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Homological and cohomological motives of algebraic varieties
Masaki Hanamura

The framework of mixed motives in [Ha] will be shown to be suited for the study of motives of
quasi-projective, possibly singular, varieties and their Chow groups. We define cohomological
motives of quasi-projective varieties; they form a contravariant functor from the category of
quasi-projective varieties to the triangulated category of mixed motives. There is also the
functor of compactly supported cohomological motives. These functors are compatible with
Weil cohomology groups, resp. compactly supported cohomology groups.

We use cubical hyperresolution (see [GNPP)] for an elaborate exposition), a variant of hyper-
covering [De], both of which were used in the context of mixed Hodge theory. Hyperresolution
has the technical advantage of being of finite length. One could formally say that this work
is an adaptation of the method of hyperresolutions in the context of higher Chow groups and
motives. For the hyperresolutions to exist, we assume resolutions of singularities exist for
varieties over the ground field k. The main results of this paper are the following,.

(1) (See Theorems (2.3) and (2.9).) The homological cycle complex of S. Bloch has descent
property for hyperresolutions; this is a consequence of its localization property. Hence follows
the existence of the contravariant functor A, {compactly supported cohomological motive) from
the category of quasi-projective varieties over k and proper maps to the triangulated category
of mixed motives D(k). The dual of h, is the “Borel-Moore homological motive” functor.

(2) (See Theorem 1.) Let U be a quasi-projective variety and U, its hyperresolution. Let
Z7™(U,,-) be the cycle complex of codimension of r of U,. We may form the cohomological
cycle complex Z7(U,)* as the double complex with terms Z7(U,,); one of the differentials is
the differential of each Z7(U,, '), and the other differential comes from the pull-backs by the
face maps of the hyperresolution. (More precisely, for the pull-backs to be defined one has to
take quasi-isomorphic subcomplexes of each Z7(U,,-). ) The complex is independent of the
hyperresolution in the derived category, and U +— Z7(U,)* is contravariantly functorial. The
homology of this complex, denoted CHC" (U, n), is by definition the higher Chow cohomology
group, or motivic cohomology of U,

(3) (See Theorem II.) There exists a contravariant functor h from the category of quasi-
projective varieties over £ (and all maps) to D(k). The cycle complex of h(U) is the cohomo-
logical cycle complex of U. (Each object of D(k) has its associated cycle complex.) h(U) is
the cohomological motive of U, and its dual h(U)Y is the compactly supported homological
motive of U.

(4) Generalizing (3), there is a contravariant functor A from the category of maps of quasi-

projective varieties to D(k), which associates to a map f: U — V its motive h(U N V).

(5) The motive h(U EN V') satisfies the usual properties (distinguished triangles for triples,
excision theorem).

Throughout this paper we will employ the language of mixed motives defined as diagrams
of smooth projective varieties ([Ha] or §4 of this paper). This paper is a version of my preprint

under the same title, which also contained the content of [Ha 1]. In §1 we recall cubical
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hyperresolution. In §2 we review cycle complex briefly, show Theorem (2.3), and state the
other main theorems. The proofs of the theorems are in §8§3, 5, and 6.

The contravariant functor U — CHCT(U,0) is a candidate for Chow cohomology theory
[Fu], but falls short of satisfying all the expected properties. We will discuss this and other
issues in a separate paper.

Independent of us H. Gillet and Ch. Soulé [GS] have found that hyperresolutions ~ or more
precisely hyperenvelopes to obtain integral results — are useful to study motives. Subsequently
there appeared a related work of F. Guillen and V. Navarro-Aznar [GN]. E. Friedlander and
V. Voevodsky [Fr-Vo] also defined motivic cohomology.

Acknowledgement. We would like to thank S. Bloch, W. Fulton and Ch. Soulé for helpful
advice.

We consider quasi-projective varieties over a field k¥ (namely, not necessarily irreducible, re-
duced quasi-projective schemes over k), or just schemes for short, and work under the assump-
tion that desingularizatin of singularities, embedded resolution of singularities, and resolution
of indeterminacy of rational maps all exist (for example chark = (). Denote the category of
smooth quasi-projective (resp. quasi-projective, projective, or smooth projective) varieties by
(Smooth Q-Proj /k) (resp. (Q-Proj/k), (Proj/k), or (Smooth Proj /k)).

For a map f : X — Y of varieties, the graph is the subvariety I'y C ¥ x X which is the
image of the closed immersion (f,id) : X - Y x X.

For a cycle z on X x Y, its transpose 'z is the cycle s,(z) on Y x X where s : X xY - Y x X
is the isomorphism which switches the factors.

D(k) is the motivic category as defined in [Ha]. Q(r) (r € Z ) are the Tate objects. For an
object K of D(k), its dual is denoted by KV, and K(r) := K ® Q(r) (Tate twists). In fact,
all the constructions in this paper take place in the full subcategory Dyinize(k) of motives of
finite type. We recall the definition of Dyipnse(k) in §4.

Z9(K,-) is the cycle complex of an object K in D(k). We define

Z'(K,-) = Z°(K(r)[2r],")
and CH™ (K, n) = CH(K (r)(2r], n) := H, 2" (K (r)[2r], ).

§1. Cubical hyperresolutions.

Hyperresolutions [GNPP], see also [Ca]. In the following, we denote by I a finite ordered
category. By definition, I is a small category satisfying the following conditions:

(i) The set of objects Ob(I) is a finite set, and for i, € Ob(I), Hom(i, 7) is a finite set.

(ii) For each object i of I, Homy(i,i) = {id}. If Homy(¢,j) and Hom;(j,7) are both
nonempty, then 7 = j.
By an I-scheme (or a 1-diagram of schemes of type I) we mean a contravariant functor from
I into the category of schemes. I-schemes form a category.

For example, if I is a finite ordered set, then its associated category is a finite ordered
category: by definition, the associated category has I as the set of objects and Hom(%, j)
consists of a single element if i < j, and is empty if 1 > j. Another example of a finite ordered
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category we will consider is the truncated strict simplicial category (Amon)p- Recall the objects
of this category are [n] = {0,1,---,n}, n < p and the morphisms are strictly increasing maps.
A (Amon)p-scheme is nothing but a truncated strict simplicial scheme.

We denote by O the category associated to the partially ordered set with elements a =
(g, 1,2, -+ ,ap) with a; € {0,1}. (¢ <o iff @; < o] for all 2. ) By 00, we mean the subset
( and subcategory ) of (0} consisting of elements ( objects) except (0,0,---,0). A OF- or O,-
scheme is called a cubical scheme.

