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Arakelov theory with respect to hyperbolic metrics
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Department of Mathematics, Graduate School of Science, Osaka University,
Toyonaka, Osaka 560, Japan

§1. Introduction

Over a compact Riemann surface, for any (smooth) Hermitian line bundle, with respect
to any (smooth) volume form, we may introduce the Quillen metric ([Qu]) on the corre-
sponding determinant of cohomology. Essentially, this is because there exists only discrete
spectrum for the associated Laplacian, so that the Ray-Singer’s zeta function formalism
([RS]) can be applied. By using Quillen metrics, we then have the so-called Riemann-Roch

and Noether isometries ([De]).

On the other hand, we cannot apply the same strategy to compact Riemann surfaces
with respect to singular volume forms, or better, to punctured Riemann surfaces, due to
the fact that a certain continuous spectrum exists for the corresponding Laplacian. Even
though, with respect to hyperbolic metrics over Riemann surfaces of finite volume, along
with the same line as for compact Riemann surfaces, we now have the works done by Efrat
([Ef]), and Takhtajan-Zograf ([TZ1], [TZ2]), among others, on special values of Selberg
zeta functions, regularized determinants of Laplacians, and Quillen metrics, previously it

remains to be a very challenge problem to deduce a general but natural theory from them.

Nevertheless, in this talk, we use a quite independent approach to offer a reasonable

metric theory for punctured Riemann surfaces. Roughly speaking, we take the Riemann-
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Roch and Noether isometries as the motivation and hence as the final goal for developing
such a theory, since we believe that a good metric theory for punctured Riemann surfaces
should ultimately provide us these two isometries in a natural way. As an application to
moduli spaces of punctured Riemann surfaces of our metrics, we give some Mumford type

fundamental isometries for determinant line bundles equipped with our metrics.
§2. w-Arakelov metrics and w-intersection theory

(2.1) Throughout this talk, we always assume that M? is a (punctured) Riemann surface
of genus g. Denote its smooth compactification by M, and let M\M® =: {P,,..., Px}.
We will call P;, i =1,...,N, cusps of M?, and (q, N) the signature of M°.

Recall that a Hermitian metric ds?> on M? is said to be of hyperbolic growth near the
cusps, if for each P;,i =1,..., N, there exists a punctured coordinate disc A* := {z € C:

0 < |z| < 1} centered at P; such that for some constant C; > 0,

: Ci|d=]?

i) ds? < — =" —— on A*, 2.1.1

0 4" < LRoglel? 2 (211

and there exists a local potential function ¢; on A* satisfying ds? = g—zg%dz ® dz on A*,

and for some constants Csz, C3 > 0,

(i1) |¢i(z)| £ Comax{1,log(—log|z|)}, and (2.1.2)
0¢i| |9¢i Cs

(iif) , on A*. (2.1.3)

0z

E3 = Jz| log ]|

In this case, we call ds? a quasi-hyperbolic metric, which is introduced in [TW].

For a quasi-hyperbolic metric ds? over a punctured Riemann surface M?, it follows
easily from (2.1.1) that Vol(M?°, ds?) < co. Denote the normalized volume form of ds? by
w so that Vol(M,w) = 1. In this talk, w always denotes the normalized volume form on M

associated to a smooth metric (on M) or associated to a quasi-hyperbolic metric on M°.

(2.2) Even w could be singular, in [TW, Theorem 1], we show that there exists a unique w-
Green’s function g,(-,-), or the Green’s function with respect to w, on M° x M°\{diagonal}
by using the following

Lemma 2.2.1 ([TW]) With the same notation as above, the function g,(P,Q) defined on
M x M%\{diagonal} by

9.(P, Q) = 9(P, Q) + Bu(P) + Bu(Q), (223)
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satisfies the above conditions (1)~ (vi).

(2.3) Now we are ready to define the w-Arakelov metrics on Op(P) for any point P € M
and on Kz, the canonical line bundle of M.

First of all, for any P € M°, define a metric pay;u;p on Op(P) by setting

log ||1p| iAm;P(Q) = —g,(P,Q) + B.(P) for Q # Pin M°. (2.3.1)

Here 1p denotes the defining section of Op(P). (Please note in particular that the constant
B.(P) is added.)

