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ON CALABI-YAU THREEFOLDS WITH
INFINITE FUNDAMENTAL GROUP

KE131 OGUISO AND JUN SAKURAI

Department of Mathematical Sciences, University of Tokyo

Apology from the first author.

First of all, I should apologise the change of the title of this report. At the
Kinosaki Conference 1998 I have presented some part of my joint work with D.
Q. Zhang about finite automorphism groups of K3 surfaces. However, around the
last December, I have started and gradually concentrated to study another subject,
Calabi-Yau threefolds with infinite fundamental group, jointly with my student,
Jun Sakurai. Till now I have been occupied more or less by this subject. This is
completely elementary but turns out to be more interesting than I expected before
starting and we have now obtained some results which, I hope, are worth being
reported here.

Introduction.

Throughout this paper, we call a smooth compact K&hlerian threefold X a
Calabi-Yau threefold if it satisfies Ox(Kx) ~ Ox and h'(Ox) = 0. This defini-
tion of Calabi-Yau threefold is adopted by many algebraic geometers and is indeed
parallel to that of K3 surface. However, contrary to the case of K3 surface, these
two conditions Ox (Kx) ~ Ox and h'(Ox) = 0 for a Kihlerian threefold X imply,
on one hand, h?(Ox) = 0 whence the projectivity of X [Kd], but, on the other
hand, neither the simply-connectedness of X even nor the finiteness of 7;(X) as is
illustrated by the following two examples:

Example 1 (Igusa’s example; [I, Page 678], [U, Example 16.16]). Let E;
(i = 1,2,3) be three elliptic curves with origin 0 and P; € (E;)2 — {0} e non-
zero two torsion point of E;. Consider the abelian threefold A := E; x Ey x E3
and its involutions, g := t(p, 0,0) © (idg, X —idg, X —idg;) and h := t(o P, p,) ©
(—idg, x —idg, x idg,), where t. stands for the translation by an element x of
A. Then (g,h) = {id, g, h,gh}(~ C§°2) acts freely on A and the quotient variety
X := A/{(g,h) is a Calabi- Yau threefold whose fundamental group =1 (X) fits in with
the ezact sequence 0 = Z%% — 71, (X) » C£* - 0. O

Example 2 (eg. [Ogl, Example 3.2]). Let E be an elliptic curve,

T an Enrigues surface, 7 : S = T the universal covering of T and ¢ the covering
involution of w : S — T. Consider the product S x E and its involution g :=
t x —idg. Then (g)(=~ C2) acts freely on S x E and the quotient variety X :=
(S x E)/(g9) is a Calabi-Yau threefold whose fundamental group =, (X) fits in with
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2 KEIJI OGUISO AND JUN SAKURAI

the ezact sequence 0 — Z92% — 7,(X) = Co = 0. Note also that the projection
p1: S x E— S induces an elliptic fibrationp, : X —» T. 0O

Example 1 also provides an explicit example of a Calabi-Yau threefold which
contains no rational curves, while there is a conjecture which predicts that every
Calabi-Yau threefold with finite fundamental group contains a rational curve (cf.
[Mo]). Example 2 shows that there exists a Calabi-Yau threefold admitting an ellip-
tic fibration whose base space is not a rational surface, while it can be shown that
the base space of an elliptically fibered Calabi-Yau threefold is rational whenever
71(X) is finite (cf. [Ogl Lemma 3.4]). So, in the study of Calabi-Yau threefolds, it
is sometimes inevitable to distinguish the case where w1 (X)) is infinite.

The goal of this paper is to describe all the possible infinite fundamental groups
of Calabi-Yau threefolds in the form of group extension (Corollary 1) and to get a
fairly practical criterion for Calabi-Yau threefolds to have finite fundamental group
in terms of Picard number and the one for those to have non-trivial second Chern
class ¢ {X) (Corollary 2). Consult {W2] and [03,4] for the importance of the role
of ¢y in Calabi-Yau classifications.

Let X be a Calabi-Yau threefold with infinite fundamental group. Acoording
to the Bogomolov decomposition Theorem ([Bel, 2}), such an X admits an etale
Galois covering from either an abelian threefold or the product of a K3 surface and
an elliptic curve. We call X of Type A

in the former case and of Type K in the latter case. Among many candidates of
such coverings for a given X, we always fix the smallest one called the minimal split-
ting cover, which we can always obtain by posing one additional condition on the
Galois group G that G contains no non-zero translations in the case where X is of
Type A and that G contains no elements of the form (i¢dg, non-zero translation of E)
in the case where X is of Type K ({Be2, Section 3], see also Definitions {1.1) and

(2.1)).

_ Adopting this convention and using notation listed at the end of Introduction,
we can state our main result as follows:

Main Theorem.
[1] Let X be a Calabi-Yau threefold of Type A and G the Galois group of
the minimal splitting covering. Then,

(1) G is isomorphic to either 02@2 or Dg;

(2) Conversely, each of these two groups occurs as the Galois group of the min-
imal splitting cover of some Calabi-Yau threefold of Type A;

(3) In each case of [1](1), the Piacrd number p(X) of X, which is equal to
R} (Tx) the dimension of the Kuranishi space of X, is determined uniquely
by G and is calculated as in the following table:

G | CP* | Dg
pX) |3 2

[2] Let X be a Calabi-Yau threefold of Type K and G the Galois group of
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ON CALABI-YAU THREEFOLDS WITH INFINITE FUNDAMENTAL GROUP 3

the minimal splitting covering. Then,

(1) G is isomorphic to either C™ (1 <n<3), Dan (3<n<6) or C* = Cy;

(2) Conversely, each of these groups occurs as the Galois group of the minimal
splitting cover of some Calabi- Yau threefold of Type K except possibly for
D2n(3§n$6)andC§32>dC2; '

(3) In each case of [2](1), p(X), which is again equal to h'(Tx), is determined
uniquely by G and is calculated as in the following table:

G Cz 0262 C[?B Ds Dg Dm 012 0392 X Cg
p(x) |11 |7 5 5 4 |3 3 3

As an immediate Corollary, we get the following:

Corollary 1. Let X be a Calabi-Yau threefold and assume that =1 (X) is infinite.
Then 71{X) falls into one of the following exact sequences:

0—Z%% 5 7 (X) = G — 1, where G is isomorphic to either 02@2 or Dg;

0— Z%% - 1,(X) = G — 1, where G is isomorphic to either C'._)@“’z 1<n<3)
Do, (3<n<6) or C§* x Co. In particular, 7 (X) is always solvable. O

Taking the contraposition of the main Theorem, we also obtain the next:

Corollary 2. Let X be a Calabi-Yau threefold. Then,

(1) If p(X) = 1,6,8,9,10 or greater than or equal to 12, then 7w, (X) is finite.
(2) If p(X) = 1 or p(X) > 4, then X is not an etale quotient of an abelian
threefold. In particular, the second Chern class ca(X) # 04n HY(X,R). O

The last statement follows from the fact that a Kdhlerian manifold X such that
a(X) = (X)) = 0 in H*(X,R) is an etale quotient of a complex torus [Kb,
Chap.1V, Corollary (4.15)].

