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JACOBIAN RINGS OF OPEN VARIETIES
MASANOR‘I ASAKURA

Throughout whole sections, we fix n,7.s > 1 such that r +1 < n, and dj,--- ,dr, €1. -+ ,€5 > 1
positive integers. Weputd =37, _,d;,e= 22:1 €;, dmin = min{d;, e;} and m = n+r+s5—1. Moreover
for a complex vector space V' ( resp. a locally free sheaf ¥ on a variety X), V* denotes the dual vector
space of V' ( resp. V* the dual sheaf of V), and we put

/0\V=C (resp./o\Vz(_’)x), AV =0 (resp./‘(V=0) for p < 0.

§1. DEFINITION OF JACOBIAN RINGS AND MAIN THEQREMS

Let S be a polynomial ring over C generated by indeterminants Xp,--- ,X,. Denote by S’ the
elements of homogeneous polynomials of degree [. Let A be a polynomial ring over S generated by
H1:m o ey AL, co , Ag. We use multiindex ¢ = (a1,--- ,ar) € Zga, b= (b, - .,bs) € Zgé, and denote

g = 8 pde, M= A3t A% | Then for ¢ € Zso and | € Z, we write

A= &  SEmedeTiabet e
o et i, bi=g

Definition(1-1). For E = (Fy,---,F), G = (Gy,---,G,) with F; € 5%, G; € S%, we define the
Jacebian ideal J{F,G) the ideal of A generated by 3°7_, %ui + 35 g—XG—gAj, F,,Gjhj (11 <,
1< j<s,0<k<n). The quotient ring B = B(F,G) = A/J(F,G), we call the Jacobian ring of
(E,G). We denote

By(l) = Bo(INE, G) = Aq(1)/A() N J(E, G).

Let P* = Proj S a complex projective space. Thus we have a variety X defined by equations Fy,--- , F.
and subvarieties Z;(C X) defined by G, F1,--- , F. for 1 € j < 5. We also call the B(F,G) the Jacobian
rings of the pair (X,jL;Jle).

We mension three main theorems. Hereafter we assume that X is a smooth complete intersection of

codimension r, and Z = UZ; is a simple normal crossing divisor of X.
The first main theorem is concernings about the geometric meanings of Jacobian rings.

Theorem(I).
(1) There is a natural morphism

¢:Bp{d—n~1) — H " P(X, 08 (logTZ;))".
for 0 < p <n-—r. Here ¢ is an isomorphism if r+ s <norp#n—-7. fr+s>nandp=n-r,

then ¢ is injective, but not surjective, and whose cokernel is pure Hodge type (—n + 7, ~n + 7).
More explicitly, the Cokery can be descibed as follows:

Cokerg = Ker("A (er, -+ ,e,) 4 "A (er, -~ ,e,))"
where e; := dlog G;lx € H(X,Q4(logLZ;)), and A(e1,--- ,es) denotes the free wedge algebra
generated by e;, and d is defined to be the map ej, A+ Aej . — Y opoq(—L)Fes, A-or A& A

o Aeg e
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MASANORI ASAKURA
(2) There is a natural map
¥: B1(0) — H'(X,Tx(-log£Z;))

which is an isomorphism, except for X K3-surface or a curve. If X is a K3-surface or a curve of
genus > 2, ¢ is only injective. The cup-product are compatible with the ring multiplication up
to scalar:

HY(X,Tx(~1og£Z;)) @ HY(X, 0% (log £Z;)) — HITY(X, Q% (log £2;)).

Roughly speaking, the Jacobian rings describe the Hodge structures of open variety X \ UZ;, and
the cup-product with Kodaira-Spencer class coincides with the ring multiplication up to non-zero scalar.
This result was originally invented by P.Griffiths, and generalized into several directions by many peo-
ple([CGGH],[T],[K]). Our result is a further generalization.

The second is the duality theorem, which is fundamental property of Jacobian rings.

Theorem(1I1). Let r + s < n. There is an isomorphism
Bn_r(2(d-n—-1)+e)~C
ifd+e—n—1>0, and induced pairing
Byd-n-1+8®@Bn,_p(d+e-n—-1-4 —C

is non-degenerate for 0 < p<n-—rand 0<{<e.
For example, this will be used to prove Torelli theorem.
The last one was proved firstly by R.Donagi in a special case([D],[DG}).

Theorem (III). Let W C A;(0) is a base point free subspace of codimension ¢(i.e. for any z € P*(C),
the evaluation map W(C A,(0)) — ®Cpu; ® ®@CA; at z is surjective), then The Koszul complex
i J

q+1 q q-1
BP(Z) @ A W — Bp_+_1(z) ® AW — Bp_;_z(z) @ A w

is exact if one of the following conditions is satisfied.
(1) p>0,dnin(r+p)+¢—-d>g+c,d—-n-1<¢<d+e—-n—landr+s<n+2
(2 p>0,dpn(r+p)+¢—-d>g+¢,d—-n—-1<¢{<d+e—-n—-landp#En—r—1n—r.
(3) g=1,0r0,p>0and dpin(r+p)+£-d>g+c.

This theorem has the following important Corollaries.
Let

§ = &P.(H(Om(d) @ jélp,(HO(opn (€7)))
We put S the locus of §* such that (Fr,--+ Fr,Gy,--- ,Gs) € S ifand only if the subvariety
F=--=F=0 inP"
is a nonsingular complete intersection of codimension r, and

Fil=---=F,=G;=0 inP"

is its nonsingular hypersurface section for Vj. The algebraic group PGL,41(C) and Q = {c € Aut(&)}
(&) C &, (@ O(e;)) C & DO(e;)(Vj)} act on S, and there exists a quotient:

S = 5/PGLp41(C) x Q.
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JACOBIAN RINGS OF OPEN VARIETIES

Now we have X — S the family of nonsingular complete intersections, and Z; — S the family of its
nonsingular hypersurface sections defined by the equation G; with a regular embedding Z; — X. Let
U=X\uz; L 8.

