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gl. IRtroductien

Over a compact Riemann surface, for any (smooth) Hermitian line bundle, with respect

to any (smooth) volume form, we may introduce the Quillen metric ([Qu]) on the corre-

sponding determinant of cohornology. Essentially, this is because there exists only discrete

speetrum for the associated Laplacian, so that the Ray-Singer's zeta function formalism

([RS]) can be applied. By using Quillen metrics, we then have the so-called Riemann-Roch

axxd Noether lsometries (IDe]).

  OR the ether haiid, we Åëattf}ot apply the same strategy to compact RSemann surface$

with respect to singular volume forms, or better, to punctured Riemann surfaces, due to

the fact that a certain contimuous spectrum exists for the corresponding Laplacian. Even

though, with respect to hyperbolic metrics over Riemann surfaces of finite volume, along

with the same line as for compact Riemann surfaces, we now have the works done by Efrat

([Ef]), and Takhtajan-Zograf ([TZI], [TZ2]), among others, on special values of Seiberg

zeta functions, regula:ized determinants of Laplacians, and Quillen metrics, previously it

remaiRs to be a very challeRge problem te deduce a general but Ratura} theory Åírom them.

  Nevertheless, ig thi$ talk, we use a quite IRdependent approach te offer a reasexxabie

metric theory for punctured Riemann surfaces. Roughly speaking, we take the Riemanxx-
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Roch and Noether isometries as the motivation and hence as the final goal for developing

such a theory, since we believe that a good metric theory for punctured Riemann surfaces

should ultimately provide us these two isometries in a natural way. As an application to

moduli spaces of punctured Riemann surfaces of our metrics, we give some Mumford type

fundamental isometries for determinant line bundles equipped with our metrics.

g2. w-Arakelov metrics and tu-intersection theory

(2.1) Throughout this talk, we always assume that MO is a (punctured) Riemann surface

of genus q. Denote its smooth compactification by M, and let MXMO =: {Pi,...,PN}.

We will call Pi, i == 1,...,N, cmsps of MO, and (g,N) the signature of MO.

  RecaU that a Hermitian metric ds2 on MO is said to be of hyperbolic growth near the

cusps, if for each Pi,i -- 1,...,N, there exists a punctured coordinate disc A' := {z E C :

OÅq Izl Åq 1} centered at Pi such that for some constant Ci År O,

(i) ds2sl.ig(il.ldil.21), on A*, (2.i.i)
and there exists a local potential function ip, on A' satisfying ds2 = lgO;g;;;oidz op dz- on A',

and for some constants C2, C3 År O,

(ii) lipi(z)I :E{ C2max{!,log(-log lzi)}, and (2.1.2)
     aipi aipi                     C3
(iii) az ' ox- -Åq lz]poglz" O"A"                                                                       (2.1,3)

In this case, we cal1 ds2 a quasi-hyperbolic metric, which is introduced in [TW].

  For a quasi-hyperbolic metric ds2 over a punctured Riemann surface MO, it follows

easily from (2.1.1) that Vol(MO, ds2) Åq oo. Denote the normalized volume form of ds2 by

w so that Vol(M,w) = 1. In this talk, w always denotes the normalized volume form on M

associated to a smooth metric (on M) or associated to a quasi-hyperbolic metric on MO.

(2.2) Even w could be singular, in [TW, Theorem 1], we show that there exists a unique w-

Green's function g.(•,•), or the Green's function with respect to w, on MO Å~MOX{diagona!}

by using the following

Lemma 2.2.1 ([TW]) With the same notation as above, the function g.(P, Q) defined on

MO Å~ MOX{diagonal} by

gw(P, (?) = g(P, (l}) + fiw(P) + 6w(Q), (2.2.3)
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satisfies the above conditions (i?ev(vi?.

(2.3) Now we are ready to define the w-Arakelov metrics on OM(P) for any point P E M

and on KM, the canonical line bundle of M.

  First of all, for any P E MO, define a metric pAri.;p on OM(P) by $etting

            log lPpll2,..,.,.(e) := -g.(P, e) + S.(P) for e 7i P in MO. (2.3.l)

Here lp denotes the defining section of OM(P). (Please note in particular that the constant

B.(P) is aÅqlded.)

  Secondly, by Lemma (2.2.1) above, we see that

                     -gw(P, q) + Sw(P) = -g(l}, Q) - fiw(Q)•

Thus, for any point PEM, we (may) define a Hermitiain metric pAri.;p on OM(P) by

$ettiRg

            log lllpll;..,.,.(Q) :== -g(P, (?)- ,(3.((2) for (l) 74 P in MO. (2.3.2)

in pa:eiculaf, tki$ works also for eusps Pi, i = l,...,N. Easily, we see that

                            ci(OM(P),pAr;w;p)=cv• (2.3.3)

VVe will call pA,;.;p the tu-Arakeiov metric, or the Arakelev metric with respect to w, on

OM(P).