Except some concrete examples [Bel], [F], [Be3], very little are known about
finite, non-trivial fundamental groups of Calabi-Yau threefolds and it is a little bit
surprising for the authors that the fundamental groups of Calabi-Yau threefolds
with Picard number one are always finite, while they should confess at the same
time that they do not know whether there actually exists a Calabi-Yau threefold
such that p(X) =1 and ¢3(X) =0, i.e., p(X) = R} (Tx) = 1. For the last phrase,
note that m(X) is finite whenever c3(X) # 0 by the Bogomolov decomposition
Theorem.

Apart from its own interest, Corollary 1 (2) together with the main Theorem
(1] and Wilson’s insight (W1, Page 141], ”The author should confess however to
his feeling that by using more specific information on the cup product, one might
hope for a result along this line that any Calabi-Yau manifold (threefold) is the
resolution of a Calabi-Yau model with p < 3.7, leads us to the following:

Question.

(1) Does any Calabi-Yau threefold X such that p(X) > 4 admit a non-trivial
birational contraction? (The affirmative answer implies the existence of a
rational curve on X [Ka, Theorem 1]).
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(2) Does any Calabi- Yau threefold whose Picard number is one contain a ratio-
nael curve? O

Concerning Question (1), the best result known to the authors is that of D.R.
Heath-Brown and P.M.H. Wilson which asserts that X admits a non-trivial bira-
tional contraction whenever p(X) > 14 [HW]. It is also well known that Question
(2) is affirmative for a complete intersection Calabi-Yau threefold. Indeed, such a
Calabi-Yau threefold always contains several lines and more (eg. [EJS]).

This paper has grown out of the second author’s master thesis at University of
Tokyo 1998 under the first author’s instruction. Both authors would like to express
their gratitude to Professor Y. Kawamata for his warm encouragement.

Notation and Convention.

Throughout this paper, we employ the following notation and convention:

(n := exp(27v/—1/n), the primitive n—th root of unity in C; :
Cp := {ala™ = 1}, the cyclic group of order n;
Dy, := {a,bla™ = b = 1,bab = a™!) = C, x C», the dihedral group of order 2n;
C§? » C3, the semi-direct product of C$? and C» := (1) whose semi-dirct product
structure is given by the = h~! for each h € C$?;
Qun = {a,b]a®® = 1,a™ = b%,b71ab = a™1), the binary dihedral group of order 4n;
S, = Auteet({1,2,- - - ,n}), the n—th symmetric group;

» := Ker(sgn : S, — {£1}), the n—th alternative group;
To4, 04z, I12g, the binary tetrahedral group of order 24, the binary octahedral group
of order 48, and the binary isosahedral group of order 120 (for the precise definition,
see for example [YY, Pages 12-14));
When a group G acts on a set S, we need to distinguish several sets of the fixed
points by:
S9:={s € Slg(s) =s} for g€ G;
SC = NgecS?, the set of points which are fixed by all the elements of G;
5G] = Ugec-{1357, the set of points which are fixed by some non-trivial element
‘of G. Note that the action of G on S is said to be fixed point free if SIG! = @.
For a d—dimensional smooth complete variety X with Ox(Kx) ~ Ox, we denote
by wx a nowhere vanishing holomorphic d—form on X.
Let A := C%/A be a d—dimensional complex torus. By abuse of language, we call
global coordinates (21, 22, ..., z4) of C* global coordinates of A if they are obtained
by an affine transformation of the natural global coordinates of C? given by the
i~th projections. When the origin 0 of A is chosen and A is regarded as a group
variety, we identify A with its translation group in a natural manner and denote
by (A), the group of n—torsion points.
In this paper, we often regard group actions on varieties as the so-called co-action
through their coordinates. The advantage of this lies in the fact that any actions
on cohomology groups are then described in a covariant way like (ab)* = a*b*.

§1. Calabi-Yau threefolds of Type A.
In this section we study Calabi-Yau threefolds of Type A. Let us define:

Definition (1.1). We call a finite group G a Calabi- Yau group of Type A (resp. a
pre-Calabi-Yau group of Type A) if there exist an abelian threefold A and a faithful
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representation G — Aut(A) which satisfy the following conditions (1) - (4) (resp.
(1) - (3)):

(1) G contains no non-zero translations;

(2) g*wa=wy forallg € G;

(3) Al = ¢;

(4) H°(4,04)¢ ={0}. O

Throughout this section, we abbreviate a Calabi-Yau group of Type A and a
pre-Calabi-Yau group of Type A simply by a C.Y. group and a pre-C.Y. group.
The goal of this section is to prove the following:

Theorem (1.2). Let G be a C.Y. group and A a target abelian threefold. Then,

(1) G is isomorphic to either CS* or Dg. Conversely, each of these two groups
is a C.Y. group.
(2) Moreover, there ezists a basis of H°(A,QY) under which the natural repre-
sentaion of G on H°(A, Q1Y) is described as follows:
If G = (a,b) ~ CS?, then

1 0 O -1 0 0
a*=10 -1 0 andd* = 0 1 0
0 0 -1 0 0 -1

If G = (a,bla* = b* = 1,bab = a™') = Dy, then

1 0 ¢ -1 0 0
aa=10 0 -1 andb™ = 0o 1 0 }. O
0 1 0 6 0 -1

We observe first that Theorem (1.2) implies the main Theorem [1].

Proof of the main Theorem [1] assuming Theorem (1.2).

