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  Apology from the first author.
  First of all, I should apologise the change of the title of this report. 'At the

Kinosaki Conference 1998 I have presented some part of my joint work with D.
Q. Zhang about finite automorphism groups of K3 surfaces. However, around the
last December, I have started and gradually concentrated to study another subject,
Calabi-Yau threefolds with infinite fundamental group, jointly with my student,
Jun Sakurai. Till now I have been occupied more or less by this subject. This is
completely elementary but turns out to be more interesting than I expected before
starting and we have now obtained some results which, I hope, are worth being
reported here.

  Introduction.

  Throughout this paper, we call a smooth compact Kahlerian threefold X a
Calabi-Yau threefold if it satisfies Ox(Kx) ! Ox and hi(Ox) = O. This defini-
tion of Calabi-Yau threefold is adopted by many algebraic geometers and is indeed
parallel to that of K3 surface. However, contrary to the case of K3 surface, these
two conditions Ox (Kx) fy Ox and hi(Ox) = O for a Kahlerian threefold X imply,
on one hand, h2(0x) = O whence the projectivity of X [Kd], but, on the other
hand, neither the simply-connectedness of X even nor the finiteness of Ti (X) as is
illustrated by the following two examples:

Example 1 (Igusa's example; [I, Page 678], [U, Example 16.16]). Let Ei
(i = 1,2,3? be three elliptic curves with origin O and Pi E (Ei)2 - {O} a non-
zero two torsion point of Ei. Consider the abelian threefold A := Ei Å~ E2 Å~ E3
and its involutions, g := t(p,,o,o) o (idE, Å~ -idE, Å~ -idE3) and h := t(o,p2,p3) O
('idE, Å~ -idE2 Å~ idE,), where t. stands for the translation by an element * of
A. Then Åqg,hÅr = {id,g,h,gh}(! C2e2) acts freely on A and the quotient varz'ety

X := AlÅqg, hÅr is a Calabi- Yau threefold whose fundamental group Ti (X) fits in with
the exact sequence O- Ze6 - Ti (X) - C2e2 - o. o

Example 2 (eg. [Ogl, Example 3.2]). Let E be an elliptic curve,
  T an Enriques surface, r, : S - T the universal covering ofT and L the cover2'ng
involution of T : S - T. Consider the product S Å~ E and its involution g :=
t Å~ -idE. Then ÅqgÅr(tr C2) acts freely on S Å~ E and the guotient variety X :==
(S Å~ E)/ÅqgÅr is a Calabi- Yau threefold whose fundamental group r,i(X) fits in with
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2 KEIJI OGUISO AND JUN SAKむRAI

the exαct sequence O→zEB2→町（X）→C2吋 0. Note also that the projection 

P1: S x E→s induces an elliptic fibration p1 : X→T. 口

Example 1 also provides an explicitをxampleof a Calabi司 Yauthreefold which 
contains no rational curvをSぅ whilether宕 isaむonjecturewhich predicts that every 
Calabi-Yau thre日foldwith finite fundamental group contains a rational curve (cf. 
[Mo]). Example 2 shows that there exists a Calabi-Yau threefold admitting an ellip蜘

tic fibration whose base space is not a rational surface, while it can be shown that 
the base space of an elliptically fibered Calabi-Yau threefold is rational whenever 
rr1 (X) is fi岳民（cf.[Ogl Lemma 3.4]). So, in th母studyof Calabi紳 Yaut訟をefoldsラit
is sometimをsinevitable to distinguish the case where r.1 (X) is infinitを．

The goal of this paper is to describe all the possible infinite fundamental groups 
of Calabi-Yau thr明 foldsin the form of group extension (Corollary 1) and to get a 
fairly practical criterion for Calabi暢 Yauthreefolds to have finite fundamental group 
in terms of Picard numbξr and the one for those to have non-trivial second Chern 
class c2(X) (Corollary 2). Consult [W2] and [03,4] for the importa民 eof the role 
of c2 in Calabi飾 Yauclassifications. 

Let X be a Calabi-Yau threefold with infinite fundamental group. Acoording 
to the Bogomolov decomposition Theorem ([Bel, 2]), such an X admits an etale 
Galois cov官 ingfrom either an abelian threefold or the product of a K3 surface and 
総在日ipticcurve. Wを callX of Type A 

in the former case and of Type K in the latter case. Among many candidates of 
such coverings for a given X, we always fix the smallest one called the minimal split暢

ting cover, which we can always obtain by posing one additional condition on the 
Galois group G that G contains no non-zero translations in the case where X is of 
Type A and that G contains no elements of the form (ids, non-zero translation of E) 
in the Eお宕 whereX is of Type K ([Be2, S号εtion3], seξalso Definitioぉ（1.1)and 
(2.1)). 

Adopting this convention and using notation listed at the end of Introduction, 
we can state our main result as follows: 

Main Theorem. 

{1} Let X be a Uαlabi-Ya包 threefoldof 為rpeA and G the Galois group of 

the minimal splitting covering. Then, 

(1) G is iso仰叩hicto eitl附 Ci2or Ds; 

(2) Converse！ν，each of these two groups occurs as the Galois group of the mirト
imal splitting cover of some Calαbi-Yau threefold of Type A; 

(3) In each case of {1]{1}, the Piacrd number p(X) of X, which is eq包alto 

h1(Tx) the dimension of the Kurar山hispαcε of X, is determined uniquely 

by Gαηd is calculated αs in the following table: 

c I c;2 Iρ8 
ρ（X) I 3 I 2 

{2} Let X be a Cαlαbi-Yau threefold of Type kαηd G the Gαlois group of 
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the minimal splitting covering. Then, 

(1) G is isomorphic to either c!fn (l壬η 壬3),D2n (3主n壬6)or Ci2 :><1 C2; 
(2) Conversely, each of these groups occurs as the Gαlois group of the minimal 

splitting cover of some Calabi-Yau threefold of Type K except possibly for 

D2η 舟三 π孟6)and C~2 対 C2;
(3) In each case of {2}(1), p(X), which is again equal to h1(Tx), is determined 

訟niq包εfぎbyG and is calculated as in thεfollowing table: 

G I C2 I C!f 2 I Cr3 I Ds I Ds I D10 D12 I cf2河 C2

ρ（X) I 11 I 1 I 5 I 5 I 4 I 3 3 I 3 
口

As an immediate Corollary, we get the following: 

Corollary 1. Let X beαCalabi-Yau threefold andαssume that町（X)is infinite. 
The冗れ（X)/1αlls into 。ηeof the following exact sequences: 

。→zes→πi(X）→G-+ 1, where G is isomorphic to either C{2 or D8; 
。→ z62→む（X）吋G→1,where G is isomorphic to either cfm (1壬災三 3),

Dz托 （3壬η三6)or Cr2泌 C2・fπparticular，巧（X)is always solvable，邑

Taking the contraposition of the main Theorem, we also obtain the next: 

Corollary 2. Let X be a Calabi・Yauthreefold. Then, 

(1) Ifρ（X) == 1, 6, 8, 9, 10 or greater thαη or equal to 12, then 111 (X) is finite. 
(2) Ifρ（X) = 1 orρ（X) 2: 4, then X is notαn etale q包otientof an abelian 

threefold. In particular, the second Chern clαSS Cz(X）手Oin H4(X, IB?.）.口

The last statement follows from the fact that a Kiihlerian manifold X such that 
c1 (X) = c2(X) = 0 in HぺX,Bi.) is an etale quotient of a complex torus [Kb, 
Chap.IV, Corollary (4.15)]. 

