre Z, is a smooth elliptic curve with a natural very ample sheaf
Åín :me Ozn(1)•

  The elliptic curve Z, has 9 sections = 3Zn (all 3-torsion points)

          ee : (xe,xi,x2) = (e,1,-1), ei := (-i,e, l), e2 := (i,-1,g)

          e3:ur (O,1,-C), e4::(---4,O,1), es :nm (1,-Åq,O)

          e6 :r (O,1,-Åq2), e7 :ww (-Åq2,O,1), es := (1,-C2,O)

  Let Ci : xi = O be a}ine aRd let G := EXCiUC2. 'Then G is a semi-abeliaR scheme
with G. tt Z, and Ge or G. a splk torus.
  Let K := {eo,e3,e6} 2ti Z/3Z and KV := {ee,ei,e2} cr Z/3Z. Let A(Åí,) : G, --,
Gg f: G, (G; :=: PicO(G,) the dual abelian scheme of G") be a polarisation morphisrn.

Since A(,C,) is the multiplication by 3, we have

                    K(Ln)::ker A(Åín) = 3Zn :K G) KV

  Let G(Åí,) be a central exteRsioxx

                     1 ' pa3,n ww, G(Ln) ' K(Åín) - O

  We call G(L,) the finite Heisenberg group of (Z,,L,). We see K(L,) tt K e KV,
G(L,) )t G(K) as 6tale group schemes over k(n) (hence essentially as discrete groups).

  The R-free module r(G,Åí) kas a basis x6 (S G K" = {g,l,2}). There is a G(K)-
i$emorphism ip" of V(K) Q R and r(G,L) defined by Åë"(v(S)) : xfi through the
isornorphism G(C,) bl G(K).
  A remarkable fact is that r(G,,L,) is by Mumiord an irreducible G(L,)-module,
unique up to equivalence, such that the center pa3,n acts as scalar multiplication. This
implies by Schur's }emma that if we fix the matrix ferm of the action U(K) of G(Ln),
thell tbe basis of r(G,,L,) }$ uRiqxely determinee up te cekstant mult!ple, in other
words, if we let yp be aRother basis of T(G,,L,) with the same form of U(K) as xG,
then yp = cxp for some c E K.

l.2• Now we extend the above action ef G(Åí,) to that over S. 'lrhis is doRe in fact
in an obvious manfter IB tkis case. Hewever in erder to sugge$t the ceRstructlexa iR
the general case we proceed as follows.
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                               STABILITY

  Let a : (xo,xi,x2) - (x2, xo,xi) be a transformation of P2. We see e3e•+k == ak(e3e-)

for k= O,1,2. Let
                           Gn := UBEKvaP(G)

and Kg(L,) (resp. Ks(L,)) the closure (to be precise, the flat closure) of Ks(L,) in

GU (resp. G). Let Gk(L,) (resp. Gs(L,)) be the central extension of Kg(L,) (resp.

Ks(Ln)) by p3,s := {a E G.,s;a3 = 1}

                    1 . ps3,s . GS(Ln) - Kg(L,) . O

                    1 - pa3,s ' Gs(Ln) ' Ks(Ln) -' O

It is easy to see

                 G: = ZN Sing(Zo)

            Sing(Zo) =: (1,O, O) U (O,1, O) U (O, O, 1)

             Kg(L,) = {ei;O S i -Åq 8} c! (Z13Z)92

             Ks(Ln) = {eo, e3, e6} U {ei,,;i l O, 3, 6} f)t (Z13Z)s

         Kg(L,) n Zo = {ei;o s i s 8} Q (R/I) .t (z13z)e2 = g points

         Ks(Ln) n Zo = {eo, e3, e6} X (R/I) tt Z13Z = 3 points

  The theory of Mumford and Moret-Bailly says that

Lemma 1.3. r(G,L) = r(Z,L) = Rxo+Rxi+Rx2 is an irreducible Gk(L,)-module
of weight one (= center acting as scalar multiplication? in the sense that any proper
G2(L,)-submodule r(G,L) is of the form Jr(G,L) for an ideal J ofR.

  The action of Gk(L,) are the same as U(K) of G(L,).

1.4. By the theory in SGA III we see that the formal completion Gf., is a formal
split torus

                           Gfor bt Gm Å~ Spf R

over Spf R because Go is a split torus G.. We note then that Lf., is trivial on the
split torus because any invertible sheaf on the split torus is trivial. Hence we see

                   xB E r(G, )C) C r(Gf.,,Lf.,) = fi RzvX

                                             xEZ
where w is the coordinate such that G. bt Spec k[wX; x E Z]. By using the represen-
tation theory of Gs(L,) (not of Gk(L,)) Faltings-Chai constructed a degeneration

data (an algebraic analogue of coeficients of theta series). This means that (after
some normalisations of various parameters) on the formal completion Gf.. the coordi-
nate xp can be expressed as theta series with a suitable parameter t = s•(a unit in R)
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               xp = ep(t,w) = 2 t(3m+e)2tv3m+B (6 =o,1,2)

                            mEZ
With the notation in g2 Faltings-Chai's degeneration data are given by

(7) a(x)=tX2, b(x,y)=t2xy
  In particular a(x+y) = a(x)a(y)b(x,y) E k(n). The parameters s and t are related
by s2 = A(t) = t2 • (a unit inR) via the theta relation

                      A(t)(e,3 + e? + e;) - 3eoeie, = o

1.5. Starting from the degeneration data (7), we can construct two kinds of model
families (P, L) and ((?,L). ((?,L) is the algebraisation of the formal quotient

                        (ijfor,O(1)for)/{Sy;Y E 3Z}

where

                   O = Proj .i2, ii := R[a(x)zvXe,x E Z]

                   S,(a(x)wXe) = a(x + y)wX+Ye (y E 3Z)

  Let .i5 be the normalisation of a, L'"f.. the pull back of O(1) to ,P and (P,L) the

algebraisation of the formal quotient of (.i5f.,, LA'f.,)/{S,; y E 3Z}. Hence (P, L) is the

normalisation of (e,L). In this case (P,L) c (e,L). In dimension 2 5, P and q
can be different.

Definition 1.6. (Q,L) (resp. the closed fibre ((?o,Lo) of ((?,L)) is called a projec-
tively stable quasi abelian scheme over S (resp. over k). For brevity we call each a
PSQAS over S or k.

  ln order to explain our idea of the proof of Theorem O.3 let us define;

Definition 1.7. Let G(K) := U(K)G(K) and G(Z,L) = Gg(L,). The sextuplet
(Z,L, G(Z,L), V, ip,p) is called a cubic curve over S with a rigid G(K)-structure if

   (i) ip : Z -. P(V(K) Q R) fy P2s is a closed S-immersion
  (ii) V == r(Z, L) = ip*(V(K) X R)
  (iii) p is an isomorphism of G(K)s onto G(Z,L) given by

                  p(g) - G(ip')U(K)(g) := (ip') • U(K)(g) • (ip*)-i

  We denote the sextuplet (Z, ,C,G(Z,L),V, ip,p) by (Z, ip,p)RiG. We call also the
ciosed fibre (Zo, ipo, ipo)RiG X k a cubic curve over k with a rigid G(K)-structure.
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We note

Lemma 1.8. A cubic curve (Z, ip7P)RiG
isomorphic to a Hesse cubic

                     pao(xg + x? + x;)

(ntth a m'gid G(K)-structure? over S is S-

-  3ptlxoxl x2 = O

for some [pto, va] E P}.