Corollary(1-2)(the symmetrizer lemma for open varieties). Let S’ C S a nonsingular Zariski
closed subset of codimension ¢. Let T be any smooth covering of §/. We put Ur = U xg T and denote
H*(Up/T) = Rbf,Q‘)’(T/T(log £Z;). Then the sequence induced by the Gauss-Manin connection

. vUT

” v )
8 @ B2 (UpT) ~5 QF @ B2 Ur/T) —35 Q8 @ H**(Ur/T) (a+b=n—r1)

is exact at the middle term for one of the following cases.
() r+s<n+2,a>20and dpip(r+a) > g+c+n+1.
(2) 0<a<n—r—2,dnin(r+a)2g+c+n+landat+g<n~r.
3) g=0,1,a>0and dpin{r+a) 2g+c+n~+ 1.
Proof. When T = §’, it is well-known that the Gauss-Manin connection ¥V is induced by the cup-product
R'f.Tx/s(log ©Z;) © R® f.0% /5 (log £Z;) — R**1 £, L (log ©Z;).

Therefore by Theorem(I), it suffices to show that for B C B,(0) codimension ¢ subspace,

(1-2-1) Ballo) @ A'B — Boy1(fo) @ AB — Bora(lo) @ AB (fp=d—n—1)

is exact for a > 0. Let W := Ker(A4;(0) — B1(0)/B), J := J(F,G) N A;(0), then we have the Koszul
exact sequence

0= S = WOS™ ) = = AW = AW — AB — 0.

This complex tensored with B.(£p) induces the following diagram.

— Ba(fo) @"’L}\_lW@Si(J) —_ e N Ba(£0)®q/4ilw’ - BG(ZO) ®q/-;-\13 L0
1 ! |
= Be(lg) AW ®SH(J) — - — Bau(l) @AW  — Boy1(f) ®AB — 0
L | |
— Boall) @ A W®S(J) — -+ — Bawallo)® AW — Bara(fo) ®ANB — 0
t

1 1

where the vertical arrow is the Koszul complex tensored with S'(J). Since J annihilates B,(l), this
diagram is commutative. Therefore to show that (1-2-1) is exact, we only show that

—i=1

g-i+1_ g—i g
BQ_H(EQ) ®© N W-— Ba+i+1(fg) @ NANW — Ba+i+‘2(£0) ® N W

is exact for 0 < ¢ < ¢g. But this follows from the first half of Theorem (III).
In general, let u : 7' — S’ be a smooth covering. From the exact sequence

0 — w0l — QF — Qb5 — 0,

we have a filtration F"Q% such that its subquotient is isomorphic to u*Q§, ®Qg.7;,, We put " H**(Ur/T)
@95 == H*(Ur/T)® F Q4. Since H4Y(Ur/T) = w*H**(U/S"), and V. : H*¥(Up/T) — He~ 14+
Ur/T)©Qk is the composition of u* H**(I//S") Ty w He MU/ S @ut L, and w* HO VL (U/S) @
wQk, 28y gemL(U/S) ® O, where h : u*Q}, — QL is the pull-back of Kihler differentials.

50



MASANORI ASAKURA

Therefore we can easily check that Vi, is compatible with the above filtration and its subquotient can
be identified with

W HNU/S") @ g © Qs TP w BT HH(U/S) 0wt gt 0 9f %

Thus we can reduce to the case T = §'. O

Corollary(1-3)(the symmetrizer lemma for complete intersections). Let the notation be as in
the previous thecrem. We put X1 := X xg: T. Then

Q4 © HO2Y 2 X Tprim =% Q% © H* 7 (X1 / Tprim =% Q57 @ H**(X1/Dprim
isexact if a >0dmu(r+a)2qg+c+n+1.
Proof. We use Corollary(1-2)(1) in the case s = 1. Put Z = Z; and Zr := Z xg T. Then we have

0 0 0
1 _ ! 5 !
v v
o BN xpoe08t X Heb(Xp),eQd S HemLbY(Xp), @ Qi
1 i 1
A2 A3
s HEROSL(U) @ Q) T HeNUp) @ ol Yur He=1b+ () @ Q&
1 1 !
o WU Zp)e@ @ T HOMNZp),®0L  F He-2b+l(zp), Q!
1 ! !
0 0 0
(exact) (exact) (exact)

where H'( )g denotes the primitive part. Since the middle horizontal sequence is exact by Corollary(1-2),
it suffices to show that

- - Vo -1 o pras- v am
02 @ Ho M 2(27/T)o =5 Q371 © H*'™Y(Zr/T)o =5 Q% @ H*2*(27/T)p

is exact. Therefore by the induction on the relative dimension of Xt — T, we can assume that it is 0.
But then the assertion is clear. O
§2. GREEN’S DEFINITION OF JACOBIAN RINGS

So far, we introduced Jacobian rings in explicit forms. However, these forms are not so useful to
variuos computations. For example, we don’t know how to prove the theorem II(duality), theorem
ITI(the symmetrizer lemma) directry from the computations of polynomial algebras.

Another (and probably excellent) definition of Jacobian rings was introduced by M.Green. This one is
rather abstract, but, due to it, we can use the technique of Koszul cohomology. Thus available cohomology
theory enables us sharp computation of Jacobian rings.

2.1. Before defining Green'’s Jacobian ring of open varieties, we review the one in complete case briefly([K]
or [T]).

Let £ = & Opn(1;) be a locally free sheaf of rank t on a complex projective space P*. We assume all
i=1
the {; > 1, and 1 < ¢t < n. Let consider the projective space bundle

7 : B(€) := Proj(§' () — "

where S(£) = @® Sym"E denotes the sheaf of symmetric Opr-algebra generated by £. We denote the
#>0

tautological invertible sheaf Op(£y(1) by L. Then we have the exact sequence of differential sheaves:

(2-1-1) 0— 7" Qpn — Qiggy = ey /pm — 0
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JACOBIAN RINGS OF OPEN VARIETIES

and the Euler exact sequence
(2-1-—2) 0 e Q]II”(E)/!P" - 71'*5 ® E_l — OP(E) — 0

In particular, we have

£
(2*1*3) Ky(g) = L_t ® F*O(Z li - T — 1)
i=1
Moreover, there are following well-known formulas, which will be used to show vanishing lemma, later.
SY(€) ifir>0,1=0
(2-1-4) Rim LY ~ { det&” ® S™7HE) fr<—ti=t-1
0 otherwise
HiP™, S (E)® V) ifr>0
(2-1-3) HIP, LY @n*V) = { HI"HYP® SV HE ) @ detE™ @ V) ifr<—t
0 otherwise

where V is a holomorphic vector bundle on P™.
By (2-1-3), we have the natural isomorphism H°(P(£), £) =« HO(P™, £). Therefore the global sections of
£ and £ have one-one correspondance to each other. More explicitely, a global section (F;) € H*(P™, &) =

@ HO(P™, O(l;)) corresponds to o = 3 i, Fis € HO(P(E), L), where y; is the global section of £ ®
i=1

™ O(—1;) associated to the effective divisor P( SO(ZJ-)) — P(€) defined by the natural projection £ —

FET
® O(ly).
2.00)
Then for a section ¢ = Z:zl Fyp; € HO(P(E), L), we put
X:F1=~~-:Ft:0in]?",

¢
X:ZFiui:Oin]P’
i=1

and assume that X is a nonsingular complete intersection of codimension ¢ (, which implies that X be a
nonsingular divisor).

Now let =, = DiffS!(L, L) be the sheaf of first order differential operators of £. It is a locally free
sheaf generated by local sections ea%, 5‘%, when e is a local frame of £ and (z;) is a local coordinate of
P(£). Then we have two important exact sequence.

(2-1-6) 0— Opigy = Tz — Ty — 0

(2-1-7) 0 — Tpey(~log X) = 5.5 £~ 0

where j() is the composite of £, & £, ® £ — £, and Te(¢)(~ log X) is the dual sheaf of Qg4 (log X)
the holomorphic differential sheaf with log poles along X. The dual of (2-1-7) gives rise to the Koszul
exact sequence

+1 t
0— Q8 (log X) = L&A — - — L1 @ AT — 0,
By (2-1-6), we have ..7\_122 =2 ® Kpey, "KtE‘E = Kpz(g) and it is easy to see that this gives an acyclic
resolution of Qg( 5)(log X), because we assurmed al} the [; > 1. Therefore we have
Rt (P(€), Qf ¢y (log X)) = Coker(H(L™"P~1 @ . © Kp(gy) — HY (L™ © Kpgy))-
The right hand side, we call the Jacobian ring of X. The left hand side is isomorphic to
FP/FPHE™MYPE)\ X,C) = FP/FPH - 1(Fr\ X, C) = FPY/FP I gt X C),

where the first isomorphism follows from that P(£)\ X & P\ X is an affine space bundle. For further
argument, see [K].
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2.2. Now we define the Green’s Jacobian rings in open case. The method is almost along the complete
case.
Firstly we prepare the notations, which will be used in whole sections. Let & = & O(d;) and &, =
=1

& O(e;) the locally free sheaves on P"*. Put £ = & & £, and consider the projective space bundle
j=1

7 P(E) — P™.

Hereafter we write P(£) by P simply, and denote the tautological invertible sheaf Op£(1) by £. We fix
the global section u; {resp. A;) of L& 7 O(—d;) (resp. L@ 7" O(—¢;)) associated to the effective divisor
P(ki Odi) @ &) — P(E) (resp. P(&o @ & Olex)) — P(E) ) defined by natural projections.

al k#j

Further we fix a global section ¢ = 3 ._, Fiu; + z;zl G;A; € HY(P, L), and put

X:F = =F =0inP",
ZJFI::FTZGJZOIDPH 1S]§‘5~
P,:A\;=0inP,

kal &
Z: ZF;M + Zc:j,\j =0inP.
il =1

We assume Z is a nonsingular complete intersection of codimension r and Uj‘:l Z; is a normal crossing
divisor in Z. This assumption implies that Z is a nonsingular divisor in P.

In order to define the Jacobian ring in open case, we only need to replace £, by (- log E;zl P;),
which is defined to be a subsheaf of £, generated by local sections egaz, % (1<i<n+4+r-1), ngi—J
(1 < j <s), where e is a local frame of £ and (2;,y;) is a local coordinate of P(€) such that y; is a local
equation of ;.

Then the exact sequences (2-1-6) and (2-1-7) can be replaced by the followings:

(2-2-1) 00— Er(-log) P;) - Te(~log» P;) -0
j=1 j=1
(2-2-2) 0—Te(~log Z+ 3 By) = Sc(-log Y P W £~ 0
i=1 F=1

From now on, we write X (— log z;tl P;) by £ simply.

Definition(2-2-3). Let g and £ be integers. Then we put

$,(8) = H(L9 @ " O(¢))

Jo(0) = Image(HO(S © £971 @ 7 0(€)) "2 $,(6))
Rq(8) = 54(6)/ Jq(8)-
We call R = ®Ry(¢) the Green’s Jacobian ring of (X,J;_, Z;).
Lemma(2-2-4). Green’s Jacobian ring coincides with the one in Definition (1-1):
Ay () = S,(8), R, (8 = By(0).
a

We will have an analoguos arguement in [K}, in the next section.
Before to do this, we show the vanishing lemma.
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JACOBIAN RINGS OF OPEN VARIETIES
Proposition(2-2-5) (vanishing lemma). Let p, ¢, v, £ be integers. Then
HIP,AT* @ £¥ @ 7*O(8)) = 0

if one of the following conditions is satisfied.
(1) ¢>0,r>—-s5+1,£>0and (,£) # (0,0)
(2) g<n,rv=0£<0
B)yp-rvr+s-1rv<-1
4 p-v<g<n+r+s—1,r<-~1
(5) 0<g#n, v=20=0
6) ¢>0,p¢n+l,s+n|,r=0=0

1)*g<n+r+s-1,r<~-1, < eand (10 # (—s,€)
@) g>r+s—-Lv=-sl>e

B p~v>n+s+lLv>~s+1

4" 0<g<p-v—-s5,r>—-s5+1

O g<n+r+s—1,qg#tr+s—L,v=—s5f=c¢e

6 g<n+r+s—lpgrnr+s—1,r=-sf=e

Proof. We note that

(2-2-5-1) 0 — 7" Qpn — Qp(log TP;) — Qf /pn (log TP;) — 0
and
(2-2-5-2) Qp/pn (08 TP;) ~ (" E @ L71) @ O

In particular, we have A T* = det Qi(log TP;) = L77©7*O(d—n—1). The assertion (n) (1 <n < 6)
is equivalent to (n)* by Serre duality:

n+r+s-p
A

H‘?(XZJ' ® LY @ O(¢)* ~ HrirHs-1-¢ QLT @t Oe — £)).