Let X be a Calabi-Yau threefold of Type A. Choose an abelian threefold 4 and an
etale Galois covering 7 : A - X. Denote by G the Galois group of 7. Fix an origin
of 4 and set H := GNA. Then H is a normal subgroup of G. Moreover, the induced
action of G/H on the abelian threefold A/H satisfies the conditions (1)-(4) in (1.1)
and keeps the property (A/H)/(G/H) = X. So, replacing (G, A) by (G/H, A/H),
we may assume from the first that G itself is a C.Y. group and A its target abelian
threefold. Then, by (1.2)(1), G is isomorphic to either C$? or Dg. This proves
the assertion [1}(1) of the main Theorem. Let us fix global coordinates (z1, 22, 23)
of A such that (dzi,dzs,dzs) gives a basis of H°(4,0L) found in (1.2)(2). Recall
that H?(A,C) = A2H*(A,C) and that H'(4,Z)®z C = H°(4,Q%) & H(4,0})
under the identification H*(A4,C) = Hpz(A4,C). Using these equalities and the
description given in (1.2)(2), we readily find that H2(A4,C)¢ = Cldz, A dZ;,dzy A
dzs,dz3 AdZ3) when G =~ C$? and H?(A4,C)% = C(dz; Adzy,dzs AdZs + dzs AdZs)
when G ~ C$?. Combining this with H*(X,C) ~ H*(4,0)%, we get Bo(X) = 3
when G ~ C$° and By(X) = 2 when G =~ Dg. Recall the formulae h0(Q%) =
h*(Ox) = 0, Bao(X) = h*(X) = p(X) and ¢3(X) = 2(h1(X) — hPY(X)) =
2(h*1(X) — R}(Tx)) for a Calabi-Yau threefold. Now combining these equilities
with ¢3(X) = ¢3(A)/|G| = 0 and H%(X,C) ~ H?(A,C)¢, we obtain the formulae
in the main Theorem [1](3). Conversely, if G is a C.Y. group whose target abelian
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threefold is A, then the quotient space 4/G is a Calabi-Yau threefold by (1.1) and
by the Hodge symmetry h!(Ox) = h°(£2%). This together with the last statement
of (1.2)(1) implies the assertion [1](2) of the main Theorem. O

Next, we observe that C$? and Djg are actually C.Y. groups.

Proof of the fact that C$* and Dg are C.Y. groups.

We already observed by Igusa’s example {Example 1 in Introduction) that 0292 is
a C.Y. group. So it is enough to construct an abelian threefold on which Dg acts as a
C.Y. group. Let us first take two elliptic curves F; and E, and consider the product
abelian threefold A = E; x E; x E5. Let us fix points 1 € {(E1)a — (E1)2, 70,13 €
(E2)2 such that 7, # 73 and define automorphisms @ and b of A by a(z;, 20, 23) =
(z1+71,—23,22) and b(z1, 22, 23) = (=21,20+72,—23+73). Set G = (@, b). Then we
readily calculate that @ = b2 = id, abab = t,, at,a~' = t, and bt, b~} = t,, where
7= (0,72 + 73,72 + 73). In particular, {t,){x~ C») is a normal subgroup of G. Set
A= A/{t,.), G := G/{t,), a := amod (¢,), and b := bmod (¢,). Then G = (a,b)
and G acts on A in a natural manner. We show that this pair (G, A) gives a desired

1 0 0
example. By the definition of a and b, we have a"|H%(4, Q) = (0 0 —1) and

01 0
-1 0 0
b*|H°(A,Q4) = | 0 1 0 | under the basis (dz;,dzs,dz3). It follows from
g0 0 -1

these descriptions that a*wa4 = wy, b*wa = w4 and that the image of the natural
representaion p : G — GL(H°(4,0Y)) is isomorphic to Ds. Combining this with
the relations a* = b2 = id and bab = a~?! derived from those for @ and b, we find
that G =~ Im(p) =~ Ds. This, in particular, implies that G contains no non-trivial
translations.

Now it remains to show that AlGl = @. For this it is sufficient to check that
for each ¢ € {@*%7|0 < i < 3,0 < j < 1} — {id,t,}, there are no (z;, 22, 23) such
‘that either &(21, 22, 23) = (21, 20, 23) Or &(21,22,23) = (21,20 + 0 + 73, 23 + T2 + 73).
However, using 71,271,371 # 0 and 7, 73,72 + 73 # 0, we can readily check this by
an explicit calculation. O

It remains to prove the first part of (1.2}(1) and the assertion {1.2)(2). For this,
it is more convenient to consider not only C.Y. groups but also pre-C.Y.groups
because of the following inductive property:

Lemma (1.3). If G is a pre-C.Y. group, then so are all the subgroups of G. In
other word, if o finite group G contains a subgroup which is not a pre-C.Y. group,
then G itself is not a pre-C.Y. group.

Proof. It follows from the fact that the conditions (1)-(3) in (1.1) is closed under
taking a subgroup. O

Lemma (1.4). Let G be a pre-C.Y. group, A its target abelian threefold and p :
G — GL(H°(A,QY)); g — g~ the natural representation. Then,

(1) p is injective;
(2) Im(p) C SL(H®(A,QL));
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(3) Let g be an element of G of order n. Then, there ezists a basis of HO(A, Q1Y)
depending on g under which the matriz representaion of g*|H%(A4, ) is of
the form diag(1,(n, (%) Moerover, n € {1,2,3,4,6}.

Proof. The assertion (1) follows from (1.1)(1). The assertion (2) follows from
(1.1)(3), because H°(4,0%) = AHO(A, Q). Let us show the assertion (3). First
fix a basis of H%(A,Q%) under which the matrix representaion of g* is of the
form diag(a,b,c). Suppose a # 1, b # 1, and ¢ # 1. Then, there exist global
coordinates (z,y,z) of A and complex numbers p,q,r such that the (co-)action
of g on A is written as g(z,y,2) = (az + p,by + ¢,cz + r). However, the point
P=(p/(1—-a),q/(1-0b),7/(1 —¢)) € Ais then a fixed point of g, a contradiction.
This shows the first half part of the assertion (3). The middle part of (3) is now clear
by (1) and (2). Let us show the last part of the assertion (3). Since H!(4,Z)®zC =
HO(A,QL)eHO(A, (), the matrix representation g on H'(4,Z)®zC is of the form
g* = diag(1,¢n, ¢34, 1,Cns G Y) = diag(l, Gny G Y, 1, ¢ Y, Gn)- This together with the
fact that g* is at the same time defined over H*(A,Z) implies p(n) < (6—2)/2 = 2,
whence n € {1,2,3,4,6}. O

Next we determine commutative pre-C.Y. groups.

Lemma (1.5). Let G be a commutative pre-C.Y. group and A a target abelain
threefold. Then G is isomorphic to either one of C, (1 <n <6, n#35) or C'gez.
In particular, there exist no commutative pre-C.Y. groups of order greater than or
equal to 7. Moreover, if G is a commutative C.Y. group, then G is isomorphic to
C$? and the action of G on H°(A, QL) is same as in (1.2) (3).