Proof. The space S3(V(K)V) of all cubic polynomials is 10 dimensional, which is
decomposed into 8 one-dimensional G(K)-modules V(xk) (k = 1,••• ,8) and 1 two-
dimensional G(K)-module V(xo) where xk ranges over the set of all the 9 characters of
G(K). V(xo) is spanned by xg+x?+x; and xoxix2. Hence (Z, ip,p)RiG is isomorphic
to either a Hesse cubic as above or a cubic curve Ck defined by fk E V(xk), where
fi = xg + C3x? + C32x; for instance. It is easy to see that Ck is also isomorphic to

a Hesse cubic by enlarging R if necessary. Let us forget these special cases because

they have no nonconstant moduli. O

1.9. Now we will give a different proof of Lemma 1.8 by the argument applicable
to the general case. Suppose we are given an arbitrary cubic curve (Z, L) such that
(Z,,L,) is a smooth cubic curve over S with kerA(L,) t! H(K)s where K = Z/3Z.
Suppose that (Z, L) has a rigid G(K)-structure (ip, pz). In other words, we are given,
first of all, the action pz of G(Z,L) cy G(K)s extending that of G(Z,,L,) : G(K),
on r(Z,,L,) = r(Z,L) X k(n). r(Z,L) is a unique irreducible G(K)s-module of
weight one by Lemma 1.3, there is a basis x(fi) (B E KV) of r(Z, ,C) such that

(8) pz(a, z, a) (x(6)) = a6(z)x(B + a) V(a, z, a) E G(K)s

  The embedding ip of (Z, L) into P(V(K) X R) is induced from the isomorphism
ip' : V(K) xR. r(Z,L). Since V(K) is generated by v(6) (B E KV), ip'(v(fl)) is
a linear combination of x(6). However the condition that (ip,pz) is a rigid G(K)-
structure means that ip' is given by x(B) = ip'(v(B)).
  Let us however suppose that we do not know the structure of (Zo,jCo). What we
are going to do is to show that (Zo,Lo) is isomorphic to the closed fibre of the flat
projective family (Q,Åí) we can construct from the degeneration data of (Z,,L,).
  Let (G,L) be a semi-abelian scheme extending (G,,L,) := (Z,,L,) over S, say a
connected N6ron model of G, by taking a finite base change of S if necessary. By
Faltings-Chai we have a degeneration data a(x) and b(x,y) so that we can construct
as before two flat projective schemes (P, L) and (Q,L) such that

   (i) Gc P,
  (ii) (Pn,Ln) .t (Gn7Ln) r! (Qn,Ln)
  (iii) P is the normalisation of O
  (iv) r(e,L) is very ample
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  (v) r(p, Åí) xr(G,Åí) or r(e,Åí)
  (vi) the actioxx of G(Z,,Åí,) tt a(K), on G, extends to (P, L) and (Q,L) as the
      action of (an analogue of) Gk(L,) 2t G(K)s so that V(Q,L) is an irreducible

      GY(Åí,) ul g(K)s-modu}e of weight oue.

  Hence again by Lemma i.3 there is a basis e(fi) (fi G KV), unique up to scalar
multiple, which are transformed under C(K)s as in (3) and (8). In fact, we have
from the construction of P and e

(9) e(fi) =Åí a(B+a)wS'a
                               exE3Z
  The action of G(Q,L) extending that of G(Z,,Åí,) is given by

(le) pQ (a, z, cM)(S(B)) =afi(z)e(B+ew)
  We can show that a rigid G(K)-structure (ip,,p,) on (q,,L,) extends to a rigid
G(K)-structure (th,pQ) on (9,Åí). This imp}ies that ip is the embedding of (e,Åí)
lnto P2, giveR by e(B) = th"(v(ff)) where v(B) G V(K) as befere.

  The embeddings ip and th induce natural morphisms Hilb(ip) and Hilb(th) from
Spec R into the Hilbert scheme HilbgÅí"),

Åqll) Hilb(di):SpecR---, Hilb;S")
(12) Hilb(th):SpecR---, Hilb:S")
whefe P(n) = 3n. Tbere exists an isemorphi$m f:(q,,Åí,) or (Zn,ÅíR) so that
f" : r(Z,,L,) . r((?,,Åí,) is an isornorphism. By the construction of (Q,Åí), f* is
G(K)-equivariani, that is, f'(p,(g)(x)) = pQ(g)f*(x) (Vx E r(Z,,,C,)). Since both
pz(g) and pQ(g) have the same matrix expression, say, B(g) with regards to the basis
x(3) axxd e(7), we see

(13) JF'B(g)=B(g)F (VgEG(K))
where F ls the matrix expression of f' with regards te x(5) and e(ry). Since B(g) =
U(K)(g) afid U(K) is afi irredllclble represektatiofi ef G(K), F is a sca}ar matrix by
Schur's lemma. It follows that f'(x(fi)) = ce(fi) for some nonzero c G k(n).
  Thus we have Hilb(ip), me Hilb(th),, or equivalently ip(Z,) = th(Q,) c PZ. It follows

ftom separatedxxess gf HilbSS") th&t Ki}b(ip) = Kilb(th).

  This implies that (Z,L) cs (Åq?,Åí). In particu}ar, (Zo,Lo) fy ((?o,Lo).

  This proves the following

Theerem 1.le. Any cubic curwe (Z,L) ever S with a rigid G(K)-$tructure is iso-
?nerphic to a projectively $ta5je guasi a5eiian scheme (e,L) which is censtructed
from the degeneration data of a smooth cubic curve (Z,,C") over k(n). In particular
(Zo,Lo) fy (Qo,Lo)•
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  The above argument works as well in arbitrary dimension a[nd it is a key to the
proof of Theorem O.3 and Theorem 0.4.

1.11. The above argument also implies that the functor of cubic curves (Z,L) with
rigid G(K) structures or with an action of G(K) on r(Z,L) as above is represented
by a projective scheme SQi,z13z. In fact, the universal subscheme (Z,L) is given by
the Hesse cubic

                     pao(xg + x? + x;) - 3ptixoxix2 = O

so that

                Sei,z13z ft Pi[c, ,i/3] : = Proj(Z[C3, 1/3] [po, "i])

TABLE 1. Stability of reduced cubic curves

curves (sing.) stability stab. gr.

smooth elliptic properly stable

3-gon Kempf-stablelnot properly stable
irred. a node semi-stablelnot Kempf-stable
a triple point unstable

finite

2-dim
Z!2Z
2-dim

1.12. Why does the above argument work? Apart from the actual proofs, the real
reason behind the argument is GIT-stability, we believe. The stability in [MFK,p.80]
of a cubic curve is the stability of the third Hilbert point of it. By Table 1, a 3-gon
is Kempf-stable, that is, by definition it has a closed SL(3, k)-orbit.

Lemma 1.13. Let (Z,L) be a cubic curve over k.

   (i) Ifr(Z,L) is an irreducible G(K)-module, then anyn-th Hilbert point of(Z,L)
      is Kempf-stable, that is, they have closed SL(3, k)-orbits
  (ii) Any smooth cubic curve or 3-gon is Kempf-stable. It is therefore Mumford-
      semistable, but the 9-gon is not Mumford-stable.

  We will see by applying [Kempf78] that Lemrna 1.13 follows from Lemma 1.3. As is
concerned about construction of fine moduli schemes, we need no stability theorems
like Lemma 1.13. However it is Theorem O.3 that led us to the formulation of the
functor S2g,K in Sections 8-10.
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                        2. DEGENERATION DATA

  The purpose of this section is to sketch the description of degenerations of abelian

varieties given by Faltings-Chai [FC90, II.4.1,5.1] and Moret-Bailly [MB85, IV-VI].
See also [AN96, Sectien 2]. We follows mainly the notatioR of [FC90].

2.1. Let R be a commplete discrete valuation ring, S : Spec R. Let K be the fraction
field of R, n the generic point of S and k = R/T the residue field.

  Suppose that we are given an abelian scheme Gn over K. Then by Grothendieck's
Stab}e reduction theorem [SGA7] (See a}so [SGA7, Exp6se I pp. 1-24]) G, can be
extegded te & semiabe}laB scheme G over R as the ceRRected NereB medel of Gn by
taking a finite extension of K if maecessary. Moreover by taking a finite extension of
K if necessary there exists an invertible sheaf " G PicO(G,) snch that L, X Jff is

symmetric, namely i"(L" X H) : Ln QH for the involution i = [-1]G, of Gn•
  Therefore we may assume from the start that L, is symmetric, arnple and rigidified
aloRg the uRit sectioR. The invert!b}e sheaf jC, a$seciates te some Cartier divisor,
which exteRd$ uniquely to a smoeth scbeme G. Therefore L, extends to G uniquely
because Go is irreducible. See [MB85, II, 1.1]. On the other hand by [Raynaud70,
p.158 XI, 1.2 and p.170 XI 1.13] "9" extends to G as an ample invertible sheaf for
some n År O if Ln is symmetric and ample. Since Åí, satisfies the condition in this
case, the extension C is ample and symmetric.