Therefore we only need to show the (1),---,(6).
By (2-2-1), we have an exact sequence

(2-2-5-3) 0 — QB(log TP;) — A" — Q27 (log TP;) — 0.
Moreover by (2-2-5-1), we have a finite decreasing filtration F" of Q&(log £P;) such that
(2-2-5-4) Grip (QB(log TP;)) = 7" 0. © Qp/gn (log TP;).

Therefore in order to show (1),---,(4), it suffices to show the following claim.

Claim. If (g,p,1¢) satisfies one of the conditions (1),--- ,(4), then
HY(P, Q% 2% (log TF;) © L* ® n"Qa (0)) = 0.

forallp', p such that 0 < u<yp,andp—-1<yp <p.
By (2-2-5-2), we have
Q2 (log TP;) = ,@O[}\ﬁ‘eo ® £-1G2)

Therefore the claim follows from

(2-2-5-5) HI(P, L @ n* (0. () ® A&)) = 0
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0<u<y

, . 0<i<r

for Vi, p', 7 such that ] ,
0<isy ~u
p-1<p <p

Firstly we show (1) and (2). Since we assumed v > —s + 1, by (2-1-3), we can assume » > i. Then the
above cohomology group is isomorphic to

HIP", 57HE) ® Qb (6) © AEd).

If (g, v, £) satisfies (1), then ¥ —1 > 0 or ¢« > 0 or £ > 0, which implies the vanishing of the above one
by Bott vanishing.

If (g,1,¢) satisfies (2), then = = 0 and ¢ < n, £ < 0, which also implies the vanishing.

Next we will show (3) and (4).

If (q,p, 1, {) satisfies (3), then v ~i < v <-landw—i>v~(p ~pw)2v-p2vr—-p>-r—s+1
Therefore (2-2-5-5) holds by (2-1-5).

If (g, p, v, €) satisfies (4), then » — ¢ < » < —1. Therefore we can assume » — i < —r — s by (2-1-5).
Then the left hand side of is isomorphic to

Herst i (pr, ST (£ o L, @ REO(Z -d - e)).

But since p < p'—i < p—-i < p—~ v —1r—s by Bott vanishing, the above cohomology group vanishes if
p-v—r1—5<g—r—5+1l<n,thatis,p—-rv<g<n+r+s-~1.
This complete the proof of (2-2-5-5), and hence (1),-- - ,(4).
Finally we show (5) and (6). We assume » = £ = 0. Then by (2-2-5-3), Hq(/p\Z") = 0 if and only if
(i) H Q2 (log TP;)) iy H(QE(log TP,)) is surjective, and
(i) HI(OQE !(log £P;)) “2%" Ha+1(QE(log TP;)) is injective.
Let u; == dlog A\i11 — dlogA; € HY(IP\ UP;,Z(1)). Then we can easily see that
- Coker(H?P+972(P\ UP;) = HP*4(P\UP;) is canonically isomorphic to pf\q(ul, “++ ,Ug—1), which
is pure Hodge type (p+ q,p + q),
- Ker (HPT9=1(P\ UP;) Cal getatl(p\ UP;) is canonically isomorphic to AT © pﬂ_/\-"'l(ul,
-+ ,us—1) where w is a hyperplane class of P*, which is pure Hodge type (p+q—n—1, p+q—n-1).
Therefore (i) holds if and only if ¢ > 0 or p+ ¢ > s, and (ii) does not hold if and only if ¢ = n and

0<p+q—2n—1<s~1,orequivalently g = n and p € [n+ 1,5+ n], which complete the proof of (5)
and (6). O

§3 PrROOF OF MAIN THEOREMS

In this section, we will prove the main theorems. Due to Lemma(2-2), we may use only Green’s
Jacobian ring R (¢).

The proof of Theorem(I) and (II) are similar to the one in {K].

The proof of Theorem(III) depends essentially on the results of M.Green , and we will also use similar
techniques to prove it.

3.1. By (2-2-2), we have the Koszul exact sequence
+1 1
(3-1-1) 0— Q2(log Z+ TP;) = L& AT — - — LM g "ATE* — 0

Since the vanishing lemma(1), this is an acyclic resolution of QE(log Z + ;). Together with AT
LT7T@r*0(d~n—1), and AL =TSR LTT® 7*O0(d — n — 1), we have

(3-1-2) Rnsop(d —n—1) = H™P(Q(log Z + TP;)).
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Now we need:

Lemma(3-1-3). There is a natural morphism of Hodge structures:
p: HM(X\UZj) — Hn(P\ (ZU[JP))(-n - s).

p is an isomorphism if r+ s < n. If r + s > n, then p is surjective but not injective and the Kerp is pure
Hodge type (n — r,n — r), described as follows:

- —r—=1
Kerp = Ker("A (1, ,e5) =2 " A (€1, s€5))

where the notations are as in the Theorem(I)(1).

Proof. Let denote Pj,..;; =P; N---NPj,and 25,5, = ZPj..5. Pt Y =P\ Z,Y; =P; \ Z;. We
consider the following exact sequences:

(8-1-3-1) 0— 71Qv\uy; — Qv — Quy; — 0

(3‘1-3—2) 0— QUY_-,’ — ?Qy] — .§kQY}ﬂYk _ e — QY;."}MF\Y, — 0:
2

where we denote the constant sheaf on X with a coefficient gruop Q by Qx, and j : Y \ UY; — Y the
open immersion. We will compute H' (Y, 51Qy\uy;) = H (Y, UY;; Q). Firstly we compute the sheaf Qy.