If I and J are finite ordered categories, X an I-scheme, Y a J-scheme, and ¢ : I =+ J a
functor, a map of 1-diagrams of schemes is a morphism of 7-schemes f : X — ¢*Y. We call ¢
the type of f. Maps of 1-diagrams may be composed, and thus 1-diagrams form a category.

Let S be a I-scheme, a 2-resolution of S is a Cartesian square consisting of I-schemes Z,;
(a,b=10,1)

where

(1) Zog = S,

(2) Zoy is a smooth I-scheme,

(3) the horizontal arrows are closed immersions of I-schemes,

(4) f is a proper morphism of [-schemes, and

(5) Z1p contains the discriminant locus of f.

Let 7 > 1 be an integer, X7 a O} x I-scheme for 1 < n < r. Suppose that for all n,
1 < n<r,the O | x I-schemes XJ;t' and X7, are the same. Then we define, by induction
on 7, the OF x I-scheme Z, = rd(X},---,X]) (called the reduction) as follows. If r = 1, we
define Z, = X!. If r = 2, we define Z,, = rd(X}, X2,) by

2 Xos if a=(0,0)
PTNX2 i el

for all 8 € OF, with the evident morphisms. If r > 2, we define

Zy =rd(rd(X}, - XI7Y), XI) .

(1.1) Definition. Let S be an I-scheme. A I-iterated cubical hyperresolution of S is a O} x I-
scheme Z, such that Z, = rd(X],---, XT) where

(1) X1 is a 2-resolution of S,

(2) For 1 <n < r, X?*!is a 2-resolution of X7, and

(3) Z, is smooth for all o € O,.

For an integer n > 2, define inductively the notion of n-iterated cubical hyperresolution of S
as l-iterated cubical hyperresolution of a (n — 1)-iterated cubical hyperresolution of S. Namely
a [0} x I-scheme X, is an n-iterated cubical hyperresolution if there is a sequence of 1-diagrams

X=X x4 5 xMD 49



of type

OFxI=0f x---xOFf xI >0 x---x0Of  xI—---—=0f xI 51
(each map is a projection) where X — X (=1 js a 1-iterated cubical hyperesolution.

We will simply call an n-iterated cubical hyperresolution a hyperresolution of S. By abuse
of notation, one also denotes by X, the [, x I-scheme obtained by restriction from O} to O,;
this is also called hyperresolution of S, and often denoted with augmentation X, — S. The
number 7 is the length of X,.

A cubical hyperresolution X, naturally defines a strict simplicial scheme the n-th term of
which is
X, = H X, where |[(ag, --am)|=ap+---am ;
|a|=n+1

we denote this by the same X,, the face maps by d; and the augmentation map by a.

do
33X 3X3S.
— dl

Ezample. Let X be a quasi-projective variety, {X;}o<i<r be a finite set of smooth closed
subvarieties such that X = UX;. Then the O} -scheme defined by

Xo=[)Xi, Xo=X,

a;=1

together with the face maps induced by inclusions, is a hyperresolution of X, provided the
X, are all smooth. We denote this by X,. If X is a simple normal crossing divisor on a
smooth variety, one may take as X; the irreducible components of X, and obtain the canonical
hyperresolution X, of X.

It is a fact (Theorem 2.6 of [GNNP, I]) that if resolutions of singularities and embedded
resolutions of singularities exist for schemes over k, and I is a finite ordered category then
any I-scheme S over k has a cubical hyperresolution. In the following we refer to cubical
hyperresolution as hyperresolution.

(1.2) Definition. Let d; : (0} — (0}, | be the map which sends (ag, - - - o) to

(o, -+ yc;_1,0,04, - ,,). A face map is a map of the form
(S“‘—‘(s,;po-"o(sil :D:_)D:-}-p .

By definition, if X, (resp. X.) is a O} x I-scheme (resp. [} x I-scheme) which is a
hyperresolution of an I-scheme S (resp. S§'), a map between them is map of 1-diagrams of
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schemes of type a face map d x id;. One then has a commutative diagram of 1-diagrams of
schemes

X, s X, Of x I —3 O x I
L
s —*Y, 5 I I.

Cubical hyperresolutions of I-schemes form a category. A map of hyperresolutions induces the
associated map of augmented strict simplicial schemes, still denoted by . : X, = XJ.

(1.3) Maps of hyperresolutions obtained as follows are particularly useful. Let S be an
I-scheme and 5
(X—>S->X->8 -8

be maps of 1-diagrams of type

OfxOf xI-0OfrxI—>1

(maps are projections) where (X — S) is an iterated hyperresolution of S, and (X — S) is an
iterated hyperresolutions of (X — S). Then there are natural maps

(X8 HX&sS

of type
OfxI->0OrxOf x T+ 0O xI

(maps are face maps) where S is the restriction of X to (0,---,0) x O} x I. Note X is of the
form

x P g O, x0gx I ——— Oy x I
al l of type l l
X — 5 § O, xI — I

and S = (8" = 9). S is a hyperresolution of S. We denote the Or4s—1 X I-scheme (X «
X' > S by Xt.

Let Hre(I — (Q-Proj /k)) denote the category of hyperresolutions of I-quasi-projective va-
rieties over k. One has a natural functor Hre(J — (Q-Proj/k)) — I — (Q-Proj/k). Let ¥ be
the class of morphisms in Hre(Z — (Q-Proj /k)) which induce identities on I — (Q-Proj /k), and
let HoHre(I — (Q-Proj /k)) be the localization of Hre(I — (Q-Proj /k)) by X (see [GZ] for the
general notion of localization of a category). One has an induced functor

Ho Hre(I — (Q-Proj /k)) — I — (Q-Proj /k) .

If I = 1 we write simply Hrc (Q-Proj/k) for Hrc(1 — (Q-Proj /k)). The following is [GNNP, I,
Theorem 3.8].
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(1.4) Theorem. The functor HoHre(I — (Q-Proj /k)) -+ I — (Q-Proj/k) is an equivalence
of categories.

§2. Cycle complexes and the statements of the main theorems.

Cycle complezes [Bl-1,2] [Bl-Le]. Let X be a variety (or a scheme) over a field k. Define
the cycle complez of X as follows. Let (0® = A} with coordinates (z;,--- ,2n). Faces of ("
are intersections of codimension one faces, and the latter is of the form D:;l = {z; = a} where
a=0or 1. A face of dimension m is canonically isomorphic to (J™. Let ¥, be the symmetric
group of order n acting on (0" by permutations of coordinates.