Proof. By the structure Theorem of finite abelian group (eg. [Kt, Chap.3, Theorem
(3.4)]), wecan write G = {g1) & - - ©(gp) = Cp, ®Cr, ®---&C,,, wherer > 0 and
2 < niine|---|n,. In the case where r < 1, we get the result by (1.4)(3). Assume
that r > 2. Let 4,7 be two integers such that 1 <14 < j <r. Using g;9; = 9;9; and
(1.4)(3) and replacing g; and g; by other generaters of (g;) and (g;) if necessary,
we may choose a basis of H%(4,Q4) under which g7 |H%(4,Q}) and g;|H°(4,Q})
are simulteneously diagonalised as either one of the following forms:

(1) g; = diag(1,(n,, G3)}) and g7 = diag(1, Cn, G )1) or

(2) g7 = diag(1,(n,, (r') and gj = diag(¢}, 1, Gn))-

In the former case, we have g; = (gj’-‘)”i/"", whence g; = (g;)™/™ by (1.4)(1),
a contradiction. In the latter case, we calculate gjg; = diag((,jjl,(m,(;l Cn;)
and (gi_l)"g; = diag((,jjl,c,;l,(nignj). Thus, by (1.4)(3), we find that C;lgnj =
CniCn; = 1. This implies ¢, = (n; = =1, whence n; = 2 for alli =1,2,---,7 by
(1.4)(3). Assume that r > 3. Then, under an appropriate basis of H%(4, ), we
have g7 = diag(1, ~1,-1) and g5 = diag(—1,1,—1). Then g3 must be of the form
diag(—1,—1,1). However, this implies g;g5 = g3, whence g1g> = g3 by (1.4)(1), a
contradiction. Thus, r = 2, that is, G ~ CS$? and there exists a basis of H°(4, QL)
under which g} = diag(1l, -1, —1) and g3 = diag(—1,1, —1). From this description,
we also find that H°(4,04)¢ = {0}if G ~C$*. O

Next, we examine non-comutative pre-C.Y. groups. First we estimate their or-
ders. For this, we make use of the following Theorems known in the Group Theory:
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Theorem (1.6) (Wielandt, eg. [Kt, Chap.2, Theorem (2.2)]). Let G be an
arbitray finite group, p a prime number and a a positive integer such that p®||G]|.
Then there exists a subgroup

H of G such that |H] = p°.

Proof. This follows from the Sylow Theorem and the well-know property

of p—group K that there exists a sequence of subgroups {1} = Ko < K; < K2 <
- < Kpo1 < K, = K such that for all i, K;_; is a normal subgroup of K; and
that K;/K;_1 ~ C,. See for example [Kt, ibid.] for a direct proof. O

Theorem (1.7) (Burnside-Hall, eg. [Su, Page 90, Corollary 2]). Let K be
an arbitray p—group and H a mazimal, normal commutative subgroup of G. Set
IG} = p™ and |H| =p*. Then a{a+1)>2n. O

Remark. This Theorem is also applied in [Mu] to study finite symplectic automor-
phism groups of K3 surfaces. 0O

Let us return back to pre-C.Y. groups.

Lemma (1.8). Let G be a pre-C.Y. group. Then, |G| is either 2" or 2™ - 3,
where n is an integer such that 0 < n < 3. In orther words, |G| is either one
0f1,2,3,4,6,8,12 or 24.

Proof. By (1.6) and (1.4)(3), there exist non-negative integers m and n such that
|G} = 2™ - 3™. Assume that m > 2. Then, it follows from (1.6) that G contains
a subgroup H of order 32. Then H is a pre-C.Y. group of Type A (1.3) and is
isomorphic to either C$* or Cy. However, this contradicts (1.5). Thus m = 0 or
1. Next assume that n > 4. Then by (1.6), G contains a subgroup H of order 2*.
Let K be a maximal normal commutative subgroup of H and set |K| = 2¢. Then,
applying (1.7), we find that a > 3. However, this again contradicts (1.5) and (1.3).
Thusn <3. O

. Combining this with the classification of non-commutative finite groups of small
order (eg. [Bu, Chap.4, Pages 54-55 and Chap.3, Pages 83-89]), we get:

Corollary (1.9). Let G be a pre-C.Y. group. Assume that G is non-commutative
and that |G| < 12. Then G is isomorphic to either one of Dg(~ S3), Ds, Qs, D12,
Qiz or A4, O

We show that among the candidates in (1.9), only Ds is realised as a C.Y. group
of Type A. For this, we make use of the following:

Proposition (1.10) (eg. [Kt, Chap.8, Pages 273-275]). Up to isomorphisms,
the complez linear irreducible representaions of Doy, (3<nN€Z), Qun (1 <n€eZ)
and Ay are given as follows:
(Do). D2n = {(a,bla™ = b*> = 1,bab = a™!) such that n = 0(mod2):
(1) pro:a=Lb=1lpia=»Lbo =1, po:a= -1b= 1, p3:a
1,0+ —1;
) (gﬁ 0 ) (o 1) A ,
(2) pox :a 0 =k b , where k is an integer such that
Cn 10
1<k<n/2-1.
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(D). Dan = {a,bla™ = b> = 1,bab = a™!) such that n = 1(mod2):
(1) pro:a—= b1, p1:a— 1,0 -1;

¢k 0 0 1 . , b th
(2) pok :a— 0 ok b — 1 0) where k is an integer such that
n

1<k<(n—1)/2.
(Qo). Qun = (a,ba®" = 1,a" = b%,b~ab = a™!) such that n = 0(mod?2):
(1) pro:a—=r Lb=1;p1:ar b= —1ipiora— -Lb—= 1 ;30—

-1, -1,
1 3
(2) poi:am (%" 91) b (2} %) , where | is an integer such that
2n
1<k<n~-1.

(Q1). Qun = (a,bla®" = 1,a™ = b2, b"tab = a~!) such that n = 1(mod2):
(1) pro:am= Lb= 1 pm1:a= Lb -1 poa— =10+ (4
pizam —1,brr —(y; '

Cén O 0 C4 : . .
(2) p2p:am | 7 ! b= G 0 where | is an integer such that

1<k<n~1.
(Ag). Aq = (a,b)(C Sy), where a = (123) and b= (12)(34):
(1) pro:a—= b=l pa:am (b1 praam (b 1;

0 10 1 0 0
(2) pg:a—~» |0 0 1},0={0 -1 0 |]. O
1 0 0 0 0 -1

Proof. It is easy to check that all the representaions in the list above are well-
defined, irreducible representations. Calculating the characters for @ and b, we also
see in each case that representations in the list are not isomorphic to one another.
Now using the well-known equality |G| = Zizl(dimVi)?, where (p;, Vi) (1 <k <)
are all the non-isomorphic irreducible representations (eg. [Kt, Chap.8, page 270}),
we find in each case that there are no other irreducible representations. O

Lemma (1.11). Let G be a pre-C.Y. group and A a target ebelian threefold. As-
sume that G 1is isomorphic to either Dg, Qg or Q12. Then, under the notation
in (1.10), the irreducible decomposition of the natural representation p : G —
SL(H®(A,QL)) is of the form p = p11 ® p21 if G ~ Dg and p = p10 S p21 if
G =~ Qg or Q2. In particular, if G is a C.Y. group, then G = Dg and the action
of G on H°(A, Q) is given as in (1.2)(3).