Secondly, by Lemma (2.2.1) above, we see that

—gu(Pa Q) + ﬁw(P) = —g(Py Q) - ﬁw(Q)

Thus, for any point PEM, we (may) define a Hermitian metric par,.;p on Op(P) by
setting

log ||1p[},....»(Q) == —g(P,Q) — B(Q) for Q # P in M°. (232)

In particular, this works also for cusps P;, ¢ = 1,...,N. Easily, we see that

CI(OM(P)apAr;w;P) = w. (233)

We will call par.;p the w-Arakelov metric, or the Arakelov metric with respect to w, on

Om(P).

(2.4) A Hermitian line bundle (L, p) on M is called w-admaissible, if ¢;(L,p) = d(L) - w.
Here d(L) denotes the degree of L. From (2.3.3), we have the following

Lemma 2.4.1. With the same notaton as above, (Op(P), par,w:P) 15 w-admassible.

Furthermore, by extending par;.;p linearly on P by using tensor products, we know
that over any line bundle L on M, there exist w-admissible Hermitian metrics, which are

parametrized by R*.

For later use, denote (Op(P), paryw;p) by Om(P) , or simply Op(P) if no confusion
arises. If (L, p) is an w-admissible Hermitian line bundle on M, we denote (L, p) by L“ or
simply L by abuse of notation. Similarly, we use L(P) to denote L ® Op(P).
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Thus, in particular, on the canonical line bundle K of M, there exist w-admissible
Hermitian metrics. But such metrics are far from being unique. We next make a certain

normalization.

On Ky, define the w-Arekelov metric par;., or the Arakelov metric with respect to w by
setting

Zz - Z 2
Ik(2) dzl%,, , (P) = |R(P)|* - Cyglp 5—%@(@—@—{- ce72Pe(P) for P e MO, (2.4.)

Here h(z)dz denotes a section of K. We have the following
Proposition 2.4.2. With the same notation as above, (Kps, parw) is w-admissible.

For later use, denote (Kps, parw) by Kz, or simply by Ky if no confusion arises. Also
we denote (K, paruw-€) (resp. Ky @ Om(P)) by K (resp. Kp(P)) for any constant

C.

We end this subsection by giving a geometric interpretation for the w-Arakelov metric

PArw- We begin with a preperation.

Let I be an w-admissible Hermitian line bundle, then for any point P € M, on the
restriction L|p, we introduce a metric by multiplying the restriction metric from L to P
an additional factor exp[d(L) - £8.(P)], and we will use the symbol L||p to indicate the
vector space L|p together with this modification of the metric, and sometimes call it the
w-restriction of L at P. With this, by using (2.4.2), (2.2.1), and the fact that the Arakelov
metric induces a natural isometry via the residue map res : Kp(P)lp — C, we see that
the Arakelov metric with respect to w on Kps is the unique metric such that, at each point

P € M, the natural residue map res induces the following w-adjunction isometry
res: Ky (P)|lp — C. (2.4.3)

Here € denotes the complex plane C equipped with the ordinary flat metric.

(2.5) For any two line bundles Z, L' on M, denote by (L, L') the Deligne pairing associated
to L and L'. In this subsection, we define an w-Deligne norm hpe ., on (L, L') for any two

w-admissible Hermitian line bundles L and L'.

First, let us define the w-Deligne norm for (Oy(P),Om(Q)) with P # Q € M°, for
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w-Arakelov metrized line bundles Oy (P) and Op(Q), by setting

log |17, 1) 5. . = =9l P, Q) + Bu(P) + B(Q). (2.5.1)

Secondly, note that the right hand side of (2.5.1) can be written as —g(P, @), the
Arakelov-Green’s function for P and Q. Hence, even though (2.5.1) does not make any

sense for cusps, but is we change it to

log [[(1p, 1) %, ., = —9(P,Q), (2.5.2)

then we have the metrized w-Deligne pairing (Om(P),Onm(Q)) for all P # Q € M.

Finally extending hpe ., by linearity, we get a definition for w-Deligne norm hDe,u(E, L
on (L,L') for any two w-admissible Hermitian line bundles L and L' on M. By abuse of
notation, we denote ((L, L', hpe;u(L, E’)) simply by (L, L’).

