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Laplacian and the Jacobi’s inversion problem

for the simple elliptic singularity

Tkuo SATAKE

Department of Mathematics, Graduate School of Science, Osaka University

Toyonaka-city Osaka 560, Japan

§1. Introduction.

We construct ezplicitly (up to 1 unknown constant factor € C* ) the inversion mapping
of the period mapping ( for the primitive form ) for the semi-universal deformation of
the hypersurface simple elliptic singularity (El type) by using the theta functions or the
characters of an affine Lie algebra of type El(l) (1=6,7,8).

§2. Review of the theory of period mapping for the primitive form.

In §2 and §3, we review the theory of primitive forms. For the notations and definitions,
see [S]. Let Z,X,S,T 6;, be a Hamiltonian system with the primitive form in the sense
of Saito[S] obtained by the semi-universal deformation of the hypersurface simple elliptic

singularity. We remind the notations:

* : G x G—G : commutative associative Op-algebra structure ,
w: G— Derg(-logD),

V :G x G—G : flat connection ,

J : G x G—Or : non-degenerate Op-bilinear form ,

N :G—G.

For our cases, n : the dimension of the Milnor fiber = 2, 7 — 1 : the degree of the primitive

form = 0, x : the Milnor number of the E; type ( [ = 6,7,8 ) simple elliptic singularity
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= [ + 2 in the notation of [S]. The exponents for the primitive form are
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The period mapping in the usual sense (integral of the primitive form) degenerates by the
existence of the integral exponents. In fact, it maps the C*-orbit in S to 1 point. In order
to construct the reasonable period mapping (i.e. separating the different points in the
C*-orbit ), we need to add a new function as a period. This was done (Saito[S}) in the

following formulation:

M) :=Ds/ Y DsP(6,6)+ Y DsQ.(8) (s€C),
8,6'€eg seg

P(6,8') := 68 — (6% 8")6) — V& (6,8 € G),

Qu(8) = w(®)61 ~ (N ~5 = 1)8 (§ € 0),

Sol(M®) := Homp (M©®),05) (s € C).
Then the morphism: Dg— M($)—0 induces

0— Sol(M9))—0s.
The exterior derivative : d : Og —>Q}g induces
dSol(M))—0k.
For pg € S\ D, the period mapping :
P:8—E := {z € Homg(Sol(MM),,,C)|z(1s) = 1, Im z(7) > 0},

( for the definitions of P and S, see [S]) gives the isomorphism of the analytic spaces, and

is equivariant with the monodromy group action. Here the following diagram holds:

S\D c §
v p
S\D c S
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where S’TD is a monodromy covering of S\ D for the local system Sol(M™M)|g\p. We
remark that S\ (STD) is a divisor in S. 7 € Sol(M™) is a degree 0 flat coordinate given

by the classical period.

§3. Prepotential and the definition of the tensor I.

In order to study the period mapping P, we review the integrable structures on S.

Proposition 3.1. ( Saito [S] see also Matsuo[M]).
1) The following F € Og exists: vivusF = J(v1 x va,v3) for v; € G s.t. Vu; = 0 (
horizontal section ). We call F the prepotential.
2) The prepotential F satisfies the WDV'V equations.

Proposition 3.2. (Saito [5]).

1) The following :
p—1
I:0LxQ—0s: (w,u)— Z < Siw >< w(6™),w' >,
=0
gives a non-degenerate symmetric Og-bilinear form, where §;, §™ are both Op-free
basis of G s.t. J(6;,67*) = &;;, w is a morphism : w : G— Derg(—logD) introduced
in §2.

2) By the morphism dSOl(M(l))|S\D’—’Q_1g|5\D, the following is induced :
1:dSol(MW)|s\p x dSol(M™M)[s\p—Cs\p-

This gives a non-degenerate symmetric Cg\ p-bilinear form.
3) I induces the C-bilinear form I, on (dSol(M™)),,. Since the cotangent space of E

is canonically identified with (dSol(M™))),,, I, defines an Og-bilinear form:
Ig: Q% x QL —O0p.
4) By the period mapping: P : S—E, we have

P'Ig =4"1.
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Proposition 3.3. (Saito [S][S1]). The space E with the monodromy group acion and with
the tensor (2m+/—1)~2I for the singularity of type E, is identified with E, hyperbolic Weyl

group Wx, and the tensor fﬁ of the elliptic root system of type El(l’l).