  Thus for a given aR abellak sckeme gn over K we kave & sem2abellag S-scheme
G of relative dimexxsioR g with generic fibre Gn (with a chosexx unk section), Åí a
rigidified relatively ample invertible sheaf on G. The special fibre aD is a semiabellan

scherne over k, namely an extension of an abelian scheme Ao of relative dimension
g' by a torus To of relative dimension g", g' +g" == g. We assume To to be split by
taking a fiRite ba$e change of S, in other words, by taking a finite extension of K if
itecessary aRd tke iReegT&l clesure cf R IR it aRd 5y fepeatigg the $ame ceRstructioxx
as above.

2.2, Associated to G aRd L are the formal scheme Gfo. == }imGX RII" and an
invertib}e skeaf Lf., : limÅí X Rfl". Tke scheme Gf.. fits iRtc axx exact sequekce

1 - Tfor e Gf.. "-ter Af., -o

where Af.. is a forrmal abelian scheme. By the thoory of cubical structures [Breen83]
iMB85, p.4g, Theerem l.l (ii)] there exists a unique cubical structure oR Åí (viewed
a$ a G.-terser), wkich igeuces a cublca} structure of tke $he&f ÅíÅí"r.

  Then Lf., is descended to a unique cubical ample invertible sheaf Mf., on Af.r, that
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is, Lfor = Tf'..(Mf.,) 4. Since there exists an ample sheaf on Af.,, Af., is algebraisable.

In other words by the algebraisation theorem of Grothendieck [EGA, III, 5.4.5] there
exists an abelian S-scheme A with an ample invertible sheaf M such that the formal
completion (A, vS;t) of (A,M) is (Afor,Mfor)•

  By our assumption that To is a k-split torus, Tf., is a formal S-split torus by [SGA3,
IX, Th6orbm 3.6], [FC90, 2.2]. Let X be the character group of Tf.,. Then by setting
T := Hom z(X, G.), T algebraises Tf.,.
  The sequence 1 . Tf.. . Gf.,.Af.. . O is also algebraisable because the exten-
sion class of it is given by an element of Ext(Af.,, Tf.,) 2t Ext(A,T) [FC90, p.34]. The
dual abelian scheme G; is also extended to a semiabelian S-scheme Gt by taking the
connected N6ron model 5 after taking a finite ramified cover of S if necessary. Then
similarly we see that G}., is algebraisable. Namely there exists a semiabelian scheme
at such that (Ct)f., y Gf... Thus we obtain the so called Raynaud extensions for

Gfor and G}or

                         1.T.a4A-.O
                         1- Tt - at !ts At -o

plus the homomorphisms c : X - At(R), c` : Y - A(R) decoding them. ln other
words, c E Hom(X,At(.R)) tx Ext(A,T) and c` E Hom(Y,A(R)) cy Ext(A',Tt)
describe the extension classes of semiabelian schemes a and at respectively.

2.3. Let A(L,) : Gn - G; be the polarisation morphism. Then by the universal
property of the (connected) N6ron model Gt of G; we have an extension A : G . Gt
of A(L,) . This gives rise to a formal morphism Af.. : Gf., . Gi.., which is algebraised
into a morphism X : G ---+ at because Gf., and G}., are quasi-projective [EGA, III,

5.4.1]. Since T is aMne and A` is projective, X(T) is the identity of At so that we have a

morphism AT := XIT : T . T`. Similarly we have a morphism AA := A(M) : A - 2tlt

such that AAT = (Tt)A.
  Let K(L,) be the kernel of A(L,). Let g(,C,) (the Heisenberg group) be the central
extension of K(Ln) by G.,K with the commutator form equal to the Weil pairing
eLn. See [Murnford74]. There is an exact sequence

                     1 ' Gm,K ' 9(Ln) ' K(Ln) ' O

  By [MB85, V, 2.5.5], we see that r(G,, L,) is an irreducible g(L,)-module of weight

one, unique up to isomorphism by taking a finite extension of K if necessary. The

  4This is true because Tfor is a split torus. Otherwise we need to take a symmetric invertible sheaf

Lfor X [-1]'1 for for descent.

  5We mean by the connected N6ron model the identity connected component of the N6ron mode}
(with connected closed fibre).
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9(Åí,)-module structure of r(G,,Åí,) is known by [MB85, V, 3.4] and IMumford74,
g23] regardless of the characteristic of K and rank K(L,).

2.4. The space ef theta functlons r(G,,C,) on the geReric fibre is embedded into
r(GfQr,Lf..) &R K. Since tke latter k&s tke Sorus actieR, every tketa fullctioll e E
r(Gn, Ln) can be written as a Fourier series of eigenfunctions, and this series converges

in the I-adic topology. The theorem of Faltings and Chai says that the coeflicients
of these Fourier $eries satisfy the sarne equations as in the classica! complex analytic

case.

2.5. First we consider the totally degenerate ca$e, that is the case when Ao (and
hence A) is trivial. Then Gf., =: Tf., and G = T. The invertible $heaf Lf., is trivial
on Tfor, and therefore

       T(G,,Åín) : r(G,Åí) ee k(n) 9 r(GfeT,jCfer) [i? k(9) = .Ux k(9) ' W"

Therefore, every theta function e E r(G,,L,) can be written as a formal Fourier
power series e = X.ex a.(e)zvX with o.(e) E k(n).

Theerem 2.6. [FaltiRg$-Chai9e] There exists a functien g : Y -År K' ang g 5iEnear
junctien b : Y Å~ X -ÅÄ K' with the foijowing propewhes:

   (1) b(y, z) = b(x, y) = a(y + x)a(y)"a(z)-' (Vy,z E Y)
   (2) b(y,y) El (Vy 74 O), and for every n }r O, a(y) E J" for almost allyE Y
   (3) The K-vector space r(G,,L,) is identified with the vector space of Fourier
      serz'es e that satisfy 6.ÅÄip(,)(S) = a(y)b(y,x)cr.(e).

Definition 2.7, The functions b and a can be extended respectively to X Å~ X and
X so that the previous relations between b and a are still true on X Å~ X. Then we
define the functions A : X -ÅÄ Z, B : X Å~ X . Z and b(y,x) E R", a(y) E R' by

            B(y,x) == vgi,(5(y,x)), dA(a)(x) == B(a,x) +r(x)!2

              A(x) == val,(a(x)) = B(x,x)/2 + r(x)/2

             b(y,x) = 5(y,x)sB(Y,X), a(x) .,, tt(x)s(B(x,x)+r(x))f2

for somerE Homz(X,Z). We set ae =dmodland bo= bmod l. Therefore
ae(x), l}g(x,y) E k" for aRy x,y e X. B is pesitive defiBite by Tkeorem 2.6 (2).
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3. CONSTRVCTION OF (P,1)

3.1. We continue to consider the totally degenerate case. For simplicity we identify
ip : Y . X as the inclusioR. We define

                 R: == R[a(x)wX";xE X] cal R[4.di;xE X],

                 e. : = sB(x,x)/2+r(x)!2wx, e.,, : = 4.+,le,

                Åq.,, : == sB(cr(a)'X)+'(X)12zvX (x -t- c E C(c, a))

where jii i$ tke graded algebra wkk deg(a(x)wX") ww--- i aRd deg a ww g for a E R, wkile

a G Star (c, DelB) is a maximal-dimensienal Delaunay cell with x + c E C(c, a).
  Let e :== Proj(.k), and .P the normalisation of di. We define axx action Sy on di by

   - S,'(a(x)wXO) == a(x+y)wX+Y" (yEY)
  Sy iRduces a matural actloll of jg5, wklck we deRote by tke same Sy. Let i be
Op,.j(i) oll Q and its pul} back to P.

Theorem 3.2. There exists a flat pro7'ective S-scheme (P,L) such that the formal
cempletion (Pf..,Åíf..) ef it aleng the cgeseg fc5re is iseme?\}hic te (Pf..,LNfe,)fY.

Definition 3.3. If we take a suitable finite base change, we can assume Po to be
reduced [AN96]. Then we call the closed fibre (.Po,Lo) of the fiat projective family
(.P, L) a polarised $tab}e quasi-abelian variety over k :== Rll.