Remark 2.5.1. Even though we study the w-intersection, the Arakelov-Green’s function is
used in an essential way. This is indeed not quite surprising. After all, we only define the
w-intersection for the Hermitian line bundles Op(P) and Oy (Q) by using —g(P, Q). Put

this in a more formal manner, we have the following:

Proposition 2.5.1. (Mean Value Lemma 1.) For any two normalized volume forms w;

and wy on M, there ezists a natural isometry

(Om(P) ,lsoM(Q) 1) ~ (Op(P) 2:©M(Q) ,2) for P#£Q e M. (2.5.3)

As a driect consequence of the w-adjunction isometry (2.4.3), by definition, we have the

following:

Proposition 2.5.2. (w-Adjunction Isometry) With the same notation as above, we have

the tsometry

(Km(P),Om(P)) ~C for any P € M. (2.5.4)

In a similar style, by using (2.2.1) and (2.4.2), we get
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Proposition 2.5.3. (Mean Value Lemma I1.) Witk the same notation as above, for any

two normalized volume forms wy and wy on M, there ezists a natural isometry

(v, Kum, )~ Ky, Kn, ) (2.5.5)

As an application to arithmetic surfaces, we see that the self-intersection of Arakelov
canonical divisor can be understood in any of these w-admissible theories. (For the detailed

discussion, see e.g. [Wel].)

§3. w-Riemann-Roch metric and its properties

(3.1) With the same notation as in §2, for any line bundle L on M, denote its associated
determinant of cohomology, i.e., detH®(M, L) @ (detH'(M,L))®~, by A(L). Then it is

well-known that we have the following canonical Deligne-Riemann-Roch isomophism;
ML) @ MOy)® 2 ~ (L, LKy ). (3.1.1)
(See e.g., [De], or [Ai].)

For a fixed normalized volume form w on M associated to a quasi-hyperbolic metric,
denote by Kjs the w-Arakelov canonical line bundle (Kjs, par;w). With respect to Ky, fix
a metric ho(Kpz) on A(Opr). Then for any w-admissible Hermitian line bundle L on M,

define an w-determinant metric ARR; Ky ;ho(Ky y(L) on A(L) by the isometry

-2

_\ ®2 ® _
(A(L),hRR;ﬂ;ho(ﬂ)(L)) ®(A(0M),h0(@_)) o~ (LL@Ky® Y. (3.1.2)

We call hRR;&;ho(ﬂ)(l—l) on A(L) the w-Riemann-Roch metric associated to L with re-
spect to Kpr and ho(Kpy). Since for a fixed L, with respect to Ky and ko(K)), both
(A(OM),ho(&,I_)) and (L,L ® Ky®") are fixed, hRR;ﬂ;ho(K_M)(E) is well-defined. By

abuse of notation, we denote (A(L), hRR;ﬁ@_;ho(ﬂ)(E)) simply by A(L).

The w-Riemann-Roch metric satisties the following properties, which are very similar

to these for Faltings metrics. (See Theorem 4.1.1 below.)

Proposition 3.1.1. With the same notation as above, we have

(F1) An isometry of w-admissible Hermitian line bundles L — L' induces an isometry

from @ to ML');
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(F2) If the w-admissible metric on L 1s changed by a factor a € Rt then the metric on
ML) is changed by the factor aX(PHL); ’
(F38) For any point P on M, put the w-Arakelov metrics on Op(P), and take the tensor

metric on L(—P). Then the algebraic isomorphism
A(L) ~ A(L(-P)) ® L|P
induced by the short ezact sequence of coherent sheaves
0—->L(-P)—>L—->Llp—0
naturally becomes an isometry

ML) = NI ® Oy(P)® ) ® L) P.

(F4) (Serre Isometry) (/\(KM), hnn;ﬁ;ho(ﬂ)(@_)) ~ (,\(OM),ho(gM)).

Remark 8.1.1. By (F4), we see that giving a normalization for ho(Kpr) on A(Opy) is

equivalent to normalizing ARR; Ky ;ho(Ka) O0 M Knr).