Let denote the singular complex of X by S°(X). Since = induces the fiber bundle P\ 2 — P™ \ Z;..,
with fibers isomorphic to affine spaces, we have a quasi-isomorphism §'(Y) = S (P\ Z2) ~ S (P\ Z,...).
On the other hand, the Poincaré-Lefschetz duality theorem asserts that S (P\ Z)...;) is quasi-isomorphic
t0 Son—.(P")/Szn~.(Z1...s). Therefore we have Qy =~ S (Y) & Son.(F™)/S2n~.(Z1...s). Note that ¥; N
oMYy =Py \ 25,5, Thus we have similar results Qy; ~ San—. (P")/S2n-.(Z1.;..4) » Qvjave =
San—.(P™)/Son-(Zy..5...%..s) and so on. Now from (3-1-3-1) and (3-1-3-2), we can see jiQy\yy; is quasi-
isomorphic to the following complex:

Qr — GJ,BQYj — _eijY,ﬂYk — = Qyin-ny,-
3

By the above computation, this is quasi-isomorphic to

(31-33)  Sone(B)/S2n(Z1.10) = @520 (B)/Stn(Zy.5.00) =+ = Sane. (B™) /S (X).

From the following exact sequences

0= Sgnr(B") = --- = @S0 (") = Spu. (B") — 0
J

0— Son-(Z1..6) = -+« = ®Son-.(Z;) = San-.(UZ;) — 0,
J

we can see that (3-1-3-3) is quasi-isomorphic to Szn_.(X)/Szn—.(UZ;)[—s], and therefore we have
71Qy\uy; = S2n—(X)/S2n-.(UZ;)[—s]. In particular, we have isomorphisms H (Y, UY;; Q) = Hopnys—1-.
(X,UZ;;Q) = H ¥ ~s+1(X\UZ;; Q) (the last isomorphism is the Poincaré-Lefschetz duality). Therefore
we have the following morphism of Hodge structures:

(134) o HH T UXN\UZ) = H B\ Z, UB;\ 25) — Ham (B \ (21 (UB,)) (-0~ 5).

‘We note that

H™ 7" Z 1) prim ift=n+r+s-q~1
HYY;,..5,) & HYP™\ Z5) =~ HY(P™) fo<t<2(r+s~¢q) —1
0 otherwise

56



MASANORI ASAKURA
where we put Zy := Zy_ j,..;,...,- Moreover the spectral sequence

Ef= @ HP(Yj.j,)= HPP(Y\UY;)=HFY(P\ (ZU(UP))))
2 J

J1<<dq

is degenerate at Ep-term. Therefore if 7+ s < n the each graded weight quotient of both sides of (3-1-3-4)
is isomorphic to ®H™ "t Z ) prim (When - =n+r 4+ s —1). If r + 5 > n, then p is surjective and not
injective only in the graded quotient of weght (n — r,n — ), whose kernel can be described explicitly as
in the Lemma(3-1-4). O

Now Theorem(I)(1) follows from (3-1-2) and the above Lemma. Next we will show Theorem(I)(2).
Lemma(3-1-4). There is a natural map
¥ Ri(0) — HY(X,Tx(~logTZ;))

which is an isomorphism, except for X is a K3-surafce or a curve. If X is a K'3-suface or a curve of genus
> 2, v is only injective.

Proof. By the dual of (2-2-3-1), there is the exact sequence:
0 — Tp/pn(—log ZP;) — To(—log ZP;) — 7" T — 0.
Together with this sequence and (2-2-1), we have the following commutative diagram.
0
1
Topn(— log ZF;)

1
0— Op — T — Tp(~logZP;) —0

il I !

0— Kera — & = 7 Tpn — 0
!
0

By the snake lemma, Kera = Op & Tppn (~ log ZP;) = n*&5 @ L & O3. Therefore, by applying . to the
lower exact sequence in the above diagram, we have

(3-1-4-1) 0— (& ®E) @O » mE - Tpn — 0.

Now the section (F},G;) € H%&) ® HY(E,) defines the surjective map
N:E®E—Ix®E @ — fi®-

(Ix denotes the ideal sheaf of X), and (G;) € H%(£;) defines the map

jZ:O;n_’E7 6_7:(0*3]"50)’_—‘9_777] (1S]SS~"1)
T 3
€y — Zfi§i+zgj77j
il j=1

where &; (resp. 7);) is a local frame of & (resp. &), and £f;&; + Zg;7; is a local description of . Put
I=Im(ji+352: (& @E)® Opn — &),
which is generated by local sections

fiEiH finjv a;in; (1 S ivi, S T, 1 S .7 S S)'
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Then, together with (3-1-4-1), we have

0 0 0
! 1 1
0— L — K — T —0
1 1 1
(3-1-4-2) 0— &elaly — DY — T —0
Li+72 L mj(0) Lh
0— I — £ — &/ —0
1 1 Y
0 0 0
Here j; + j» induces the following commutative diagram:
0 0 0
l ! l
00— Ly — L — L, — 0
l 1 1
(3-1-4-3) 0— &t — &ofeli. — O —0
L L+ 172
0— Ix®& — £ — E®0x —0
!
0
where j5 : e — gx mod Ix (1 £k <'s). Therefore we have
Ly = Kerjy = I1%°.
From the Koszul exact sequence
(3-1-4-4) 0 s AE] —m oo s AEG — Ef — Ix — 0,
we can see that L; has the following resolution.
0 — (A€ — - — £ — L, — 0,
(3-1-4-5) o S
0 —NGRE — - — NFRE — Ly — 0.
There is the exact sequence
(3-1-4-6) 0 — Ix®@Tpn — T — Tx(~log¥Z;) — 0.
On the other hand, j3( in the diagram (3-1-4-2)) can be written as follows:
Ja: 2 — ok + ?& mod [
Oz ' §r —~ O
=1 j=1
When we take a local coordinate 1, , Ty, ¥1, - ,¥ssZ1, " ** s Zn—r—s Such that f; = x;, g; = y;. Then

T = Kerj; is generated by [x ® Tp~ and local sections y; —5—2-;, 5‘2—;. Therefore the natural map T/(Ix @
Tpn) — Tpn|x factors through T/(Ix @ Tpn) — Tx, and which induces the isomorphism T/({x ®Tpn) —
Tx(—log¥Z;). This implies the following exact sequence

(3-1-4-6) 0 — Ix ®@Tpn — T — Tx(~logEZ;) — 0.