Remark 3.4. The space r(G,,C#) = r(G,Ln) op .K 6 is identified with the subspace
of r(Gf.,,Lfn.,) X K eonsisting of Fourier series s x XyEy a.+.y(s)wU+"Y such that

          ff.ÅÄ.,(s) = a(y)"b(y, x)ff.(s), a.(s) G K (Vy E X, Vy E Y)

  We see that r(pu,,Åí#) =r(G,,CZ) so that Gn me Pn•
  We note that G is the semi-abelian scheme we $tarted from, while P is the projec-
tive scheme we constructed with the degeneration data of G.

  $Ge is irreducible, so that tke extensioxx of Åíe to G i$ ttnique. r(Gny,ÅígÅr me r(G,Åí")xK follows

frorn it.
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3.5. Now we choose an embedding G c P. Let Gti := U.Exly S.(G). Then Gti is a
group scheme. Let e(x) := S.(e). Then S. = T,(.) (translation of Gil by e(x)) on Gn.

  Let Kg(L,) be the flat closure of K(L,) in Gti. Then we see that Kg(L,) is finite.

Lemma3.6. We define

for any U-valued point a

a moTphism A(L,) : Gg - pi,o((?,) by

   A(Lo)(a) = T.'(Lo) X L5i

of Gg, U any k-scheme. Then K(Qo,Lo) = ker A(Lo)•

Definition 3.7. The abelian Heisenberg group scheme K(P, L) is defined to be Hs(L,).
The Heisenberg group scheme 9(P, ,C) is a central extension of K(P, L) by G.,s, and
the following is exact;

                  1 . G.,s -År g(P, L) . K(P, L) -+ O.

We note g(P, L) x K = g(G,, L,) := g(L,), K(P, L) X K = K(Gn, Ln) := K(Ln)•
  We define g(Po,Lo) := g(P, L) X k and K(Po,Lo) : = K(P, L) X k•

4. THE STRUCTURE OF ((2,,C)

4.1. We consider the totally degenerate case. From Section 3 we recall

                 R := R[a(x)tvxe;x E x] .t R[e.eix E x]

                 e. := sB(x,x)12+r(x)12wx, e.,, := e.+c/e.

                 S,* (a(x)wXe) = a(x + y)wX+YO

  Let (År := Proj i2 and LN := OQ"(1)•

  The construction of the quotient @, L) := (e, LA')/Y is quite similar to [M

See also [AN96] and Theorem 3.2.
umford72].

Theorem 4.2.
  (1) Let ((lio,io) be the closed fibre of(e,LA"). Then ao is a scheme locally offinite

     type with infinitely many irreducible components. The restriction of io to any
     irreducible component of Oo is verst ample.
  (2) (ao, io)/Y is a projective scheme over k.
  (3) (Qfor, ifor)/Y is a flat projective formal S-scheme.
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(4) There exists a flat projective S-scheme (Q,L) such that the formal completion
    ((2f..,Lf.,) of it along the closed fibre is isomorphic to (Of..,L'Vf..)IY.

(5) (P,L) is the normalisation of((?,L) (by a suitable base change?.

By Remark 3.4 and a similar consideration (P,,Ln) fy (en,Ln) 2t (Gn,Ln)•

Definition 4.3. We call the closed fibre ((?o, Lo) of (O,L) a pro1'ectively stable guasi-

abelian scheme over k := RII.

Definition 4.4. We define K(Q,L) := K(P,L) and 9(Q,L) := g(P,L). Simi1arly
we set K@o,Lo) := K(Po,Lo) and g(Qo,Lo) := g(Po,Lo).
  The abelian Heisenberg group scheme K(Qo,Lo) of (Qo,Lo) operates upon eo
while the Heisenberg group scheme 9((?o,Lo) of (eo,Lo) operates upon ((?o,Lo) so
that upon HO(e,L) X k, which is an irreducible 9(Qo,Lo)-module of weight one by
Lemma 4.5. We also note

Lemma 4.5.
  (1) r(P, L) = r((?,L) == r(G,L).
  (2) r((2,L) is an irreducible g((?,L)-module of weight one
  (3) if k is algebraically closed, then r((?o,Lo) is an irreducible 9(Qo,Lo)-module

      of weight one.

                      5. PROJECTIVE EMBEDDINGS

  We consider only the case where L is a separable polarisation, that is, d :=
degL/(g!) is prime to the characteristic of k := R/I. With the notation in Sec-
tion 2 suppose that d := deg L,1(g!) is a separable polarisation of Gn. Then by the
discussion in g2 dt := rank K(L,)M and d. = rank K(M) are prime to the charac-
teristic of k. In particular, M is also a separable polarisation of the abelian scheme
A, the abelian part of the Raynaud sequence of G.

Definition 5.1. Let K be a totally isotropic subgroup scheme of K(eo,Lo). Since
rank K is prime to the characteristic to k, K is an 6tale group scheme so that
K(Qo,Lo) or KOK", and K = eÅí•.iZ/eiZ and eilei+i. The minimal (resp. maximal)
elementary divisor e.in(K(Qo,Lo)) (resp. e,.ax(K(Qo,Lo))) is defined by

       emin(K) = emin(K(Qo,Lo)) = ei, ernax(K) = ernax(K(eo,Lo)) = eg•
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Theorem 5.2. Let A be an abelian variety over an algebraically closed field k, L an
ample invertible sheaf on A with degLlg! := (Lg)lg! prime to the charactem'stic of k
and K(L) := kerA(L). lf e,.i.(K(L)) ) 3, L is verst ample.

Theorem 5.3. Let (Qo,Lo) be a polam'sed pro1'ectively stable quasi-abelian scheme
over an algebraically closed field k, and K(Qo,Lo) the abelian Heisenberg group. If
emin(K(eo,Lo)) 2 3, then r(e,L) X k is very ample, a fortiori Lo is very ample.

  The proof of Theorem is basically the same as in dim S 4. We omit the details.
See [Nakamura97].

Definition 5.4. Let k = RII, I maximal. Let (Oo, Lo) be a projective stable quasi-
abelian k-scheme. We call a k-submodule V of r(Qo,Lo) a Delaunay k-submodule
if V = r(Q,L) X k. We note that r(O,L) Xk is generated by a sum of monomials
e. with r(Ao,M.) coeMcients (a E Del(O)(Qo,Lo)), and it is the unique irreducible

9(Qo,Lo)-submodule of r(Qo,Lo) with the property. We note that it is also a very
ample k-submodule of r(eo, Lo). By Theorem 4.5 we recall r@, L)Xk == r(P, L)Qk.

                        6. G(K) AND V(K)
Let Åq := ÅqN be a primitive N-th root of unity and ON := Z[Åq,1/IV]. 7

Definition 6.1. Let K be a constant finite abelian group eN-scheme of rank N with
emi.(K) ) 3. Let KV := Homo.(K, G.,o.) be the Cartier dual of K. We set H :=
H(K) = KeKV and define eH : HÅ~H. G.,o. by eH(zOa,wO6) =6(z)or(w)-i
where z,w E K, a,3 E .K". We denote eH by eK when it is necessary to emphasize
dependence on K.
  Let pN := SpecON[x]/(xN - 1) be the group scheme of N-th roots of unity in
0N. We define G(K) by G(K) := {(a,z,a);a E pN,z E K,a E KV} endowed with
a group law
                  (a, z, a) • (b, w, 6) = (abfi(z),z + w, a + P)

where a,bE pN, z, u) E K and a,B G KV. It is clear that G(K) contains K as a level
subgroup scheme, that is, the image of K in H(K) is a maximally isotropic subgroup
scheme with respect to eH.
  Let V(K) be the group algebra ON[K"] of KV over ON, and an ON-basis v(x)
(x E K") of V(K). The group scheme G(K) acts upon V(K) by

                    U(K)(a, z, a)(v(x)) = ax(z)v(x + a).

7In fact, we can take C = Åqe... instead of ÅqN by a more Åëareful argument.
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where a E paN, z E K and a e KV. We define a subgroup scheme G(K) of an
algebraic group ON-scherne GL(V(K)) by

                     di(K) := {U(K)(g);g E G(K)}

Lemma 6.2. Let Spec k be a point of SpecON. Then V(K) Xk is an imeducible
G(K)-meduge ef weight one, unigue up te eguivagence.