(3.2) Similarly, with respect to Kpr, we fix a metric ho(Epr) on A(Ops). Then with respect
to T{—J’, i.e., Kpr equipped with (possibly) another w-admissible Hermitian metric, and
ho(Kp), for any w-admissible Hermitian line bundle L, we may define the associated
Riemann-Roch metric, denoted by hRR;H’;ho(T(Z)(E)v by the isometry

®~2

-\ ®2 _ . e oy
(,\(L),hRR;I—{F;hO(—ﬁ;)(L)) ®(,\((’)M),ho(KM)) o~ (LI o &y )®). (3.2.1)

The dependence of hRR;K’;’;ho(m)(f’) on L and Ky is clear, as it is given by the w-

intersection theory. More precisely, directly from the defintion, we have

Proposition 3.2.1. The dependence of hRR;H’;hO(H)(E) on L and Ky is given by the
following equality:

T - T L) f—d(L)c
hRR;H’soM(ec);ho(ET)(L®0M(ef)) = hRR;?;’;ho('R”J)(L)'eX( Hmamelr(3.2.2)

Here for ¢ constant ¢, Opp(e®) denotes the trivial line bundle equipped with the metric
1% = e
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On the other hand, the dependence of hRR;-I?;, ho(m)(i) on Kjs is not so easy to

determined. We have then
ho(Bar®) o= ho(Kp) - e 37 <. (3.2.3)

Here, as before, K3 = K ® Op(e®).
That is, we have the folloWing

Proposition-Definition 3.2.2. (Polyakov Variation Formula I) With the same notation

as above, we have the following equality

- = 2g-2
PR sho (Ror @0 (e) (L) = Prezr o g (L) 77 % (3.2.4)

Easily we get the following

Proposition 3.2.3. (Serre Isometry) With the same notation as above, we get the wsom-

etry:

- _ — _ e -
(ME), hrermoian (D) 2 (MEnr @ L87), hag g v, iy (Kt @ L971)). (3:2.5)

(3.3) In (3.1) and (8.2), for a fixed normalized volume form w on M, we introduce
heR R ho (o) (L) in such a way that if one of ho(K7;" ) is fixed, then all other determinant
metrics hRR;T(};’;ho(ﬁ)(i) are fixed, by using (3.2.2) and (3.2.4), or better Proposition
3.2.1 and Proposition 3.2.2.

Now we explain how the w-Riemann-Roch metrics depend on w.

Proposition 3.3.1. (Mean Value Lemma III) With the same notation and normalization
as above, for any two normalized volume forms wy and we on M, we get the following

1sometries.

() (Polyakov Variation Formula II)

MEm, ) ~XMEum,) ; (3.3.2)
71 ’2
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(b) For alln; € Z and Q; € M,

MOm(En;Q;), ) '

= MOu(En;Q5), ) - (3.3.3)

1

§4. w-Faltings metric
(4.1) This approach begins with the following condition:

(F0) With respect to the normalized volume w associated to a quasi-hyperbolic metric du on
a compact Riemann surface M, the metric Arp Ky ho(kn) O M Kpr) 1s defined to be the
determinant of the Hermitian metric on H°(M, Ky ) induced from the following natural
pairing

) Y52 [ 60 (411)

Now we may improve Proposition 3.1.1 as follows.

Theorem 4.1.1. With respect to the normalized volume w associated to a quasi-hyperbolic
metric on a compact Riemann surface M, for any w-admissible Hermitian line bundle L,
there exists a unigue metric hRR;K_M;ho(K_M)(II); denoted also by hp.,(L) and called the
w-Faltings metric, on A(L) such that conditions (F0) ~ (F5) are satisfied. Moreover, we

have the following Riemann-Roch 1sometry:

_\®2 -2 - -
(ML1ru(D) @ (MOm) hra(@Ow)) = (L Lo Ey®T). (4.1.2)

(4.2) In this section, we give further properties for the w-Faltings metrics.
First of all, by definition, we have the following;

Fact 4.2.1. With the same notation as above, there exists a natural isometry

(MEwM), hriw(En),) = (AE), hFun (B, ). (4.2.1)

— 2 Wean
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On the other hand, for general points (@1, . . ., @4, @) € M7+ such that HO(M, OM(Q1+‘