ExeをptSOI挺 coぉer母t暗号xampl告s[Bel｝ヲ ［F］ヲ［Be3],very little are known about 
finite, non-trivial fundamental groups of Calabi-Yau threefolds and it is a little bit 
surprising for the authors that the fundamental groups of Calabi-Yau threefolds 
with Picard number one are always finite, while they should confess at the same 
time that they do not know whether there actually exists a Calabi-Yau threefold 
such that ρ（X) = 1 and c3(X) = 0う i.e.‘p(X)= h1 (Tx）口 1.For the last phrase, 
note thatπi (X) is finite whenever c3 (X) =P 0 by the Bogomolov decomposition 
Theorem. 

Apart from its own interest, Corollary 1 (2) togeth官rwith the main Theorem 
[l J and Wilson’s insight (WI, Page 141］，”The author should confess however to 
his feeling that by using more specific information on the cup productヲ onemight 
hope for a 詑 suitalong this line that any Calabi-Yau manifold ( thrをefold)is the 
Eをsolutionof a CalabトYaumodel with p ~ 3.ぺleadsus to the following: 

Question. 

(1) Does any Calαbi－｝匂uth reef old X such thatρ（X）と 4admit a non-trivial 
birational contraction? (The affirmative answer implies the existence of a 
rational curve on X [Kα，Theorem 1刀．
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(2) Does aηu Calabi-Yau threefold whose Pieαrd number is one containαratio-

nal curve？ 己

Concerning Question (1), the best result known to the authors is that of D.R. 
Heath倫 Brownand P.M.H. Wilson which asserts that X admits a non-trivial bira-
tional contraction wl問 ieverρ（X！と14[HW]. It is also well known that Question 
(2) is a伍rmativefor a complete intersection Calabi-Yau threefold. Indeed, such a 
Calabi-Yau threefold always contains several lines and more ( eg. [EJS]). 

This pap日rhas grown out of the second author's master thesis at University of 
τokyo 1998 und号rthe first author’s instruction. Both authors would like to exp開 SS

their gratitude to Professor Y. Kawamata for his warm encouragement. 

Notation and Convention. 

Throughout this pap告r,we employ thεfollo¥ving notation and convention: 
仏：＝ exp(2r.V-T／η） , the primitive π…th root of unity in C; 
Cη ：＝ (alan = 1), th宕 cyclicgroup of ord君主匁；

Dzη：＝（aぅblαπ コ b2= 1, bαb＝α一1）コ Cn河 C2ぅthedihedral group of order 2n; 
Cf2災 C2ヲ th告 semi-directproduct of Cr2 and C2 := (i) whose semi-dirct product 
即 U山 reis given by山＝ h-1 for each h E Cr2; 
Q4托：口（a,b!a2n = 1，αn=b2,b-lαb＝α－1), the binary dihedral group of order 4n; 
Sn := Autset( {1, 2γ ・・ , n}), the n-th symmetric group; 
An := Ker( sgn : Sn→｛土1｝）ぅ then-thalternative group; 
九4,04s, Ii20・thebinary tetrahedral group of ord日r24, the binary octahedral ~roup 
of order 48, and the binary isosahedral group of order 120 (for the prをcisedefir ion, 
see for example [YY, Pages 12-14]); 
When a group G acts on a s芭tS, we need to distinguish several sets of the fixed 
points by: 
$9 := {sを Slg(s)= s} for gε G; 

Sc..;：＝「l9EcS9,the set of points which are fixed by all the elements of G; 
5[GJ := UgEGー｛l}S9,the set of points which are fixed by some non-trivial element 

of G. Note that the action of G on S is said to be fixed point f問 eif 5[G］認 0.
For a d-dimensional smooth complete variety X with 0 x (Kx) :::-= 0 x, we denote 
by wx a nowhere vanishing holomorphic d-form on X. 
Let A:= c_d /A bead-dim時間onalcomplex torus. By abuse of language, we call 
global coordinates (z1ヲZ2‘…，Zd)of en global coordinates of A if they are obtain告d
by an affine transformation of the natural global coordinates of Cd given by the 
i-th projections. When th母origin0 of A is chosen and A is r号gardedas a group 
variety, we identify A with its translation group in a natural manner and denote 
by (.4）托 th号 groupof n-torsion points. 
In this paper, we often regard group actions on varieties as the so-called ccトaction
through th告ircoordinatξs. The advantag号 ofthis lies in the fact that any actions 
on cohomology groups are then described in a covariant way like （αb）術＝ α＊b*.

§1. Calabi-Yau threefolds of Type A. 

In this s日ctionwe study CalabトYauthreefolds of Typ君 A.Let us define: 

Definition (1.1). We callαβnite gro叩 Gα Calαbi－拘包 groupof Type A (resp. a 

pre-Calabi-Yi仰 groupof Type A} if there exist anαbeliαη threefold Aαηdαfaithfu 
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representation G '---+ Aut(A) which satisfy the following conditions {1）司 （4)(resp. 

{1) -(3)): 

(1) G contains no non-zero translations; 

(2) g山 A=WA for all gε G; 
(3) A[G] = 0; 
(4) H0(A, Sl~ ） c = {0｝.口

Throughout this sectionぅ weabbreviate a Calabi・Yaugroup of Type A and a 
pre-Calabi-Yau group of Type A simply by a C.Y. group and a pre-C.Y. group. 

The goal of this section is to prove the following: 

Theorem (1.2). Let G be a C. Y. group and A a target abelian threefold. Theη， 
(1) G is isomorphic to either C?2 or D8・Conversely,each of thesεtwo gro叩 S

isαC Y. group. 
(2) Moreover, there exists a basis of H0(A, SI~ ） under which the natural repre-

sentaion of G on H0(A, D~ ） is descr伽 das follows: 

!JG= （α，b) c:::: Ci2, then 
fl O 0 ¥ I -l 0 O ¥ 

α車＝ I 0 -1 o I and b• = I 0 1 0 I 

¥ 0 0 -1 I ¥ O O -1 I 

If G = (a, bla4 = b2 = 1, bαb = a-1) :::-Ds, then 

II O O ¥ Iー1 0 0 ¥ 
G指＝ I 0 0 -1 lαηd b. = I 0 1 0 ト ロ

¥ 0 1 O I ¥ 0 0 -1 I 

We observe first that Theorem (1.2) implies the main Theorem [l]. 

Proof of the main Theoremρ］ assuming Theorem (1勾，

Let X be a Calabi-Yau threefold of Type A. Choose an abelian threefold A and an 
etale Galois covering r. : A→X. Denote by G the Galois group of r.. Fix an origin 
of A and set H := GnA. Then His a normal subgroup of G. Moreover, the induced 
action of G /Hon the abelian threefold A/ H satisfies the conditions (1）ー（4)in (1.1) 
and keeps the property (A/H)/(G/H) = X. So, replacing (G,A) by (G/H,A/H), 
we may assume from the first that G itself is a C.Y. group and A its target abelian 
threefold. Then, by (1.2)(1), G is isomorphic to either Ci2 or D8. This proves 
the assertion [l](l) of the main Theorem. Let us fix global coordinates (z1ぅz2,z3)

of A such that (dz1,dz2,dz3) gives a basis of H0(A,S1~ ） found in (1.2)(2). Recall 

that H2(A.,C) ＝八2H1 (A, C) and that H1 (A, Z）⑧z c = H0(A., n~ ） EB HO(A,石~
under the identification HベA,q = Hi)R (A, q. Using these equalities and the 
description given in (1.2)(2), we readily find that H2(A, qc = C(dz1八占i,dz2 A 

