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Abstract. There is a wel} kBown relation betweerrsimple algebraic greups and $im-
ple singularities. The simple singularities appear as the generic singularity in co, di-

mension two of the unipotent variety of simple algebraic groups. Furthermore, the
semi-universal deformation and the simultaneou$ resolution of the singularity can be
constructed in term$ of the a}gebraic group.'The aim of these notes is to extend this
kiltd of relatioR to ioop grcups axxd simp}e elliptic $ingu}atities.

gl Simple groups and simple singularities. Let G be a simple and simply con-
nected algebraic group over C. Then, G acts by cormjugation on itself and the rimg of
invariant functions on G is a polynormial ring in the fundamental characters of a

                          Åqcla]G = ÅqCLxi,.••,x{]•

The induced map
                      G- Spec(C[xi,...,xe] fy (Ce

is ca}}ed the ade'eint gnotient map Åíor G. The group C also acÅí$ by the adjoint rep-
yesexxtaÅíioR oR its Lie algebra g axxd the riRg of lnva[riEmS fuRctioRs oR g !s a}$e a

polynomial ring in e = rankG variabies, but in this case the gexxerators can not so
easily be described. Nevertheless, the map

                           x:g-g//G t Ce

is called the ffdy'oint guetient mapu for g. The zere fiber N =: xwwi(e) ls called the

nilpotent variety, simce it consists of al1 the nilpotent elements of g. Under the aetion

of a the nilpotent variety decornposes into a finite number of orbits. In particular
there is one open and dense orbit, the so called regular orbit. Moreover, there is a
unique orbit of codimensioA ewo in N, the so called subregu}ar orbit. Now let T be
a tyaassversa[l s}ice te the subfegu}ar orblt (T or Åëenv}-2) aRd for simp}lcity assgme that

G is of type ADE. Then, due to E. Brieskorn, A. Grothendieck and P. Slodowy, the
restrietion of the adjoint quotient rnap x to the transversal slice T

                            xlT : (Ce+2 - ce

is the seml-universal deformatiok of the simpie hypersurface sikgu!arity T fi N, where
the equation for T n .7V is listed in Figure 1.

    Those singularities are characterized in many ways. For exirmple they are the
only hypersurface singularities which can be deformed only in a finite number of other
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G TnN
Ae=SLe+i xe+1+y2+z2.,o
De==Spin2e xe-i +xy2+z2=O
E6 x4+y3+z2==O
E7 x3y+y3+z2==O
Es x5 +y3+z2.,,o

Fig. 1. Sirnple singularities

singularities. For that reason they are called simple singularities. If G is of type
BCFG, the singularity T n Ar carries an extra finite symmetry and x[T is only the
invariant part of the semi-universal deformation of T n Ar.
    The restriction of the adjoint quotient map for G to a transversal slice at a subreg-
ular unipotent orbit is also the semi-universal deformation. But there is an important
difference. The map xlT is quasi homogeneous with respect to some C'-actions on T
and Ce with only positive weights. Such C'-actions don't exist for G.

g2 Simple elliptic singularities. Let E be an elliptic curve and L - E be a holo-
morphic Iine bundle over E of degree d Åq O. Then one can contract the zero section
of L to a surface singularity X. It turns out that X is a complete intersection, if and
only if d År. -4. For d = -4, the singularity X is the the intersection of two quadrics in

C4. More precisely, X is the cone over the elliptic curve E embedded by a line bundle
(L') of degree 4 in P3. This singularity is called of type Ds.

    For d .År -3, the singularity X is a hypersurface singularity of type Eg+d. Its
equation is listed in Figure 2.

R,E,E, d=-1
d=-2
d=-3

x6+y3+z2+Axyz=O
x4+y4+z2+Axyz=O
x3+y3+73+Axyz=O

Fig. 2. Simple elliptic singularities

    Here, A is a complex parameter which depends on the elliptic curve E. The
deformation theory of those singularities were studied by E. J. Looijenga and K. Saito.