§4. Laplacian and the Jacobi’s inversion problem.

In this section we take the flat coordinates #g,---,t,..1 s.t. £—0 =61. Wecall f € Og
homogeneou of degree v if Ef = vf for the Euler vector fleld E := w(6;) and denote
v = degf. We also assume that ¢; are homogeneous.

Notation. 7,; := J(g%, 2,,%—) € C, 0¥ is defined by the equations : 7n;;n’* = §* (Kro-
necker’s delta).

Proposition 4.1. Let F be a prepotential. We assume that F is homogeneous. Then

1) The tensor I on S is written as follows:

degt; + degt ; 7]
dt.. dt AR A ‘LP .7‘1___.____
Kat:, dt;) = degto Z ot, Ot, g

2) The Laplacian D on Og for the tensor I on S is written as follows:

g1 p—1
degty, ok 8Tr 0
D= (dts, dt;) ™
JX_':OI Bt.0t; 815 Z degto 8tk

~1 3
where Tr := Y471 Vim0 Mg L (dbi, dty) = 3E T 0¥ a(z a? F.

3) The twisted Laplacian D 4, on Og is written as follows: for homogeneous f € Og,

p—1 p-1
;0TT Of  degf 1 ; 0°Tr
—— 1]—
Da,(f)=D(f)+ Y 1 B Bt deadl 2 On o

2,7=0 L=

where

Da,(f) = A7 D(A,f).
A, = ( unit of Og) x AY? s.t.D(A,) =0,

A = det((I(dt,‘, dtj))i,j=0,,._,”-1 )
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A, is normalized up to constant factor by the condition D(A,) = 0, thus D 4, is well

defined.

Since the prepotential can be calculated by the results of Noumi([N]) or the results of
Verlinde-Warner ([V-W]) etc., we can calculate the Laplacian and the following: we follow

the notations of ¢; as in [K-T-S].

Proposition 4.2.

1) (Eg case ) Let ty,t5,ts be the lowest non-zero degree flat coordinates ( degree 1/3 ).
Then the other flat coordinates ty,t1,ts,t3 can be explicitly written as a polynomial
of t4,ts,ts with coefficients of the known degree 0 function and Laplacian D (resp.
Dy, ).

2) (E case ) Let tg, t7 be the lowest non-zero degree flat coordinates ( degree 1/4 ). Then
the other flat coordinates tg,t1,t2,t3,ts,t5 can be explicitly written as a polynomial
of t, t7 with coefficients of the known degree 0 function and Laplacian D (resp. Dy, ).

3) (Eg case ) Let tg be the lowest non-zero degree flat coordinates ( degree 1/6 ). Then the
other flat coordinates tg,t1,to,t3,t4,ts5,t6, 7 can be explicitly written as a polynomial

of tg with coefficients of the known degree 0 function and Laplacian D (resp. Da,).

Also the action of the Laplacian on the lowest non-zero degree flat coordinates relates
them with the theta functions or characters of an affine Lie algebras on the space E ~
H x he x C ( where H:= {z € C|Im z > 0}, b : complex Cartan subalgebra for E; type

: normalized

for E; type singularity). For the definition of ©4: theta function and Anze

A
character for the integrable irreducible highest weight module ( they are holomorphic

functions on H x he x C), see KaclK].

Proposition 4.3. By choosing the suitable primitive form and the suitable identification
of E with H x o x C ( which could be calculable ), we have
1) (Es case )

- —2Aa
ts = o770 On, = oy P 2L,
p
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- 2 Ap
ts = o PO, = op ML,
o
_ g Ang
te = cn™°@4, = en Z'A—-H),
P

where ¢ € C* Is a non-zero constant.

2) (Ey case ) By choosing the suitable primitive form, we have

A
ts = 00, = /2 Eete
Ap
— — AA +
ty = 00, = /nTPmETE
o

where ¢ € C* is a non-zero constant.

3) (Es case ) By choosing the suitable primitive form, we have

tg = C//n—loeA - C//n--Z AA0+P
) 3

p

where ¢’ € C* is a non-zero constant.