Let

Z,(X,n) = {Q-cycle z of dimension s +n on X x " | each irreducible component of z
meets each face of X x (1™ properly, and z is alternating with respect
to the action of ¥,.}

The inclusions of a codimension one faces J; , : D:a_l = 0" induce the map
9= Z("l)”“‘si‘:a (Z(X,n) = Z,(X,n—1) .

and (Z,(X,-), 0) is a homology complex. We call this the cycle complex (of codimension r) of
X. By definition the (rational) higher Chow groups are the homology groups of this complex:

CH,(X,n) = HaZ,(X,") .

For an equi-dimensional variety X we set Z"(X,-) = Zgim x-r(X,*) -

In [Bl-Le], considering “normalized” Z- cycles in place of Q-cycles, integral higher Chow
group is defined, and denoted it by CH"(X,n). In this paper we only consider the rational
cycle complexes and rational Chow groups.

A proper map of varieties f : X — Y induces a map of cycle complexes f. : Z,(X,-) —
Z4(Y,-). Similarly there is pull-back by flat maps.

(2.1) Localization Theorem [Bl-2]. Let X be a variety and Z C X a closed subset. Then
the diagram of complezes with the natural maps

24(Z,)) > 2,(X,") = 24X - Z,-)
can be extended to a distinguished triangle in the derived category.

For smooth quasi-projective varieties V, there is a collection of subcomplexes, called distin-
guished subcomplezes, that satisfy the conditions:

(i) The inclusion of a distinguished subcomplex Z7(V,-)" C Z7(V,-) is a quasi-isomorphism.
If Z7(V,-) and Z7(V,-)" are distinguished subcomplexes of Z7(V,-), there is a third distin-
guished subcomplex Z7(V,-)"" contained in both Z7(V,-)" and Z7(V,-)".
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(i) If ¢ : W — V is a map of smooth quasi-projective varieties, and Z"(W,-)’ C 2Z"(W,) is
a distinguished subcomplex, there is a distinguished subcomplex Z7(V,-) < 27(V,-) on which
¢ ZT(V', ) — Z7(W, )" is defined.

For V smooth projective, a distinguished subcomplex is one of the form Zj,(V, ) where W
is a finite collection of subvarieties of V, see [Bl 1]. Z§,(V,n) C Z"(V,n) consists of cycles
on X x [0® that meet W properly. In general take a smooth compactification j : V — V,
a distinguished subcomplex Z7(V,-) C Z"(V,-) and let 27(V,:)’ be its image under the
restriction j* : Z7(V,-) — Z7(V,.). This is a quasi-isomorphic subcomplex by the localization
theorem. Varying V and Z7(V,.)’, one has the collection of distinguished subcomplexes of
Z7(V,-). One can verify the other properties.

Let U be a quasi-projective variety, and a : U, — U be a hyperresolution. The double
complex

B ZUn) BB Z,UL )5 Z,(Us, ) = 0

(where Z;(Uy, n) is placed in homological degree n and d, := Y (—1)d;.) will be denoted by
Z3(U.)«. The following is a consequence of the localization theorem of cycle complexes.

(2.2) Theorem. Let

z 2

l lp
'l
zZ —=—> U
be a Cartesian square where p is proper, 3 is a closed immersion, and p inducesp: U’ —Z'
U — Z. Then there is a distinguished triangle of the form

z,2') 2, 2 U @ 2,(2) 22 2,0) B

(2.3) Theorem. The natural map of complezes a, : Z;(U,). — Zs(U, ") is a quasi- isomer-
phism.

Proof. One has only to prove this for 1-iterated hyperresolutions. By induction on the
length 7 of a l-iterated hyperresolution. Let rd(U},---,Ur) be a hyperresolution. U} is a
2-resolution of U, which is a square:

w2 U

s L
W —25 U

The O, x Cif -scheme rd(UZ,--- ,UT) is a hyperresolution of the OF -scheme g : W' — W;
it consists of {J,_;-schemes W, and W,, augmented to W’ and W, respectively, and a map
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W, — W, augmented to W' — W.

w — W

l l

Wy — W
One has a map of distinguished triangles

Z W) P 2,0 —— ZU W) —

ly- lf. lf,
Z,W) 25 Z(U) —— Z,U-W) —— .
Since U’ — W’ 5 U — W, the third horizontal arrow is a quasi-isomorphism; hence we have
the distinguished triangle:

z,w") B 2wy @ 2,0) 2t z,w) B

By induction hypothesis, the maps induced by the augmentations
Z(W)a = Z,(W') and Z,(Weo)s = Z4(W)
are quasi-isomorphisms. Hence the claim for the given hyperresolution of U.

For a hyperresolution U, — U, one considers the double complex

ZNUD* =2 (Un, ) S 27U, ) S o S 27 (U, ) S ]

where Z7(U,,-)" are distinguished subcomplexes so that the above sequence of maps d* :=
> (—i)id} are defined. Z7(U,)* is well-defined up to canonical quasi-isomorphism (one is free
to replace Z7(U,, )’ by smaller distinguished subcomplexes). We call it the cohomological cycle
complex of U. If f: U — V is a map of quasi-projective varieties and fo : Us — Vo a map of
hyperresolutions over f, there is a map f} : Z7(Vo)* — Z7(U,)*, where Z"(V,)* is chosen so
the map is defined. The cohomological cycle complex of U is independent of the choice of its
hyperresolution up to quasi-isomorphism as the following theorem claims.

Theorem I. Let U be a quasi-projective variety, Us — U and U, — U be hyperresolutions
of U, and Uy — U, a map over U. Then the induced map Z"(U))* — Z7(U,)* is a quasi-
tsomorphism.

There is a functor

27 (Q-Proj /)P = D(Q)

that sends U to Z™(U,)* and associate to a map f : U — V the induced map (fo)* : Z7(V,)* —
ZT(U)* where fo: Uy = V4 is a map of hyperresolutions over f.
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The first half together with Theorem (1.4) implies the latter half. Indeed the functor Z7 :
Hre (Q-Proj /k)°PP — D(Q) givesrise to 27 : Ho Hre (Q-Proj /k)P? — D(Q), hence the functor
as stated, using the equivalence Ho Hrc (Q-Proj /k) — (Q-Proj /k).

(2.4) Definition. For a quasi-projective variety U,
CHC"(U,n) = H,Z"(U,)* ;

this we call the higher Chow cohomology group of U. Higher Chow cohomology is contravari-
antly functorial; a map f : U — V induces a map f* : CHC™(V,n) —» CHC"(U,n). If U is
smooth, CHC™(U, n) = CH" (U, n).

Write 2 for EJaL . A 2-diagram of quasi-projective varieties is nothing but amap f: U - V
in (Q-Proj /k). One can consider the category of 2-diagrams, and denote it by 2 — (Q-Proj /k).
For a 2-diagram f : U — V, take its hyperresolution f, : U/y — V, (more restrictive than a
map of hyperresolutions over f, in particular U, and V, have the same length). Then consider
the complex

Cone[f] : ZT(Va)* - Z7(U.)"] .