It turns out that they deform only in elliptic singularities of the same type with
different A and in simple singularities. For that reason they are called simple elliptic

singularities.

g3 Loop groups. The (holomorphic) loop group of the simple algebraic group G is
defined by
                 LG = {g:C' -Cigis holomorphic}.
The infinite dimensional group L G has a universal central extension

                     1-C*-iG-LG-1.
Now, C' acts on ÅíG by the formula (gg)(z) = g(gz) and this action can be lifted to
i G. The semidirect product of L" G with C' is denoted by

                             iG = iGxC'.
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It is a certain completion of sorne aMne Kac-Moody group. Such a group has e+ 1
fundamental highest weightrepresentations. Their charaeters are convergent for (O, g)
with qE D', where D' me {gEC l OÅq lgl Åq 1}. Hence, there is a map

  jG
   U
iGÅ~P* 4 Åqc2+l Å~ D*

    '

vvhere R is glveR by the e -F 2 fuxxdameReal characters axxd the secofid projection. This
map is called the ad]'oint auotient map for iC.

g4 Subregular singularities. In the sequel we will fiÅ~ a rmumber g E D*. The zero
fiber Ug = R-i(O,g) is calledi the unstable variety for reasomas we will see later. In this

section we are going to describe the singularities of umstable variety in codimension
two for all iG, where G is of type ADE. For this purpose we will call an iG orbit

in b'g regttlar, if it has codimension zero in I7g and it is called subregular if it has
codimension two in Ug. Actually all orbits in Ug have finite codimension and there is

neveT oRe of codimension one.

CAsE Ai . There ls ei}e regular and oRe sgbregular erbit in Ug. Lee S be i5e subTegalar

erbk and Ts a transver$al slice to S. Tken the slRgularky ef Lfg fi Ts ls ef type Ds.

CAsE Ae, e År 1. There are e regular orbits Ri, . . . ,Re and each intersection Ri nRi+i

contains a 1-parameter family of subregular orbits. For every subrerular orbit, the
singularity of Ug n Ts is of type A.. i.e. two smooth tran$versally crossing surfaces:

(A.) { (x,y,z) E (C3 i y2 +z

CAsE De,eÅr 5. There is one regular orbit and
erbits. Generically the singularity of Ug fi Ts is
subregu}ar orbits !t is of type Dco (eÅí Flg. 3):

(P oo) {(x, y, z)E{C31xy2ÅÄ

2 .. O}•

a 1-pararneter
ef type Aoe,

l2 rm g }.

family
but for

of subregular
four different

rrig. 3. The Whitney umbrella Doc)

y
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CAsE D4 . The same as for De with e År 5, but there are three such i-parameter fatnilies'

of subregu!ar orbits.

CAsE Ds . Beside the 1-parameter family of subregular orbits there are two more sub-
regular orbits. The singu!arity of Ug n Ts for those two orbks is of type Ds.

CAsg E6. Tkere is ome reggla[r and two subregular exbks. The si!}gularity of Yg ft tZTs

is of type E6.

CAsE E7. There is one regular amad one subregular orbit. The simgularity of Ug n Ts

is of type E7.

CA$E ,Els. [lrhere is ene regular and one subregular orbk. [lrhe sing"larity of Ug A Ts

is of type gs.

g5 Deformations. The restriction of the adjoint quotient map R to the tramsversal
slice Ts to a subregular orbit S is a deformation of the singularity Ug n Ts. Irm the
cases Ee and also for the two special subregular orbits of Ds, this turns out to be the

semi-"niversal deformation. But in the ether eases, tke singularity Ug fi Ts is xxon-
iso}ated astd tke base of ks semi-universal deformatioR !s iAfiRlte dimeRsioRal. But as

in the case of an algebraic group of type BCFG there is an extra symmetry and the
restriction of the adjoint quotient map seems to be basically the invariant part of the

semi-universal deformation.
    For examp!e if a is of type Ae withe År 1, the transversal slice to a subregular
erbk i$ isomcrphic to Ts Åíy ÅqCeÅÄ2 Å~ Åë' Å~ P*. Now, tke elemeRts (e,g"A,g) are all iR
the $ame zi G-orbit Åíor fixed A E Åë" 2md a31 n E Z. If eRe could extend this Z-action

to Ts, then
                          Ts/z L ce+i Å~ D*

weuld be a deformation of the variety (Ug fi Ts)/Z and this ha$ a finite dimensiona!
deformatioR space. AcSiia[lly it is isomerphic to tke ttnieR ef twe liRe bwadies Y and
L" over the elliptic curve E = ÅqC'/gZ:

        (U, n Ts)/Z fy { (x, y, x) lx E E, yE ll '., zE L'.' and y•z == O}.