(2.4) A Kermkian line bundie (L,p) oxx M is cailed w-admissi5ge, if cKL,p) == d(L) •w.

Here d(L) denotes the degree of L. Fromm (2.3.3), we have the following

Lemma 2.4.l. With the same netgten as ageve, (OM(P),pA,i.;p) i$ w-gdmis$i5ge.

  Furthermore, by extending pA,;.;p linearly oxx .P by using tensor products, we know

that ovex any llRe bundle L on M, there exist w-admissl51e Kerm!tialt metr!cs, whick a[ e

parametrized by R+.

  For }ater use, denote (OM(P),pA,,.;p) by OM(l') or simply OM(P) if no confusion

arises. If (L, p) is an w-adrnissible Hermitian line bundle on M, we denote (L, p) by LW or

simply L by abuse of notation. Similarly, we use L(,l2) to demote L X OM(P).
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  Thus, in particular, on the eanonical line bundle KM of M, there exist w-ad:nissible

Hermitian metrics. But such rnetrics are far from being unique. We next make a certain

normalization.

  On KM, define the ca-Arakelev metric pAr;., or the Arakelov metrie with respect to ld by

setting

    llh(z) dgU2,..,. (P) :": Ih(-P)I2 ' S-mYX(:ilil,iil(;,(g9)l2 • etw2gSw(P) for p E M". (2.4.1)

Here h(z) dz denotes a seÅëtion of KM. We have the following

Proposition 2.4.2. With the same notation as above, (KM,pA,;.) is w-admissible.

  For later use, denote (KM, pA,;.) by Zgzt!!., or simply by KM if no confusion arises. Also

we denote (KM,pA,,.•eS) (resp. KM &OM(P)) by KM" (resp. KM(P)) for any constant

c.

  We eRd this sub$ecSloxx by giviRg a geometTlc interp:etatioxx for tke w-Aya[kelev meÅíric

pAr;w• We begin with a preperation.

  Let L be an w-admissible Hermitian line bundle, then for any point P E M, on the

restriction Ljp, we introduce a metric by multiplying the restriction metric from L to P

an additional factor exp[d(ll) - gfi.(P)], and we wi!1 use the syrnbol Ll]p to indicate the

vector space Llp together with this modification of the metric, and sometirnes cal1 it the

w-restriction of L at P. With this, by using (2.4.2), (2.2.l), and the Åíact that the Arakelov

metric iRduces a Ratural isomaetry via tke resXue map res : KM(P)Ip -ÅÄ Åë, we see that

the Arakelev i;]Letrtc wkk respect tc w cR KM ls the ukique mewic such that, at eack peint

P E M, the natural residue map res lnduces the following w-adj'unetien iscmetry

                             res:KM(P)llp-C. (2.4.3)
           '
Here C denotes the complex plane C equipped with the ordimary flat metric.

(2.5) For any two line bundles L, L' on M, denote by ÅqL,L'År the Deligne pairing associated

to L aRd Y. In this sttbseetioxx, we defiRe an w-DeXgne norm hp.,. on ÅqL,LtÅr for aay two

ee--adm!$slble Hermitiast hoe bimd}es L Emd L'.

  First, let us define the w-Deiigne norm for ÅqOM(P),OM(Q)År with P l Q E MO, for
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co-Arakelov metrized line bundle$ OM(P) and OM(Q), by $etting

                log llÅqlp,lqÅr112h..,. := -gw(P, (?)+ fiw(jf') + X3w((?)• (2.5.i)

  Secondly, note that the right hand side of (2.5.1) can be written as -g(P,Q), the

Arakelov-GreeR's Åíu;}ctloR Åíor }' emd Q. Hence, eveR thougk (2.5.1) does Rot make any

$eB$e for cusps, bi2t is we Åëkange k to

                       log llÅqlp,IQÅrll2h..,. :=: •--g(P, Q), (2.5.2)

then we have the metrized w-Deligne pairing ÅqOM(P), OM(Q)År for all P f Q E M.

  Finally extending hD.,. by linearity, we get a definition for ca-Deligne norm hD.,.(L, L')

on ÅqL,L'År for any two w-admissible Hermitian line bundles L and L' on M. By abuse of
nctation, we denete (ÅqL,L'År,ho,}.(L,L')) simply by ÅqZ,Åí'År.