Proof. We imitate the argument in [Mumford66]. Let V be a G(K)-k-moduie of
weight one. Let V(x) be the maximal k-submodule of V such that K operates on V(x)
by a character x E KV. There is a xo such that li(xo) yE O. Let O iE v(xo) E V(xo).
Then we set v(x) := (1,O,x-xo)•v(xo) E V(x) and define Vo to be the k-submodule
of V spanned by v(x) (Vx G K). We see

                  (a,x, cM)•v(x) == (a,O, a)•(1,z,O)•v(X)

                             = ax(z)v(x + a)

Tkis proves Ve t V(K) Qk. It follows tkat V cr (V(K)xk)dimk Vfdimk Ve. u

DefiRltlon 6.3. Let R be a complete discrete v&}uation ring over ON with k = RII
and S := SpecR. For a PSQAS ((?,L) over S, we define G((?,Åí) to be the central
extension of K(Q,L) by paN with commutator form eS, hence the following is exact

                   1 -} paN,s . G(Q, L) . K(Q,L) . O

  If (K(O,L),ek) fy (El(K)s,eK,s) for a PSQAS (ag,C) over S, then G(K)s is
weight-one isomorphic to G(Q,C), in other words (by definition), there is an iso-
morphism p : G(K)s --År G(ag,C) such that p is the identity on the centre ptN,s. Let
G(Qn,Lq) := G(e, L) op k(n), G(Åq?e, Le) := G(Q,L) X k•
  We choe$e and fix axx arbkrary weigkt-eBe isemorphism p : G(K) X k 2t G(qe, Åíc).
By Leama 6.2 there is a k-isomorphism Åë(fi)' : V(K) X k -År Y = r(q,Åí) X k suck
that
       U(p(g))(ip(p)*(w)) ww ip(p)'U(K)(g)(w) (Vg e G(K),Vw E V(K))

where U is the action of G(eo,JCo) on V. Let e(x) : : ip(p)"(v(x)) (x E KV). By
Schur's lemma ip(p)' is unique up to a scalar multiple so that there is a unique closed

immersion ip(p) of (eo,Co) into P("V(K) X k) as above for a given p. The stabiliser
group Stab(ip(p)(Qo)) in GL(V(K) X k) contains G(K) X k.
  Let ip : (?o - P(V(K) op k) be any closed k-irnmersion, rhen there is a unique
h E GL(V(K) X k) such that di = h • ip(p). Then Stab(di(Oo)) contains hG(K)h-i.
  Let Z = ip((2o) and L :me OpÅqv(K)xk)(1)lz. Then we ean naturally identify G(Z, L) =

hG(K)h-i.
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7. KEMPF-STABILITY

7.1• Let ((2o,Lo) be a projectively stable quasi-abelian scheme over k. Suppose that
VO := T(Q,L) Xk is very ample. Hence (eo,Lo) is a closed subscheme of the
projective space (P,Op(1)) where P = P(VO). Let I be the ideal of Op defining
(Qo,Lo). Then by Serre vanishing theorem there exists a suficiently large no such
that Hi(P,IQ Op(n)) = O for n 2 no. Hence we have an epimorphism

                      di. : snr(o, L) x k . r((?o, Lg)

The epimorphism ip. determines a point of the Grassmannian variety. Let n(g) :=
ng deg(Lo). By taking the Plticker coordinates we obtain a point "Xg)ip. of the pro-

             n(g)
              A snr((?, Jc) x k)jective space P(

                                        n(g)                n(9)                      n(9)
                A ip. : A snr((?,L)xk. A r((?o,Lg) .t k.

         n(g)
          A ip. the n-th normalised HiZbert point of ((?o,Lo), which we denote by  We call
hilb.((?o,Lo). If r((?o,Lo) = r((?,L)Xk, for instance if (?o = Po, then hilb.((?o, Lo)
is just the n-th Hilbert point of (Oo, Lo) in the usual sense.
  We say that hilb.((?o,Lo) is Kempf-stable if it has a closed SLÅ}(VO)-orbit.

  By Lemma 6.2 the following is a corollary to [Kempf78, Corollary 5.1].

Theorem 7.2. Let (eo,Lo) be a polarised proj'ectively stable guasi-abelian scheme
over an algebraically closed jield k. Suppose that the characteristic of k and deg Lo :=

(Lg,)/g! are coprime. Ifr(Q,L)Xk is very ample, then hilb.(Qo,Lo) is Kempf-stable
for all large n. 8 In particular it is Mumford-semistable.

Proof. Let VO := r((?,,C) X k. Let SLÅ}(VO) be a subgroup of GL(VO) consisting
of elements with determinant Å}1. We note that closedness of the orbits for the
actions of SL or SLÅ} are equivalent to each other because [SLÅ}(VO);SL(VO)] is
finite. G((?o,Lo) operates on r((4?o,Lo) keeping VO stable so that hilb.((l}o,Lo) is

G(9o,Lo)-invariant. Since VO is an irreducible G@o,Lo) (.t G(K) X k)-module
by Lemma 6.2, G((?o,Lo) is contained in no parabolic subgroup of SLÅ}(VO). By
applying [Kempf78, Corollary 5.1] to SLÅ}(VO), we see that hilb.(Qo,Lo) has a closed
SLÅ}(VO) orbit. They are semistable in the sense of Murnford by [Seshadri77, p. 252,

Proposition6(1)]. O

  8Theorem 7.2 seems to be true without the assumption on degLo.
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  The (normalised) Hilbert points of ((?o, Lo) are not necessarily properly stable, for

instance a 3-gon of rational curves.

8. RIGID G(K)-sTRUCTuRES

8.1. In what follows we consider only separable polarisations Ln, that is, d :=
degÅín/(g!) is prime to the characteristic of k :me RII. Then dt :== rank K(Cn)M
and d. = rank K(M) are prime to the characteristic of k. In particular, .M is also
a $eparab}e polari$ation of the abelian scheme A, the abelian part of the Raynaud
$equeRce ef G.

Definition 8.2. Let ON = Z[Åq,1/IV] and K a constant finite abelian group ON-
scheme of rank IV. Let Spec k be a (not necessarily c!osed) point of Spec ON. Suppose
emi.(K) ) 3. A triple (eg,Åíg, Ve) is caRed a g-dimensioRal K-symp}ectic p!ojective}y
stable quasl-abelian scheme over k or a K-symplectic PSQAS ever k if

  (1) (Qo, Lo) is a g-dimensional projectively stable quasi-abelian scheme over k, a
      closed fibre of some (O,Åí) im Theorem 4.2,
  (2) G(eo,Lo) op k is weight-one isomorphic to G(K) x k.
  (3) Vo X k is the theta k-module of (e",Le) op k 9

wkere k ls tke algebraic clgsure of k. See DefixxkieR ?? resp. DefiRitiok 5.4 fer
a@o, Åío) resp. theta modules.

Lemma 8.3. Let T be an irreducible ON-scheme, 7r : (A, L) . T a polam'sed abelian
T-$cheme, 2tl` ;= Pice(A!T) and A(L) : A . At the palar2'sation merphtsm. Assume

that L, is g separa5ge pelgrisation for any geemetrt'c peint s E T. Then there exists
a finite e'tale covem'ng f : T' . T and a constant finite abelian subgroup T"-scheme
KT. of kerA(LT.) such that (kerA(LT.),(eL)T.) rast (KOKV,eK)T. zvhere eL is the
VVeil pairz'ng on kerA(L).

Proof. We have an exact sequence of group schemes

                      O - ker A(L) - A ""L) At .-. o.

  By the assumption A(L), = A(L,) is 6tale for any geometric point s of T so that
A(L) is 6tale. Therefore kerA(L) is 6tale and finite over T. Let T' be one of the

9iÅí tke feliowiRg conjeeture for N me Ms athrmatiye}y solved, this datum is removed
Conjecture: Hg@o,Lg) = O for g,N År O.
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irreducible components of ker A(L) with T' ?e T. Then kerA(L)Tt has a new section
over T'. By repeating the same argument we see that there exists an irreducible
ON-scheme T' 6tale and finite over T such that kerA(LT*)= kerA(L)T. is a con-
stant finite group scheme. The Weil pairing (eL)Ti is a symplectic bilinear form

on kerA(LT.) with values in paN, which is therefore constant on T'. Hence there
exists a totally isotropic constant subgroup T'-scheme KT. of ker A(L)T* such that
(kerA(LT*),eB.) cy (KOKV,eK)T.. This proves Lemma. D

Lemma 8.4. Let T be an irredueible ON-scheme, T : (A, L) . T a polarised abelian
T-scheme. Suppose that there exists a constant finite abelian subgroup T-scheme KT
ofkerA(L) such that (kerA(L),eL) ry (KOKV,eK)T. Then there exists an invertible
OT-module M with trivial G!(K)T-action such that T.(L) fy M Xo. V(K).