If f//: U’ — V' is another 2-diagram,

a map between them, and

vs L v
a map of hyperresolutions of the 2-diagrams, there is the induced map
(hZ,92) : Cone f', — Cone f} .
Theorem I above can obviously be generalized to the following:

(2.5) Variant of Theorem 1. Notation as above. If (g, h) is the identity map of 2-diagrams,
then (h3,9%) is a quasi-isonoerphism. There is a functor

2" : (2~ (Q-Proj /k))™ — D(Q)

that sends f to Cone[f} : ZT(Vo)* = Z7(U,)*][—1] and associate to (g, h) the map (h%,93).
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One can thus define Chow cohomology of a 2-diagram.

CHC™ (U % V,n) = H, Cone[f} : 2"(V,)* — 2" (U.)"][-1] .
It is contravariantly functorial. There is a long exact sequence

— CHC™ (U — V,n) — CHC" (V,n) 2 CHCT (U,n) = -+ - .
If U — V is a closed immersion, write CHC" (V, U, n) for CHC" (U — V,n).

The following refines Theorem I. The category of mixed motives D(k) is defined in §4. There
are the obvious functor h : (Smooth Proj /k)°PP — D(k) and the functor of cycle complexes
Z%:D(k) - D(Q). There is Tate twist K(r) = K ® Q(r) in D(k).

Theorem II. There is a functor

h: (Q-Proj /k)°P? — D(k)

which extends the obvious functor h : (Smooth Proj/k)°PP — D(k) and satisfies the following.
(i) For each U in (Q-Proj /k) and its hyperresolution U,,

ZT(h(U)) = 2°(hU)(r)[2r]) = 27 (U.)* .

(i) If U is projective,
WU) = Us S5 Uy 5 - D5 1]

where T'y is the alternating sum of the graphs of the face maps.
(2.6) Variant of Theorem II. There is a functor
h s (2 (Q-Proj /k))™ — D(k)

which satisfies:
(i) For a 2-diagram f : U — V and its hyperresolution f, : U, — Vi,

2" (h(U L V) = Cone[f7 : 2"(V.)* = 2" (U.)"|[~1] .
(ii) If U, V are projective then

Ty T4

Uo y Uy > > U,-
MU = V) = g ] r | rs.|
Vo La_, 4 La Ta | V.

where I'y, is the graph of f;.
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(2.7) Theorem. Let

Z —— U

be a Cartesian square of quasi-projective varieties such that the horizontal arrows are closed
immersions, and f a proper map that induces U’ — Z' 5 U — Z. Then the pull-back

(fr9)": WU, 2Z) - MU', Z")
18 an isomorphism.

To state the following theorem let 3 = {0,1,2} with the usual order. An object of the

category 3 — (Q-Proj/k) is a diagram U Lv s wot quasi-projective varieties and maps
between them. Let DT(D{(k)) be the category of distinguished triangles in D(k) and maps
between them.

(2.8) Theorem. There is a contravariant functor

(3 = (Q-Proj /k))*"* — DT(D(k))
which associates to U Hhviwa distinguished triangle of the form

WV S W) 5 UL w)ysau vy 5

(2.9) Theorem. Denote by ( Q-Proj /k; proper) the category of quasi-projective varieties and
proper maps. There exists a functor

he : ( Q-Proj /k; proper)°P? — D(k)

satisfying the properties:

(i) he coincides with the functor h in Theorem I on the subcategory (Proj/k). IfU — X is
an open immersion into a projective variety and Z = X — U, there is a canonical isomorphism
he(U) 3 WX, Z).

(it) If j : U" — U 1is an open immersion of quasi-projective varieties, there is associated a
morphism j. : he(U') = h (U). It is covariantly functorial in j.

(iit) if 1 : Z — U is a closed immersion and j : U — Z — U the open immersion of the
complement, then there is a distinguished triangle

he(U — 2) 25 ho(U) 55 ho(2)

functorial in (U, Z).
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(1v) There is a canonical morphism h.(U) — h(U) which is an isomorphism if U is projec-
tive.

(v) One has

(2.10) Definition. Let U be a quasi-projective variety. The object h(U) (resp. h.(U)) is the
cohomological motive (resp. it compactly supported cohomological motive) of U. One has

Z"(h(U)) = 2" (U,)* :cohomological cycle complex

Z"(he (1)) :compactly supported cohomological cycle complex
Z7%(he(U)Y) = Z,(U) :homological cycle complex
Z73(h(U)Y) :compactly supported homological cycle complex.

Taking the cohomology in degree —n, one has

CHC"(U,n)=H™"2"(h(U)) :Chow cohomology
CHCZ,,(U,n) = H " Z"(h(U)) :Chow cohomology with compact support
CH,(U,n)=H ™Z *(h.(U)") :Chow homology

CH (U,n) = H™™Z *(h(U)") :Chow homology with compact support.
Each theory is contravariantly or covariantly functorial for all maps or proper maps.

§3. The proof of Theorem I.

The following is an amplification of Theorem 1. If U = U’, f = id, and Z,Z’ = () then
one recovers Theorem 1.

Theorem I' Let

Zz —— U

be a Cartesian square of quasi-projective varieties such that the horizontal arrows are closed

~

immersions, and f a proper map that induces U' — Z' > U — Z. Let

s 4

2z~ U

lg- I
Z. 2 v,
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be a commutative diagram of hyperresolutions over the above square. Then the map of
complezxes

(f3,93) : Cone[B; : Z™(Uy)* = Z7(Z4)*] — Conelag : ZT(UL)* — Z7(2))*]
1S a quasi-isomorphism.

The proof of Theorem I and Theorem I’ proceeds by induction on the dimensions of the
varieties involved. Let us call Theorem I,, (resp. Theorem I}, ) the statement of Theorem
I (resp. Theorem I' ) where dimU, dimU,, dimU, (resp. dimU,, dimU!, dim Z,, and
dim Z)) are all < n. Here dimU, := mazdim U,.

Proof of Theorem I, = Theorem I/,. Theorem I, implies its variant (2.5) for 2-
diagrams of dimension < n. So one may take particular hyperresolutions to prove the
assertion. Take a desingularization U — U’; let Z C U be the inverse image of Z. We may
take 1-iterated hyperresolutions of Z, Z’, and Z so that there is a diagram

Ze = Z = U
+ + {
Z, = Z' = U
{ + {
Ze — Z <« U
Then - . - -
Ze — U Ze — U
i and 4
Ze Z!

are hyperresolutions of U, U’, respectively. The claim is clear in this case since both com-
plexes are quasi-isomorphic to Cone[Z7(U) — Z7(Z.)*].