Ke?naTfo 2.5.2. gveR tkQugh we study the ce-iRtersectioR, Åíhe Arake}ov-GreeR's function is

used in an essential way. This i$ indeed not quite surprising. After all, "re only define the

av-intersection for the Hermitian line bundles OM(P) and OM(Q) by using -g(P, e). Put

this in a more formal manner, we have the following:

Proposition 2.5.1. (Mean Value Lernma I.) For any two normalized voZume forms tui

and w2 on M, there exists a natural isometry

       Åqwa.(P),)S2g.i!LQ2.(e),ÅratafÅqS2k.ig2ZL.(P),iS2s.tigS22L.(q),ÅrferpapteEM. (2s.3)

  As a driect consequence of the ca-adjunction isometry (2.4.3), by definition, we have the

following:

Proposition 2.5.2. (w-Adjttnction Isometry) PTrith the same notation as above, we have

the isometry

                    ÅqKMÅqP),OMÅqP)År "-' -Åë fcr anyPff M. Åq2.5.4)

In a similar style, by using (2.2.1) and (2.4.2), we get

l4
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Proposition 2.5.3. (Mean Value Lemma II.) VPrith the same notation as above, for any

two normalized volume forms wi and w2 on M, there exists a natural isometry

                        ÅqIge.!.,,l!2.L.,ÅrYÅqIgu..,,IS:2.fo,År• (2.5.5)

  As an application to arithmetic surfaces, we see that the self--intersection of Arakelov

canonical divisor can be understood in any of these w-admissible theories. (For the detailed

discussion, see e.g. [Wel],)

S3. w-Riemann-RoÅëh metric and its properties

(3.1) With the same notation as in g2, for any line bundle L on M, denote its associated

determinant of cohomology, i.e., detHO(M,L) X(detHi(M,L))X-i, by A(L). Then it is

well-known that we have the following canonical Deligne-Riemann-Roch isomophism;

                      A(L)X2xA(OM)X'2 2! ÅqL,LQK.X-iÅr. (3.Ll)

(See e.g., [De], or [Ai].)

  For a fixed normalized volume form w on M associated to a quasi-hyperbolic metric,

denote by KM the w-Arakelov canonical line bundle (KM,pA,;.). With respect to KM, fix

a metric ho(KM) on A(OM). Then for any w-admissible Hermitian line bundle L on M,

define an Lv-determinant metric hRR;k-.;h,(k-.)(L) on A(L) by the isometry

   (A(L),hRR,K.,h,(K.)(Z))X2 x (A(oM),h,(KM))X-2 ,,, ÅqZ,Lop KMQ-iÅr. (3.1.2)

We call hRR;k'.;h,(K.)(L) on A(L) the Lv-Riemann-Roch metric associated to L with re-

spect to KM and ho(KM). Since for a fixed L, with respect to KM and ho(KM), both
(A(OM),ho(KM)) and ÅqZ,ZX KMXbiÅr are fixed, hRR,k-.,h,(k-.)(Z) is well-defined. By

abuse of notation, we denote (A(L),hRR;K.ih,(k-.)(Z)) simply by A(L).

  The w-Riemann-Roch metric satisties the following properties, which are very similar

to these for Faltings metrics. (See Theorem 4.1.1 below.)

Proposition 3.1.1. With the same notation as above, we have

(171? An isometry of w-admissible HeTmitian line bundles L - L' induces an isometry

from A(L) to A(L')s
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(F2) If the w-admissi61e metric on L is changed by a factor a G R+, then the metric on

A(.I)) is changed by the factor exX(M,L)s

                                                                         '
(F3? For any point P on M, pant the w-Arakelov metrics on OM(P), and take the tensor

metric on L(-P). Then the algebraic isoptorphism

                           A(L) or XÅqLÅq--P)) g LIP

indttcedi 5y the shert exact seguence gf ceherent sheaues

                         o ---" L(-p) - L - Llp --" O

naturally becomes an isometry

                       A(r) ow A(L x OM(P)X") Qil].F).

(pt] (Serre Ise?netry? (A(KM), hKR,K.,h,(x.)(KM)) ct (A(OM),he(KM))•

Remark 3.1.i. By (F4), we see that giving a normalization Åíor he(KM) on A(OMÅr is

equivalent to normalizing hRR;K.;h,(K.) on A(KM)•

(3.2) Similarly, with respect to KM, we fix a metric ho(KM) on A(OM). Then with respect

to KM' , i.e., KM equippecl with (possibly) another w-admissible Hermitian metric, and

ho(KM), for any w-admissible Hermitian line bundle L, we may define the associated