58



12

MASANORI ASAKURA
Now we complete the proof of Lemma(3-1-4).

Ry := Coker(H°(P, %) — HO(P, L))

~ Coker(H°(P", 7.E) — HC(P™,£))

= HY(P", K) (from the middle vertical sequence in (3-1-4-2))

4 H L(P™, T (from the top horizontal sequence in (3-1-4-2))

-5 HYX, Tx(=logEZ;)) (from (3-1-4-6))
a is isomorphism because H!(7.Z) = 0, which follows from (3-1-4-1).
b is injective if H'(L) = 0 and surjective H2(L) = 0. By (3-1-4-3)(the top horizontal exact sequence)
and (3-1-4-3), the former always holds and the latter holds if dimX =n -7 >1
c is injective if H'(Ix ® Tpn) = 0 and is surjective if H2(Ix @ Tpn) = 0. By the exact sequence (3-1-4-4),

we can see that the former holds unless X is a elliptic curve, and the latter holds unless X is a K3-surface
or a curve. [

The first half of Theorem(I)(2) follows from Lermma(3-1-4). The compatibility of cup-products and
ring multiplications follows from the compatibility of ¢ and .
We have complete the proof of Theorem(I).

8.2. We will prove the Theorem(II), the duality theorem. We deduce it to the Serre duality theorem.
By (2-2-2), we have the Koszul exact sequence

(3-2-1) 0o L™l LS @L ™ - AT = 0.

Tensoring with £ @ n*O(¥), we have
0= L™ @ 2" O(f) = - = AT @ LTH o1 0(0) S TA S @ LM @ 1 0(E) — 0.

Note that AL* @ LrH9-1 @ m*0O) = L@ LI @mOd —n—1+£), AL ® LT+ ® 1 0O(f) =
LI®7*O(d —n -1+ £) and the map d is nothing but j(o) ® 1. Therefore we have a canonical map

h:Ry(d—-n—1+2£) — Ker(H™(L™ 1o 0@) - HME* @ LT @ 7 0(0)))
By the Serre duality, the right hand side is isomorphic to the dual of

Coker(HY(Z@ L™ 9 1@ rOd+e-n—1—18) = Sapgd+e—n—-1-2)
=Rnrg(d+e-n-1-19).

Lemma(3-2-2). h is an isomorphism if one of the following conditions is satisfied.

(1) 0<é¢<e,r+s<n.
(2) g=n—-r,f=d+e~-n~1>0.

Remark(3-2-8). Note that (1) holds for all ¢ € Z. Since Ry(l) = 0 for ¢ < 0 clearly, we have also
R,(1)=0forg>n—rifr+s <n Howeverif r+s>n+ 2, this does not hold. In fact, in this case,
R, _r+1(d —n — 1) # 0. Hence the duality also fails.

Proof. By the exact sequence (3-2-1), h is surjective if

(@) Ho (" A S @ L0 @ 0() = 0for 1 <a<m -1,

and is injective if
m—b
) (AT @L 1o r0W))=0forl<b<m-—1.
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Firstly we show the case (1).

(a). Since 1 < a <m-—1and 0 <?¢< e, by the vanishing lemma (1) and (1)*, we only need to check
the assertion (a) in the case (r+¢—a,¢) = (0,0) and (r+g¢—a,£) = (~s,e). If (r + g—a,¢) = (0,0), by
vanishing lemma (5), it suffices to consider only the case a = n. Thensincem+1~a=r+s<n+1,
the assertion follows from vanishing lemma (6). If (r + ¢ —a, £) = (—s, ), then by vanishing lemma (5)*,
we can assume ¢ =7+ 5-— 1. Then we have m+1~a =n+1> r+4 s~1. Therefore the assertion follows
from vanishing lemma (6)*.

(b). Similarly we only need to check (b) in the case (r+¢—b—1,4) = (0,0) and (r+q—b—1,4) = (—s,e).
If r+g-0b—1,£) = (0,0), it suffices to consider only the case b = n. Thensincem—b=r+s~1<n+1,
the assertion follows from vanishing lemma (6). If (r + ¢~ b~ 1,¢) = (—s,e), it suffices to consider only
the case b = r+ s~ 1. Then since m —b = n > r+ s — 1, the assertion follows from vanishing lemma
(6)*.

Next we show the case (2).

(a). Since £ > 0, by the vanishing lemma (1), we can assume r + ¢ —a =n — a < —s. Then we have
(m+l—a)—(n—a)=r+sandr+s<n+s<a<m-—1. Therefore the assertion follows from the
vanishing lemma (4).

(b). Similarly we can assume n — 1 — 0 < —s. Then since (m —-b) — (n ~b—-1) = r + s and
r+s<n+s—1<b<m,the assertion follows from the vanishing lemma (4), also.

This completes the proof. O

By Lemma(3-2-2)(2), we have a canonical isomorphism R,_.(2d + 2n — 2+ e) — Ry(0)* = C. Since
the compatibility of the map h with the cup-products, we have the duality theorem.

3.3. Finally we prove Theorem(III), the symmetrizer lemma.
Before to do this, we recall the regularity of sheaves ([G3}).
A coherent sheaf F on P is called m-regular if

H{(P™, F@® Opn(m—1)) =0 for ¥i > 0.

We use the following properties of the regularity of sheaves, whose proof can be seen in [G3].
(1) If F is m-regular, then also (m + 1)-regular.
(2) If 7 and F' are m-regular and m/-regular respectively, then 7 @ F’ is (m + m’)-regular.