Q- Q) = HY (M, Ou(Q1+ -+ Qg — Q) = {0}, \(Om(Qr+--+Q, - Q)) is
simply C, and the norm 1 in C is propositional to [[6(Q1 + - - -+ Q- — Q)]l, so that the ratio
is independent of (Q1,...,Q,, Q). Such a ratio gives an invariant associated to (M,w).
Following Faltings, we define the w-Faltings delta function §(M,w) by

[1lhr o (O @ut-4Qe=@)) = € MIEO(Q1 + -+ + Q@ ~ Q). (4.2.2)

Proposition 4.2.2. With the same notation as above, we have

S(M;w) = 6(M; wean )(= §(M)). (4.2.3)
That is, w-Faltings delta function §( M;w) is the same as the original Faltings delta function
§(M).

Remark 4.2.1. We sometimes call Fact 4.2.1 and Proposition 4.2.2 Mean Value Lemmas

too.

(4.3) With the above definition of w-Faltings metric, we also have the Noether isome-
try without any further difficulty. Following Faltings [Fa] and Moret-Bailly [MB], with

arithmetic applications in mind, we then have the following

Theorem 4.3.1. (w-Noether isometry) With respect to the normalized volume w (associ-
ated to a quasi-hyperbolic metric) on a compact Riemann surface M, for any w-admaissible
Hermitian line bundle L, we have the following isometry:

(MD) (D)™ = (E,L @ Kn®)% @ (Kag, Kag) © O(*00 - (2)749). (43.)

§5. New metrics on determinants of cohomology for singular metrics

(5.1) For any normalized volume form w on M, by §4, there exists an w-Faltings metric
kg (L) on A(L) for any w-admissible metric L on M. In particular, we have the following
w-Noether isometry:

(M), hp;u,(/i))®12 ~ (LD @ Ky® 1% @ (K, Kpp) © 0D . (2m)749).  (5.1.1)
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Motivated by the arithmetic Deligne-Riemann-Roch and (5.1.1), for L, with respect to any
w-admissible K s, define a new metric hm(l-}) on A(L) by the Noether isometry

(A(L), hﬁ(i)) (L Lo En® )% & (Bor, Kar) © O(°@). (5.1.2)

Here a(q) denotes the Deligne constant which is known to be a(0)(1 ~ ¢) with a(0) =
24(p(—1) — 1. (See e.g. [De] and [We2].) Easily, one sees that such a definition is com-
pactible with the normalization process given in §4 and the results for smooth volume
forms. That is to say, we have the Polyakov variation formula, the Mean Value Lemma

and

h.Ii_M.(—A—’-—M) = hF’“’(é’A’f_) . e—ﬁ(M,w)/l? . (27r)4q/12 . ea(Q)/lz. (5'1.3)

(5.2) By the Noether isomorphism, which is equivalent to the Mumford isomorphism and
the Riemann-Roch isomorphism, and by the adjunction isomorphism induced from the

adjunction formula, we have the followng isomorphism;

MOM)®? ~ (Kpy(Pr+ -+ Pr), Kp(Pr+-- + Py)) @ A @ AP 2, (5.2.1)
Here,
Ay = 1.1 (Om(Pr), Om(Pr))(= @41y (Knr, Opa (Pr))®7Y), (5.2.2)
and
Az = Q1<i<i<N(Om(Pi), Ou(Fy)). (5.2.3)

For our own convenience, we also let
Ag = (Kpy(Py+- -+ Pn),Kp(PL+--- + Pn)). (5.2.4)

Then, we get

Proposition 5.2.1. (Noether Isomorphism) With the same notation as above, for all line
buyndles L on M, we have

MDP2 = A @A, @A 2@ (L, Lo K$™)€°, (5.2.5)

20
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Thus, if we define the Mumford line bundle (for punctures Riemann surface M?) by

A =MKG @ (Om(Pr+ -+ Py)®Y), ifn>0;
A(On), ifn=0; (5.2.6)
’\((KM(P1++PN))®H), ifn<03

then by a tedious calculation, we have the following

Theorem 5.2.2. (Generalized Mumford Relations) With the same notation as above, for

all positive integers n, we have the following isomorphisms:
(a) An 2 Ajn;

(b) /\%12 ~ A?(an—ﬁrﬁl) ®A1 ® A?lo—lzn, and

nn-1)