For the proof, we first use the characterization of the theta function and the character
of an affine Lie algebra respectively. Under the identificattion of the proposition 4.3. and
by, (¢ o P71)*, we have :

Wg,
( ) ceA> = kerD N {f € (S, Os)|degf = k/mi},

A:level k&

A
s c-% =kerDa, N{f € [(S,Os)|degf = k/my},
A:level k P

where m; is an integer corresponding to E, defined by mg = 3,m; = 4,mg = 6, Weg, is
a Weyl group of type E;. For k = 1 in the above, the calculation of the action of the

Laplacian on the lowest degree non-zero flat coordinates gives
(RHS) = ( known degree 0 function ) x V, (%)

where V' := the linear span of the lowest degree non-zero flat coordinates. Moreover

by using the equivalence of the period mapping under the antomorphism group action
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of the Hamiltonian system, we have the equality (%) as an irreducible module for the
automorphism group action of the Hamiltonian system. This gives the correspondence of
the flat coordinates and the theta function ( resp. the character ) up to constant factor.
These propositions enable us to express the flat coordinates by the theta functions or
character of an affine Lie algebra. Since
1) all flat coordinates are expressed by the Laplacian ( resp. the twisted Laplacian ) and
the lowest degree non-zero flat coordinates,
2) the lowest degree non-zero flat coordinates are expressed by the theta functions ( resp.
character of an affine Lie algebra ),
3) (27v/=1)72D can be identified with the Laplacian for elliptic root system ( or the
ones for affine Lie algebras ) so its action on theta functions can be calculated. Also
A, can be identified (up to constant ) with the Weyl-Kac denominator, so the action
of (2my/~1)~2 D 4, on the character or the products of the character can be calculated
by using the tensor product expansion of the representations of the irreducible highest

weight modules.
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£5. Example.

EG case : We choose the flat coordinates tg,t1,t2,t3,%4,t5,t5,t7 = t = 7 ( where
7 is a function introduced in §2 and is just the uniformizing parameter of the modulus
of the elliptic curve which appear in the compactification of the Milnor fiber ) s.t. the

semi-universal deformation of Eg singularity is given by the following equation:

1
W =— 5(1‘? + :cg + a:g) + a1 (t)(z12273) + a2(t)(taz122 + t5T123 + teT2T3)

+ a3(t)(t121 + tozs + tazs) + aa(t)(tatszy + tatsze + t5teTs)

1
+ §a5(t)(t§z1 + tg.’lig + ti.’l?;;) + aﬁ(t)(tltﬁ + tots + t3ts)

1
+ or(8)(t5 + 88 + 1) + oa(t)tatste + to,

where
al(t) =
aa(t) = (o )1/3(1 — ®)1/8,

a3(t) = (o)/3(1 - )78,

as(t) = —a?a’(1 — o®) 23,

as(t) = —ad/(1-a®) 7?3,
1,¢o"  3a%d

aﬁ(t) = _'—(_ )7

o 1-ad

2
ar(t) = —(a’)3/2(1 _ a3)-1/2’
ag(t) = _a(af)3/2(1 - a3)—1/2’

1 d

and ' means ooy dr Then these flat coordinates give the the following monodromy

group invariant holomorphic functions on the period domain E:

- A
tg =cn BOAD = 2'—%7
P
- —24A
ts =m0, = oL,
p
- —2Aa,
t6=C77 89[\5267] 2—-:{%’2}
P

206



1" 2,7 !
2 5a aa)_162 o’

-16
®A5 - 1 -— a3n ®A0®A1}

3 o [ Aniio ) o 43 2 . _y [(An+s\° @ i Arre Anis
_D 4 510 - - 4 3T0 _ 4 4 1T0
x[ A ( ) IO+ T (7, 1" "4, 4, |

t2,t3 = change of the suffix of ¢;,

6
1 oTr
to = = | D(tits + tats + tata) — > timo— | ,
0 6[(16+25+34) ; 6ti:|‘
o' ala’
ITr= 8t0 + (tltﬁ + t2ts + t3t4)(_2? — 31—_?)
Lo, 3. .3 3 o 3 o (379
+ 6(t4+t5 +t3)(2+ )(i——_a—3) / +3t4t5t6a(1 —a3) 7

We remark that RHS of the equation of #y contains only t,---,ts, so substituting the
equations above, we obtain the expression in terms of theta functions. Since the difference
of D and D4, is written by T and is obtained by the above, we obtain the expression of

to in terms of ¢1,---,%6 and D 4,, thus obtain the expression of ¢y in terms of character

and Dg,.
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