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Loop groups and elliptic singularities

STEFAN HELMKE

(joint work with PETER SLODOWY)

Abstract. There is a well known relation between simple algebraic groups and sim-
ple singularities. The simple singularities appear as the generic singularity in codi-
mension two of the unipotent variety of simple algebraic groups. Furthermore, the
semi-universal deformation and the simnultaneous resolution of the singularity can be
constructed in terms of the algebraic group. The aim of these notes is to extend this
kind of relation to loop groups and simple elliptic singularities.

§1 Simple groups and simple singularities. Let G be a simple and simply con-
nected algebraic group over C. Then, G acts by conjugation on itself and the ring of
invariant functions on G is a polynomial ring in the fundamental characters of G

C[G}G = C[thwxd-

The induced map
G — SpecClxy,...,xe =~ C*

is called the adjoint quotient map for G. The group G also acts by the adjoint rep-
resentation on its Lie algebra g and the ring of invariant functions on g is also a
polynomial ring in £ = rank G variables, but in this case the generators can not so
easily be described. Nevertheless, the map

x:9— g//G =~ Ct

is called the adjoint quotient map for g. The zero fiber N = x~?(0) is called the
nilpotent variety, since it consists of all the nilpotent elements of g. Under the action
of G the nilpotent variety decomposes into a finite number of orbits. In particular
there is one open and dense orbit, the so called regular orbit. Moreover, there i1s a
unique orbit of codimension two in N, the so called subregular orbit. Now let T be
a transversal slice to the subregular orbit (T' ~ C**?) and for simplicity assume that
G is of type ADE. Then, due to E. Brieskorn, A. Grothendieck and P. Slodowy, the
restriction of the adjoint quotient map x to the transversal slice T'

XiT . Cl+2 Cl
is the semi-universal deformation of the simple hypersurface singularity TN N, where
the equation for TN N is listed in Figure 1.

Those singularities are characterized in many ways. For example they are the
only hypersurface singularities which can be deformed only in a finite number of other

98



G TNN

Ap = SLypy et 4yt +22=0
Dy = Sping, 7 2y +22=0
Es st +y?+22=0
E; PBy+y3+22=0
Ejg 2 +yd+22=0

Fig. 1. Simple singularities

singularities. For that reason they are called simple singularities. If G is of type
BCFG, the singularity T N N carries an extra finite symmetry and x|r is only the
invariant part of the semi-universal deformation of TN N.

The restriction of the adjoint quotient map for G to a transversal slice at a subreg-
ular unipotent orbit is also the semi-universal deformation. But there is an important
difference. The map x|r is quasi homogeneous with respect to some C*-actions on T
and C¢ with only positive weights. Such C*-actions don’t exist for G.

82 Simple elliptic singularities. Let E be an elliptic curve and L — FE be a holo-
morphic line bundle over E of degree d < 0. Then one can contract the zero section
of L to a surface singularity X. It turns out that X is a complete intersection, if and
only if d > —4. For d = —4, the singularity X is the the intersection of two quadrics in
C*. More precisely, X is the cone over the elliptic curve E embedded by a line bundle
(L*) of degree 4 in P®. This singularity is called of type Ds.

For d > -3, the singularity X is a hypersurface singularity of type Egqig4. Its
equation is listed in Figure 2.

Es d=-1 8+ + 22 + Azyz=0
E; d=-2 gt +yt+ 22+ dzyz=0
Eg d=-3 22+ + 22+ dzyz=0

Fig. 2. Simple elliptic singularities

Here, ) is a complex parameter which depends on the elliptic curve E. The
deformation theory of those singularities were studied by E. J. Looijenga and K. Saito.
It turns out that they deform only in elliptic singularities of the same type with
different A and in simple singularities. For that reason they are called simple elliptic
singularities.

§3 Loop groups. The (holomorphic) loop group of the simple algebraic group G is
defined by
LG = {p:C* — G| is holomorphic }.

The infinite dimensional group £ G has a universal central extension
1—C" — LG — LG — 1.