占 2,dz3八占3)when G '.:::' Cf2 and H2(A,qG = C(dz1八占i,dz2八占2+dz3八占3)
when G :::-Cfl2. Combining this with H吋X，。 ：：：－ H事 （A，。G,we get B2(X) = 3 

when G :::-Ci32 and B2(X) = 2 when G c:::: D8・Recallthe formulae h0(!1~ ） = 
h2(0x) = 0, B2(X) = h1・1(X) = p(X) and c3(X) = 2(h1・1(X) -h2・1(X））ニ
2(h1・1(X）ーが（Tx))for a Calabi-Yau threefold. .Now combining these equilities 
with c3(X) = c3(A)/IGI = o and H2(Xぅq'.:::' H2(A,qc, we obtain the formulae 
in the main Theorem [1](3). Conversely, if G is a C.Y. group whose target abelian 
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threefold is A, then the quotient space A/ G is a Calabi-Yau threefold by ( 1.1) and 
by the Hodge symmetry h1(0x) = h0(f!1:-). This together with th暗 laststatement 
of (1.2)(1) implies the assertion 出（2)of the main Theorem. 己

a>? 
Next, we observe that Cf-and Ds are actually C.Y. groups. 

Proof of the fact that Ctf 2 aηd Dsα問 C.Y. groups. 

Weal主eadyobservをdby lgusa's example (Exa1勾 le1 in Introduction) that Cf{2 is 
a C.Y. group. So it is enough to construct an abelian threefold on which Ds acts as a 
C.Y. group. Let us first take two elliptic curves E1 and E2 and consider the product 

abelian threefold A = E1×E2 x E2・Letus fix points r1ε （E1)4 -(E1)z, T2,T3ξ 

(E2)z such that T2 =j:. T3 and d君主neautomorphisms a and b of A by a(z1' Z2ヲZ3)= 
(z1十T1' -Z3' Zz) and b( Z1 ' Z2' Z3) = （一Z1,Zz十T2,-z3+r3). Set Gぉ（ムb).Then we 
readily calculate that a4 ＝ロド ＝id，品ab=t,., at,.a-1 = tγand bt,.b-1 = tア， where 

T:: (0ぅT2÷T3,Tz十 T3).In partiεular, (t，.）（土工 C2)is a normal subgroup of G. Set 

A：出 A/(t,.),G := G/(t，.）， α：＝a mod (t,.), and b := bmod (t,.). Then G = （αぅb)
and G acts on A in a natural manner. We show that this pair (G, A.) gives a d控訴red

/ 1 0 0 ¥ 
号xample.By the definition of a a対 b,we have G獅 IHO(Aラ口1)= I o o 一1I an 

¥ 0 1 0 I 
/ -1 0 0 ¥ 

bつH0(A,fl1)= I 0 1 0 I under the basis (dz1,dz2,dz3). It follows from 
¥ 0 0 -1 / 

these descriptions that α繍WA=WA‘b*wA =WA and that the image of the natural 
representaionρ ：G→GL(H0(A，の1))is isomorphic to Ds・Combiningthis with 

the relations a4 = b2 = id and bab口 a-1derived from those for a and 主wefind 

that G '.'.:::'.Im（ρ） '.'.:::'. Ds. This, in particular, impliξs that G contains no non‘trivial 
translations. 

Now it remains to show that A[GJ = 0. For this it is sufficient to check that 
for each Eε ｛ail)IO壬i:::; 3,0 :::; j壬1｝ーがd,t，.｝ラ th結reare no (z1, zz, z3) such 
that either ε（z1,z2,z3）出（z1,z2ヲZ3)Or c(z1, ZzぅZ3)= (z1, Z2 + Tz十 T3,Z3 ＋乃＋ T3). 
However, usingη，2r1, 3r1 =j:. 0 and 乃，T3，乃＋ T3手0,we can readily check this by 
an explicit calculation. 口

It remains to prove the first part of (1.2)(1) and the assをrtion〔1.2)(2).For this, 
it is more convenient to consider not only C.Y. groups but also pre・C.Y.groups
because of the following inductive property: 

Lemma (1.3). If G is a pre-C. Y. group, then so are all the subgroups of G. In 
other word，ザafinite group G contαins a subgroup which is not a pre-C. Y. gro包p,
then G itself is not a pre糊 C.Y. group. 

Proof. It follows from the fact that the conditions (1）値（3) in ( 1.1) is closed under 
taking a subgroup. 己

Lemma (1.4). Let G be a pre-C. Y. gro包p,A its targetαbelian threefold αndρ： 

G→GL(H0(A, fl1));g川 fthenαtural representation. Then, 

( 1) p is injectit町
(2) Im(p) c SL(H0(A, fl1)); 
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(3) Let g beαn element of G of order n. The爪 thereexists a basis of H0(A, O~ ） 
depending oη g under which the matrix representaion of g*IH0(A, O~ ） is of 
the form diag(l，ふ，(;;-1). Moerover, nε｛1,2,3,4ヲ6}.

Proof. The assertion (1) follows from (1.1)(1). The assertion (2) follows from 
(1.1)(3), because H0(A, O~ ） ＝八3H0(A, 0~ ）. Let us show the assertion (3). First 
fix a basis of H0 (A.ぅ0¥)under which the matrix representaion of g* is of the 
form diag（αヲb,c). Suppose G 手1,bヂ 1,and c :j:. l. Thenヲ thereexist global 
coordinates (x,y,z) of A and complex numbers p,q,r such that the (co-)action 
of g on A is written as g（丸払z)= （αx + p, by+ q, cz + r). However, the point 
P=(p/(l－α）， q/(l -b）ぅr/(1-c）） εAis then a fixed point of gヲacontradiction. 
This shows the first half part of the assertion ( 3). The middle part of ( 3) is now dear 
by (1) and (2). Let us show the last part of the assertion (3). Since H1 (A, Z）③zC= 

H0(A, O~ ） eHD(A, O~ ）， the matrix representation g on H1 (A‘;z）②zC is of the form 

g* = diag(l, (nヲ（；；－1,1ぅ（，；＂， (;1) = diag(l, (n, (;;-1, 1ヲ（；；－1,(n)・ This together with the 
fact that g* is at the same time defined over H1 (A, Z) implies ψ（η）三（6-2)/2= 2, 
whence ηε ｛1,2,3ぅ4,6｝.口

Next we determine commutative pre-C.Y. groups. 

Lemma ( 1.5). Let G be a commutative pre-C. Y. group and A a target abelain 

ti問 efold. TheηG is isomorphic to either one of Cπ （l壬n三6,n手5)or Cf2. 
In particulαr, there exist no commutative pre-C. Y. gro包psof order greater thαnor 

equal to 7. Moreover，ザGis a commutαtive C. Y. group, then G is isomorphic to 
C{2 and the action of G on H0(A, 0¥) is same as in (1.2) (3). 