(3.1) Proposition. Assume Theorem I,,_,. Let

AL I §

E %
z P,y

be a Cartesian square of quasi-projective varieties such that the horizontal arrows are closed
immersions, f a proper map that induces U' — Z2' S U — Z, and U and U’ are smooth. Let
ge : Z, — Z4 be a map of hyperresolutions over g. Assume the dimensions of the varieties

involved (1.e. U, U', Z, and Z,) are at most n. One has a commutative diagram

a

zZl % U

T
Z. P U
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Then the map of complezes
(f*,9%) : Cone[B: : Z"(U) — Z7(Z4)*] = Conelay : Z"(U') = Z7(Z])*]

15 a quasi-isomorphism.

Remark. It follows that if U is smooth of dimension < n, and U, — U is a hyperresolu-
tion with dim U, < n, then the map Z™(U) — Z7(U,)* is a quasi-isomorphism. In fact, it
is obvious for a l-iterated hyperresolution. If X is a hyperresolution of U, and X — X isa
further hyperresolution, X is of the form

X — U

Lo

X — U

(see (1.3)). By induction on length, one knows U’ — U induces a quasi-isomorphism
ZT(U) — Z"(U")*, and X' — X also. Hence X* —+ U also induces a quasi-isomorphism.

The following two theorems are proven in [Ha 2|. See [Fu, §6] for the case of ordinary
Chow groups.

(3.2) Theorem. Let Y be a smooth quasi-projective variety, X C Y a closed smooth
subvariety of codimension d. Let f : Y — Y be the blow-up of Y along X, X = ST Y X) the
exceptional divisor, g : X — X the induced map, andi: X —» Y and j : X - Y the closed
immersions. .

X 215y

QJ'.J'J’

X —— Y
Denote by N = NxY the normal bundle of X inY, and E := g*N/On(—1) the ezcess
bundle. Then
(a) For x € CHi(X,n), f*i,z = ju(cg-1(E) - g*1).
(b) Fory € CHg(Y,n), fuf*y=y.
(c) If £ € CHi(X,n), gu(Z) = 7*5.(X) = 0, then & = 0.
(d) There is an ezact sequence

0 — CHi(X,n) % CHi(X,n) ® CHi(Y,n) > CHg(Y,n) — 0

where
a(‘%) = (g*i} *J*f) 3
bz, §) = i (E) + fu(¥) -
(e) If j € CHk(Y,n) satisfies fo§j = j*§ =0, then § = 0.
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(f) There is an exact sequence

0 — CHi (X, n) % CH(X,n) ® CHi(Y, n) 2 CHk(Y,n) - 0
where
a(z) = (ca-1(E) - g7z, —ix(2)) ,
B(z,y) = ju(Z) + [y

A left inverse of o is given by v(ZT,y) = g.&.
The following follows from the above.

(3.3) Theorem. Under the same hypothesis the map

.

(f*,g*) : Cone[Z"(Y) <> Z7(X)] — Cone[Z"(V) 25 27(X)]
15 a quasi-tsomorphism.

Proof of Proposition (3.1). By induction on the length r of Z, (then Z, has length
<r). Assume

(*) (3.1) holds if the length of Z, is < r — 1.
By Remark to (3.1), it then follows

(**) If U is smooth of dimension < n, U, — U is a hyperresolution with dimU, < n and
length < r, then the map Z™(U) — Z7(U.)* is a quasi-isomorphism.

Claim 1. If S is a scheme with dimS <7 —~ 1 and X — § its hyperresolution of length
r and dim X < n, then there exist open and closed [).-subschemes (X),, (X); of X such
that X = (X),[[(X), and

(i) The subcomplex Z7((X)g)* C Z7(X)* is acyclic.

(i) dim(X); <n-—1.

Proof. If X is a l-iterated hyperresolution, let X be the reduction of a 2-resolution

X1 —— Xnn

! !

Xlg ey §
and a hyperresolution of length r — 1

(Xll)o — Xll

! I

(X10)e — Xio -
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Let (Xo1)o C Xo1 be the union of common components of X;; and X¢:. Then its comple-
ment has dimension < n—1. Let (X11)o := (Xo1)o and [(X11)e)o C (X11)e its inverse image.
Then [(X11)e]o — (X11), is a hyperresolution of length 7 — 1, so by (**) the pull-back map

Z7((X11)0) = Z7([(X11)e]o0)"

is a quasi-isomorphism. If one takes as X, C X the open and closed subscheme consisting
of (X10)e, (X11)o and {(X11)e]o, it satisfies the first condition.

Next carry out the same process on Xyg (resp. X131) and (Xj0)e (resp. (X11)s) in place
of X, and S. Namely take (Xo10), to be the common components of X190 and Xi19, and
take its inverse image. Iterate this throughout the tower of 2-resolutions. One obtains an
open subscheme X, C X satisfying the two required conditions.

If X is an n-iterated hyperresolution, one argues inductively on n.

Claim 2. To prove (3.1) one may assume

(***) dim Z, and dim Z, are <n — 1.

Proof. Let Z, be the union of common components of Z and U; let (Z,), C Z, be the
inverse image of Z,. By (**) the map Z7(Z,) = 27((Z.),)* is a quasi-isomorphism. Simi-
larly, if Z! be the union of common components of Z' and U’, then Z7(Z)) — 27((Z),)*
is a quasi-isomorphism. The assertion (3.1) will not change if we replace (U,U’, Z, Z’) by
(U~ 2,,U' —Z!,Z - Z,,Z' — Z]). Then one has dim Z, dimZ’ are <n — 1.

Apply then Claim 1 to Z, =+ Z and Z. — Z’, and replace them by open and closed
subschemes with dim < n-1 without changing the quasi-isomorphism classes. The condition
that dim Z,, dim Z, are < n - 1 is achieved.

Now assume (*) and (***). We first consider the case where f is the blow-up of along
a smooth center C C U (then ¢ C Z). Letting E be the exceptional divisor one has a
diagram
E o5 Z < U
4 1 1
C - Z < U

where all the squares are Cartesian. We apply the hypothesis Theorem I, _; to the left
square and Theorem (3.3) to the outside square; then we obtain the claim. Thus the claim
also holds if f is a succession of blow-ups along smooth centers.
In the general case, take embedded resolutions of (U, Z) and (U’, Z’), so there is a com-
mutative diagram
(UI»Z,) AR ([NJI’Z,)

fl lf
v,2) «—— (U,2)
where the horizontal arrows are successions of blow-ups along smooth centers. Applying the

above to the horizontal arrows, one is reduced to the following proposition.