Riemann-Roch metric, denoted by hRR;K.,;h,(K.)(L), by the isometry

  (A(L),hRR,K.i,h,(x.)(l))X2 x (A(OM), hg(xM))Xne2 : d ÅqÅí,ix(Ki,f')x-iÅr. (3.2.o

The dependence of hRR;k-.,;h,(k•.)(L) on L and KM' is clear, as it is given by the ca-

intersection theory. More preÅëisely, directly from the defintion, we have

Proposition 3.2.1. The dependence of hRR;k-.,;h,(K.)(i) on i and KM' is given by the

following eguality:

   hRRiK'iif'xesfÅqecÅr;fteÅqKM)(ZX(PM(efÅr)=hRRiK.',h,(K.)(Z)'eX(L)'f-d(L)C!2. (3.22)

ffere fer a cemstgnt c, OM(ee) denetes the trivial iine bundle eguippeg u?ith the metric

Ilail2 = ec.

l5
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  On the other hand, the dependence of hRR;K.t;h,(K.)(ll) on KM iS not SO

determined. We have then

                        ho(KMC) := ho(KM) . e!2"EYit22Åë.

Here, as before, KMC = KM op OM(eC).

  Tkat is, we have the fol}owing

Proposition-Definition 3.2.2. (Polyakov Variation Formula I) With the same

as a6ove, we have the following equality

             hRR;KM';he(k'MopoM(ec))(L) == hRR;k'b(';ho(k-M)(rt)'eW2 22'C.

easy to

(3.2.3)

notatzon

(3.2,4)

  Easily we get the following

Preposltien 3.2.3. (Sefre I$ometry) With the sesme natation as a5ove, we get the isem-

etry:

 (A(L),hRR,k-.t,h,(K.)(-L)) t (A(KMxLQ-i),hRR,k-.t,h,(Kt.)(KM'QLX-i)). (3.2.s)

(3.3) !n (3.1) and (3.2), for a fixed normalized volume form ul on M, we introduce
hgx;K. ';h,(K. )(LÅr iR suCh a way tkat if oRe of he(KM") i$ fixed, theft ag ether deteminant

MeeriCS hRR,K.i,h,ÅqK.)(L) are fixed, by gsiRg (3.2.2) and (3.2.4), er better Prepo$kiok

3.2.1 and Proposkion 3.2.2.

  Now we explain how the w-Riemann-Roch metrics depend on w.

Proposition 3.3.1. (Mean Value Lerrrma III) With the same notation and normalization

as above, for any two normaliied volume forms wi and w2 on M, we get the following

zsemetrzes:

(g? (Pelygkev Ygrigtion Fermscla II)

                          A(11[s.!z.,) 2t X(Illi.}t.,) ; (3.3.2)

l7
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(b) For all nj EZ and Qj E M,

                  A(OM(2J-nJ'Qj) )
                    -1

ftA(vat(ÅíjnRj),)• (3.3.3)

g4. w-Faltings metric

(4.1) This approach begins with the following condition:

(FO? With respect to the normalized volume w associated to a guasi-hyperbolic metric dpt on

a compact Riemann surface M, the metric hRR;k-.;h,(k-.) on A(KM) is defined to be the

determinant of the Hermitian metric on HO(M,KM) induced from the following natttral

pazrzng
                          (op)Ref. ipAth"• (4.i.i)

  Now we may improve Proposition 3.1.1 as follows.

Theorem 4.1.1. VVith respect to the normalized volume w associated to a gua3i-hyperbolic

metric on a compact Riemann surface M, for any w-admissible Hermitian line bundle L,

there exists a unigue metric hRR;K.;h,(k-.)(L), denoted also by hF;.(L) and called the

w-Faltings metric, on A(L) such that conditions (FO) N (F5) are satisfied. Moreover, we

have the following Riemann-Roch isometry:

       (A(L), h.,.(Z))X2 x (A(o.),hF,.(0M)) op-2 . ÅqL,Z& KMX-iÅr. (4.1.2)

(4.2) In this section, we give further properties for the w-Faltings metrics.

  First of all, by definition, we have the following;

Fact 4.2.1. With the same notation as above, there exists a natural isometry

               (A(KM),hF;w(KM).) fit (A(KM),hF;wcan(!g'ZkCwM ...))' (4.2.1)
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  On the other hand, for general points (Qi , . . . , Qg, Q) G Mg+i such that HO(M, OM(qi "

••• + Q, - Q)) = Hi(M, OM(qi +•••+ Qg - Q)) = {O}, A(OM(qi +•••+ Q, -- e)) is

simply Åë, and the norm 1 in Åë is propositional to "e(ei +• - •+Q. -Q)ll, so that the ratio

is independent of (Qi,...,Qg,e). Such a ratio gives am invariant associated to (M,w).

Following Faltings, we define the tu-Faltings delta function 6(M,w) by

           UlllhF,,.(eM(Q,---}-Q,-Q)) = e-6ÅqM;W)!811e(Q -i- ••• -}- eG - Q)il. (4.2.2)

Proposition 4.2.2. With the same notation as above, we have

                         6(M; w) =6(Mi wcan)(= 6(M))- (4•2•3)

That is, w-Faltings deltafunction 6(M;w) is the same as the original Faltings delta function

6(M).