Proof. By the structure Theorem of fin 

(3剖］）， we can write G = (g1) EB・・・ EB (gr) ~ Cn, 8 Cn2 8 ・・・EB C，い whereTどOand 
2三n1ln2I・ ・ lnr. In the case where r $ 1, we get the result by (1刈（3).Assume 
that T三2.Let i, j be two integers such that l三i< j三r.using g;gj = gjgi and 
(1.4)(3) and replacing g; and gj by other generaters of (g;) and (gj) if necessaryヲ

we may choose a basis of H0(A, 0¥) under which gjlH0(A, 0~4) and gjlH0(A, O~ ） 
are simulteneously diagonalised as either one of the following forms: 

(1) gj = diag(l, (n,, （~1) and gj = diag(l, （～，Cζ1) or 

(2）ぱ＝ diag(l, Cπzべι1)and gj = diag( （ζ1,1,(nJ・

In the former case, we have gj = (gj)n;/n>, whence g; = (gj）η；／n; by (1.4)(1), 

a contradiction. In the latter case, we calculate gj gj = diag( （ζ1, (n,, （ζ1（π） ) 

and (gj1)*gj = diag((;;-/,(;;-/,(n;(n;)・ Thus, by (1.4)(3), we find that (;;-/(n; = 
(n; (n; = l. This implies (n; = （π； = -1, whence n; = 2 for all i = 1,2,・・・ ,r by 

(1.4)(3). Assume that T主3.Then, under an appropriate basis of H0(A., O~ ）ヲ we
have gi = diag(l, -1, -1) and g2 = diag(-1, 1, -1). Then g3 must be of the form 
diag(-1,-1,1). However, this implies gig2 = g3, whence g1g2 = g3 by (1.4)(1), a 

contradiction. Thus, r = 2, that is, G ~ Cf2 and there exists a basis of H0(A, O~ ） 
under which gi = diag(l，ー1ヲー1)and g2 = diag(-1, 1, -1). From this descriptionヲ

we also find that H0(A, O~ ） G = {O} if G ~ c:f2.口

Next, we examine non-comutative pre-C.Y. groups. First we estimate their or-
ders. For this, we make use of the following Theorems known in the Group Theory: 
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Theorem (1.6) (Wielandt, eg. [Kt, Chapム Theorem(2.2)]). Let G be an 
arbitray finite gro包：p,pα prime number and a a positive integer such that pαllGJ. 
Then there exists a subgroup 

H of G such that IHI= pα． 

Proof. This follows from the Sylow Theorem and the well-know property 

of p-group K that there exists a sequence of subgroups {1} =Koく K1< K2 < 
．く Kn-l< Kn = K such that for all i, Ki-l is a normal subgroup of Ki and 

that K;/ K;-1 :::::: Gp. Se吉 forexample [Kt, ibid.] for a dir号ctproof. む

Theorem (1.7) (Burnsid←Hall, eg. [Su, Page 90, Corollary 2]). Let K be 
an arbitray p-group aηd H a maximal, normalεommばatives必1gro包pof G. Set 

IG¥ =pπ and ¥HI= pα. Thenα（a+ 1）三 2n. ロ

Remark. This Theorem is also applied in [Mit} to stud百五nites吉mplecticautomor-
phism gro包.psof K3 surfaces. ロ

Let us return back to pre-C.Y. groups. 

Lemma (1.8). Let G be αpre-C. Y. gro叩・ Then, ¥G¥ is either 2n or 2n・3ァ

where n isαn int句ersuch that 0 :5 n三3. In orther words, IGI is either oηE 
of l, 2, 3ヲ4,6, 8, 12 or 24. 

Proof. By (1.6) and (1.4)(3), there exist noルnegativeinteg日rsm and n such that 
IG¥ = 2n ・ 3m_ Assume that m と2.Then, it follows from (1.6) that G contains 
a subgroup H of ord日r32. Then H is a pre-C.Y. group of Type A (1.3) and is 
isomorphic to either Cf'2 or C9. However, this contradicts (1.5). Thus m 口 Oor 
1. Next assume that n三4.Then by (1.6), G contains a subgroup H of order 24. 
Let K be a maximal normal commutative subgroup of H and set JK¥ = 2a Then, 
applying ( l. 7), we find that αど3.However, this again contradicts (1.5) and (1.3). 
Thus n < 3. ロ

Combining this with the classification of non-commutativ日finitegroups of small 
order ( eg. [Buラ ChapムPages54・55and Chap.5, Pages 83-89]), we get: 

Corollary (1.9). Let G be αpre-C. Y. group. Assume that G is non-commutative 
and thαt ¥GI :5 12. Then G is isomorphic to either one of D6（三 53),Ds, Q恥 D12,
Qi2 or A十。

We show that among the candidates in (1.9), only D8 is realised as a C.Y. group 
of Type A. For this, we make use of the following: 

Proposition (1.10) (eg. [Kt, Chap.8, Pages 273糊 275]). Up to isomorphisms, 

the complex linear irreducible問 presentaionsof D2n (3三πeZ), Q初 ｛l壬nε Z)
and A4 are giむenas follows: 

(Do). D2n = （α，b＼αη ＝ b2 = 1, bαb＝α－1) such that n三 O(mod2):

(1) P1,o：α＞－＋ 1, b r-+ 1；ρ1,1 : a叫 1,b←→－1;P1 2 : aト→－1,b吋 l;Pi.3 : a t-+ 
-1.b同一l;

( （~ 0 ¥ ( 0 1 ¥ 
(2) P2,k：αr-+ ~ 0 (;;k ) 'b 吋~ 1 0｝： 初h例 kis m 州 ：gersuch仇

1壬k~ミ η／2 … 1.

72 



ON CALABI-YAU THREEFOLDS WITH INFINITE FUNDAMENTAL GROUP 9 

(Di)・ D2n = （α＇blαn = b2口 lぅbαb＝αー1)such that n滋 l(mod2):

(1）ρ1.0：αf--t l,b吋 l；ρ11 ：αH  l,b吋ーl;

( （~ 0 ¥ ( 0 l ¥ 
(2）ρ2.k：αH  ¥ Q (;k ) , b H ¥ l Q) ， 叫erek is an integer such that 

1三k壬（η－1)/2. 

(Qo). Q4n = {a,bja2n = 1ヲ♂＝ b2ヲる－1ab= a-1) such thatη＝ O(mod2): 
(1）ρ1,0: a H 1，る叫 l；ρ1,1: a H 1，る H -1; P1.2：α吋－1,b H l; p1,s : a H 

-1 bH -1・

( c;b 0 ¥ ( 0 Qγ 
(2）ρ2,1 : a H ( '2n 1 ) b H ( ) , where l is an integer such that 

¥ 0 Cふ／’＼(4 0) 
l<k<n-l. 

(Qi). Q4n = （α，blα2n口 l，αη 誌が，b-1αb= a-1) such that n祭 l(mod2):

(1）ρ1,0：αH  lサb川 1；ρ1,1: a H 1, b H -1；ρ1,2：α同一1,b H (4; 

P1,s: a H 1, b川…（4;

( c:b 0 ¥ ( 0 (4 ¥ l 
(2) P2,l : a H ( 2n l J b H I I p め erel is an integer such that 

¥ 0 （ふ／’＼(4 0) 
I<k<n-1. 

(A4) . .44 ＝いきめ（C54), where a= (123) and b = (12)(34): 
(1）ρ1,0：αH l,b吋 1；ρ1,1:aH(3,bHl；ρ1,2：α吋（31,b H 1; 

10 1 0¥ /1 0 0 ¥ 

(2）ρ3・aHjO 0 1卜b叫 Io -1 o卜 口
¥ 1 O 0 I ¥ 0 0 -1 I 

Proof. It is easy to check that all the representaions in the list above are well-
definedヲirreduciblerepr昨日配ntations.Calculating the characters for a and b, we also 
see in each case that repr昨日間tationsin the list are not isomorphic to one another. 

