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0 Introduction

Let k be an algebraically closed field of characteristic zero. Let X be
a normal algebraic surface with a unique quotient singular point P. Let
f: X — X be a minimal resolution of X and let D = 3% ; D; be the reduced
exceptional divisor with respect to f, where the D; are irreducible compo-
nents. Then there exists uniquely an effective Q-divisor D* = Y7, a; D;
such that D* + Kx is numerically equivalent to f*(K%). Since P is a
log terminal singular point, it follows that 0 < a; < 1 for any ¢. Put
Bk (D) = D — D¥*.

Definition 0.1 The above pair (X, D) is almost minimal if, for every irre-
ducuble curve C, either (D* + Kx - C) > 0 or the intersection matrix of
C+ D is not negative definite. The singular point P is almost minimal in X
if the pair (X, D) is almost minimal.

Starting with arbitrary quotient singular points, we can construct almost
minimal quotient singular points, though the singularities might be changed
from the original ones.

In the present article, we assume that a pair (X, D) is almost minimal
and the logarithmic Kodaira dimension (X — D) = —oo. Since K% is then
not numerically effective, there exists an extremal rational curve £ on X. Let
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£ be the proper transform of £ on X. By Miyanishi-Tsunoda [7, Lemma 2.7],
one of the following two cases then takes place:

(A) The intersection matrix of £+ Bk (D) is negative semi-definite, but not
negative definite. Furthermore, (72) =0.

(B) The Picard number p(X) is equal to 1, and —K+ is ample. Namely,
(X, D) is a logarithmic del Pezzo surface of rank one with contractible
boundary (henceforce called a log del Pezzo surface of rank one, for
short) (see [10] for the definition).

In the case (A), such pairs (X, D) are completely classified easily (cf. [4,
Theorem 1.1]). In the case (B), if P is a rational double or triple singular
point, then such pairs have been classified completely (see [9] and [11]). But
for arbitrary quotient singularities, such pairs are not yet classified.

In the present article, we attempt to classify all the log del Pezzo surfaces
of rank one with unique quotient singular points.

Remark 0.2 By virtue of Keel-McKernan |3, Corollary 9.3], a log del Pezzo
surface of rank one can have at most five singular points. On the other hand,
there is no bound on the number of singularities in characteristic two.

Terminology. A (—n)-curve is a nonsingular rational curve with self inter-
section number —n. For the definition of rods, twigs and forks, we refer to
(7). A reduced effective divisor D is called an NC (resp. SNC) divisor if D
has only normal (resp. simple normal) crossings. We employ the following
notation:

p(X): Picard number of X.
F.(n > 0): Hirzebruch surface of degree n.
M, (n > 0): the minimal section of F,,.

#D: the number of all irreducible components in Supp (D).
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1 Preliminary results

Let (X, D) be the minimal resolution of a log del Pezzo surface X of rank
one with a unique singular point P. Then p(X) = #D + 1. We have the
following:

Lemma 1.1 (cf. {11, Lemma 1.1]) Let (X, D) be as above. Then we have:

(1) f*(K%) = D* + Kx and —(D¥ + Kx) is nef and big. Moreover, for
any irreducible curve F, —(D¥ + Kx - F) = 0 if and only if F is a
component of D.

(2) Any (—n)-curve with n > 2 is a component of D.
(3) X is a rational surface.

Lemma 1.2 (cf. [10, Lemma 1.4]) There is no (—1)-curve E such that, after
contracting E and consecutively (smoothly) contractible curves in E + D, the
divisor E+ D becomes an admissible rational rod or fork, where the adjective
“admissible” means that each irreducible component of the image of E + D
has self intersection number < —2.

By Lemma 1.1(1), one can find an irreducible curve C such that —(C -
D# + Kx) attains the smallest positive value.

Lemma 1.3 Suppose that |C+ D + Kx| # 0 and P is not a rational double
point. Then D is an admissible rod, i.e., P is a cyclic quotient singular point.

Proof. By [10, Lemma 2.1}, there exists a unique decomposition of D as a
sum of effective integral divisors D = D’ + D" such that:

(i) (C-D;) = (D"-D;) = (Kx - D;) =0 for any component D; of D'.
(i) C+ D"+ Kx ~0.

If D" = 0 then D = D', where I consists of (—2)-curves. This contradicts
the hypothesis. Hence, D" # 0 and D = D" because Supp (D) is connected.
By [11, Lemma 1.7(2)] D is an admissible rod. Q.E.D.

Suppose that |{C + D + Kx| # @ and D” = 0 in the proof of Lemma
1.3. Such a pair (X, D) is then completely determined. Namely, we have the
following result.
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Lemma 1.4 ( cf. [9, Lemma 3]). With the notation as above, suppose that
|C+ D+ Kx|# 0 and D" = 0. Then P is a rational double point and the
dual graph of D is one of the following Dynkin graphs:

A1, A4, Ds, Eg, A7, E;, Ds, Eg, As.