Remark 4.2.f. We semetime$ call Fact 4.2.l and Pyoposkioxx 4.2.2 Mean Vafue Lemmas

teo.

(4.3) With the above definitioxx of w-Faltings metric, we al$o have the Noether isorne-

try without any further diMculty. Following Faltings [Fa] and Moret-Bai11y [MB], with

arithmetic applications in mind, we then have the fo11owing

rmheorem 4.3.1. (w-Noether isometry) With respect to the normalized volttme w (associ-

ated to a guasi-hyperbolic metric? en a eompact Riemann surface M, for any w-admissible

fferfnitian gine 5undge 0, we have the foglgwing isemethy:

   (A(L),hF,.(L))Xi2 or ÅqÅí,LQ KMX'2ÅrX6 x ÅqKM,KMÅr xO(e6Åq?lf) • (2T)-`g). K.3.1)

S5. New metrics on determinants of cohomology for singular metrics

(5.1) For any normalized volume form w on M, by g4, there exists an w-Faltings metric

hg.(L) oR A(L) foT any w-admis$ible metrlc L on M. in particular, we have the Åíollowing

w-Noetker isometry;

   (A(L), hF,.(L))Xi2 f Åq#,L ÅqEb KMQ-iÅrQ6 x ÅqKM, k"MÅr Åq2b O(e6(M) `(2T)-`g). (s.i.1)

l9
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Motivated by the arithmetie Deligne-Riemann-Roch and (5.1.1), for L, with respect to any

w-admissible KM, define a new metric h:Kir:-(. L) on A(L) by the Noether isometry

       (A(L),h.. (L)) Xi2 ct Åqi,L op KMX-iÅrX6 x ÅqKM, KMÅr x o(ea(g)). (s.L2)

Kere a(g) denotes the Deligne constant which is known to be a(g)(1 - g) vv,kh aÅqe) me

24Åq{}(-2) - l. (See e.g. IDe] alt(l IWe2].) Easlly, one see$ tkat suc}t a de{}Rk!oft is core-

pactib}e wlth the normalizatioxx process gtven iR g4 and the re$ults fer smooth vo}urce

forms. That is to say, we have the Polyakov variation formula, the Mean Value Lemma

and

             hK.(KM) me hF,.(KM)• e-6(M,W)1i2 • (27r)4cr112 . ea(q)1i2. (s.1.3)

(5.2) By the Noether isomorphism, which is equivalent to the Mumford isomorphism and

the Riemann-Roch isomorphism, and by the adjunction isomorphism induced from the

adj"RctieR fcrmula, we kave the fellewRg isomoyphism;

     A(OM)Xi2 ,,t ÅqKM(.F}i +-••+ PN),KM(Pi +•••ÅÄpuN)År XA, ÅqEl} A,X-2. (5.2.1)

Here,

            Ai := X"ulÅqOM(Pk),OM(Pk)År(= Xff=,ÅqKM,OM(Pk)ÅrX-i), (5.2.2)

and

                      A2 :=: &isiÅqjsNÅq0M(.Pi), OM(I }j )År. (5.2.3)

Fer our own coRvenieRce, we also iet

                 A, :== ÅqKM(P, +•••+ PN), KM(P, +•-•+l)N)År. (5.2.4)

Then, we get

Proposition 5.2.1. (Noether Isornorphism) VVith the same notation as above, for aZl line

bundles L on M, we have

                 A(L)Xi2 nt `t)sexAiQAge-2xÅqL,llxKil2/-iÅrpa6. (5.2.5)

20
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  Thus, if we define the Mumford line bundle (for punctures Riemann surface MO) by

              A. := A(Kil}" x (OM(Pi + • • • + PN))Q"-i), if n År o;

                   A(OM), ifn=Oi (5.2.6)
                   A((KM(Pi + • •• + PN))Qn), if n Åq o,

then by a tedious calculation, we have the following

Theorem 5.2.2. (Generalized Mumford Relations) With the same notation as above, for

all positive integers n, we have the following isomorphisms:

(a? An 2t )Ll-n;

(b? Ag12 fy Agy(6n2-6n+1) x Al @ A2X!O-12n, and

(c? A. ft Aoop(6n2-6n+i) x A9-EgZ?-9 & Age(n-i)2.