2_gn _ n—1)2
(¢) A = NSO 67D @ AE=TT g AD(-D,

In particular, if N =1, we have A; = O, hence in this case we get

AB12 oy A\BERT—6nt]) g A | (5.2.7)
and
2_gn —n(n=1)
Ap o AQEP—6HD) g ABTTH (5.2.8)

for all positive integer n. Moreover, it is well-known that the moduli space Mg, of
punctured Riemann surfaces with signature (g,1) can be viewed as the universal curve
over the moduli space M, of compact Riemann surfaces of genus ¢. Hence we have a
natural geometric interpretation for A; ® Aj;'(= A;), i.e., A; is the relative tangent
bundle of the universal curve over M,. (See e.g., [TZ2].)

(5.3) Now we give the counter part of the metric theory for the discussion in (5.2). We

start with some preperations.

For a normalized volume form w on M, define the following metrized lines:

An :=(,\n,hﬂ(ﬁ4_®" ® Om(Py+-- + PN)®"°1)), ifn>0

(Yo, by (On), i = 0; (5.3.1)
()\n, Py (B (Pt + PN))®"), if n < 0.
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Ap :=(Kpy(Pr+---+ Pn),Km(PL+ -+ Pn)), ifn=0;
= ®fe1 (Om(Pe), Om(Pr)), if n=1; (5.3.2)
= Q1<i<i<N (Om(F:), Om(P))), if n=2.
Then we get the following

Theorem 5.3.1. With the same notation as above, for any positive integer n, we have

the following isometries:

(a) (Serre isometry)

(b) (Generalized Mumford isometry)

A_n®12 z~4£®6n2._6n+1 ®ﬁ®él®_12+10 ®O(ea(q)),

(c) (Generalized Mumford isometry)

Ao~ ), B6n7=6n+1 ®_A_1®-ﬂn_2__12 ® A O n? ® O™ a(q))

(5.4) More generally, with the application to the moduli problems in mind, we in this
subsection give a generalization for (5.3). As in (5.3), we always fix a normalized volume

form w on M.

For an n + 1-tuple of real numbers (a; gy, . .., Bn), define the associated metrized lines

as follows:
X = (O by (Bd™)®" © O (B 4+ P18 ) if > 0;
=(A0, .Ma(Q_M)), ifn =0 (5.4.1)
i= (A b (Bt "B 4+ P )97, i <
and
B =E B 4 BB B 4+ BN, ifn =0

=(Kn" (9M(P1 4o+ PRIV =1 (5.4.2)
= B+ B, 0B 4 £ PRV ifn =2,

22
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Then we get the following

Theorem 5.4.1. With the same notation as above, for any positive integer n, we have

the following isometries:

(a) (Serre isometry)

(b) (Generalized Mumford isometry)

(X:odﬂ)@lz ~ (E"3ﬂ)®6n2—6n+1 ® (Ea;ﬂ) ® (Ea;ﬂ)@;_lz.}.m ® O(e“(q));

(c) (Generalized Mumford isometry)

o o (e mentl @ ()92 g (5,700 @ O ),

n

§6. A geometric interpretation of our new metrics

(6.1) In this chapter, we will give a geometric interpretation for our new metrics on deter-
minants of cohomology. We start with a discussion on hyperbolic metrics on punctured

Riemann surfaces.

As before, denote by whyp the normalized volume form associated to the standard hy-
perbolic metric 'r}?yp on a punctured Riemann surface M° of signature (¢, N). Thus, in
particular, if we denote the corresponding volume form (with respect to Tl?yp) by dpnyp,
then [0 dinyp = 27(2¢ — 2+ N), and 27(2g — 2+ N)wyyp = dpnyp.