~ow using the 悦 11-knownequalit~ JGI = L~＝l (dim只）2ラwhere（ρ；， Vi) (1三k壬l)
are all the non-isomorphic irr母duciblerepresentations (eg. [Kt, Chap.8‘pagξ270]), 
we find in each casξthat th告reare no oth君主 irreduciblerepr母sentations. 0 

Lemma (1.11). Let G be a pre-C. Y. group and A a target abelian threefold. As-

sume that G is isomo巾hieto either Ds, Qs or Qi2・ Then,under the notation 
in ( 1.10), the irreducible decomposition of theηatural representαti onρ：G→ 
SL(H0(A, O~ ）） is of the form ρ＝ P1,1 EB P2,1ザGα Dsαndρ＝ρ1,08ρ2,1ザ
G := Qs or Q12. In pαrticular，ザG is a C. Y. group, then G '.::::'. D8 and the action 
of G on H0(A,0~ ） is given as in (1.2)(3). 

Proof. Note that p is not isomorphic to a direct sum of three I-dimensional repre-
sentationsヲ becauseG is noルcommutativewhile pis i吋ective(1.4)(1). Now using 
list in (l.10) together with (1.4）〔1），〔2),wεobtain the desired irreducible decom-
positions. Using these decomposition民間 T号adilyfind that H0 （ムロ訂G = {0} if 
G := Ds and that H0(A, n~戸ご C if G ：＝守sor Q12・Forth号 laststateお鉛tin 
(Lll), we may just note that the representation p2,1 of D8 in (1.10) is equivalent 

( 0 -1 ¥ ( 1 0 ¥ 
to the one given by a吋 l I and b HI ). 

¥ 1 0 J ¥ 0 -1 J 

The next two Lemmas are crucial and their proofs require geometric argument. 
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Lemma (1.12). Neither D6(-:::: 53) nor Di2 isαpre明 C.Y. group. 

Proof. Since D6 can be embedded in D12, the assertion for D12 follows from the 
one for D6 (1.3). Assume th告とontrarythat D6ぉ（aきbla3= b2 = 1, bab = a -11 is 
a pre-C.Y. group. Let A a target abelian threefold and p: D6 吋 SL(H0(,4 ， 合~））
the natural representation. Then the same argument as in (1.11) shows that ρ 
ρ1,1 E9 P2,1・Thusう thereexists an appropriate b削除（v1,v2,v3)of H0(A ぅ n~ ） un伽r

/ 1 0 0 ¥ / -1 0 0 ¥ 
which α‘＝ I 0 (3 0 l and b• = I 0 0 1 I . Let us fix an origin 0 of A and 

¥ 0 0 （~1 J ¥ 0 1 0 J 
r告gardAぉ agroup variety. S告tα ：＝ a(O) and 3：口針。）.Then, w控havea= ta: oαo 

and b = te o bo where αoぅboE Autgroup(A). Set E := Ker（α0 -idA ; A→A). 
This is a subgroup scheme of A and is of dimension 1 by the d日日criptionof a*. L日t
us take the connected component E of E containing the origin 0. Then E is an 
elliptic curve. Consider the quotient group S ・ぉ A/E and denot控 by" the natural 
projection A→S. Since Eis a one di毘 ensioぉal,S is an abelian surface. 

Claim. G descends to an automorphism group of S, that is, there exist automor-
phisms a and b of s such that a 0 7r ＝πoα and thαt b Dπ＝π口b.

Proof of Claim. Let F be a fiber of rr. Then, there exists sεA such that F = E十s.
Let x be a point of E. Then α（x + s) = ta:（αo(e + s〕） = ta: （α。（ε）÷ao(s))
句作〉÷ （ao(s）十 α）.Combining this with a0(E) = Eラ wehav母 α（E÷s)= E十

（αo(s) ＋α） . Thus, a descends to an algebraic automorphism百ofS which maps 
介（s)to rr(ao(s）＋α）. Similarly, we calculate b(e十s)= bo(e）十（bo(s)＋β）. Note that 
αobo(O) = boα01(0) = 0. Combining this with the equalitiesαb口 bα－1，α歳出 α5

and b* = b0, we getαobo = boα01. Thus, ao(bo(e)) = bo(a01(e））口 bo（ε）， whence 

bo(e）εE  for e E E. This togeth母rwith弘（0)= 0 E E implies that b0（ε〉ξ E.Thus 
b(E÷s) =E十件。（s）÷/3),whenceぅ balso descends to an algebraic automorphism 
b of S. 口

By construction, there exists a basis （汚？汚） of H0(S,01) such that 11＊（可）出向

and -rr* （可） = V3・ Underthis basis, the actions of a・ and Fi* on H0(S, 01) are 

( (3 0 ＼→ （O 1¥ 
r itten幻＊出＼ 0 (31 } and b = ¥ 1 0 J. F主総 thisぬ均t風間 see

that 5a consists of isolated points. Now, using the canonical graded isomorphism 

H*(S,C) = ei=o /¥k (H0(S,01) e Ji可玄可）肌dapplying topological Lefscl川 Z

formula‘we readily calculate that IS"! = :Z:::！＝。（一l)ktr(a.!Hk(S,<C)) = 9. On the 
other h釦 d,th日equalityab = bα一1gives an equality ab= i)a--1. Then苔（b（吉））
b（δ－1 （吉）） = b（苔） for sξ sa:. This implies that b acts on the nine point S号t
_9ombini碍 thiswith the fact that bis of order 2, we find a point sεS" such that 
b（苔） = s. Let F be the fiber of介 over吉. Then, b(F) = F and b*!H0(F,O｝） は

…1. Since F is an elliptic curve, pb is then non側 empty.Howev睦r,this contradicts 
_4[G] ＝日．口

Lemma (1.13）・ The立均等 A4is not a pre-C. Y. g均等・

Proof. Assume the contrary that A4 = （α， b) is a pre-C.Y. group, where a and b 
are same as those in (1.10). Let A be a target abelian threefold and set A = C3 ／九
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where A is a discrete sublattice of C3 of rank 6. (In this proof, we regard A as a 
three dimensional complex torus rather than an abelian variety.) Then, by the same 
argument as in (1.11), we readily find a basis (v1パ恥v3)of H0(A.ヲ n~ ） under which 

(0 1 0¥ fl 0 0 ¥ 
a*JH0(A., n~ ） = I 0 0 1 I and b*JH0(A., n~4) = I 0 -1 0 I -Let us choose 

¥ 1 0 o I ¥ O 0 -1 I 
the global coordinates (z1ぅz2,z3) of C3 such that vi = dzi for all i = 1, 2, 3. Then 
there exist complex numbers αhβz such that the ( co-)actions ofαand b on A. are 

writtenasa(z1,z2,z3) = (z2ぅZ3,Z1）＋（αI，α2，α3) andb(z1,z2,z3) = (z1,-z2,-z3)+ 
(JJ1, JJ2, /)3). Then, we readily calculate that α3(z1,z2,z3) = (z1ぅz2,z3) + （αヲα7α）ラ
where α：＝ αi＋α2＋α3・Sinceα3 =idヲ wehave （αヲα？α）εA.Sett：＝九・ Then
we calculate that b-1 o to b(z1, z2, z3) = (z1, z2ヲZ3)+ （αラーα，ーα）． On the other 
hand, since αεA, we have b-1 o to b =id. Thusヲ（αヲーαヲーα）εA.In particular, 

(2α） 0, 0) = （α，α7α）＋（α，－α，－α）εA. However, this implies a2(0，α2＋αぁα1+ 

α2 + 2α3) = (2α1 + 2α2+2α3，α2＋α3，α1 ＋α2+2α3) = (0，α2＋α3ヲαi＋α2+
2α3) + (2α，0, 0), whence α2(P) = P for P = [(Oヲα2＋α3，α1＋α2+2α3）］ εA., a 
contradiction. ロ

In order to finish the proof of (1.2), it only remains to show the following: 

Lemma (1.14). Let G be a group of order 24. Then G is ηot a C. Y. group. 