Now, C* acts on L G by the formula (g ¢)(z) = ¢(gz) and this action can be lifted to
L G. The semidirect product of £ G with C* is denoted by

LG = LG xC*.
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It is a certain completion of some affine Kac-Moody group. Such a group has £ + 1
fundamental highest weight representations. Their characters are convergent for (3, ¢)
with ¢ € D*, where D* = {q eC | 0<lgl <1 } Hence, there is a map
LG
U

LG x D* —X_, ¢t x D,

where X is given by the £+ 1 fundamental characters and the second projection. This
map is called the adjoint quotient map for L G.

84 Subregular singularities. In the sequel we will fix a number ¢ € D*. The zero
fiber U, = x~1(0, ¢) is called the unstable variety for reasons we will see later. In this
section we are going to describe the singularities of unstable variety in codimension
two for all £ G, where G is of type ADE. For this purpose we will call an L G orbit
in Uy regular, if it has codimension zero in U, and it is called subreguler if it has
codimension two in U;. Actually all orbits in U, have finite codimension and there is
never one of codimension one.

CASE A;. There is one regular and one subregular orbit in U,. Let S be the subregular
orbit and Ts a transversal slice to 5. Then the singularity of U, N Ts is of type Ds.

CASE Ag, £ > 1. There are £ regular orbits Ry,..., R, and each intersection R; N R;y,
contains a l-parameter family of subregular orbits. For every subrerular orbit, the
singularity of U, N Ts is of type A i.e. two smooth transversally crossing surfaces:

(A) {(z,y,2) e C* | y* +2°=0}.

CASE Dy, £ > 5. There is one regular orbit and a l-parameter family of subregular
orbits. Generically the singularity of Uy N Ts is of type A, but for four different
subregular orbits it is of type D, (cf. Fig. 3):

(Do) {(z,y,z)€C3{$y2+22=O}.

Fig. 3. The Whitney umbrella D
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CASE D,. The same as for D, with £ > 5, but there are three such 1-parameter families
of subregular orbits.

CASE Ds. Beside the 1-parameter family of subregular orbits there are two more sub-
regular orbits. The singularity of U, N Ts for those two orbits is of type Ds.

CASE FEg. There is one regular and two subregular orbits. The singularity of U, NTs
is of type Es.

CASE E;. There is one regular and one subregular orbit. The singularity of U, N Ts
is of type E~.

CASE Ejg. There is one regular and one subregular orbit. The singularity of U, N Ts
is of type Es.

§5 Deformations. The restriction of the adjoint quotient map ¥ to the transversal
slice Ts to a subregular orbit S is a deformation of the singularity U, N Ts. In the
cases E,; and also for the two special subregular orbits of Ds, this turns out to be the
semi-universal deformation. But in the other cases, the singularity U, N Ts is non-
isolated and the base of its semi-universal deformation is infinite dimensional. But as
in the case of an algebraic group of type BCF'G there is an extra symmetry and the
restriction of the adjoint quotient map seems to be basically the invariant part of the
semi-universal deformation. _

For example if G is of type Ay with £ > 1, the transversal slice to a subregular
orbit is isomorphic to Ts ~ C**? x C* x D*. Now, the elements (0,¢™), q) are all in
the same £ G-orbit for fixed A € C* and all n € Z. If one could extend this Z-action
to T's, then

Ts/Z X CH! x D*

would be a deformation of the variety (U, N Ts)/Z and this has a finite dimensional
deformation space. Actually it is isomorphic to the union of two line bundles L' and
L' over the elliptic curve E = C*/¢%:

(U,NTs)/Z ~ {(z,y,2) I t€E, yel, z€Llandy-2=0}.
The semi-universal deformation of this variety is basically given by
{($>y72a3) 1 y-z =S($)} - F(EaL)’

where L = L' ® L' and the map is given by the projection onto the last coordinate
s € I'(E,L). Now assume that deg L = £+ 1. Then the zero divisor of s can be written
as

(s) = niPy + -+ n.Fp, n+--+n,=£0+1

and P; € E with P; # P; for 7 # ; and
(%) mPr+---+n. P = L.