The semi-universal deÅíormation of this variety is basica[lly given by

                  { (x,y, z, s) I y•z= s(x) } - r(E, L),

where L = L' X L" and the map is given by the projection onto the last coordinate
s G r(E,L). Now as$ume that degL =: e+1. Then the zero divisor of s can be written

as
              (sÅr : 7}i Pi +•••+ nrPr, ni di •••+nr =: e+1

and .Pi EE with Pi pt Pj for i 7!! j and

(*) niPi+'''+nrPr ma L.
Tke siltgularlties oÅí{yti = s(x)} afe of type (An,-2,...,An.-D. HeRce, tke projec-
tive space of r(E, 0) can be naturally identified witk the hyperplaxxe

                     p(r(E,ll)) c ,ELz.E-- E.ElxE/Se+i

                                      e+1
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given by (*), such that the two stratifications of P(r(E, ll)) according to singularities

of {y • z = s(x) } and accordimg to stabilizers of the symmetric group Se+i coincide.
The last one coincides actually with the stratification of the base of the adjoint quotient
map according to stabilizers of i G. Therefore, the restriction of the adjoint quotient

map R to Ts should be basically the Z-invariant part of the semi-universal deformation
of Ug fi Ts-

    The case Pe is a little more complieated aRd we will skip this kere.

g6 PriRclpal buRdles ever elliptic curves. Lee P - E be a priRclpal G-bwadle
over the elliptlc curve E ex Åë'/gZ and let T : Åë' - E be the natura} projection.
'IIrhen, the pull back rr'P of .l' to ÅqC* is holomorphically trivial since G is connected.

Therefore one has P ttt (C* Å~ G)/Z, where the generator 1 G Z acts by

                          (x,g) F--År (gz,p(z)•g)

and g E LG. In this way we get a surjective map

               LG Å~ ÅqC'

                 U
               Åí G Å~ g - {holomorphic G-buRdle$ over E}.

Actually Åíhis map induces a bijection

         (LG Å~ g)/ÅíG "t {iso. classes of hol. a-bundles over E}.

Novv', due to V. Baranovsky and V. Ginzburg an elemeni of ÅíG Å~ g belongs to the
unstable variety Uq if and only if the corresponding (]-bundle over E is unstable. For
that reason, Ug is called the unstable variety.
    From this we see that there can be no continuous Åí G-invariant function on L G Å~ g.
This is the geometric reason, why we need the central extemsion j G. In i G x g all the

semistab}e erbits contain on}y finkely many grbks in it$ closure and there is exact}y
Qme c}o$ed gyb!t in each $uÅëh Åëiosure.

g7 Principal buRd}es axxd Levi subgreups. Il]he struÅëture group of a G-bundle
over a curve can of course be always reduced to a Borel subgroup of G. But if the
bundle is unstable and the curve is elliptic, it can be further reduced. In fact, the
instability means that there is some subbundle of positive degree and on an elliptiÅë
curve this has to be a direet summand. Therefore the structure group reduces to a
Borel subgroup of sonne Levi $ubgroup of G (i.e. the centralizer L = CG(H)O of some

torus H c G).
    In the other direction, there is some construction of minimal!y unstable G-bundles
whose structure group reduces to a Borel subgroup of a given Levi subgroup. If V is
maxima}, i.e. Z(L)e tf Åë", this eoRstriieileR usually }eads to a unique ymsiable G-
buRdle. But iÅí Z(L)" t)t (Åë*)2, oRe gets a l-parameter fameily ef uRstab}e C-buRdles.

    For example, iÅí G i$ ef type Ee, the DyAkin diagram ef the Levi subgroup corre-
spondlng to the regular axxd subregular orbits are the following

(Ee)

CF- -
regular orbit

o- -••
    subregular orbit
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Here L = CG(H)O, where H is the subtorus of the maximal torus spanned by the
1-parameter subgroups corresponding to the filled vertices. In the case E6 there is a
symmetry of the diagram which leads to two subregular orbits.
    In the case De the Dynkin diagram of regular and subregular orbits are

(De)

            cH)-- o----o- -•                  regular orbit subregular orbit

There is a vv'hole 1-parameter family of subregular orbits. In the case D4, one gets
three such families by the symmetry of the diagram. In the case Ds there are the
following two more subregular elements

(D,)

                    subregular orbit subregular orbit

Finally, in the case Ae with e År 1 we have

(Ae) o- -•--••• -o o- •••-••- -o
                  regular orbit subregular orbit

The case Ai is a little special. Every unstable rank two vector bundle with triviaJ
determinant is of the form L O L" for some line bundle L of degree d År O. The regular
element corresponds to d == 1 and the subregular to d = 2.

g8 The case Spin(10). There is one subregular Spinio-bundle which corresponds to
the Levi subgroup (C' • SLs c Spinio. This is very easy to describe. There is a unique
indecomposable rank 5 vector bundle V with det V = L2, where L is a line bundle of

degree 1. The bundle
                                 vev'

is a SOio-bundle with trivial second Stiefel Whitney class. Hence, the structure group
can be reduced to Spinio and this is the subregular Spinio-bundle we are looking for.