Proof. Note that p is not isomorphic to a direct sum of three 1-dimensional repre-
sentations, because G is non-commutative while p is injective (1.4)(1). Now using
list in (1.10) together with (1.4)(1),(2), we obtain the desired irreducible decom-
positions. Using these decompositions, we readily find that H%(4,Q%)¢ = {0} if
G =~ Ds and that H°(A,04)¢ ~ Cif G =~ Qg or Q1. For the last statement in
(1.11), we may just note that the representation po 1 of Dg in (1.10) is equivalent

. 0 -1 1 0
t:otheoneg;wenb)ar—«)(1 O>andb»—>(0 _1). a

The next two Lemmas are crucial and their proofs require geometric argument.
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Lemma (1.12). Neither D¢(= S3) nor Dyp is a pre-C.Y. group.

Proof. Since Dg can be embedded in Di», the assertion for D;» follows from the
one for Dg (1.3). Assume the contrary that Dg = (a,bla® = b* = 1,bab=a" ) is
a pre-C.Y. group. Let A a target abelian threefold and p: Dg — SL(H?(4,0Y4))
the natural representation. Then the same argument as in (1.11) shows that p =
p1,1 S p2.1. Thus, there exists an appropriate basis (v1,v2,v3) of H°(4, Q4) under

1 0 0 -1 00
which a* = (O ¢ O ) andb*=1}1 0 0 1 }. Letusfixanorigin0of 4 and
0 0 ¢t 0 10

regard A as a group variety. Set a := a(0) and 8 := b{0). Then, we have a = t,0ap
and b = tg 0 by where ag, by € Autgroup(4). Set E := Ker(ag ~ ida : A — A).
This is a subgroup scheme of A and is of dimension 1 by the description of a*. Let
us take the connected component E of E containing the origin 0. Then E is an
elliptic curve. Consider the quotient group S := A/F and denote by = the natural
projection A — 5. Since E is a one dimensional, S is an abelian surface.

Claim. G descends to an automorphism group of S, that is, there exist automor-
phisms @ and b of S such thatGow =moa and that box =7 ob.

Proof of Claim. Let F be afiber of r. Then, there exists s € A such that F = E+s.
Let = be a point of E. Then a{z + s) = t,{ao({e + 8)) = t,{aple) + ap(s)) =
ao{e) + (ao{s) + a). Combining this with ao(E) = E, we have a(E +s) = E +
{ao(s) + a). Thus, a descends to an algebraic automorphism @ of S which maps
7(s) to m(ap(s)+ ). Similarly, we calculate b(e+s) = by(e) + (bo(s) + 3). Note that
agbo(0) = boay?(0) = 0. Combining this with the equalities ab = ba™?, a* = ay
and b* = b}, we get aobo = boag'. Thus, ag(bo(e)) = bo(ag’(e)) = bo(e), whence
bo(e) € E for e € E. This together with by(0) = 0 € E implies that by(e) € E. Thus
b(E +5) = E + (bo(s) + 8), whence, b also descends to an algebraic automorphism
bof 5. O

By construction, there exists a basis (73,73) of H%(S, Q%) such that =~ (92) = v2
and m*(73) = v3. Under this basis, the actions of @ and b on H°(S, N} 5) are

written as @ = (CS CDI) and b = (? é) From this description, we see

that SZ consists of isolated points. Now, using the canonical graded isomorphism
H"(5,C) = &f_, A* (H°(S,Q%) ® H(S, QL)) and applying topological Lefschetz
formula, we readily calculate that |S%| = 3"3_,(=1)*tr(@*|H*(S,C)) = 9. On the
other hand, the equality ab = ba~! gives an equahty @b = ba~'. Then a(b(3)) =
b(@1(3)) = b(3) for 3 € S®. This implies that b acts on the nine point set S°.
Combining this with the fact that b is of order 2, we find a point § € S? such that
b(3) = 5. Let F be the fiber of = over 5. Then, b(F) = F and b*|HO(F,QL) =

—[1 Since F is an elliptic curve, F? is then non-empty. However, this contradicts
ASl=9. O

Lemma (1.13). The group A4 is not a pre-C.Y. group.

Proof. Assume the contrary that A4 = (a,b) is a pre-C.Y. group, where a and b
are same as those in (1.10). Let A be a target abelian threefold and set 4 = C? /A,
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ON CALABI-YAU THREEFOLDS WITH INFINITE FUNDAMENTAL GROUP 11

where A is a discrete sublattice of C® of rank 6. (In this proof, we regard 4 as a
three dimensional complex torus rather than an abelian variety.) Then, by the same
argument as in (1.11), we readily find a basis (v, v2, v3) of H°(A, Q%) under which

010 1 0 O
a*|H°(A, Q%) =10 0 1| andb"|H°(A4,0Q4)=(0 -1 0 |. Letuschoose

1 00 0 0 -1
the global coordinates (z;, 22, 23) of C® such that v; = dz; for all = 1,2,3. Then
there exist complex numbers a;, 3; such that the (co-)actions of a and b on A are
written as a(21, 22, 23) = (22, 23, 21 )+ {1, @2, a3) and b(z1, 22, z3) = (21, —22, —23)+
(B1,82,83). Then, we readily calculate that a3(z1, 22, 23) = (21, 22, 23) + (@, @, @),
where a := a; + as + a3. Since a® = id, we have (a,a,a) € A. Set t := t,. Then,
we calculate that b= ot 0 b(z1, 29, 23) = (21, 22, 23) + (@, —a, —a). On the other
hand, since a € A, we have b= ot 0 b = id. Thus, (o, -a,—a) € A. In particular,
(22,0,0) = (o, @, @) + (&, —a, —ar) € A. However, this implies a®(0, a» + a3z, a1 +
e + 203) = (200 + 202 + 203,00 + 03,01 + as + 203) = (0,02 + a3z, 01 + a2 +
2a3) + (22,0, 0), whence a?(P) = P for P = [(0,a2 + a3,a; + a2 + 203)] € A, a
contradiction. O

In order to finish the proof of (1.2), it only remains to show the following:
Lemma (1.14). Let G be a group of order 24. Then G is not a C.Y. group.