In particular, if F is a m-regular locally free sheaf on P, then AE is (mp)-regular because this one is a
direct summand of E®P.
For example, let £ > 0 be an integer, and define a locally free sheaf E on a projective space P™ by the
exact sequence
0 — E — HO(®",0()) 2 Opn — O(€) — 0.

Then clearly E is l-regular, therefore AE is pregular. In [G3], there is a further resuit. That is, if we
replace HO(O(€)) by V a base point free linear subspace of H%(((¢)) of codimension ¢, and define E’
similarly:

0— E — V%)O;wn — 0(¢) — 0,

then AE’ is (p + ¢)-regular.
These arguments are applicable to not only the case O(¢) but also any locally free sheaf satisfying
some conditions. We need it later.

Lemma(3-3-1). Let A be a locally free sheaf on P generated by global sections. We assume that
N satisfies HP(N(~p)) = 0 for 0 < p < n (e.g. N = £). Let V be a linear subspace of H(N) of
codimension ¢, such that V %) Opn — N is surjective (i.e. base point free). Define the locally free sheaf

N by the exact sequence
0— N —V@0m — N — 0.
C

Then AN is (p + ¢)-regular. [
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Now we go back to our situation.
Let W C A,(0) = H°(L) be a linear subspace of codimension c. We assume that W is base point free,
te. W ® Op — L is surjective, which is equivalent to that W’ ® Op~ — & is surjective. (Here W' is a

subspace of HY(£) corresponding to W under the natural 1somorphlsm HO(L) ~ HO(E).)
The following lemma is a generalization of {G3] Theorem 4.1 (see also [G4] Theorem 2.2).

Lemma(3-3-2). Let ¢ > 0, > 0, £ integers. Then the Koszul complex
+1 o g-l
AD AW — A (D)0 AW — A, (0@ AW

is exact if dpin + €2 c+gq.

Proof. We define a locally free sheaf M by the exact sequence

(3-3-2-1) 0 —M— W'%Op—»ﬁ—ro.
Then we obtain a Koszul exact sequence

+1 +1
0—AM="A I’V@OP—)XW@L-—).‘._)‘CQ‘Fl_)O_
c C

Tensoring with £* @ 7*Opn (£), this gives an acyclic resolution of AMeLre 7*Opn(£). In fact if v/ > v,
HY(P, LY ® n*O(€) ~ H(P™, 5% (£) @ Opn (£)) = 0 for ¥i > 0, because the each degree of the direct
summand of 57 () @ Op (£) is not less than dmin?”’ + £ > dmint + £ 2 ¢+ ¢ > 0. Therefore the Koszul

cohomology group above is isomorphic to H! (qXIM @ LY @7 Opn (D).
We will prove that this cohomology vanishes.
Applying . to the exact sequence, we have the exact sequence

0 —mM —W0m —£—0.
C

(The surjectivity of the right map is due to the base point freeness of W*.) Put N = =, M. Then by

Lemma(3-3-1), AN is (¢ + i)-regular. On the other hand, the natural map n*%,F — F induces the
commutative diagram:

0— m™N — W%Op — 7€ — 0
i9 1= lg
00— M — W%Op — L — 0.

By the snake lemma, ¢ is injective and Cokerg ~ Kerg'. From the Euler exact sequence(2-1-2), we have
Kerg’ >~ Q]},/P,, ® L. Hence we have

(3-3-2-2) 0 —m'N—M-—0p.®L—0.
The exact sequence (3-3-2-2) induces the filtration
AM=F o F'5...5 Fitl 5 it =g
such that Gr}(qle) = Fi/F*1 o 78 (AN) @ Q43 @ L9731, So it suffices to show that

P/Pn

HY(P, L5 @ QUi @ 7 (AN @ Opm(€))) =0 for 0S Vi< g+ 1
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Moreover, from (2-1-2), we get
+ 1
0= AT ERLT — o ATERLTTTN S QL 0.

Therefore it suffices to show that
) . 1—i+] i
HE Lo R T EoAN©Om©) =0 forl <Vi<r+s—(g+1—1).
Casel < j<vw
The above cohomology is isomorphic to

HE, 5 (€) 0 A TE0 AN © Om () = SHI (", O2n (ax) @ AN)

where ag 2 dupin(V = J) + dimin{g+ 1 =1+ §) + £ 2 dmin + €. Since AN is (i + ¢)-regular, this vanishes if
ar+j=i+c Butsinceag+j~i—c2ar+1—(g+1)—c2dqur+£¢—q—c>0, this hold.
Case j > v
If v —j > —r —s, the cohomology vanishes always. So we only consider the case v ~ j < —7 — 5 &=
j2r+s+r Butsince 5 <r+s—(¢+1—i), we only consider thecase v =0, j=r+s,i=¢q+ 1.
Then the cohomology is isomorphic to H(P™, Op-(£) ® AN }. Since AN is (g + 1 + c¢)-regular and
£+ 1=dyr+ €+ 1> ¢+ 1+c, this one vanishes. U

Now we prove Theorem(III). Let (p,q,£) satisfies one of the conditions in Theorem(IIl}. We put
F=0-d+n+1

Put Cy 1 (£) = TS @ Lrk-h ®@m*O(¢'), and Ck,n(€) = H°(Ck,n(€)). Then from the exact sequence
(3-2-1), we obtain

(3~3~4) 0— cp,m+l(€) A CP,I(Z) - CP,O(Z) - 07

(3-3-5) 0= Cpmir(D) = - = Cpr(8) 5 Cpo(2) — 0,

We note that (3-3-4) is exact, but (3-3-3) not necessarily exact. In particular, Coker¢ = R,(f) by
definition. Then we have the following commutative diagram:

q+1 q+1 q+1

- G @AW = Co@® AW — R(O@AW — 0
! ! !

- Cpil @AW  —  Co o @AW = Rpn() @AW — 0
! ! !

g1 - 9=
= Cps21(0@NW = Cpaol@ @AW — Rpa(@) @AW — 0
! l |

Therefore by an easy diagram chase, it suffices to show the followings.
Stepl

M) Cp+l+a,a+l(é) - Cp+l+a,a(é) —+ Cpt1ta,a—1(f) isexact for 1 <Va <q-1,
2 CP+2+avﬂ+1(€) - CP+2+a,a(Z) — Cpt24a,a—1(f) isexact for 1 <Va<g-1
i-& - -] -
Step2 Cprp(0) @ A W — Cprps1p(8) @ AW —— Cpavsas(l) @ A W is exact for ¥b > 0.