(3.4) Proposition. Assume Theorem I!,_,. Let f : X — Y be a proper birational map

of smooth gquasi-projective varieties of dimension n, C C X, D C Y be normal crossing

16
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divisors such that C = (f*D)req. Let

Cy — C

Lo

Dy, —— D

be a map of hyperresolutions. Then the map f* : CHC" (Y, D,m) —» CHC"(X,C,m) is in-
jective. If moreover f induces an isomorphism X —C = Y — D, then f* is an isomorphism.

Proof. First note by I, ,, CHC"(Z,m) is defined for Z with dimZ < n — 1, and
contravariantly functorial. Slmllarly CHC"(U, Z,m) is defined for U smooth and Z C U
closed with dimZ < n — 1.

Since f* : CH"(Y,m) — CH"(X, m) is injective, the claim is equivalent to the map
f* : CHC™(C,m) - CHC" (D, m)

being injective. We will prove this by induction on the number of irreducible components of
D. Let D; be an irreducible component of D, C; a component of C mapping birationally
to D1, D' =D — Dy, and C' = (f*D');eq- One has a commutative diagram

CHC™(C,C',m) —— CHC"(Cy,C1 N C',m)

I T

CHC™(D,D',m) —— CHC™(Dy,DinD',m) .

The lower arrow is an isomorphism by Theorem I7,_;. The right vertical map is injective
by induction hypothesis on n. Hence the injectivity of the left vertical map. There is a map
of long exact sequences

—— CHC"(D,D',m) — CHC"(D,m) —— CHC"(D',m) — >
—— CHC™(C,C',m) — CHC"(C,m) —— CHC"(C',m) ——

By induction hypothesis the third vertical arrow is injective. The second vertical arrow is
injective by five-lemma.

Assume now X — C 5 Y — D. Take a succession of blow-ups f : Y - Y that factors
through X, and let D := f~1(D),eq, so:

fl

— Y

l
!
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where f = fo f’. Take hyperresolutions of D, C, and D, and one has
CHC™(Y, D) L5 cHCr (X, 0) L5 cHCT (Y, D) .

Since f* = f"*o f* is an isomorphism as in the proof of (3.1), and f'* and f* are injective,
the latter two are both isomorphisms.

Proof of Theorem I’,_, = Theorem I,. Let X, X, S, etc. be as in (1.3) (with
I =1,58 =U). We show the maps a, b both induce quasi-isomorphisms of cycle complexes.

Since
Z"(X*)* = Cone[Z"(X)* ® Z7(5")* — ZT(X")*)[-1]

it is enough to show that both o* : Z"(X)* — Z"(X’')® and §* : Z7(S")* — Z7(X')* are
quasi-isomorphisms. Assume X is a [J.-scheme, and an n-iterated hyperresolution of S.
That " is a quasi-isomorphism follows from Remark to Proposition (3.1). To show 3* is
a quasi-isomorphism, one is reduced to the case n = 1, and then to the case r = 1. If
n=r=1, X" - 8’ is a hyperresolution of the Cartesian square X — S, so one concludes
by Proposition (3.1).

Let f: X — Y be a map of hyperresolutions of a quasi-projective variety S. Consider
the commutative diagram of 1-diagrams

X — Y
hS v
S

Take its total diagram, then its hyperresolution:

One has a commutative diagram of hyperresolutions of S

X >y xt b g

1| ! [
a.' t b’ ?

Y > Y < S

Since the four maps a, b, a’ and b’ induce quasi-isomorphisms of cycle complexes, so does f.

§4. The categories Dyiniic(k) and K®Z(Smooth Q-Proj /k)°PP.
We collect all that is needed in this paper on the category of mixed motives. We first recall
notions from [Ha, II,§3 and §1].
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A C-complez (of abelian groups) consists of

(i) Complexes A™ = (A™*,ds=) (each of which is not necessarily bounded) for m € Z,
such that for all but finitely many m’s, A™ = 0; and

(i) For m < n, maps of graded groups

Fmon. AT An,-—(n—m~—1)
subject to the condition

F™o(—=1)™dgm + (—1)" danoF™" + Y FimeF™! =0
m<i<n

as a map A™® — Amentmt2,

One can associate with it a complex, the total complez Tot (A) = (Tot (A)®,d), defined as:

Tot (A)P = @ A™P™™

pEZ

(which is a finite sum), and the differential d is the direct sum, for m, of (—1)™ dgm + F™" :
A™® 5 Bp>mA™*~(2=m=1)_ The condition in (ii) is equivalent to d being a differential.

For smooth projective varieties there is another notion of distinguished subcomplexes of cycle
complexes. It differs from that in §2 in that one considers only smooth projective varieties but
stronger conditions, (ii), (ii) below, are satisfied. See [Ha, II, §1] for the proof.

For each smooth projective variety X there is a collection of distinguished subcomplezxes of
Z7(X,-) satisfying:

(i) For a distinguished subcomplex Z7 (X, -)’, the inclusion into Z7(X, ) is a quasi- isomor-
phism;

(ii) For any cycle f € Z°(X xY,£) and a distinguished subcomplex Z"+5~dim X (y, .} there is
a distinguished subcomplex Z7 (X, -)’ on which f, is defined and induces a map f. : Z7(X,-)' —
Zr+s——dimX(Y, o+ E)I;

(i) The intersection of a finite collection of distinguished subcomplexes is again distin-
guished.

For details on the category D(k) of mixed motives, we refer the reader to [Ha, II]. We will
only need the subcategory Dfinite(k) of mixed motives of finite type; the definitions are briefly
recalled.

A finite symbol is a formal sum

@(Xm Ta)

acl

where X, is a smooth projective variety, I a finite index set and r, € Z. We write 0 for the
corresponding symbol when I is an empty set.
Define dual, tensor product, and inner Hom of (a) finite symbol(s) as:

(©(Xara))” = &(Xa, dim Xo — 14) -
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(B(Xa,Ta)) ® (®(Xclx” Tar) ) = B(Xq X X;',Ta + "';') 3
and

Hom(&(Xa,Ta), B c,z""'a’)) = (@(Xaara))v ® (@(X;,,Ta:)) .

Define the cycle complex of a finite formal symbol by
ZO(®(Xaa Ta)a ) = @ZT& (Xaa ) .

One also uses cohomological notation Z%(B(Xa,7a)) ™" = Z%B(Xa,Ta), n).
Note there is a partially defined map

ZO(.E_O_T_Q((XI’Tl)7 (X27 T2) )’ : ) ® ZO(M((X‘Z’T2)(X3’ T3) )1 : )

—— = Z°(Hom((X1,71), (X3,73) ),-)

given by the composition of correspondences
u@ v vou=p,[(uxX3) (Xyxv)].