The deformations of this bundle are given by extensions

                      O- V* - V4 -V --ÅÄ O

where the extension class C E Exti(V, V') == Hi(V' X V") belongs to the subgroup
Hi(A2 V'). As a Spinio-bundle, V O V* h.as one more deformation, namely the 1-
parameter deformation of L. But the group L G contains the translations of the elliptic
curve and hence we may ignore those deformations. The transversal slice to the orbit
corresponding to V O V' is therefore

                          Ts i)t Hi (A2 V') Å~ D'.

We want to see that Uq fi Ts has a Ds singularity. For this purpose we have to find
all 6 for which V6 is unstable. By definition Ve is unstable if and only if there exists

an indecomposable proper subbundle W c VE of positive degree. Since then one has

                             H..(VV,V) l O,
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it follows that the degree of W is 1 and its rank has to be 3, 4 or 5. Actually 4 and 5 can

be excluded from the fact that VE is a Spinio-bundle. Now, for every indecomposable
rank 3 bundle W of degree 1 one has Hom(W, V) fy C and each nontrivial morphism
W . V is injective. From this we get the following commutative diagram

                                           o
                                           T

O . Hom(W, V4) - Hom(VV,V) - Exti(;7V,v*)

                          TT
                  id E Hom(V, V) - Ext'(V, V')

                          T Tpw
                     Hom(V/W,V) - Ext'(V/W,V'

                                           T

                                           o.

)

) Hi (A2 V*) DC

        U

) Hi (A2(v/w)*)

It shows that V4 is unstable if and only if

e E ImFvv fiHi(A2 v*) = Hi(A2(v/w')') it c

for some indecomposable vector bundle W of rank 3 and degree 1.
    The vector bundle A2 V' has rank 10 and degree -8. It is actually the direct sum

of a vector bundle V of rank 5 and degree -4 with itself. Moreover, one can show that
there is a canonially defined subbundle tJh c A2 V' with the following property. For
every choice of W, the line Im Fw n Hi(A2 V') is contained in the four dimensional
subspace Hi(V) c Hi(A2 v').

  ` Recall, that due to M. F. Atiyah's work on vector bundles over elliptic curves the

map W - det W is a bijection between indecomposable rank 3 vector bundles of
degree 1 and Pici(E) f)t E. Therefore, the unstable locus in Hi(A2 V') is the cone

over the image of the natural morphism

Åë:E-P(Hi(V)),
   PH Im Fw. fi Hi(A2 v*),

where IiVp is the rank 3 vector bundle with det WT p == O(P). Finally one can identify
the map Åë with the natural embedding of E in P3 given by the line bundle L4. Hence,

the singularity Uq n Ts is of type Ds.

    Now, a simple argument using the C'-action on Ts shows that the restriction of
R to Ts is in fact the semi-universal deformation of the zero fiber Uq n Ts.

    In the cases E6, E7 and Es it is much harder to see the singularity directly.
Instead of this, we classified unstable G-bundles and together with the knowledge of
the weights of the (C'-action on Ts, one can identify the singularity Ug n Ts. But we
are not going to discuss this furhter now.
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g9 Double Ioop algebras. In contrast to the finite dimensional case, the Lie algebrd
of i G is not usefu11 to construct simple elliptic singularities. This follows from some
work due to I. Frenkel, which relates the orbit structure of the Lie algebra of i G with

that of the finite dimensional group G. Instead of this, one has to consider double
loop algebras. Those are defined by

                    Sg =: {g:Si Å~Si .g1gis COO }.

There are two derivations O/actz and a/a3 acting on 8g, where a point in Si Å~ Si is
parameterized by (eia, eiP). We are intersted in the conjugacy classes of the semidirect

product
                          sg Å~ (c oa. oC oOs)

Let us fix a derivation

                   -OO w                   a=w                                       with                                             Im-ÅrO.                             +n                         aa                                a,B ny

Then 5 defines a holomorhic structure on Si Å~ Si bv
                                             d

                 si Å~ si

                   U open

                f : U - C is holomorphic :o 0f = O.

With this holomorphic structure Si Å~ Si becomes an elliptic curve E. Moreover, an
element g E Sg defines a holomorphic structure on the topologically trivial AdC-
bundle EÅ~g - E by

                 E
                 U open

              s:U-g is holomorphic :o (O+g)s = O,

where gs is defined by matrix multiplication. The adjoint group SG corresponding to
Eg acts on Sg Å~ O as the gauge group of E Å~ g . E and hence we have a bijection

          (Sg Å~ b)/SC ;t {iso. classes of hol. G-bundles over E}.

This suggests that the simple elliptic singularities should also appear in the double
loop algebras Sg. But so far, this is not well understood.
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