Moreover, the above (X, D) is obtained from the Hirzebruch surface Fo of
degree 2 by a sequence of blowing-ups. The configuration or the weighted
dual graph of D is given as in Appendices A, B and C.

Lemma 1.5 (cf. [10, Lemma 2.2] and [2, Proposition 3.6]). Suppose that
|C+ D+ Kx|=0. Then (X, D) is (F,, M,), where n = —(D?) > 2, or we
may assume that C is a (—1)-curve.

If |C+ D+ Kx| = 0 then the divisor C + D is an SNC-divisor, consisting
of nonsingular rational curves and the dual graph of C + D is a tree (cf. [6,
Lemma 2.1.3]). Since Supp (D) is connected, C' meets only one irreducible
component of D transversally. More precisely, the following assertion holds.

Proposition 1.6 Suppose that |C + D + Kx| = 0 and D is an admissible
rational fork. Let Dy be the unique trreducible component of D such that
(Do D — Dg) =3. Then C does not meet Dy.

Proof. Since D is a fork, C is a (—1)-curve by Lemma 1.5. Suppose that
(C- Do) = 1. Then Dq is a (—2)-curve by Lemma 1.2. Let p: X — X
be the contraction of C and let D = u(D). By an argument similar to (10,
Lemma 6.4], we know that (X, D) is a log del Pezzo surface of rank one
with non-contractible boundary (for the definition, see Miyanishi-Tsunoda
[8]). By Lemma 2.6 and Theorems 4 and 6 in [8], D consists of a fork and an
admissible rational fork which are disjoint from each other. This is however
a contradiction because Supp (D) (and hence Supp (D)) is connected.
Q.ED.

Lemma 1.7 Let ® : X — P! be a P!-fibration on a nonsingular projective
rational surface X. Suppose that there are two cross-sections Hy and Hy of
& such that (H?) < =2 fori = 1,2. Let p: X — Fn, be the contraction
of all (—1)-curves and consecutively contractible curves in singular fibers so
that (u.(Hh)?) = —m = (H?). Then

(ﬂ*(HQ):)) =m+ 2(H1 . Hg)
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Lemma 1.8 Letu: F,, — P! (n > 0) be the ruling of the Hirzebruch surface
of degree n. and let M be an m-section (m > 1) of u different from M,,. Then
(M?) > nm?.

2 Results

Let X be a log del Pezzo surfaces of rank one with a unique singular point
P and let (X, D) be the minimal resolution of X. We have the following
theorems:

Theorem 2.1 (The case of type E,) Suppose that P is a quotient singular
point of type Fg, E7 or Eg. Then the following assertions hold:

(1) If P is a rational double point, then there exists a (—1)-curve E such
that the configuration of E+ D is one of (2), (5) and (10) in Appendiz
A.

(2) If P is not a rational double point, then the configuration of C+ D with
the curve C as in the previous section is one of those except for (2),
(5) and (10) in Appendiz A.

(3) There exist a P'-fibration ® : X — P! and a component H of D such
that H is a cross-section of ® and the other components of E + D (if
P is a rational double point) or C + D (if P is not a rational double
point) are contained in a unique singular fiber of ®.

(4) All the cases listed in Appendiz A are realizable.

Theorem 2.2 (The case of type D) Suppose that P is a quotient singular
point of type D and that the weighted dual graph is given in Figure 1, where
a; > 2 fori=0,3,...,r.

D1 o) ""2
D .
DO O-—-Oi-——o— .......... ___10)
—Qg —as —ar
D2 O —2
Figure 1
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Then we have the following: -

(1) There exists a (—1)-curve E such that (E-D) = (E-Dq) = 1. The
weighted dual graph of E + D is given as in Appendiz B.

(2) There exists a P'-fibration & : X — P! such that D, is a cross-section
of & and the other components of D are contained in at most two
singular fibers of ®. In particular, the D; (0 <1 < 3) are (—2)-curves.

(3) All of the types of singularities listed in Appendiz B are realizable.

Theorem 2.3 Suppose that P is a cyclic quotient singular point. Then we
have the following:

(1) If (X, D) # (Fn, M,) then the weighted dual graph of D is given by one
of (a), (b) and (c) as in Appendiz C.

(2) If the weighted dual graph of D is one of (a) and (b) in Appendiz C, then
there exist a P!-fibration ® : X — P! and an irreducible component
H of D such that H is a cross-section of ® and the other irreducible
components of D are contained in singular fibers of ®. ® has at most
two singular fibers.

(3) If the weighted dual graph of D is one of (¢) in Appendiz C, then there
erists a P1-fibration ¥ : X — P! and two irreducible components H,
and Hy such that Hy and Hy are cross-sections of D and the other
irreducible components of D are contained in singular fibers of ¥. ¥
has exactly two singular fibers.