By definition, an object of Dyinire(k) is a set of data K = (K™) = (K™, f™") where

(i) For each integer m, K™ = ®acr(m)(Xa)Ta), a finite symbol.

(ii) For (m,n) with m < n, given f™" = (f7") € Z°(Hom(K™, K™))~"*t™*+%, which are
subject to the conditions:

For fmemi+1 ¢ ZO(Hom (K™ K™k+1) ) Mektitmitl (p =1 2 ... r) one has

fmrymr+10fmr7mr—lo L. ofm1,m2 is defined and € ZO(Hom(Kml,KmH'l) )-—mr+1+‘m1+" .

For m < n, one has
(Ml)n afm,n + Z fl,n ° fm,l =0, .
m<é<n

On the left side the compositions of the correspondences are required to be defined.

There is the functor of cycle compleres Z° from Drinite(k) to the derived category of Q-
vector spaces. To define Z°(K, -), for each m and o € I(m), take a distinguished subcomplex
Z°((XaTa), ")’ s0 that each f'7" induces the map 5", : Z°((XayTa), )" = 2°((Xg,7a),")'-
We then let

ZO(Kmv '), = ®QZO((X0” Td)7 '),
and have f™", : Z0(K™,.) — Z%K™,-+ (n —m~1)) is defined. We define Z°(K,-) to be
the total compler Tot(Z°(K™,-), fi*"), namely the complex (K, d) with

K =@ 2K, 5 —1i),
j>t

d = ((-100;+ ) 1Y) .

7 i<t

and
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Let (K, f) and (L, g) be objects in Dfinite(k). The function cycle complex
Hom(K, L)® is defined as follows. Let Z°(Hom (K™, L™ ), ) be distinguished subcomplexes
such that

For ue Z°(Hom(K™,L™),), both wucf™™ and ¢™ ™ ou are defined.

(This is possible since there are only finitely many non-zero f™™’s and g"‘/’""s.) The coho-
mological complex to be defined has the group of N-cochains

Hom(K, L)V = @  2°Hom((K™ L™),p)

—m+m’/—p=N

The differential of this complex, which we denote by D, is the sum of the three kinds of maps:
(_1)P+m’+n+1 (o fn,m) . ZO(M(Km,LmI),p)I - ZO(E@(K", Lml),p—{— n —m — 1)1 ,

(=1)™* (g™ o) : Z9(Hom(K™, L™ ),p)' — Z°(Hom(K™, L™ ),p+n' —m' — 1),

and
(-1)™ 8 : Z°%Hom (K™, L™),-) — Z°(Hom(K™, L™), - — 1)’ .

Given three objects K, L and M, the partially defined composition map
Hom(K, L), ® Hom(L, M)‘ — — = Hom(K, M)*

u® v vou; (vou)™ E oo™t
ez

satisfies the Leibniz formula
D(’Uou) = D’Uou + (—l)dengODU ,

where deg v is the total degree of v in the cohomological complex. There is a quasi-isomorphic
subcomplex of Hom(K, L), ® Hom(L, M)* on which the composition is defined. See [Ha, II,
§1].
By definition
Homp,, .. ) (K,L) = H°Z°(Hom(K,L))* .

The composition of morphisms is induced from the composition of the function complexes. A
morphism u : K — L is represented by u™™ € Hom(K™, L™)™"~*™ (non-zero only for m < n)
subject to the condition

(_l)naum,n_Z( 1)m+l n fml+Z l+n Zn m,l:O.

It defines the zero morphism if there exist U™™ € Hom(K™, L™)~™~*+™~! (non-zero only for
m < n — 1) such that

Tt = (_1)naUm,n + Z(_l)m+£ Ue,nofm,ﬂ + Z(_l)l—}—n ge,noUm.,E .
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We have the following (only the functor A, the duality functor and the cycle complex functor
will be used in this paper), see [Ha, II]. Let Q(r) = (pt,7){27], the Tate objects.

4.1) Theorem. The category Dyinite(k) has a structure of triangulated category. Moreover
f
(1) Dfinite(k) has dual, tensor product, inner Hom, the unit object @, and the Tate objects
Q(r).
(2) There is a contravariant functor h : (Smooth Proj./k) = Dfinite (k).
(3) If X is smooth and projective, one has

Homp,, .. (Q A(X)(r)[2r — m]) = Km(X)§ .

Here the right hand side is an Adams-graded piece of the K-group of X.
(4) There is the cycle complex functor 29 : Dfinite(k) = D(Q).

Let Z(Smooth Q-Proj /k)°PP be the additive category with the same objects as
(Smooth Q-Proj /k) and for V, V' smooth quasi-projective

Hom(V,V') = ZMap(V',V)

the free abelian group over the set of maps from V' to V. (This choice, rather than its
opposite, will be convenient for us.) Let K®Z (Smooth Q-Proj /k)°PP be the homotopy category
of bounded complexes in Z(Smooth Q-Proj /k)°PP. It is a triangulated category. An object is
of the form M = (M*, f*) where M? is smooth quasi-projective and f? € Z Map(MP*!, M?).
If M, M’ are objects of K°Z(Smooth Q-Proj /k)°PP one has the complex of abelian groups

Hom(M, M')*
and Hom(M, M') = H° Hom(M, M')*. One defines the functor of cycle complexes
Z" : K®Z(Smooth Q-Proj /k)°PP — D(Q)

ZT(M)nz[LL)ZT(MO)O —fi)Zr(MO). _f_x)}

the double complex with Z7(M®)° placed in degree zero. Here we denote a distinguished
subcomplex of Z7(M?*)® by the same notation, and f* are the maps induced by pull-backs.
There is a natural functor

h : Hre (Q-Proj /k)°P" — K®Z (Smooth Q-Proj /k)°PP

defines by
Us = U) > [Ud]

where
U=UeS 50U, 5 U,

(Up 11 degree 0 and d is the alternating sum of the face maps).

212



§5. The proof of Theorem II.

In this section we prove Theorem II and its variant (2.6), and subsequently Theorems (2.7)
and (2.8).
For irreducible varieties X € Ob (Smooth Proj/k) and V € Ob (Smooth Q-Proj /k), let

H((X,r),(V,s))* 1= gdmX+s—r(x « V).
For K € ObD(k) and M € Ob KbZ(Smooth Q-Proj /k)°PP, define the complex
H(K,M)® :=TotH(K™, M"™)*

where the right hand side is the total complex, defined as in the case where both K and M are
in Ob D(k), where one has the function complex, see §4. Also let H(K, M) := H'H(K, M)".
One has “composition of correspondences” (M’ € Ob K®Z(Smooth Q-Proj /k)°PP)

H(K,M)'@Hom(M,M’)' —_—— H(K,M’)’
c®u +—  Uoy

induced from pull-back, and (K’ € ObD(k))

Hom(K',K)'@H(K,M)' —— H(K’,M)‘
VR — oV .