Proof. Assuming the contrary that there exists a C.Y. group G of order 24, and 
denoting its target abelain threefold by A., we shall derive a contradiction. For this, 
we make use of (1.3) and the following: 

Proposition (1.15) (eg. [Bu, Chapter 9, Pages 171・174]).Let G be Gη （ar-
bitra叩jgroup of order 24 and H2 a 2-Sylow subgroup of G. Then H2 is isomorphic 
to either Cs, C2 ffi C4, Ci3, Ds or Q8αηd G is isomorphic to one of the following 
15 gro叩 Saccording to the isomorphism class of H2: 

(J) H2 =(a):::: Cs: 
(li)G::::C3×Cs; 
(I2) G = (c,b):::: C3 ~Cs, whereα一lcα＝c-1_ 

(I I) H2 = (a, b) :::: C2 EB C4: 
(Jli) G:::: C3×（C2 e C4); 
(J[z) G = (c，α，b):::: C3河（C2EB C4), where a-1ca = c and b-1cb = c-1. 
(Il3) G = (c，α，b):::: C3河（C2EB C4), whereα－1ca = c-1 and b-1cb = c. 

(III) H2 = （α1・α2,a3)::::Cf3: 
(Illi) G:::: C3×Ci3; 

(III2) G = （αi, a2，α3, c) :::: C?3 ~ C3, where c-1αiC ＝α1, c-1α2c = a3 and 
c 1α3C ＝α2a3; 

(Ills) G = (c, a, b) :::: C3河 C?3,whereα11cα1 = c, a;-1cα2 = c and a;-1cα2 = 
c • 

(JV) H2 = （α，bJa4 = l,a2 = b2,b-1ab = a-1):::: Q8: 
(IVi) G:::: C3 x Qs; 
(I九） G = （α，b, c):::: Qs河 C3,where c-1ac = b, c-1bc =ab; 
(I巧） G = (c, a, b) :::: C3河 Q8,where a-1cα＝ c, b-1cb = c-1. 

(V) H2 = （α，blα4 = 1, b2 = 1ぅbab＝α－1) ::::Ds: 
（九） G:::: C3×Ds; 
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（九） G = (cぅ仏 b):::;C3河 Ds,where a-1cα ＝ c, b-1cb 
（九） G = (cヲα，b):::;C3河 ρs,where a-1cα ＝ c-1, b-1cbは c;

(V4) Gご 54・ロ
In the case where (I), (II), (III), H2 is then a commutative pre-C.Y. group of 

order 8.豆owever,this contradicts (1.5). In the case ¥vhere (/Vi), (JIも）， (Vi), and 

｛ちLthεsubgroup 〈α，c)of G is isomorphic toε12・廷owever,this again contradicts 
(1.5). In the cぉewher告｛日）， G contains a subgroup which is isomorphic to A十

However, this contradicts (1.13). Let us consider th告C出 e(J九）.Set H :=(aラb).By 
(1.ll), the representation ρH of Hon H0(A, f11) is decomposed as PH= P1‘08向上

Let us write the subspace of H0(Aヲ01)corresponding to向、oby Vi. Since αc = cb, 
we have G事（c・＇（x))＝♂（b'(x)) ＝♂（x) for zε 九， whence ・Vi is also G-stable. 
Thus, by the Maschke Theorem (eg. [Kt, Chap.8, Th叩 rem(8.1)]), there exists a 

2-dimensional G-stable subspace 九ofH0(A, 01) such that H0 （ム n~ ） = V1 e九
Then under an appropriate basis of Vi and九， the matrix representation of G 

/1 0 0¥  /1 0 0¥ 
on H0(A, 01) is of the form；ゲ＝ I O ら 0 トb*= I 0 0 (4 I and 

¥ 0 0 -(4 J ¥ 0 (4 0 J 
fa 0¥ I l , ・ mplex number and C is a 2 x 2 matrix. Since 

- ¥ 0 c J 

c is of ord告r3，αis either 1, (3 or (31. Ifα ＝ 1, then H0(A, f11)G = Vi手0.
However, this contradicts our assumption that G is a C.Y.group. Thus, we may 
assume that α＝ (3 by replacing c by c-1 if necessary. Then, the eigenvalues of C 

are 1 a叫 31 H…r, then （川＝（~ユ）, whence the element山 does

not have an eigenvalue 1 and this contradicts (1.4)(3）ー Hencethe group in (I九）
is not a C.Y. group. Finall）～ we consider the case （日）. Set Vi := H0(A, f11)c. 
Then, by (1.4)(3), dim円＝ 1. Using ca ＝αc1 and cb = be, we see that Vi 
is also stable under the actions ♂ and b*, whenc告 G-stable. Then, againラ by
the Maschke Theorem, there告xistsa two-dimensional G-stable s立bspaceち of
・H0(A,n民suchthat H0(A, n~ ） = Vi eち．子三抗告 by(1.11) that this decomposition 
is also the irreducible decomposition of the rεprεsentation of ｛α， b)('.'.::'. Ds). Th国ぅ

11 0 0 ¥ 
by (1.11), there exist a basis of Vi and V2 under which a* = I 0 (4 O 卜

¥ 0 0 -(4/ 
I -1 O 0 ＼ノ、
I I fl 0 ¥ 

b* = I 0 0 1 I and c鳩山 1 l , where C is a 2 x 2 matrix. Then b事Cホ is
¥ I ¥0 CJ ¥ 0 1 0/ ¥ I 

( -1 0 ¥ 
of the form ¥ 0 D } . Thus o吋（be)= 2 by (1.4)(3). On the other ha叫 using

be= cbヲord（め＝2 and ord(c) = 3ヲW告seethat ord(bc）口 6,a contradiction. Hence 
the group in （ら） is not a C.Y. group. Now w邑 aredone. む

§2. Calabi-Yau threefolds of Type K. 

In this section, we study Calabi-Yau threefolds of Type K. As in Section 1, we 
define: 

Definition (2.1). We callαβnite gro叩 G a CαJαbトYαugroup of Type kザthere
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existαK3 surface S，間 ellかticcurve E and a faithful representatioηGι→Aut(S× 

E) which satisfies the following conditions {1} -(4): 

(1) G contains no elements of thεform (ids, non-zero translation ofE); 
(2) g山 5×E= :.;.;SxE for all gε G; 
(3) (S x E)lGJ = 0; 
(4）豆町Sx E,!lkxE)c口｛O}. D 

Throughout this section, w告 againabbrをviatea CalabトYaugroup of Type K 
simply by a C.Y. group. The goal of this section is to prove the follO¥ving: 

Theorem (2.2). Let G be a C. Y. group and S×Eatαrget threefold. Then. 

( 1) G is isomorphic to either cfmρ三η:S3), D2n (3 :Sn壬6)or c?2河 C2,
(2) Conversely, each of these groups exc叩tpossibly for D2nβ三η 三6)and 

c~2 河 C2 isαc Y. group; 
(3) In each cαse of (1), the dimension d(G) of the invαriαnt part H2(S.×E)G 

is calculated αs in the following table: 

G I C2 I C~2 I C{3 I D6 I Ds I D10 I D12 I Cf2 ><l C2 

d(G) I 11 I 1 I 5 I 5 I 4 I 3 I 3 I 3 
己

As in section 1, we observe first that Theorem (2.2) implies the main Theorem 
[2]. 