(4) All of the types of singularities listed in Appendiz C are realizable.

3 The proof of Theorem 2.2

In this section we give an outline of the proof of Theorem 2.2. For the
proofs of Theorems 2.1 and 2.3, see [5].

The case where P is a rational double point follows from [9, Lemma 3|.
Hence we treat the case where P is not a rational double point. Let C be an
irreducible curve on X such that —(C- D* + K) attains the smallest positive
value (cf. §1). By Lemmas 1.4 and 1.5, we may assume that C is a (—1)-curve
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and that |C + D + Kx| = 0. Then C meets D only in one component, say
Dy (0 < k <r). By Proposition 1.6, k #0, i.e., k > 1.
We consider the case k = 1 (similarly, k = 2). We then have the following:

Lemma 3.1 Suppose that kK = 1. Thenr > 4, ag = a3 = 2 and Sp :=
2(C+ Do+ D1) + D, + D; defines a P*-fibration ® : X — P! such that ®
has at most two singular fibers. The weighted dual graph of C + D is given
as in Appendex B, where E is to be read as C.

Proof. By Lemma 1.2, ap = 2. Similarly, a3 = 2. Hence Sp := 2(C + Do +
D1) + D, + Dj gives rise to a P!-fibration ® : X — P!. Since p(X) =7+ 2
we know that r > 4 and D, is a cross-section of .

Suppose that 7 > 5. Let S; be the singular fiber of ® containing D,
(5 < £ < r). Then,

pPX)=r+2>224+(#So— 1)+ {(#S5 — 1) = #51 + 5.

On the other hand, #S5; > r—3 because S; contains D, (5 < £ < r) and some
(=1)-curves. Hence #S; = r—3. In particular, Supp(S;) has a unique (~1)-
curve F; and ® has no singular fibers other than Sy and S;. Put E := C.
The weighted dual graph of £+ D is then given as in Appendix B. Q.E.D.

By Lemma 3.1, we may assume, in the subsequent arguments, that k > 3.
Since p(X) = r+2 and (C- D# + Kx) < 0, the intersection matrix of C+ D
is neither negative definite nor negative semi-definite. Hence there exist an
integer e > 0 and an effective devisor Ag such that Supp (Ag) C Supp (D)
and |eC + Ay| defines a Pl-fibration & : X — P!. Put Sp = eC + Ap and
put A = (Ag)red-

We consider the case where Supp (A) is not a linear chain. Then we have
the following:

Lemma 3.2 Suppose that Supp (A) is not a linear chain, i.e., A = Dy +
D1+ Do+ D3+ ---+ D; for some3 <t <r. The following assertions hold:

(1) i=1—1 and D, is a 2-section of ®. Furthermore, ® has no singular
fibers other than Sp.

(2) There ezists a (—1)-curve E such that (E - D) = (E- Dy) = or
(E-D) = (E-Dy) =1. Hence the weighted dual graph of E +
given as in Appendiz B.
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Proof. (1) Since p(X) = r+ 2, it follows that ¢ < r. Since C + A can
be contracted to a nonsingular rational curve with self-intersection number
zero, the multiplicity of D; in Sp is equal to 2. Hence D;4; is a 2-section
of ®. Suppose that i < r — 2. Let S; be a singular fiber of ¢ containing
Diy9,...,D,. By an argument similar to the proof of Lemma 3.1, we know
that S; contains a unique (—1)-curve F; and ¢ has no singular fibers other
than Sp and S;. The weighted dual graph of Supp (S;) is then the one
in Figure 2 in Appendix B. Since D;,» and D, are terminal components of
Supp(S1), the multiplicity of D; in S; is equal to one. Then (E;-D;4q) = 1.
Since the multiplicity of E; in S; is then equal to one, there exists another
(—=1)-curve in Supp (S1). This is a contradiction.
(2) Let f : X — F,, be a sequence of contractions of (—1)-curves in a
unique singular fiber Sp of ®. Then m = 0 or 1. Indeed, if m > 2 then the
proper transform f'(M,,) of M,, on X is a nonsingular rational curve with
(f(M,,)?) < —2 and f'(M,,) is not contained in Supp (D). This contradicts
Lemma 1.1(2).

In order to prove the assertion, we consider two cases m = 1 and m = 0
separately.

Case: m = 1. Put £ = f,(Sp). Then there exists a unique fundamental point
Q of f on £. Let E' be the proper transform of M; on X. Since fu(D,) ~
2My +af with a > 2 we have (f.(D,)?) = —4+4a > 4. Furthermore, by the
above contractions, f,(D,) remains as a nonsingular rational curve. Since

-2= (f*(Dr)z) + (f,.(D,) : KFm) = 2(Ct - 3)7

we have @ = 2 and (fu(D,) - M1) = 0. Since E' is a (—1)-curve by Lemma
1.1, it follows that (E' - D) = (E'- Dx) = 1, where k = 1 or 2.