For 7y, 5, or equivalently for dunyp on M 0 if we view them as a singular metric on M,
the compactification of M?°, then the natural line bundle we should attach to it is the
so-called logarithmic tangent bundle Tys(log D). Here D denotes the divisr at infinity, i.e.,
P, 4+ .-+ Pn. (See e.g., [Mu] or [Fu]). Over the compact Riemann surface M, we see that
T(log D) is nothing but the dual of the line bundle Kps(Py +--- + Pn). Here as before
K s denotes the canonical line bundle of M. So if we denote the induced Hermitian metric

from Tl?yp on Kpy(Py+ -+ Pn) by 7y, K (D) We get the following Einstein equation

C3 (KM(PI +--+ PN)’T}:/}'P§KM(D)> = dl.l.hyp = (2q -2 + N)Whyp. (61.1)
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We are not quite satisfied with this, as the metric discussed above only has its nice
meaning on the logarithmic tangent bundle. We believe that there should have a natural
metric phyp; K, o0 Kar and natural metrics ppyp;p; on Oy (F;), i =1,..., N, associated to
punctures, for the hyperbolic metric. More precisely, the picture we have in mind is that

these metrics should be very natural in the following sense:
(i) they are wyyp-admissible;

(ii) they give the following identity of metrics

PhypiKn @ Phyp;PL @ - @ Phyp;Py = Tl:/yp;KM(D) (6.1.2)
on Ky(Py + -+ + Pn);

(ii1) they should obey the residue isometry, i.e., we have the isometry

(I{M(Pi)a Phyp; Kar @ Phyp;Pi)nPf ~C (6~1'3)
foralls =1,...,N.

Before defining the above metrics on K and on Op(P;), @ = 1,... N, respectively,
motivated by our work for admissible theory for smooth volume forms in [Wel], we now
introduce an invariant Aaynyp(M°), the Arakelov-Poincaré volume, associated to a punc-

tured Riemann surface M? as follows.

First of all, following Selberg, define the so-called Selberg zeta function Zyso(s) of M°
for Re(s) > 1 by the absolutely convergent product

Zypo(s) o= [[ J] @ = e~ Ctmithy, (6.1.4)

{1} m=0
where [ runs over the set of all simple closed geodesics on M° with respect to the hyperbolic
metric dunyp on M?, and |I| denotes the length of I. It is known that by using Selberg trace
formula for weight zero forms the function Zy0(s) admits a meromorphic continuation to
the whole complex s-plane which has a simple zero at s = 1. Secondly, motivated by
the work of D'Hoker-Phong and Sanark in [D’HP) and [Sa), we introduce the following

factorization for the Selberg zeta function:

Zpgo(s) =: det(Anyp + (s — 1)) - N(5)2972+N, (6.1.5)
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Here Apyp denotes the hyperbolic Laplacian on M?, N(s) denotes the function

e—E+s(s—1) . 1-\(3)
2m? (T2(s))?

N(s) := (6.1.6)
with £ = —1—3log 27 +2(g(—1), T(s) the ordinary gamma function, and I';(s) the Barnes
double gamma funtion. Thirdly, define the regularized determinant for the Laplacian Ay,
by
. d
det™(Bnyp) = — (det(Anyp + 5(s - 1))), . (6.1.7)

s=1
(Please carefully compare this definition of the regularized determinant for the Laplacian
with the one proposed by Efrat in the one page correction of [Ef].) Finally, following [Wel],

define the Arakelov-Poinceré volume Ap;nyp(M?) for MP via the formula:

log AAr,hyp(Mo) 1= Qpyp = (618)

E ) 1 (10 det*Ap; B det*Anyp >
7 2g—2 \U, () " Par(zg-2)/

Here A, denotes the Laplacian for the Arakelov metric on M, Aa (M) denotes the volume
of M with respect to the Arakelov metric.

Remark 6.1.2. Obviously, the Arakelov-Poincaré volume is a very natural invariant for the
punctured Riemann surface M°, hence can be viewed as a certain interesting function on

the Teichmiiller space Ty v of punctured Riemann surfaces of signature (g, V).

(6.2) With the Arakelov-Poincaré volume for M°, now we are ready to introduce the above

mentioned metrics on K and Oy (P;), i =1,...,N.