Proof of the mαm Theorem {2｝αssuming Theorem {2.2). 

First recall the following: 

Lemma (2.3) [Be2, Page 8, Proposition]. Let S be a K3 s包ヴaceand E an 
elliptic c包Tむe. Thεn Aut(S x E) = Aut(S) x Aut(E), that is, each element g of 
Aut(S x E) is of thεform (gs,gE) where gsεAば（S)and 9E EA包t(Eト

Proof. It is sufficiεnt to show that Aut(S x E) C Aut(S）× Aut(E). Let g be 
an element of Aut(S x E). Note that the second projection p2 : S x E→E is 
nothing but the albanese morphism of S×E. So, by the universality of albanese 
morphism, there exists an el日ment9E of E such that pz o g = 9E o pz・ Inother 
words, g is of the form; g : (sぅe)H (gs(s,e),gE) and e EE  i--+ gs(*,e) is then 
regarded as a morphism from E to Aut(S). However, since H0(SラTs)= 0 and 
Aut(S) is then descrete, this morphism must be constant, that is, g5(sヲe)does not 
depend on Eε E. Thus, g is of the form, g = (gs, 9E) where gsεAut(S) and 
9EεAut(Eトロ

L号tX be a Calabi々、uthreefold of Typを芯 Fix a K3 surfacを Sラ anelliptic 
curvをEand anをtaleGalois cov君ringrr: S x E→X and denotξby G 訟を Galois
group ofに Choos芭 anorigin of E and s宕tH := G n ( {ids} x E). Then H is 
a normal subgroup of G by (2.3). Moreover, the induced action of G/H on the 
quotient threefold (S x E)/H = S x (E/H) satisfies the conditions (1)-(4) in (1.1) 
and keeps the property (S x (E / H)) / ( G / H) = X. So, replacing ( GうSx E) by 
(G/HヲS× （E/H)),we m町 assumefrom the first that G itself is a C.Y. group 
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and S x E its target threefold. Conversely, if G is a C.Y. group and S x E is 
its target product threefold, then (S x E)/G is a Calabi-Yau threefold of Type K. 
Therefore (2.2)(1) and (2) imply the main Theorem [2](1）如d(2) respectively. The 
veri五cationof [2] (3) isをxactlysam君主sthを onefor C.Y. groなpof Type A. 己

Nextぅ weobserve that cf[π （1話n三3)are actually C.Y. groups. 

Proof of the fact thαt c?n (1::; n主3)are C. Y. groups of Type K. 

It is enough to find a K3 surface S and an elliptic curve E such that 
(1 $η 三3)act on thを productS×E as C.Y. groups. Thを followingconstruction 
is much inspired by the work of Kondo [Ks]. Let us first take three elliptic curves 
with fixed origin £1, E2 and E and set S := Km(E1×E2), the smooth Kummer 
surface associated with the product abelian surface E1 x £2・Fixelements α；， b; E 

(E;h一｛O}for i口 1,2 such that αz手伝.Then the three automorphisms of E1 x 
defined respectively by (z1, z2）吋（－z1,-z2),(z1,z2）←→（－z1 + a1,-z2 ＋α2), 
(zi, z2) i--t (z1十九z2),and by (z1,z2) i--t (z1,z2 +b2〕descendto those of A1料S),
which we denote bye, t1 and t2 resp告ctively.Let us fix P1, P2ξ （Eh一｛0} such that 
門戸 P2and consider the three automorphisms of S×E defined by B := (B, -lE), 
t; := (t1,tp1) and ι：＝ (t2, t乃）.Then G1 := (B) '.'.:::'. C2, G2：口（BJ1）ご c;2and 

G3 := (B，ιι） '.'.:::'. Ci33. By construction, it is clear that each of G叫＇－＋ Aut(S x E) 
satisfies the conditions (1〕， (3) and (4) in (2.1). Moeroverラ byusing th告をxplicit
description of G n, we can zをadilychをckthat the condition (2) in (2.1) is also satisfied 
for each of Gn川 Aut(S×E).Now we are done. 口

The rest of this section is devoted to prove (2.2)(1) and (2.2)(3). 

Proof of (2.2)(1). First we note the following: 

Lemma (2.4). Let S be a K3 surface and g an element of finite order of Aut(S) 
such that S[(g)] = 0. Then, 

(1) g =idザg*ws= ws；αηd 
(2) g is of order 2 and g*ws口一W5ザg山 S-:/:-W5・Moreover,in this case, the 

quotient surface S/(g) isαn Enriques surface. 

Proof. Set n := ord(g) and T := S/{g). Then Tis a smooth proj告はivesurface such 
that 2 ＝χ（Os）出 nχ（Or)and that h 1 (Or) = 0. Thus, the pair （η，x( Or)) is either 
(1, 2) or (2, 1). Assume that g山 s=ws・Then,ws descends to a nowhere vanishing 
holomorphic two form on T and T is then a K3 surface. Thus, ( n, x( Or)) = ( 1, 2). 
Assume next that g指ws# ws. Then （η，χ（Or））ロ（2,1), whence g is an involution 
and satisfi号sg山 s＝ーws・Thelast part of (2) is nothing but (one of) thをdefinition
of an Enriques surface. 己

Lemma (2.5）・ LetG be a C. Y. group, S x E its target threefold and p1 : G 吋

Aut(S) and pz : G →A包t(E)the natural prりectionsunder the identポcαtion 
Aut(S x E) = Aut(S）×Aut(E) {2.3). Set Gs := /m(p1) and GE := Im(pz). 
Then Gs '.'.:::'. G '.'.:::'. GE through P1 and Pz・

Proof. It is sufficient to show that both p; are injective. Let g be an element of 
Ker(p1). Then g is of the form g口 （ids,gE)such that g£wE =WE 
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(2.1)(3). Then 9E is a translation of E whence 9E = idE by (2.1)(1). Hence P1 
is i吋ective.Let g be an element of Ker(p2). Then g is of the form g = (gs, id£). 

By (2.1)(2)(3）ぅ gssatisfies that 5l<9s>l = 0 and that gトJ5= w5. Nowラ wededuce 
from (2めthatgs= ids. Therefore p2 is also injective. ロ
Lemma (2.6). Let G be a C. Y. gro包pand S x E 山 targetthreefold. Then, there 

exists a normal commutαtive subgroup H of G such that 

(1) H手GandザLε G-H then L is of order 2 and G = H河 ＜ L＞ァ wherethe 

semi-direct product structure is defined by LhL = h-1 for h being in H; and 

(2) there exist positive integers n and m such thαt nlm and that H:::: Cn EB Cm・ 

Moreover, this subgroup sαtisfies that h5ws = wsザhε H and thαt lsWS ＝ーws

and 5'5 ＝日ザLε G-H.