The singularities of {y -z = s(z) } are of type (An,-1,...,An.—1). Hence, the projec-
tive space of T{E, L) can be naturally identified with the hyperplane

P(T(E,L)) C Ex---xXE /S,
e+1
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given by (x), such that the two stratifications of P(I'(E, L)) according to singularities
of {y-z = s(z)} and according to stabilizers of the symmetric group S¢y; coincide.
The last one coincides actually with the stratification of the base of the adjoint quotient
map according to stabilizers of £ G. Therefore, the restriction of the adjoint quotient
map ¥ to Ts should be basically the Z-invariant part of the semi-universal deformation
of Uq NTs.

The case I, is a little more complicated and we will skip this here.

§6 Principal bundles over elliptic curves. Let P — FE be a principal G-bundle
over the elliptic curve E = C*/¢% and let 7 : C* — F be the natural projection.
Then, the pull back #*P of P to C* is holomorphically trivial since G is connected.
Therefore one has P ~ (C* x G)/Z, where the generator 1 € Z acts by

(ng) — (qzag‘o(‘z) . g)
and ¢ € L G. In this way we get a surjective map

LG xC*
U

L G x ¢ ——» {holomorphic G-bundles over E}.

Actually this map induces a bijection

(LGxq)/LG =, {iso. classes of hol. G-bundles over E}.

Now, due to V. Baranovsky and V. Ginzburg an element of LG x g belongs to the
unstable variety U, if and only if the corresponding G-bundle over E is unstable. For
that reason, U, is called the unstable variety.

From this we see that there can be no continuous £ G-invariant function on £ G xgq.
This is the geometric reason, why we need the central extension LG. In £LGxqall the
semistable orbits contain only finitely many orbits in its closure and there is exactly
one closed orbit in each such closure.

§7 Principal bundles and Levi subgroups. The structure group of a G-bundle
over a curve can of course be always reduced to a Borel subgroup of G. But if the
bundle is unstable and the curve is elliptic, it can be further reduced. In fact, the
instability means that there is some subbundle of positive degree and on an elliptic
curve this has to be a direct summand. Therefore the structure group reduces to a
Borel subgroup of some Levi subgroup of G (i.e. the centralizer L = Cg(H)°® of some
torus H C G).

In the other direction, there is some construction of minimally unstable G-bundles
whose structure group reduces to a Borel subgroup of a given Levi subgroup. If L is
maximal, i.e. Z(L)° =~ C*, this construction usually leads to a unique unstable G-
bundle. But if Z(L)° ~ (C*)?, one gets a 1-parameter family of unstable G-bundles.

For example, if G is of type E;, the Dynkin diagram of the Levi subgroup corre-
sponding to the regular and subregular orbits are the following

I IR I

regular orbit subregular orbit

102



Here L = Cg(H)?, where H is the subtorus of the maximal torus spanned by the
1-parameter subgroups corresponding to the filled vertices. In the case Es there is a
symmetry of the diagram which leads to two subregular orbits.

In the case D; the Dynkin diagram of regular and subregular orbits are

(Dd) w—I——o w—i—o

regular orbit subregular orbit

There is a whole 1-parameter family of subregular orbits. In the case Dy, one gets
three such families by the symmetry of the diagram. In the case Ds there are the
following two more subregular elements

(Ds)

subregular orbit subregular orbit
Finally, in the case A, with £ > 1 we have

(A[) o_..._o_.—--.—o O— s¢» —@—@— +++ —0O
regular orbit subregular orbit

The case A; is a little special. Every unstable rank two vector bundle with trivial
determinant is of the form L @& L* for some line bundle L of degree d > 0. The regular
element corresponds to d = 1 and the subregular to d = 2.

§8 The case Spin(10). There is one subregular Spin,o-bundle which corresponds to
the Levi subgroup C*- SLs C Spinig. This is very easy to describe. There 1s a unique
indecomposable rank 5 vector bundle V with det V = L%, where L is a line bundle of
degree 1. The bundle

Vev*

is a SO;¢-bundle with trivial second Stiefel Whitney class. Hence, the structure group
can be reduced to Spiny and this is the subregular Spin;o-bundle we are looking for.
The deformations of this bundle are given by extensions

0—>V*———+VE—>V———+O

where the extension class ¢ € Ext!'(V,V*) = H'(V* ® V*) belongs to the subgroup
H!? (/\2 V*). As a Spinjo-bundle, V' & V* has one more deformation, namely the 1-
parameter deformation of L. But the group £ G contains the translations of the elliptic
curve and hence we may ignore those deformations. The transversal slice to the orbit
corresponding to V & V* is therefore