  In particular, if N = 1, we have A2 = O, hence in this case we get

                         Ag12 c! Agy(6n2-6n+1)QAI, (s.2.7)

and
                       A. fy A,X(6"2-6"+i) (Eb A9-rp, (5.2.8)

for all positive integer n. Moreover, it is well-known that the moduli space Mg,i of

punctured Riemann surfaces with signature (g,1) can be viewed as the universal curve

over the moduli space Mg of compact Riemann surfaces of genus q. Hence we have a
natural geometric interpretation for Ai X A2'i(= Ai), i.e., Ai is the relative tangent

bundle of the universal curve over Mg. (See e.g., [TZ2].)

(5.3) Now we give the counter part of the metric theory for the discussion in (5.2). We

start with some preperations.

  For a normalized volume form w on M, define the following metrized lines:

           2L• l-L EI:i ,hf-.Mi.K.M)9",,X.O=M,(iPi +•••+ PN)Xn" )); if n År O; (,.,.,)

              :== (A., hK. ((KM(Pi + •• • + PN))Xn), if n Åq O.

21
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          A!.L :=ÅqKM(Pi +-•-+ PN),KM(Pi +•--+ PN)År, if n = o;

            := X".i ÅqOM(Pk),OM(Pk)År, ifn== 1; (5.3.2)
            := XisiÅqti-ÅqN ÅqOM(Pi), OM(Pj)År, if n me 2.

Then we get the following

Theorem 5.3.1. With the same netation a$ gbove, for any positive integer n, we have

the fegle2{?ing ise??}etvies;

(a? (Serre isemetry]

                         An YAI-ni

(b? (Generalized Mumford isometry?

            A.O12 t Aoop6n2`'ny6n+1 xAl &A2op-12"+"10 op o(ea(g));

(c? (GenerGgized Mumferd isemetr3{?

        k. 2f AP6"2-6n"1 xAP-Z!tZl 2i & A2X(n-l)2 x o(e"-#•a(g)).

(5.4) More generally, with the application to the moduli problems in mind, we in this

subsection give a generalization for (5.3). As in (5.3), we alway$ fix a normalized volume

forrn w on M.

  For aR R + 2-tuple of reaii Rumbers (al 5i, . . . ,BN), defiue tke associated metrized lines

as Åíollgws:

   5C;a;fi := (A., hlklifa((KMcr)Q" Q oM(liiTe' + ... + EVPN )Xn'-i)), if n År o;

       :=(Ao, hlie-il a(OM)), if n = O;                                                      (5.4.1)
       :=(An7hzl a((KMev(liXP' +••• + IiTVB"))opn)), if . Åq o;

and

  rs;a,S,=ÅqK."(IiikSi+...+X6N),Tt (]i'Si+...+peT.BN)År,ifR,.e;

       ;=ÅqKMa,eM(liiYfii +•••+lil6")ÅrX-!, ifn-.ww i; (s.4.2)
       :=ÅqKMa( i2I'"Z -+- - • - + IEI7B" ), o.(EB' + . . . + liX6N )Årxi, if . = 2.

22

13



Then we get the following

Theorem 5.4.1. VVith the same notation as above, for any positive integer n, we have

the following isometries:

(a) (Serre isometry)
                               x;a;P 2t Al-.a;6;

(6? (Generalized Mumford isometry?

       (lx ;a;P)x12 Åí,, (Aoa;P)X6n2-6n+1 x (Ala;P) & (ZIIa;P)op-12+10 x o(,a(g));

(c? (Generalized Mumford isometry?

   IX;a;P fy (X;1'`V;fi)Q6n2-6n+i x(EI'a;6)&-rp x (2I5a;P)op(n-i)2 x o(e-rpaa(g)).

g6. A geometric interpretation ofour new metrics

(6.1) In this chapter, we will give a geornetric interpretation for our new metrics on deter-

minants of cohomology. We start with a discussion on hyperbolic metrics on punctured

Riemann surfaces.

  As before, denote by tuhyp the normalized volume form associated to the standard hy-

perbolic metric 7hO yp on a punctured Riemann surface MO of signature (g,N). Thus, in

particular, if we denote the corresponding volume form (with respect to 7hOyp) by dpthyp,

then fM, duhyp = 2T(2g -2+ Ar), and 2r(2q -2+N)whyp = dpahyp.