Proof. Let HE be the kernel of the natural representation GE→GL(H0(E, r2k)). 
This implies that the correspo吋 i時 subgro叩 Hs of Gs acts trivially on H0 ( Sヲn}).
Since H0(S×E, nLE)H :::: H0(E, r2k)HE :::: C, we see that HE -:j:. GE. Let LE 
be an arbitrary element of GE -HE and set L := (LsぅLE）εAut(Sx E). Then 
there exists a complex number αsuch thatα -:j:. 1 and that L'£WE ＝αWE. '."ote 
that E'E手0.Then L5w5 ＝α－1ws and Sιs ＝日.Therefore Ls is an involution and 
α＝ -1. Let us fix one of such Lε G -Hand choose another L1 E G -H. Then, 

(LE OLE）山E=WE, whence L£oLEεHE. Therefore, GE= HE河（LE)・ Fix the origin 
0 of E so as to being Oε E'E. Then LE= -lE and -lEotαo -lE = t ーα＝r;;1. 
In particular, LE o hE o LE = h£/ if hEξ HE. Moreover, since HE consists of 
translations of E, there exist positive integers n and m such that HE :::: Cn 8 Cm 

and that nlm. Now the result follows from (2.5）.ロ

In order to finish the proof of (2.2)(1), it remains to show (n,m）ε｛（1, k)(l三
k三6),(2, 2), (3, 3)}. For this we make use of the following: 

Theorem (2.7) [Ni, Page 106, Section 5, Paragraph 8]. Let S be a K3 
surface. 

(1) Let g -:j:. id be an element of Aut(S) of finite order such that g*ws = ws・ Set
η ：＝ ord(g). Then n三8.Moreover, 59 is a finite set and its cardinality 

159 I is givenαs zη the followi吋 table:

ord(g) 

1591 

2 13 14 15 16 17 18 

8 16 14 ¥4 ¥2 ¥3 12 

(2) Let H be a finite, commutative subgroup of Aut(S). Assume that H is 

symplectic, that is, g山 s= ws for each g E H. Then H is isomoryフhicto 

either one of Cn日壬 π三8),c?nρ三n三4),C2 EB C4, C2 e C5, c(f'2, 
or CJl2. ロ

Due to (2.7) and the fact that Hs is a commutative symplectic automorphism 
group of S of the form Gs :::: Cn 8 Cm (2.6), it is now su缶cientto show that 
(n, m) -:j:. (1, 7), (1ラ8),(2, 4), (2, 6), (4, 4). 

Assume that （η，m) = (1, 7). Then Hs = (hs) :::: C1 and Gs = (hs, LjL ohs o i = 
h51). Thus Ls acts on Shs. On the other hand, since 5hs consists of three pointsヲ

(Shs）切手目， acontradiction to 5'5 ＝日
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Assume that （η， m) = ( 1, 8). Th日nHs = (hs）コ Csand Gs = (hs, iii ohs o L常

時1）・ Thusis and hs act on Sh~ -5hs. Note that JSh~ -5hs I口 2by (2.7)(1）・＼Ve

set Sh~ -5hs口｛P1,Pz}. Since Sιs = 5hs立のう wehave is(P1) = hs(P1) = P2・

詰oweverぅth号nis ohsεGs -Hs while P1 E s•s<>hs ＝色acontradiction. 

Assume that (n, m) = (2, 4). Then Hs = (gs) EB (hs) ::::: C2 EB C4・ Asbeforeす

(gs, hs ぅ is)/(h~ ） コ Cf3 acts on the set Sh~ -5hs consisti略。ffour points by 

(2.7)(1). Thus, w日havea natural representationψ ：c;3→54 through this action. 

Since 54 does not admits a subgroup isomorphic to Ci3, Ker( 'P）衿｛id}.Moreoverヲ

since Si= 0 if f E Gs -Hs, Ker（叫 c(gs,hs)/(hs). Let αE  (gs含hs)is a lift of 
a non-trivial eleme批 ofK佼｛討.Sincを hs~K佼｛ψ）' （ι時） is isomorplポ toeith告E

Ci2 or C2 e C4. On the other hand, letting Pε Sh~ -5hs, we have a natural 

injection （α，吟）川 SL(Ts,P）αSL(2,q. Howe＼帆 thiscontradicts the following 
well噛 known:

Theorem (2,8) eg. [Su, Chap.3 section 6, Theorem 6.17]. Let G be a finite 
subgroup of SL(2，む）.Then G is isomorphic to either one of Cn, Q4n, T24, 043 or 

li20・ロ
Assume that (n, m) = (2, 6). Then Hs = (gs) 8 (hs) ::::: C2 9 C5・ ThenShs 
consists of 2 points. Set 5hsぉ｛P1,P2}. As before, (gs, is) acts on {P1,P2} 

and satisfies is（円） = P2 and ts(P2) = P1・ Assumethat gs(P1) = P1・ Then
(gs, hs）ご C2eC6 <....+ SL(Ts.P1):::::: SL(2，。， a contradiction to (2.8). Assume that 
gs(P1) ＝九.Then, i o gs(P1）出 P1,a contradiction to i o gs E Gs -Hs. 
Assume that （η，m) = (4,4). Then HE = (gs) EB (hs) ::::: C4 9 C4・ Set595 

{P1, P2,P3，九｝‘ Then(is, hs) acts on S9s. Since neither (gs, hs) ::::: CJl2 nor 
(gs, h1) ::::: C4 e Cz can be embeded into SL(2ぅq by (2.8), after renumberingぽ

necessary, we have h主（Pi)= P;+1 for l三i三3.Set is(P1) = J三十1・Then 1:::; iさ3
and is o hぷPr)出兵， acontradiction toι oh与EGs -Hs・l'¥owwear号 done.
Q.E.D. for (2.2)(1）.ロ

Proof of (2.2)(3). Using the Kunneth formula and (2.5）ヲ wehave H2(S×E,qc::::: 
・ H2(s,qcs⑧ H0(E, q e H0(S, q ⑧ H2(E,C)と H2(S,qcs EB <C. Threfore, it is 

sufficient to calculate dimH2(5, q0s. We carry out this calculation by dividing into 
cases according to the isomorphism classes of G. In what follows, we d吉monstrate
how to calculat母dimH2(S,q0sonly for the most typical case G := （α）ヌ（め 2

C6 )q C2 = D12 (and the calculation for other cases, which is similar to the on暗
of this case, is left to the readers as an exercise). From now on, for simplicity, we 
denote Gs by G. Under the notation in (1.10), the irreducible decomposition of 
the natural representation of G on H2 (S, q is written as 

H2(S，む） = P~~ eρ~i EBρちeρ行eρ？.ie P？.；…（1). 

Let us determine the values p, q, r, s, t, u by applying the topological Lefsch日tz
fixed point formula: 

χtop(S9同工（－l)ktr(g・IH乍工）） = 2十色村gつH2(5,C））一（2).
k＝む

Comparing the dimension of the both sides of (1), we have 
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22 = p + q + r + s + 2t + 2u -(3). 
Note that 15α｜口 2by (2.7)(1). Then, combining (1) and (2) with ISαI= 2, we 

have 2 ＝χ切（5α）= 2 + ptr(p1,o（α））＋・・・＋utr（ρ2.2（α）） = 2＋α十 b-c-d+e-f.
This gives 

。出p÷q-r-sゃt-u-(4). 

Similarly, from 1sa2 I = 6ぅ 15α3I = 8 and Sb = Sαb ＝のう wededuce 

4口 p+q+r十 8…t-u -(5) 
6 之江 p+ q -r -s -2t + 2u -( 6) 

…2=p-q÷T…S”（7) and 

-2=p一号－r+s”（8).
Now solving the system of equations (3) -(8），附 readilyobtain 

p = 2, q = 4, r口 2,s = 2ヲ t= 2 and u = 4. 

This implies dimH2(5, qc = p口 2.Therefor日dimH2(S×Eqc= 2 + 1 = 3 in 
the case where G ::::: D12. 己
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