Proof. Let G(A,L) be the central extension of kerA(L) with commutator form eL.
By the assumption there exists a weight one isomorphism p : G(K)T - G(A, L) of
group T-schemes.
  Let s be a closed point of T, U an afine open subset of T with s E U. It follows that

through p T.(L) is a G(K)T-module of weight one with the centre of G(K)T acting
upon T.(L) by scalar multiplication. By Lemma 6.2 T.(L) X k(s) ft V(K) Qo. k(s)
as G(K)T Åq2b k(s)-modules for any closed point s E T. Therefore the action of an
abelian group KT(T) on r.(L) is diagonalised locally because any eigenvalue of the
action of KT(T) belongs to OT. This implies that there exists an open afine covering

{Ui} of T such that T.(L) c2bo. Ou, cy Ou, Xo. V(K) as G(K)u,-modules. Let
U(K)i = lo., X U(K) be the action of G(K)u, on Ou, Xo. V(K). It follows that
there is a one-cocycle ejk E Hi({U,•k}, GL(OT Xo. V(K))) such that

               U(K)j(g)ejk=ejkU(K)k(g) (VgEG(K)T(T))

on Ujk := U,• n Uk. Hence U(K)(g)ejk = ejkU(K)(g). Therefore eik is a scalar
matrix by Schur's lemma, so that ejk E Hi({Ujk},O}), which defines an invertible

OT-module M. This proves Lemma. u

Corollary 8.5. Let anything be as in Lemrna 8.4. Then there exist a closed T-
immersion ip : A - P(V(K) Qo. OT), a weight-one isomorphism p : G(K)T .
G(A,L) and an invertible OT-module M such that

  (1) L = ip*(Op(v(K))(1) Xo. OT),
  (2) r.(L) == ip*(M Xo. V(K)),
   (3) pX k = G(ip') • (U(K) Q k) for any geometric point Spec k ofT
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where G(ip')(g) := ip'g(ip')-i forg E G(K) :== U(K)G(K) and T(Op(v(K))(1)) is
identified with V(K).

Definition 8.6. Let Spec k be a point of Spec ON, (Z, L, V) a K-symplectic PSQAS
over k. A rigid G(K)-structure (ip,p) on (Z,L,V) is a pair of a closed k-immersion
ip : Z - P(V(K) Q k) and a weight-one isomorphism p : G(K) Qo. k - G(Z, L)
such that

  (1) L = ip*(Op(v(K)xk)(1)),
  (2) ip' : V(K) X k cy V is a k-linear isomorphism,
  (3) p : G(ip') • (U(K) Qo. k)

where G(ip')(g) = (ip')g(ip')-i for any g E G(K).

  If a K-symplectic PSQAS (Z,L,V) has a rigid G(K)-structure (ip,p), then ip =
ip(p) by the remark in 6.3. Evidently L and V are uniquely determined by ip. We
denote (Z, L, G(Z, L), V, ip,p) by (Z, ip,P)RiG•

Lemma 8.7. Let Spec k be a point of Spec ON. Any K-symplectic PA QAS (Z, L, V)
over k has a unigue m' gid G(K)-structure ip.

Proof. By definition we are given an isomorphism p : G(K) f! G(Z, L). It sufices to
choose a closed k-immersion ip(p) : Z - P(V(K) Xo. k) by ip(p)'(v(x)) = e(x) (x E
KV) with the notation in Definition 6.3. Uniqueness follows from Lemma 6.2. 0

Definition 8.8. Let (Zi, Li, G(Zi, Li), Vi, ipi, pi) be k-PSQAS's with rigid G(K)-structures
(i = 1,2). (Zi,Li,G(Zi,Li), Vi, ipi, pi) are isomorphic as k-PSQAS's with rigid G(K)-•

structures if there is a k-isomorphism f : Zi fy Z2 such that

  (1) L, == f*L2, V, = f'V2,
  (2) G(ipl) - G(f*) • G(ip5)

where G(f')(g) = f'g(f')-' for any g E G(Z2,L2)•
  In this case we write (Zi,ipi,pi)RIG f)t (Z2, ip2,p2)RiG. By (2) we have G(Zi,Li) =
G(f*)G(Z,, L,).

Lemma 8.9. Let (Zi,ipi,pi)RiG be k-PS(?AS's (i == 1,2)• Then (Zi,ipi,pi)RiG f:
(Z2, ip2, p2)RiG tlff there is a k-isomorphism f : Zi bt Z2 with ipi = ip2 • f.

229

21



IKU NAKAMURA

Proof. First we prove if part. Definition 8.8 (1) is clear from the uniqueness of theta
modules. (2) is clear.

  Next we prove only if part. By Definition 8.8 (1) and by the very-ampleness of
Vi there is an hE GL(V(K) X k) such that ipr•h = f"•ip; E Hom(V(K) X k, Vi).
Hence G(ipI)G(h) = G(f") • G(ip5). It follows from Definition 8.8 (2) that G(h) is the

identity, i.e., h •g = g• h for any g E G(K). By Schur's lemma, h is a scalar multiple
of the identity so that ipi = ip2 ' f• D

Corollary 8.10. lf emi.(K) ;) 3, then Aut ((Z, ip,p)RiG) is trt'vial.

9. THE SCHEME S(?g,K

9.1. Let K be a constant finite abelian group ON-scheme with emi.(K) ) 3 and
IV := rank o.K. Let P(n) := nglV, SN := SpecON and let Hg,K := Hilb:(") be
the Hilbert scheme parametrising all projective subschemes of P := P(V(K)) with
their Hilbert polynomial P(n), (Zg,K,L,,K) the universal subscheme over H,,K and
T : Zg,K --+ Hg,K the natural morphism. Let i : (Zg,K,Lg,K) - P(V(K)) xs. Hg,K
be the natural (given) closed immersion of the universal subscheme Zg,K over Hg,K.
We remark that H,,K and Zg,K are ON-schemes by [FGA, 221, Th6orbme 3.1]. In
this section we will define an ON-subscheme Se,,K of H,,K which ought to be the
moduli scheme. See [MFK94, Proposition 7.3. pp.132-134].
  Since emh(K) 2 3, any K-symplectic PSQAS (Qo,Lo, Vo) over k is a closed point
of H,,K by choosing any isomorphism Vo cr V(K) &o. k in view of Theorem 5.3.
  Let U be the open maximal subscheme of Hg,K such that T is smooth, which is a
ON-subscheme of Hg,K by [EGA, IV, Corollaire 6.8.7]. Suppose that a fibre of T over
a geometric point s of U is an abelian variety with kerA(L,,K,s) cr H(K) (E9o. k(s)•
Let Ui be a connected component of U containing s, and Zi := Zg,K xH,,K Ui• By
the base change U2 of Ui we may assume Z2 := Zi xu, U2 has a section e over U2.
For instance choose U2 == Zi.
  By [MFK94, Theorem 6.14] Z2 is an abelian scheme over U2 with e unit section. It
follows from Lemma 8.3 that any geometric fibre of Z2, a fortiori, of Zi is an abelian
variety with kerA(Lg,K,,) fy H(K) (2}o. k(s). Since Ui is an ON-scheme, there exists

an open ON-subscheme Ug,K of U such that any abelian variety fibre of Hg,K with
ker A(Lg,K,,) f! H(K) Xo. k(s) is isomorphic to a geometric fiber of T over Ug,K. Let
Wg,K be the closure of (Ug,K),.d in Hg,K with reduced structure.

230

22



                             STABILITY

Remark 9.2. Let T:(A,L) :=(Zg,K,L,,K) xH,,. U3 --, U3 be a polarised abelian
scheme over an irreducible component U3 of Ug,K. By Lernmas 8.3, 8.4 and Corol-
lary 8.5, there exist an ON-scheme T, a closed T-immersion ip : AT - P(V(K))T
and a weight-one isomorphisrn p : G(K)T . G(A,L) $uch that p = G(ip')U(K)T.
Hence there is an ON-rnorphism Hilb(ip) : T - Ug,K such that.