Proof. Assuming the contrary that there exists a C.Y. group G of order 24, and
denoting its target abelain threefold by A, we shall derive a contradiction. For this,
we make use of (1.3) and the following:

Proposition (1.15) (eg. [Bu, Chapter 9, Pages 171-174]). Let G be an (ar-
bitrary) group of order 24 and Ho a 2— Sylow subgroup of G. Then Hy is isomorphic
to either Cs, C2 @ Cy, C$3, Dg or Qg and G is isomorphic to one of the following
15 groups according to the isomorphism class of Hs:
(I) Hz = (a) =~ Cs:

(I1) G = C3 x Cs;

(In) G = (¢,b) =~ C3 x Cy, where a™lca =c?.
(II) Hy = (a,b) ~ Cy @& Cy:

(III) G~ Cg X (CQ 604),'

(II) G ={c,a,b) ~C3 x (Co & Cy), where a~'ca =c and b~1chb = ¢!,

(II3) G ={c,a,b) ~C3 x (Ca © Cy), where a=ca=c"! and b-lecb=c.
(III) Ha = (a1, a2,a3) ~ C*:
(I15L) G ~ C3 x CS3;
(IIL) G = {a1,as,a3,¢) =~ C$3 x Cs, where ¢ 'ajc = a1, ¢c"lasec = a3 and
1(13(2 = Qa2a3;,
1(III3) G ={c,a,b) ~ C3 % 02@3, where al_lcal =c, ay'cas = c and 02_100.2 =

=

(IV) Hy = (a,bla* = 1,a2 =b%,b7lab=a™ ') ~ Qs:
(IV1) G = C3 x Qg;
(IV2) G = (a,b,c) ~ Qg x Cs, where ¢ tac = b, ¢~ lbc = ab;
(IV3) G = {c,a,b) ~ C3 x Qg, where a"lca = ¢, b~tcb = c~!.
(V) Hy ={a,bla* =1, = 1,bab = a™!) ~ Ds:
(V1) G~ C3 x Dg;
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12 KEIJI OGUISO AND JUN SAKURAI

(V3) G = {c,a,b) = C3 x Dg, where a~*ca=c, b-lcb = c™?;
(V3) G = (c,a,b) = C3 x Dg, where a™ca =c7?, b~ cb = ¢;
(V4) G ~ 54, d

In the case where (I),(II),(I1I), H, is then a commutative pre-C.Y. group of
order 8. However, this contradicts (1.5). In the case where (I'V}), (IV3), (V1), and
{(V2), the subgroup {(a,¢) of G is isomorphic to Cy2. However, this again contradicts
(1.5). In the case where (V}), G contains a subgroup which is isomorphic to Aj.
However, this contradicts (1.13). Let us consider the case (IV3). Set H := {a,b). By
(1.11), the representation py of H on H%(A4, QY) is decomposed as py = p1,0©p2.1-
Let us write the subspace of H°(4,Q}) corresponding to p; ¢ by Vi. Since ac = cb,
we have a*(¢*(2)) = ¢*(b"(2)) = ¢*(z) for z € Vi, whence V] is also G—stable.
Thus, by the Maschke Theorem (eg. {Kt, Chap.8, Theorem (8.1)]), there exists a
2-dimensional G—stable subspace V, of H%(A, ?}) such that H°(4,0%) = Vi eV,.
Then under an appropriate basis of V1 and Vs, the matrix representation of G

1 0 0 1 0 O
on H°(A,QL) is of the form; a" = (O G 0 ), b = (0 0 C4) and

0 0 -( 0 G O
¢ = (g g) where o is a complex number and C is a 2 x 2 matrix. Since

c is of order 3, « is either 1,{3 or (;'. If a = 1, then H%(4,Q4)¢ = Vi # 0.
However, this contradicts our assumption that G is a C.Y.group. Thus, we may
assume that o = (3 by replacing ¢ by ¢~* if necessary. Then, the eigen values of C

_ (&G 0
“\0

are 1 and (;'. However, then (a?)*c* _ C)’ whence the element a?c does

not have an eigen value 1 and this contradicts (1.4)(3). Hence the group in (IV2)
is not a C.Y. group. Finally, we consider the case (V3). Set V; := HC(A,Q} ).
Then, by (1.4)(3), dimV} = 1. Using ca = ac™! and cb = bc, we see that V)
is also stable under the actions a* and b*, whence G~stable. Then, again, by
the Maschke Theorem, there exists a two-dimensional GG ~stable subspace V2 of
"HO(A, Q) such that H°(4, Q%) = V1 © V5. Note by (1.11) that this decomposition
is also the irreducible decomposition of the representation of {a,b){~ Ds}. Thus,

1 0 ©
by (1.11), there exist a basis of V; and V5 under which o™ = (0 G O ),
0 0 —GC

-1 0 O 10
b* = 0 0 1)andc = ( ), where C is a 2 x 2 matrix. Then b*c* is
0 10 0 C

of the form (_01 103) Thus ord(bc) = 2 by (1.4)(3). On the other hand, using

bc = cb, ord(b) = 2 and ord(c) = 3, we see that ord(be) = 6, a contradiction. Hence
the group in {V3) is not a C.Y. group. Now we are done. [

§2. Calabi-Yau threefolds of Type K.

In this section, we study Calabi-Yau threefolds of Type K. As in Section 1, we
define:

Definition (2.1). We call a finite group G a Calabi- Yau group of Type K if there
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erist a K3 surface S, an elliptic curve E and a faithful representation G — Aut(S x
E) which satisfies the following conditions (1) - (4):

(1) G contains no elements of the form (ids, non-zero translation ofE);

(2) g*wsxp =wsxg forallg € G;

(3) (Sx E)¥ =0;

(4) HO(S x E,04,5)° = {0}. O

Throughout this section, we again abbreviate a Calabi-Yau group of Type K
simply by a C.Y. group. The goal of this section is to prove the following:

Theorem (2.2). Let G be a C.Y. group and S x E a target threefold. Then.
(1) G is isomorphic to either C™ (1<n <3), Dop (3<n<6) or C$% % Ca;
(2) Conversely, each of these groups except possibly for Dy, (3 < n < 6) and
C8% x Cy is a C.Y. group;
(3) In each case of (1), the dimension d(G) of the invariant part H*(S x E)¢
is calculated as in the following table:

G Cg C?Q C:,eg Ds Dg Dw Dl2 C?z A C‘g
dG) |11 |7 5 5 |4 |3 3 3

]

As in section 1, we observe first that Theorem (2.2) implies the main Theorem
[2].
Proof of the main Theorem [2] assuming Theorem (2.2).