  For ThOyp, or equivalently for dpahyp on MO, if we view them as a singular metric on M,

the compactification of MO, then the natural line bundle we should attach to it is the

so-called logarithmic tangent bundle TMÅqlog DÅr. Here D denotes the divisr at infinity, i.e.,

Pi +• ••+ PN. (See e.g., [Mu] or [Fu]). Over the compact Riemann surface M, we see that

TMÅqlogDÅr is nothing but the dual of the line bundle KM(Pi +•••+ PN). Here as before

KM denotes the canonical line bundle of M. So if we denote the induced Hermitian metric

from ThOyp on KM(Pi + • ' • + PN) by 7hVyp;k-.(D), we get the following Einstein equation

       Ci (KM(Pi + '' ' + PN), ThVy,,K.(D)) = duhyp = (29 -2+ IV)whyp• (6.Ll)
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  We are not quite satisfied wikh this, as the metric discu$sed above only has its nice

meaning on the logarithmic tangent bundle. We believe that there should have anatural

metric phyp;K. on KM and matural metrics phyp;p, on OM(Pi), i = 1, . . . ,N, associated to

punctures, for the hyperbolic metric. More precisely, the picture we have in mind is that

these metrics should be very natural in the following sense:

(O they ase cehyp-a(lmissib}e;

(iD they give the following identky of metrics

                 Phyp;KM (Eb Phyp;Pi X'''&Phyp;PN =: rhVyp;k"M(D) (6.1.2)

on KM(Pi + • • • + PN);

Oii) they should obey the residue isometry, i.e., we have the isometry

                      (KM(Pi), fihyp;KM Xmtyp;pi)ilp{ '-v {tt (6.1.3)

Åíor al!i = 1,...,.N.

  Before defining the above metrics on KM and on OM(R), i : 1,...N, respectively,

motivated by our work for admissible theory for smooth volume forms in [Wel], we now

introduce an invariant AAr,hyp(MO), the Arakelov-Poincar6 volume, associated to a punc-

tured Riemann surface MO as follows.

  First of all, following Se!berg, define the so-called Se!berg zeta function ZMo(s) of MO

Åíor Re(s) År l by t}}e absolutely eoxxveTgeRt predgct

                                   co                       ZMg(s) :-- I[l ll (l-e-(S+M)Iil), (6.L4)
                                {l} m=O

where l runs over the set of all simple closed geodesics on MO with respect to the hyperbolic

metric dpahyp on MO, and III denotes the length of l. It is krmown that by using Selberg trace

formula for weight zero forms the function ZMo(s) admits a meromorphic continuation to

the whole complex s-plane which has a simple zero at s me 1. Secondly, motivated by

the work of D'Hoke"Phexxg amerk SaRark !R {D'HP] aasd {$a], we intyoduce the followlxxg

factorizaiio!]L for the Selberg zeta fiii}ctioR:

                  ZMo(s) ==: det(Ah,, +s(s - 1)) • N(s)29 ww2-FN. (6.1.s)
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Here Ahyp denotes the hyperbolic Laplacian on MO, N(s) denotes the function

                                 e-E+S(S-1) I'(s)
                         N(S) := 2rs '(r,(,))2 (6•1•6)

with E = -t-S log2T+2ÅqQ(-1), T(s) the ordinary gamma function, and r2(s) the Barnes

double gamma funtion. Thirdly, define the regularized determinant for the Laplacian Ahyp

by
                   det'(Ahyp) := z:; (det(Ahyp+s(s-1))) ,=,• (6•1•7)

(Please carefully compare this definition of the regularized determinant for the Laplacian

with the one proposed by Efrat in the one page correction of [Ef].) Finally, following [Wel],

define the Arakelov-Poincere' volurne AA,,hyp(MO) for MO via the formula:

    log AAr,hyp(MO) := ahyp := li2L'2g l-2'(logdAei,'(AM"l ' log2d.ei2'qA!Y2P))• (6•1•s)

Here AA, denotes the Laplacian for the Arakelov metric on M, AA,(M) denotes the volume

of M with respect to the Arakelov metric.

Remarle 6.1.2. 0bviously, the Arakelov-Poincar6 volume is a very natural invariant for the

punctured Riemann surface MO, hence can be viewed as a certain interesting function on

the Teichmttller space Tg,N of punctured Riemann surfaces of signature (g, AT).

(6.2) With the Arakelov-Poincar6 volume for MO, now we are ready to introduce the above

mentioned metrics on KM and OM(Pi), i = 1,...,N.

  First of a!l by the whyp-admissible condition 6.1.(i), we see that these metrics on KM

and on OM(Pi), i = 1,...,N should be propotional to the corresponding whyp-Arakelov

metrics on KM and on OM(Pi), i = 1, . . . , N, respectively. With this in mind, we define the

proposed metric on KM by multiplying the whyp-Arakelov canonical line bundle                                                                      KM
                                                                      .=:=.CVhyP
the factor AA,,hyp(MO). Denote the resulting Hermitian line bundle by KMhyp. Then, we

have

                        KMhyp == !i'!l!Z..,M ,,.'AAr,hyp(MO), (6.2.1)

or equivalently,

                        Phyp;KM = Pwhyp;k'M 'AAr,hyp(MO)• (6.2.2)