          (ip(A),O?(1)Ipm)) g k(s) = Hilb(ip)(sÅr ff U,,K(fo($))

                        fi & k(s) = G((Åë x k(s))')(U(K)T X k(s))

fer aRy geemetric point s of T.

Definition 9.3. By Rermark 9.2 (plus some argument) there exists an ON-subscheme
Ag,K of Ug,K such that

  (l) G((Zg,K, Lgx) xN,,. A,,K) X k(s) = G(K) Xo. k($) for &Ry gegmetyic peint
     s ef Ag,K aRd
  Åq2) any geometrlc fiber oÅí x over Ug,K ls lsemorphic to a geometric fiber of T over

     24g,K•

  The natural representation U(K) : G(K) . G(K) induces a weight-one isomor-
PhiSM Pg,K : G(K)A,,K nd G((Zg,K,Lg,K) xH,,. A,,K)• We also note by Remark 9.2
that for any abelian scherne (A,L) E U,,K(k) over a closed field k, there is a closed
immersion ip : A . P(V(K) X k) such that (ip(A), Op(1)ldi(A)) E Ag,K(k)•

  We define S9g,K to be the closure of Ag,K in Hg,K, i.e., the minimal (reduced)
closed OAr-subscheme of llg,K containing (Ag,K)red• Let ZgS,R := Zg,K XH,,K S(?g,K,

and }et 7;'g,K ; Zi,QK --" SQg,K be the Ratural projectioR.

']rhecrem 9.4. Sqg,K i$ a projective 0N-sttbsche?ne of Wg,K pointwise fi
such that for any geometric point Spec k of Spec ON,
  (') Ag,K(k) = ((Z,L) G Wg,K(k); (.Z,i:'.U,(IS.:,,),) 6S(ft1Åé-",b,%i,a,n.,",arietY

  (2) SQg,K(k) = ((Z• L) G Wg,K(k); t[lliliÅí'.U.(Ci,)2 2tiS(S?il7.g,`,?.A,9.0,,"er k

where i is the natural inclusien of Z into P(V(K) X k).

xed by G(K)

) /k-zsom

] /k-zsom.
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Proof By Definition 9.3 Ag,K is an ON-subscheme of VVy,K..satisfying the condition
that (Z,L) E A,,K(k) i$ an abelian variety with G(Z,L) : G(K), hence (Z,i,U(K))
is an abelian variety with a rigid G(K)-structure. Thus (1) is true. It follows that
(Z, L) is fixed by the action of G(K) so that A,,K(k) is poimtwise fixed by the induced

action of G(K) upon Hg,K. It fo11ows from it that Seg,K is an ON-subscheme of VVg,K
pointwise fixed by G(K).
  Let R be a complete discrete valuatieR rigg wkh fraction field fo(ep), # the gegeric

point of S := SpecR. Suppose tkat we are giveR agat R-subsckeme (Z,L) of
(Zg,K Xg,,K Seg,K) XoN R $uch that (Z,, L,) is a polarised abe}ian scheme (posslb}y
with no unit section). Let i be the inc}usionimmersion of (Z, L) into P(V(K) X R),
The subgroup scheme G(K)s of SLÅ}(V(K) X R) stabilises (Z,L). By choosing a
suitable ramified cover of S if necessary we may assume by Theorem O.1 and Defi-
nition ?? that we have a projective flat family (VV, M) with a rigid G(K)-structure
(ip, p) over S such that (W,, M,) cx (Z,, L,) and the closed fibre (Wo, Mo) is a PSQAS.

Since we start from the given (Z, L) in order to construct (VV, M), we may assume
that (Zn,in,U(K),)RIG fnd (Wn,ipn,p,)RiG. In fact, the rigid structure (W, ip,p)RiG
was constructed by extexxding (Wn, ip,,p,)RiG. This part i$ Åëlear from Sections 2-4,
Paragraph 3.5 and Definkien ??. HeRce there is by Lemma 8.9 a k(n)-isomorphism
f : Z, - W, such t5at i, me di, •f, tkat l$, i,(Z,) = g5,(W,). Since i aRd Åë are clesed

S-immersleRs respectively, they induce Ratur&l merphisms ffilb(i) aRd Klb(e) from
Spec R into Se,,K by the uxxiversal pToperty of Hg,x. It follows from i, = ip, • f that
we have Hilb(i,) = Hilb(ip,) : Spec fo(n) . S{?,,K. Since SQ,,K is projective (sepa-
rated), we have Hilb(i) : Nilb(ip) [EGA, II, 7.2.3]. This implies that i(Z) = ip(VV), a

fortiori, io(Zo) = ipo(VVo). Hence Zo c! VVo, (Zo,io,U(K)) is a k-PSQAS with a rigid
G(K)-structure by the uniqueness of G(Zo, Lo), which follows from Lemma 3.6. This
proves (2). O

Definkien 9.5. New we defue tke relative n-th Hi}bert point hil5.. Let x : Zg,K --År
Hg,x be the Ratura} morpkisra, aRd let

                Y:`= ON,x XoN V(K), }2n := r*(Oz,,K(n))•

We note that V. is locally free of rank n(g) :== ngN for sufficiently large n 2 no. Let

ipn : SnV . V. be the natural epimorphism for n ) no. Thus we have a morphism
hilb. :== "Xg)ip. of H,,K into the projective space Pi.g, : : P(nXg)S"V(K)). For any

large n År- no hilb. is a closed ON-immersion of Hg,K. For a geometric fibre (Z, L) of
rr we call hilb.(Z, L) the n-th llilbert point of (Z, L).
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Theorem 9.6. Let Speck be a yeometric point of Spec ON and (Z, L) E Hg,K(k).
Suppose e.i.(K) k 3 and that (Z,L) is smoothable into an abelian variety (A,M)
with ker A(M) crt .lil(K) X k. Then the following are eguivalent.

(2) (Z,L) is a K-sympggctic RSeAS ever k,
(2) AutÅqZ,L) centains a su5group of SLÅ}(Y(K) Q k) weight-one isomeTphic te
   G(K) X k,
(3) hilb.(Z, L) iO is Kempf-stable for any large n 2 no.

Proef. (2) fol}ows from (l) by DefiRltiek 6.3. (3) follews from (2) by IKempf?"8,
Corollary 5.l]. It remains to prove that (3) implies (l). We choose aBd fixalarge
n, Suppose (3) and that (Z,L) is smoothable into an abelian variety with kerA fy
K (I) KV. It follows (Z, L) E W,,K(k). By (3) hilb.(Z, L) is Mumford-semistable. By
[Seshadri77, p. 269, Remark 8] there is a categorical quotient

                Wg,x fi hilb.-i(Maacge(SemiStable))!SL(V(K))

which is a projective ON-scheme. By [Seshadri77, p. 269, Theorem 4] and the (C?, Åí)-
version of Stable reduction theorem (Theorem O.1) the closure of the SL(V(K) X k)-
orbit of (Z,L) intersects the SL(V(K) X k)-orbit of a PSQAS (VV, M). By the
assumption (3) the orbit of (Z,L) is closed. Therefore the orbit of (Z,L) is that of
(W, M), hellce (Z, L) is a PSQAS. U

10. REDUCED-FINE-MODULI

DefinltieR lg.1. Let ON := Z[Åq,l!N]. Fcr a ceRtravarlaRS f"Rctor .F ever 02Nx a
reduced ON-scheme M is said to be a reduced-fine-moduli scheme over eN of F or
we say that F is reductively-represented over ON by M if the following conditions
are satisfied;

  (a) fM(T) : 1'(T) . Homs(T, M) is a bijection for a reduced ON-scheme T
  (b) f3if(T)•F(h) = Hom(h,M)•fu(Y) feT alt ON-morphism h : T - U gf reduced
      eN-schemes T, U
   (c) if there is another reduced ON-scheme N satisfying (a) and (b), then there
      exists a unique ON-morphism th : M - Ar such that fN me Hom(th) • fu.

  It is clear that a reduced-fine-moduli scheme is unique if there exists.