First recall the following:

Lemma (2.3) [Be2, Page 8, Proposition]. Let S be a K3 surface and E an
elliptic curve. Then Aul(S x E) = Aui(S) x Aut(E), that is, each element g of
Aut(S x E} is of the form (gs,g95) where gs € Aut(S) and gg € Aui(E).

Proof. It is sufficient to show that Aut(S x E) C Aut(S) x Aut(E). Let g be
an element of Aut(S x E). Note that the second projection p, : S x E — E is
nothing but the albanese morphism of S x E. So, by the universality of albanese
morphism, there exists an element gg of E such that p; 0 ¢ = gg o p2. In other
words, g is of the form; g : (s,e) — (gs(s,e),gr) and e € E — gs(*,e) is then
regarded as a morphism from E to Aut(S). However, since H°(S,Ts) = 0 and
Aut(S) is then descrete, this morphism must be constant, that is, gs(s, e) does not
depend on e € E. Thus, g is of the form, g = (gs,gg) where gs € Aut(S) and
ge € Aut(F). O

Let X be a Calabi-Yau threefold of Type K. Fix a K3 surface S, an elliptic
curve E and an etale Galois covering 7 : S x E — X and denote by G the Galois
group of 7. Choose an origin of E and set H := G N ({ids} x E). Then H is
a normal subgroup of G by (2.3). Moreover, the induced action of G/H on the
quotient threefold (S x E)/H = S x (E/H) satisfies the conditions (1)-(4) in (1.1)
and keeps the property (S x (E/H))/(G/H) = X. So, replacing (G,S x E) by
(G/H,S x (E/H)), we may assume from the first that G itself is a C.Y. group
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and S x E its target threefold. Conversely, if G is a C.Y. group and S x E is
its target product threefold, then (S x E)/G is a Calabi-Yau threefold of Type K.
Therefore (2.2)(1) and (2) imply the main Theorem [2](1) and (2) respectively. The
verification of [2](3) is exactly same as the one for C.Y. group of Type A. O

Next, we observe that C$™ (1 < n < 3) are actually C.Y. groups.

Proof of the fact that 02971 (1< n<3) are C.Y. groups of Type K.

It is enough to find a K3 surface S and an elliptic curve E such that C$"
(1 £n < 3) act on the product § x E as C.Y. groups. The following construction
is much inspired by the work of Kondo [Ks]. Let us first take three elliptic curves
with fixed origin Ey, Es and E and set S := Km(E, x E»), the smooth Kummer
surface associated with the product abelian surface E; x Ej. Fix elements a;, b; €
(E;)» ~{0} for ¢ = 1,2 such that a; # b;. Then the three automorphisms of E; x E»
defined respectively by (z1,20) v (—21,—22), (21.22) = (=21 + a1, —22 + a2),
(z1,22) = {71 + b1, 22), and by (21, 22) = (21, 22 + b2) descend to those of Aut(S),
which we denote by 8, t; and ¢, respectively. Let us fix Py, P, € (E)2—{0} such that
P, # P, and consider the three automorphisms of $ x E defined by .= 8, —1g),
t1 := (t1,tp,) and t2 := (t2,tp,). Then Gy := () = Cs, G := (4,t;) ~ C2? and
Gs = (8,1, t3) =~ CS%. By construction, it is clear that each of G, < Aut(S x E)
satisfies the conditions (1), (3) and (4) in {2.1). Moerover, by using the explicit
description of G, we can readily check that the condition (2) in (2.1) is also satisfied
for each of G,, < Aut(S x E). Now we are done. O

The rest of this section is devoted to prove (2.2)(1) and (2.2)(3).
Proof of (2.2)(1). First we note the following:

Lemma (2.4). Let S be a K3 surface and g an element of finite order of Aut(S)
such that SK9 = 0. Then,
(1) g =id if g*ws = wg; and
(2) g is of order 2 and g*ws = ~ws if g*ws # ws. Moreover, in this case, the
quotient surface S/{g) is an Enriques surface.

Proof. Setn := ord(g) and T := S/{g). Then T is a smooth projective surface such
that 2 = x(Os) = nx(O7) and that h*(Or) = 0. Thus, the pair (n, x(Or)) is either
(1,2) or (2,1). Assume that g*wgs = wg. Then, ws descends to a nowhere vanishing
holomorphic two form on T and T is then a K3 surface. Thus, (n, x{(O71)) = (1,2).
Assume next that g*ws # wg. Then (n,x(Or)) = (2,1), whence g is an involution
and satisfies g*ws = —wg. The last part of (2) is nothing but (one of) the definition
of an Enriques surface. O

Lemma (2.5). Let G be a C.Y. group, S x E its target threefold and p, : G ~
Aut(S) and py; : G — Aut(E) the natural projections under the identification
Aut(S x E) = Aut(S) x Aut(E) (2.3). Set Gs := Im(p) and Gg = Im(ps).
Then Gs ~ G =~ Gg through p; and ps.

Proof. Tt is sufficient to show that both p; are injective. Let g be an element of
Ker(p:). Then g is of the form g = (ids, gg) such that gywg = wg
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(2.1)(3). Then gg is a translation of E whence gg = idg by (2.1)(1). Hence p
is injective. Let g be an element of Ker(p;). Then g is of the form g = (gs,idEg).
By (2.1)(2)(3), gs satisfies that S9s)) = § and that giws = ws. Now, we deduce
from (2.4) that gs = ids. Therefore p; is also injective. [

Lemma (2.6). Let G be a C.Y. group and S x E its target threefold. Then, there
exists a normal commutative subgroup H of G such that

(1) H#G and if 1 € G— H then ¢ is of order 2 and G = Hx <t >, where the

semi-direct product structure is defined by tht = h™! for h being in H; and

(2) there exist positive integers n and m such that nlm and that H ~ C, © Chy.

Moreover, this subgroup satisfies that hws = ws if h € H and that 15ws = —wg
and S =0 ifLe G- H.