Case: m = 0.__Iiet ¢ and @ be the same as in the case m = 1. Put D, :=
f+(D,). Since D, ~ 2Mo + af with @ > 0, we have (D, - M) = o > 0. Since
D, is a nonsingular rational curve and since

—2 = (D;-D; + Ke,) = 2(a - 2),

we have a = 1. Let £ be a fiber of the second P!-fibration on Fg = P! x P1
through @. The proper transform f'(£') of £ is then a (—1)-curve satisfying

(f'(¢)- D)= (f'(€) D) =1
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where k =1 or 2. Q.E.D.

Finally, we consider the case where Supp (A) is a linear chain. Analyzing
singular fibers of P!-fibrations and using Lemmas 1.7 and 1.8, we have the
following.

Lemma 3.3 With the notation and assumptions as above, let D; and D;,
be the terminal components of the linear chain A, where igp < i. Then the
following assertions hold:

(1) io=5andi=r.

(2) There ezists a (—1)-curve E (# C) such that (E- D) = (E-Dg) =1
where k = 1 or 2. The weighted dual graph of E + D is given as in
Appendiz B.

For the proof of Lemma 3.3, see [5, §3].

Appendix

A The case of type E,

In the following list of configurations, a solid line stands for a component
of Supp (D); the self-intersection number —2 of a (—2)-curve of D is omitted;
a line with * on it is not contained in any fiber of the vertical P!-fibration
d: X — PL

(Type Eg)
.—D2_D3 ___‘:.‘ D3
Do D1 D) iC
C D4 _;1
Dg  Dy~-3 .4...... -1 Do l
*Ds #Ds
(1) (2)
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De
C
e, ]
-3 D, N
Dy ' o
T EC Dy Dy
y _l G D3y
D3 Dax (4)
(3)
o Dz-l c
-1 1Dy T 3
..... o - .
D Dy o N -
|
- > (7)
(6)
I Dy
Dy e
L. Do
Dy
Dy +Dy
(9)
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N -
—4
Do [Dl Dax
(5)
! Dy
1. —dc
Do .
| DO
Dy
ba -3 Ds*
(8)
_D5_ D7
Ds
....... E
1 b,
Dy Do ]
-5 |
7] *Dj3
(10)



B The case of type D

% 22
D/ m
~2

2 —m

In the above list of the weighted dual graphs, m > 2 and the subgraph
denoted by the encircled A, (a > 1) is given as in the following Figure 2,
where m; > 2andm; > 1for2<i<a.
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.....

12

-2 -2 -2
1, B
(Mg +2) Ma-l —(ma+1)
O C O ..... C e, C O. .
-2 -2 -2 =2 -2
(a : even)

— El
—1~1
R N —(ma—1 + 2),_".1:/\1_....\ ~(ma +1)
[o R o U C SR, o O Oevvrs o O

-2 =2 2 -2 -2

(a : odd)

Figure 2
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C Cyclic quotient singularities

a1+az2—4

We omitt the case where (X, D) = (F,,M,). In the above list of the
weighted dual graphs, the subgraph denoted by the encircled A, (o > 1) is
given as in Figure 2, where E, is to be read as E, and the subgraphs denoted
by the encircled T (8 > 0) and T, (v > 0) are given as in the following
Figure 3, where my,m; > 3 and m;,my > 1for2<i<(,2<¢ <.

E E
To — T o o
=2 =1 =3 -1 =2
Ts(6 > 2):
™21 _(ms +2) ~mp-1+2) "0 Ei —(mg+1)
o—%. .- -0—O0—0: - O—O0—0. - O——O——OC—0
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14

T2l —(ms+d) ~mps+2) 2207 (g 1) B
o..._—_—.o ..... C O o ..... C C O ..... C C C O...
-m; —2 -2 -2 -2 -2 =2 -1 =2

—~(m2 +2) my—3
......... OO =+ 2 0 O (,6: Odd)
—2 -2 =2
To: —'31 E, T _)TEQ
C NS
-2 -2 -2 -2 -3
T‘r (v=2)
Iy o
my—3 —(1;1,2-}—2) —(7hy+1) 'ﬁ"'y—l --(m,,-l +2)
O ..... O———O—-_——-O ................ O—-—_—Q—O
-2 =2 —2 -2 -2 =2 =2 -2
~(rh3 +2)
......... PN (7y: even)
-2 —1
—1 Ey
™3 (2 +2) (A +1) 0T —(y-1+2)
O -v-- [0 DA TS SO O e O Goevnns O e - -
-2 =2 -2 -2 =2 -2 =2 —2
— (3 +2)
......... O-———:".O"--—O (’Y Odd)
-2 —1
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