20This is understood as a normalised Hilbert point.
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Definition 10.2. Let Spec k be a point of Spec ON. A level G(K)-structure (ip, p) on
a PSQAS (Z, L, V) over k is a pair of a closed k-immersion ip : Z - P(V(K) Qo. k)
and a weight-one isomorphism p : G(K) Xo. k . G(Z, L) such that

  (!) L = ip*(Op(v(K)x..k)(1)),

  (2) ip* : V(K) Qe. k f! V is a k-linear isomorphism,
  (3) p is equivalent to G(ip')U(K) in Homk....ch.(G(K) Xo. k, GL(V))•

  We denote a PSQAS (Z, L, V) with a level G(K) structure (ip,p) by (Z, ip,p)LEv•
  Two k-PSQAS's (Zi,Li,G(Zi,Li),Vi,ipi,pi) (i = 1,2) with level G(K)-structures
are isomorphic if there is a k-isomorphism f : Zi ct Z2 such that

  (1) L, = f*L,, Vi = f'V,,
  (2) p, = G(f*) • p,

where G(f')(g) = f'g(f')-i for any g E G(Z2,L2)-
  If we are given (Z, ip,p)LEv, by Lemma 6.2, there is a unique k-closed immersion
ip(p) : Z . P(V(K) Xo. k) such that G(ip(p)')U(K) = p, i.e.,

         p(g)(ip(p)'(w))=ip(p)'U(K)(g)(w) (VgEG(K),VwEV(K))

  We note that (Z, ip(p), p)RiG is a unique PSQAS with a rigid G(K)-structure such
that (Z, ip(p),p)LEv Y (Z, ip,P)LEv•

Definition 10.3. Given a noetherian ON-scheme T, (e,L, G((?,L),V, ip,p) is called
a projectively stable quasi-abelian T-scheme of relative dimension g with a level
G(K)-structure if

   (i) e is a flat proper T-scheme with a relatively ample invertible sheaf L,
  (ii) ip is a closed T-•immersion of ([? into P(V(K) Xo. OT),
  (iii) G((2,L) is a finite flat group T-scheme operating upon (Q,L)
  (iv) p : G(K)T - G(Q,L) is a weight-one isomorphism of group T-schemes
  (v) for any geometric point s of T, (Q,, ip,, p.) is a projectively stable quasi-abelian

      scheme of dimension g over k(s) with a level G(K)-structure, ii
  (vi) L = Åë'(Op(v(K))(1) Qo. OT) and V = ip'(V(K) Xe. OT)•
  We denote ((?,L,G((2,1 ),V, ip,p) by ((2, ip,p)LEv for brevity. If further any fibre
(Q,, ip,,p.) in (iv) is a PSQAS with a rigid G(K)-structure, then we call the sextu-
plet (e, L, G(Q, L), V, ip, p) a projectively stable quasi-abelian T-scheme with a rigid
G(K)-structure and we denote it by ((?, ip,p)RiG•

Definition 10.4. For T-PSQAS's (ei, ipi, pi)LEv (i = 1,2) with level G(K)-structures,
we define (([?i, ipi,pi)LEv c)t ((?2, di2,p2)LEv if there exist a T-isomorphism f : (2i -

Q2 and an OT-invertible sheaf M such that

iiThis implies G(Q,,L,) = G((?,L) & k(s) for any point s E T•
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  (1) ipl(V(K) X.. OT) =MQo. f'ip5(V(K) Xo. OT),
  (2) p, = G(f*) • p,

  For T-PSQAS's (Qi,ipi,pi)RiG (i = 1,2) with rigid G(K)--structures, we define
((?i, ipi,Pi)RiG : ((?2, {152,p2)RiG by one of the following equivalent conditions; i2

  (1) (Qi,ipi,pi)LEv t)t (Q2,ip2,P2)LEv
  (2) there is a T-isomorphism f : Qi . Q2 such that ipi = ip2 ' f,
  (3) there is a T-isomorphism f : Qi . Q2 such that
     ipl(V(K) Xo. OT) = f'ipi(V(K) Qo. OT) and G(ipI) == G(f*) • G(ip;)

  We define the functors S2g,K and S2gR,iKG as follows. For any noetherian S-scheme

T, we set

         S2g,K(T) = the set of projectively stable quasi-abelian

                    T-schemes ((?, ip,p)LEv of relative dimension g

                    with Ievel G(K)-structures modulo T-isom

S9,R,iKG(T) = the set of projectively stable quasi-abelian

           T-schemes ((?, ip,p)RiG of relative dimension g

           with rigid G(K)-structures modulo T-isom.

Theorem 10.5. Let IV = rank K. If emi.(K) 2 3, then the functorS2g,K is reduc-
tively represented by a projective scheme SQg,K over Z[CN, 11N]•

Proof. First we prove S2,,K f! S98,iKG. Suppose we are given a T-PSQAS ((?, ip, p)LEv

with a level G(K)-structure. Let {Ui = Spec Ri} be an open aMne covering and
Vui = Vi QR, Ou, for some Ri-free module Vi. We have a collection of weight-one
isomorphisms pi : G(K)u, -- G(Qu,,Lu,). By the condition (iv) and by Lemma 6.2,
by choosing a finer open covering of {Ui} if necessary, there is a collection of Ai E
GL(Vi) such that pi(g) = AiG(ip")U(K)(g)A,: ' (Vg E G(K)u,(Ui)). Let ip(p);• :=
Aiip'. Then ip(p),'• induces a closed Ui-immersion of Qu, into P(V(K) Xo. Ou,) such
that pi(g) = G(ip(p),"• )U(K)(g). On Ui n U,•, we have pi(g) = p,•(g) so that G(ip(p);• ) =

G(ip(p),'•). Hence by Schur's lemma there is a scalar eij E GL(V(K) Xs Ou,,) such
that ip(p);• = eijip(p);•.

  It follows that there is a closed T-immersion ip(p) of Q into P(V(K)) and an
invertible OT-module M :== {ei,•} E H'(Oi) such that ip(p)'(V(K)Xo. OT) = VXM
and p == G(ip(p)')U(K). Then ((2,di(p),p)RiG is a unique T-PSQAS with a rigid
C(K)-structure such that ((?,ip(p),p)LEv ft ((?, ip,p)LEv. It follows S2,,K 2t S9,R,i.G.

i2Equivalence is proved in the same manner as in Lemma 8.9.
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  It remains to prove that S9gR,iKG is reductively represented by S(?g,K. Let T be

a reduced ON-scheme. Suppose we are given a projectively stable quasi-abelian T-
scheme (Z, ip,p)RiG with a rigid G(K)-structure. Then ip : Z - P(V(K) Xe. OT) is
a closed immersion of Z so that we have a natural T-morphism Hilb(ip) : T . H,,K
which factors through Sq,,K by Theorem 9.4 (2). Moreover Z = Hilb(ip)'(Z,S,ft) =

Z,S,ft xsQ,,. T by the universal property of Z,,K. Hence the map (Z, ip,p)RiG H

Hilb(ip) is bijective. This shows S(?5,iKG(T) = Homs(T, S(2,,K). The second condition

(b) in Definition 10.1 is clear. Suppose that another M satisfies the conditions (a)
and (b) in Definition 10.1. Since there is a flat projective scheme ZgS,ft over Se,,K,

we have by the condition (a) for M a unique ON-morphism th : SQg,K - M such
I::IsHQOIi/Ei.ed"i2'S,IY2,,=i..H,,OM,5,th,).g.g9.M,O,",(T,'eS,9.g:K).foranyreducedT•Thisproves

10.6. Let V = Zxo + Zxi + Zx2. Let P := P(S3(VV)) be the projective space of
ternary cubic forms on V. Let U be an open subscheme of P consisting of curves
with at worst a unique nodal singularity. The categorical quotient of U by SL(3)
is PL, which is a coarse moduli scheme of the functor of smooth elliptic curves
and a rational curve with a node. However as we saw above, we have a different
kind of compactification SQi,(z13z), a reduced-fine-moduli scheme over Z[C3, 113] of
one-dimensional PSQAS's with level G(Z/3Z)-structures. The universal subscheme
ZiS,?z13z) is given by the Hesse cubic

                     pao(xg + x? + x;) - 3uixoxix2 = O

which is known as Shioda's elliptic modular surface of level three. We note that
SQ,,(./,,) f P(Z[C,,1/3][p,,u,l).
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