Secondly, by (6.1.2), we only need to indicate how the metrics are defined on the line

bundles OM(Pi) for punctures Pi, i = 1,... ,N. Since we now believe that for our theory
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of metrics, the punctures should have equal contribution$. Henee we assume that the

(resulting constant) ratio

                        'i                      Ckyp := eChyp := phyp;pi /pAr;w,,.;pi (6.2.3)

does not depend on i. Irhus condition (6.1.2), which says that KM(Pi +•••+PN) mul-
tiplyiRg by eahypÅÄekypÅÄ"'"Cfinyyp is i$emetric to K(Pi + • i • " PN) togetker with the Raturalt

rceeric TkV
yp}k-

.Åqp,+....yp,,"xxduced from 7kyp oR Me, determines tke coRstant chyp := cgyp,

i = l,...,N and hence the metrics en eM(Pi), i --' 1,...,N, uniqttely. Frem now on, we

always assume that the constants ckyp,i= 1,...,N, are defined in this way.

(6.3) Before finally giving the geometric interpretation for our metric on the determinant

of cohomology, we in this subsection using the result ixx (5.4) give the Mumford type

isornetry for hyperbolic metrics, by setting (a; fii,...,fiN) to be (ahyp; clyp,...,chNyp). We

will denote the corresponding Hermitian }ine bundles by the underline with the loweT index

hyp, e•g•, L.hyp, Anhyp, eÅíc••

Theorem 6.3.1. With the same notation as above, for any positive integer n, we have

the following isometries:

(a? (Serre isometry)

                              L.hyp YAI'"hypi

(b] (Generglized Mumford isemetry]

             L.# p2 bl A{tLk6pn2-6n+l x ILt hyp Q it hXy-pl2nKe x o(eaÅqg))l

(c) (Generalized Mumford isometry?

        2L.hyp yLthopy6pn2nv-6"+iQÅ}A=,lhiXy-piin( =22 xALthxy(pn-i)2 op o(e-!Lg!Fl•a(g)).

  Obvieus}y, eveR tkough we oRly discuss our metrlcs Åíor a sixgle curve, but ehe tec}mique

ean be g}obakzed so that we get mexized be}omorpklc 11nc bundies on the base, tke

Teichmifller space Tg,N of punctured Riemann surfaces of signature (g,N), which may
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natu:ally deceRd te the moduli space Mg,x of puactured Rjiemann $urfaces oÅí signature

(g,N). Moreover, as

                 KM(Pi +'''+ `I 'N)h,, or (KM(D), 'hVyp;K.(p)), (6•3•1)

by a work of Welpert IWo], we know that

                                        wwP                             Ci(AL'hyp)= ,,2' (6•3•2)

HeTe wwF deRotes tke Wei}-Peterssoxx K51}ler forma. Tkus iR particular, we kave tke fol-

Corollary 6.3.2. V7Prith the same notation as above, for all positive z'ntegers n, we have

the follewing identities of (1,1?-forms en Tg,iv and hence on Mg,,Ax:

     12 ci (2L.h,,)= (6n2 - 6n + i)".W,P + ci (4, h,p)-(12n - 10)ei(AL, ,,.). (6.3.3)

(6.4) The geometXc ipterpretatieR of our met:!cs oxx deÅíermiRai}ts oÅí cokemo}ogy is glveB

in terms of the new rnetric on A(KM) with respect to the hyperbolie metric.

  Realize MO as a quotient rXH of the upper half-plane by the action of a torsion free

finitely generated Fuchsian group r. r{rhen it is well-known that r c PSL(2,R) is gener-

ated by 2g hyperbQlic traRsÅíermatioms Ai,Bi, . . . ,Ag, Bg and N pacabolic traRsfourmticfis

Si,...,SN satisfying the single relation

                  AiBiAi'iBri •••AgBgAiiBg-iSi ••• SN = 1+

Choose a normalized basis of abe!ian differentials ths,...,thg, i.e., a basis of the vecter

space HO(M, KM) so that

           IA'Z ip,. (.)d,, = 6,b f. B'Z ip,• (wÅrdzv =; Ti3, i, ]' pm- 1, ' ' ' ? g?

with 6iti the KroneÅëker symbol and r xu (Tij-) the period matrix of M.

  On A(KM), choose the section (thi A••-A ipg) X IV, with 1 the canonical section of

Hi(M, KM) tt Åë. Thexx we have the fo}}owiRg
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    Theerem 6.4.1. With the 3ame netation gs a5ove, as the meinc efL X(KM),

                  Åq(tbl A • • • A zbq) (E9 IVi(2bi A ' ' ' A !bg) X IVÅrhEA.t,,.(KM h,,)

                 == (det (ImT)•2T(2g -- 2)) •(det*(Ah,,))-'.
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