Proof of Stepl. We may assume q > 2 (ie. ommit the case Theorem(IIT)(3) ). The exact sequence
(3-3-4) induces a specral sequence

EP® = H? (Chma1-al(0)) = E**P = 0.

We want to show that E5*® = 0 if (a, k) runs over any one of the following cases:
() p+2<k<sptgandk~(m+l-a)=p+l(<a=p—-k+m+2),
2y p+3<k<pt+g+landk-(m+l-a)=p+2(c=a=p-k+m+3).
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Since E2? = 0, in order to show E‘;’O = (, it suffices to show that E‘f"h_l’h =0for 1 <h<m,and
0<a-~h-1<m+1

We first show Stepl (1).

If (a, k) runs over the case (1), then

R m+1—{k—p+h)_, _ N
EPThh = B Chpmpin(0) = HFC A ST @ LPTTR @R 0(0),

and (k,h) satisfies k > p+2, A2 1, h+k<m+1+p.

Casept+r—h>—-s+1

Since £/ =£¢—d+n+1 > 0, by the vanishing lemma(1), we have only to check in the case p +r = h and
¢ = 0. Then by vanishing lemma(5), we can assume it = p+ r = n. Hence we only need to consider the

case Theorem(II1)(1). Then 5 "1 = H"("?/’\_kE‘) and k satisfiesn —r+2 < k < n+s. In this case
the assertion follows from vanishing lemma(6) , because we assumed 7+ s < n + 2.
Casep+r—h < —s
Sinceh<m+1+(p—k)<m—1and ¢ ={¢—d+n+1< e, by the vanishing lemma (1)*, we have only
to check in the case p+r —h = —s, ¢’ = e. But since h # r + s — 1, the assertion follows from vanishing
lemma(5)*.

Next we show Stepl (2).

If (e, k) runs over the case (2)’, then

m41—(k~p+h-1)
A

Efhbh = gR Gy ke pina () = HY( @ LPH L g 2 O(2),

and (k,h) satisfies k 2 p+3,h 21, h+k<m+2+p.

Casep+r—h+12>—s+1

Since ¢/ > 0, by the vanishing lemma(1), we have only to check in the case p+r—~h+1=0and ¢ = 0.
Then by vanishing lemma(5), we can assume h = p+r + 1 = n. Hence we only need to consider the case

Theorem(III)(1). Thus Ei’”h“l‘h = H"(“ﬂ-"E‘) and k satisfies n —r + 2 < k €< n+ s. Therefore the
assertion follows from vanishing lemma(6), because we assumed r + s < n + 2.
Casep+r—h+1< ~s
Since h <m+2+ (p—k) <m~1and ¢ < e, by the vanishing lemma (1)*, we have only to check in
the case p+r—~h+1= ~5 € =e. Butsince h=r+s+p+135#r+s—1, the assertion follows from
vanishing lemma(5)*.

We have completed the proof of Stepl. [J

Proof of Step2. We write Qi(log ZP;) by Q simply. We want to show that
-b 1-b
AT e o) e A W
m+1-b
N

HY(
S H (R e o e o) @ AW

m+1-b
N

—1mb
S H( R T e L e o) 0 T AW

is exact for 0 < Vb < q.
The exact sequence
050 RLETOW) AT QL @ OW) - Q e LLonoEl)—0
remains exact for § > 0 when taking H°( ), because H!(L* ® @ @ n*O(¢')) = 0. Thus it suffices to
show that the following sequence is exact for all ¢, bsuch that m —b<t<m-~bd+land 0<b < ¢

+1-b
H(@ e L ero@)o A W

—b
S HYQ Lot O(0) @ AW

S B L2 o O ) 0 A W,
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From the exact sequence (2-2-5-1), there is a filtration F~ of Q2 such that Gr(2!) = =" Qg. ®Q§,7;;, (log =
P;) = 7" Q. ® (TG—B;[/i\w"EO ® L‘i](tizli)), where (y,i) runsover 0 <u<n,0<t-u<r+s~1and
max{0,t~u—s+1} < i < min{t —u,r}. Since H (L™ ® GrpQt) = 0 for § > 0, it suffices to show that

. i ]
HYL+ P @ n* (O @ AG(£) @ A W

, i b
- H0(£T+p—1+l @ (A ® /\go(/fl)) ® q/\ w
, i ~1=b
— HO(LT+P=i%2 (% @ AE(E)) @ T A W.

0<b<yq
0<u<n
is exact for Vb,t,u,1 such that 0<t—u<r+s-1
max{0,t —u—s5+1} <i < min{t — u,r}
m—-b<t<m-b+1
Finally, by the exact sequence

nti

0= Opn(=n = 1) = Opa(~n)®™1 o oo o Opn(~u ~ DPET) - QE. 0,

we can deduce the assertion to show that

L i —b—j
HOL+P= i @ n (A& (f —u—j—1)) @ A W

. % —b—j
s HOLTHP A g (A —u— = 1)@ AW

L i I
— HO(LTHP 42 @ (A ~u—j— 1))@ A W

0<b<ygq
0<u<n
0<t—u<r+4+s-1
is exact for ¥b,t,u,1, j such that - -
0<j<n~u

max{0,t —u — s+ 1} <1 < min{t — u,7}
m-b<t<m-b+1
Let &; be the minimal degree of each direct summand of A€g. Then by Lemma(3-3-2), the above holds if
p > 0 and
Amin(T+p—t+ )+ ~u—F~1+8)>qg-b-j+c
0<b<gq
0<u<n
O0<t—u<r+s~1
0<jsn—u
max{0,t —u— s+ 1} <: < min{t — u,r}
m-b<t<m-—b+1

for Vb, t,u,1, 7 such that

This holds if p > 0 and dmin(r + p) + £ ~ d > ¢+ ¢. This completes the proof. [
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