Proof. Let Hg be the kernel of the natural representation Gg — GL(H®(E, Q%)).
This implies that the corresponding subgroup Hs of G5 acts trivially on H°(S, 0%).
Since H(S x E,Q%, p) =~ HY(E,QL)H= ~ C, we see that Hg # Gg. Let ig
be an arbitrary element of Gg — Hg and set ¢ := (ts,tg) € Aut(S x E). Then
there exists a complex number « such that o # 1 and that tpwg = awg. Note
that E‘ # . Then tsws = o~ twg and $*S = §. Therefore 15 is an involution and
o = —1. Let us fix one of such « € G — H and choose another «' € G — H. Then,
(tgoty)"wE = wE, whence izotgp € Hg. Therefore, Gg = Hg x(g). Fix the origin
0 of E so as to being 0 € E*. Then tg = —1g and ~1lgot, 0o ~1p = t_, = t; .
In particular, tg o hg o tg = h;:l if hg € Hg. Moreover, since Hg consists of
translations of E, there exist positive integers n and m such that Hg ~ C,, € Cpy
and that n|m. Now the result follows from (2.5). O

In order to finish the proof of (2.2)(1), it remains to show (n,m) € {(1,k)(1 <
k <6),(2,2),(3,3)}. For this we make use of the following:

Theorem (2.7) [Ni, Page 106, Section 5, Paragraph 8]. Let S be o K3
surface.
(1) Let g # id be an element of Aut(S) of finite order such that g*ws = ws. Set
n = ord(g). Then n < 8. Moreover, SY is a finite set and its cardinality
1S9 is given as in the following table:

ord(g) |2 |3 |4 |5 |6
S9 |8 |6 |4 |4

(2) Let H be a finite, commutative subgroup of Aut(S). Assume that H 1is
symplectic, that is, ¢*ws = ws for each g € H. Then H is isomorphic to
either one of Cp, (1< n <8),C&" (2<n<4),C®Cy, CadCs, CF,
or CP%. O

Due to (2.7) and the fact that Hs is a commutative symplectic automorphism
group of S of the form Gs ~ C, & C,, (2.8), it is now sufficient to show that
(n,m) # (1,7),(1,8),(2,4).(2,6), (4. 4).

Assume that (n,m) = (1,7). Then Hg = (hs) ~ C7 and Gg = (hs,tjtohsor =
h3'). Thus ts acts on S”s. On the other hand, since S*S consists of three points,
(Shs)ts #£ 0, a contradiction to S*S = .
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Assume that (n,m) = (1,8). Then Hs = (hs) = Cs and G == (hs,tjtohsot =
h3'). Thus ts and ks act on Sh% — Shs_ Note that |Sh5 — S§hs| = 2 by (2.7)(1). We
set §h5 — Shs = (P, P}. Since §'s = Shs = ), we have 15(P,) = hs(P)) = Py.
However, then ts o hg € Gg — Hg while P, € §t5°%s = ), a contradiction.
Assume that (n,m) = (2,4). Then Hs = {(gs) & (hs) =~ C» & C4. As before,
(95, hs,ts)/(h3) =~ C$* acts on the set Sh% — Shs consisting of four points by
(2.7)(1). Thus, we have a natural representation ¢ : C$® — S, through this action.
Since S, does not admits a subgroup isomorphic to C$3, Ker(y) # {id}. Moreover,
since S =0 if f € Gs — Hs, Ker{y) C {gs, hs)/{hs). Let a € {gs, hs) is a lift of
a non-trivial element of Ker(y). Since hs & Ker(y), (o, h%) is isomorphic to either
C$? or Cy © Cy. On the other hand, letting P € Shs — Shs we have a natural
injection (a,h%) <> SL(Ts.p) =~ SL(2,C). However, this contradicts the following
well-known:

Theorem (2,8) eg. [Su, Chap.3 section 6, Theorem 6.17]. Let G be a finite
subgroup of SL(2,C). Then G is isomorphic to either one of Cp, Qan, Tos, Oss or
Ls. O

Assume that (n,m) = (2,6). Then Hs = (g5) & (hs) =~ C» & Cs. Then S"s
consists of 2 points. Set S*s = {Py,P,}. As before, (gs,ts) acts on {P;, P2}
and satisfies tg(P) = P> and tg(P,) = P;. Assume that gg(P1) = P;. Then
{9s,hs) ~ Co®Cs — SL{Ts p,) =~ SL(2,C), a contradiction to (2.8). Assume that
gs{P1) = P,. Then, 1o gs(P) = Py, a contradiction to ¢t o gs € Gs — Hs.

Assume that (n,m) = (4,4). Then Hp = (gs) & (hs) =~ Cy & Cs. Set S95 =
{P, P, P;,P,}. Then (1s,hs) acts on S95. Since neither (gs,hs) =~ CfQ nor
(9s,h%) ~ C4 ® Cy can be embeded into SL(2,C) by (2.8), after renumbering if
necessary, we have h5(Py) = Piyq for 1 <i < 3. Set t5(P1) = Piy1. Then1<i <3
and ¢s o h§(P) = Py, a contradiction to ¢ o h§ € Gs — Hs. Now we are done.
Q.E.D. for (2.2)(1). O

Proof of (2.2)(3). Using the Kunneth formula and (2.5), we have H2(S x E,C)¢ ~
" H*(S,0)% ® H°(E,C) @ H°(S,C) ® H*(E,C) ~ H*(S,C)%s & C. Threfore, it is
sufficient to calculate dimH?(S, C)®s . We carry out this calculation by dividing into
cases according to the isomorphism classes of G. In what follows, we demonstrate
how to calculate dimH?(S,C)®s only for the most typical case G := (a) x (b) =~
Ce x C2 = Djy (and the calculation for other cases, which is similar to the one
of this case, is left to the readers as an exercise). From now on, for simplicity, we
denote Gs by G. Under the notation in (1.10), the irreducible decomposition of
the natural representation of G on H?(S,C) is written as

H*(S,C) = pig @ pii @ 0¥5 © p¥5 @ o5 @ 5% — (1)

Let us determine the values p,qg,r,s,t,u by applying the topological Lefschetz
fixed point formula:

4

Xtop(S%) = D (=1)ftr(g7|HH(S,0)) = 2+ tx(g"|H*(S,0)) — (2).

k=0
Comparing the dimension of the both sides of (1), we have
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=p+qg+r+s+2t+2u-(3).

Note that |S%] = 2 by (2.7)(1). Then, combining (1) and (2) with |S°| = 2, we
have 2 = x40 (S%) = 2+ ptr{p10(a)) + - +utr(pa2(a)) =2+a+b-c—d+e~f.
This gives

O=p+g-—-r—s+t—u-(4).

Similarly, from |S%°| = 6, |S°| = 8 and S% = 5% = 0§, we deduce
d=p+g+r+s—t—u-(5)

6=p+g—r—s5~—2t+2u- (6

~2=p—gqg+r—s-{7)and

—2=p—g-—r1-+s-{8).

Now solving the system of equations (3) - (8), we readily obtain
p=2,g=4,r=2,s=2t=2andu=4

This implies dimH?2(S,C)¢ = p = 2. Therefore dimH?(S x EC)® =2+ 1 =3 in
the case where G =~ Dy, O
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