Ts ~ H'(NV*) x D"

We want to see that U, N Ts has a Ds singularity. For this purpose we have to find
all ¢ for which V¢ is unstable. By definition V¢ is unstable if and only if there exists
an indecomposable proper subbundle W C V of positive degree. Since then one has

Hom(W,V) # 0,
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it follows that the degree of W is 1 and its rank has to be 3, 4 or 5. Actually 4 and 5 can
be excluded from the fact that V¢ is a Spinjo-bundle. Now, for every indecomposable
rank 3 bundle W of degree 1 one has Hom(W,V) ~ C and each nontrivial morphism
W —— V is injective. From this we get the following commutative diagram

0

1

0 — Hom(W,V;) — Hom(W,V) —— Ext'(W,V*)

1 1

id € Hom(V,V) —— Ext’(V,V*) D> HY(N'V*) 3¢

7 5w U

Hom(V/W,V) — ExtY(V/W,V*) > H (N(V/W)*)

|

0.

It shows that V¢ is unstable if and only if
£ € ImFwnHY NV = HH(N(V/W)) ~ C

for some indecomposable vector bundle W of rank 3 and degree 1.

The vector bundle /\2 V* has rank 10 and degree —8. It is actually the direct sum
of a vector bundle V of rank 5 and degree —4 with itself. Moreover, one can show that
there is a canonially defined subbundle V ¢ A’ V* with the following property. For
every choice of W, the line Im Fyy N H? (/\2 V*) is contained in the four dimensional
subspace H(V) C H' (N’ V*).

- Recall, that due to M. F. Atiyah’s work on vector bundles over elliptic curves the
map W —— det W is a bijection between indecomposable rank 3 vector bundles of
degree 1 and Pic!'(E) ~ E. Therefore, the unstable locus in H? (/\2 V*) is the cone
over the image of the natural morphism

3 : E — P(HY(V)),
P — ImFy, n H* (N V*),

where Wp is the rank 3 vector bundle with det Wp = O(P). Finally one can identify
the map ® with the natural embedding of E in P* given by the line bundle L*. Hence,
the singularity U, N T's is of type Ds.

Now, a simple argument using the C*-action on T's shows that the restriction of
% to Ts is in fact the semi-universal deformation of the zero fiber U, N Ts.

In the cases Eg, E7 and Eg it is much harder to see the singularity directly.
Instead of this, we classified unstable G-bundles and together with the knowledge of
the weights of the C*-action on T's, one can identify the singularity U, N Ts. But we
are not going to discuss this furhter now.
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§9 Double loop algebras. In contrast to the finite dimensional case, the Lie algebra
of £ G is not usefull to construct simple elliptic singularities. This follows from some
work due to I. Frenkel, which relates the orbit structure of the Lie algebra of £ G with
that of the finite dimensional group G. Instead of this, one has to consider double
loop algebras. Those are defined by

fg = {p:S' xS — g|pisC®}.

There are two derivations 8/8a and 8/38 acting on £g, where a point in S! x S? is
parameterized by (e'*, e'?). We are intersted in the conjugacy classes of the semidirect

product
3] 3]
£ — — .
g X (Caa eC 6ﬁ>

Let us fix a derivation
0 .
0 = w—+n— with Imu—J>O.
n

Then 8 defines a holomorhic structure on S! x S! by
S'x §!
U open
f :U —— C is holomorphic :«<= 8f = 0.
With this holomorphic structure S! x S! becomes an elliptic curve E. Moreover, an

element ¢ € £g defines a holomorphic structure on the topologically trivial Ad G-
bundle £ x g — E by

E

U open
s : U —— g is holomorphic <= (04 ¢)s = 0,

where ¢ s is defined by matrix multiplication. The adjoint group £G corresponding to
£g acts on £g x J as the gauge group of E x g — E and hence we have a bijection

(Ea x 0)/EG =, {iso. classes of hol. G-bundles over E}.

This suggests that the simple elliptic singularities should also appear in the double
loop algebras £g. But so far, this is not well understood.
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