First of all by the whyp-admissible condition 6.1.(1), we see that these metrics on K/
and on Opm(P;), 71 = 1,..., N should be propotional to the corresponding whyp-Arakelov
metrics on Kpr and on Op(FP;), 2 =1,..., N, respectively. With this in mind, we define the
proposed metric on Kps by multiplying the wpyp-Arakelov canonical line bundle Ky .

yp

the factor Aarnyp(M?®). Denote the resulting Hermitian line bundle by ﬂhyp. Then, we

have
.I_{_M_hyp = é’_%.;hyp “Aarnyp(M°), (6.2.1)
or equivalently,
PhypiKnr = PunypiKae * Aarnyp(M°). (6.2.2)

Secondly, by (6.1.2), we only need to indicate how the metrics are defined on the line

bundles Op(P;) for punctures P;, : = 1,..., N. Since we now believe that for our theory
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of metrics, the punctures should have equal contributions. Hence we assume that the

(resulting constant) ratio

C}ilyp = eC;ayP = phyp;Pi/PAr;uhyp;Pi (623)

does not depend on i. Thus condition (6.1.2), which says that Kp(P; +--- + Pxn) mul-
tiplying by ehve+ehyptFelin is isometric to K(P, +--- + Py) together with the natural

Y . 0 : — ol
metric Ty o (P4t Pr) induced from Ty, on M”, determines the constant cnyp = cjyp,
z=1,..., N and hence the metrics on Op(P;), 1 = 1,..., N, uniquely. From now on, we

always assume that the constants ¢;__,i=1,..., N, are defined in this way.
hyp Y

(6.3) Before finally giving the geometric interpretation for our metric on the determinant
of cohomology, we in this subsection using the result in (5.4) give the Mumford type
isometry for hyperbolic metrics, by setting (a; 81, ..., 8n) to be (anyp; ciyp, e, cfl\;p). We
will denote the corresponding Hermitian line bundles by the underline with the lower index

hyp, e.g., A , A

Anpopt Bnpyp etc..

Theorem 6.3.1. With the same notation as above, for any positive integer n, we have
the following isometries:

(a) (Serre isometry)
A

Snpyp = —Al""hyp;
(b) (Generalized Mumford isometry)

AL812 ~ A ®6n*~6n+1 ®A1hyp ® A,8-12nt10 ®(’)(e“(‘”);

Zrpyp — =Shyp 22pp
(c) (Generalized Mumford isometry)
6n?—6n+ @-2r=-1) n— _
Ampyp = MET T @ AT @ 2,800 g O(e 2520 a(g) .

Obviously, even though we only discuss our metrics for a single curve, but the technique
can be globalized so that we get metrized holomorphic line bundles on the base, the

Teichmiiller space T,y of punctured Riemann surfaces of signature (g, V), which may
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naturally decend to the moduli space M, v of punctured Riemann surfaces of signature
(g, N). Moreover, as

by a work of Wolpert [Wo], we know that

wwp
C1 (_A—Ohyp) = —'7r-—2— (632)

Here wwp denotes the Weil-Petersson K&hler form. Thus in particular, we have the fol-
lowing;

Corollary 6.3.2. With the same notation as above, for all positive integers n, we have
the following identities of (1,1)-forms on Ty n and hence on Mg n:

w

1261(Any,,) = (60° — 6+ 1) + 1 (Ay, ) — (120 ~ 10)er(Ag, ) (6.3.3)

s

(6.4) The geometric interpretation of our metrics on determinants of cohomology is given

in terms of the new metric on A(K ) with respect to the hyperbolic metric.

Realize M? as a quotient I'\'H of the upper half-plane by the action of a torsion free
finitely generated Fuchsian group I'. Then it is well-known that I' C PSL(2,R) is gener-
ated by 2¢ hyperbolic transformations A4, By, ..., A, B, and N parabolic transformtions
S1,...,Sn satisfying the single relation

A BIAT BT A B AT B S . Sy = 1.
Choose a normalized basis of abelian differentials v1,...,1,, i.e., a basis of the vector
space H'(M, K ) so that
Aiz

Bz
¢j(w)dw = 55]', / u')J(w)dw =D Ty, 1,,] = 1, ceesq,

z

with 6;; the Kronecker symbol and 7 = (7;;) the period matrix of M.

On A(Kpr), choose the section (16, A --- A ¢g) ® 1V, with 1 the canonical section of
HY(M,Kp) ~ C. Then we have the following
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Theorem 6.4.1. With the same notation as above, as the metric on A(Kn),

)

<(¢1 Ao A ’lbq) ® 1V-,(¢1 Ao A 'qu) ® 1v>hK_M.hyp(KM

=(det (Im7) - 27(2q — 2)) - (det™(Anyp)) 7

hyp
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