It can be shown these maps are defined on quasi-isomorphic subcomplexes by an argument
similar to [Ha, II, §1]. They induce maps on Oth cobomology, e.g. H(K, M) ® Hom(M, M’) —
H(K,M’). The composition satisfies the following associativity, both at the chain level and
on cohomology.

(UO(X)O’U = UO(ao’U) 5

(uort Yo = uo(t'oa), ao(vov’) = (aov)orv’ .

(5.1) Definition. Let M € Ob KZ(Smooth Q-Proj /k)°??. A pair (L, a) where L € D(k),
o € H(L, M) is a left resolution of M if for any K € D(k) the map

ao(—) . Homp(k)(K, L) — H(K, M)
is an isomorphism. A left resolution is unique up to unique isomorphism.

Let V € (Smooth Q-Proj /k), irreducible, and take its smooth compactification, namely an
open immersion j : V — V where V is smooth projective and D = V — V is a divisor with
normal crossings. Let D) be the i-fold intersection of the components of D so one has a strict
simplicial variety augmented to V'

-~-2)D(1)gD(°)—)V.

b d dl
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Taking its associated diagram (take the alternating sum of the transposes of the graphs of the
face maps) one obtains an object of D(k)

(V&D) :=[--- = (DM, -2) » (D©®, —1) - V]

where V in degree 0. It follows from the localization theorem that for any X in
(Smooth Proj /k) and any s,

§*: 2(X x (V&D)) 5 Z,(X x V).

So if we define a = [I';] then ((V&D), @) is a left resolution of V. By devisage there exists a
left resolution for (V,s)[i] € Ob K®Z(Smooth Q-Proj /k)°PP, for any s and i.

(5.2) Theorem. For any object M of K®Z(Smooth Q-Proj /k)°P?, its left resolution L(M) €
D(k) exists. The association M +— L(M) uniquely extends to a functor of triangulated cate-
gories F : KPZ(Smooth Q-Proj /k)°®? — D(k) such that the isomorphism

HOI’I]D(k) (K, L(M)) — II(K, M)

is functorial in M. One has Z"(M) = Z7(L(M)).

Proof. The existence of left resolution is proved by induction on the “length” of an object
M, using Proposition (5.3) below. The case M is of length zero was treated above. That
M — L(M) extends to a functor is easy to verify using the universal property of left resolution,
and the functor is triangulated by (5.3).

(5.3) Proposition. Let M; (i = 1,2) be objects of K®Z(Smooth Q-Proj /k)°PP, (L;, ;) left
resolutions of M;, and u € Hom(M, M3), v € HOIII'D(k)(L]_, L) be such that uor; = agov.

L, —2— L,

ml laz

MléMz

Let M = Conewu, L = Conev. Then there is o« € H(L, M) such that (L, ) is a left resolution
of M.
Proof. If

M, - My, —> M ~[1~1>

is a distinguished triangle, so is

H(K, My)* = H(K, My)* — H(K, M)* 2
Similarly for a distinguished triangle K, — Ky — K _!}1) one has

H(K, M)* — H(Ks, M)* — H(Ky, M)* 25

214



distinguished. Under the assumption of the proposition, there is @ € H(L, M) which makes
the following diagram “commutative”

Ly LN Loy Y -~ L N Ll[l]

I SR A,

!

My — s My —Y s M s M,

namely aov’ = w'oas and a;[1}ov” = u”oa. We show (L, ) is a left resolution of M. For any
K € ObD(k) one has a map of exact sequences

Hom(K,L;) — Hom(K, Ly) — Hom(K, L) — Hom(K, Li[1]) — Hom(K, L,[1})

F I I

H(K,M;) — H(K,M;) — H(K,M) — H(K,M[1l]) — H(K,M1]).

By assumption all the vertical maps except the middle one is an isomorphism; hence so is the
middle one.

(5.4) Theorem. There is a unique functor
h: (Q-Proj /k)°P? — D(k)

such that the following square commutes (where the left vertical arrow is the natural functor).

Hre (Q-Proj /k)°p? ., K?®Z(Smooth Q-Proj /k)°PP

! ¥

(Q-Proj /k)rr  —2 D(k) .

Proof. The functor hoF factors through Ho Hre (Q-Proj/k)°PP by Theorem I. Via the equiv-
alence Ho Hre (Q-Proj /k)°P? — (Q-Proj /k)°PP one obtains the functor h.

Proof of Theorem (2.6). Parallel to the proof of Theorem II, using (2.5).
Proof of Theorem (2.7). This follows from Theorem I’ and the following fact.

(5.5) Proposition. Letu: K — L be a morphism in D(k). Suppose for any smooth projective
X and s,i1 € Z the map

’U.o(*) : HomD(k)((X, S)[Z], K) — Homp(k)((X, S)[i], L)

is an isomorphism. Then u is an isomorphism.
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Proof. 1t follows from the hypothesis by a spectral sequence argument that for any M in
D(k), the map
’UO(-‘) . Homp(k) (M, K) — Homp(k) (M, L)

is an isomorphism. Hence the claim by Yoneda’s Lemmma.

Proof of Theorem (2.8). Let U, ELN V. 2% W, be a hyperresolution of a 3-diagram
vhvs W. There is a distinguished triangle in K®Z(Smooth Q-Proj /k)

v, - v,

‘idJ' e
.

U. g.f' W

M |

‘/._g'__)W.

the degree one map coming from id : V, — V,. Applying the functor F' one has a distinguished

triangle

RV S W) = hU L w) o rw LHv)

This process gives a functor

Hre(3 — (Q-Proj /k))P® — DT(D(k)) .

If U, ELN Ve LN W, is another hyperresolution of the same U L v 4 W and

fe 9, W,

|

fo vv, W,

1.

a map of hyperresolutions, the induced maps between the distinguished triangles are isomor-
phic, as follows from the variant of Theorem II. Thus one has the induced functor

(3~ (Q-Proj /k))** — DT(D(k)) .

§6. The functor h..

We prove Theorem (2.9).
For U in (Q-Proj/k), take a projective variety X and an open immersion U C X. Let
Z = X — U and consider the object h(X, Z) in D(k).
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If (X',Z') is another compactification of the same U there is a third compactification
(X", Z") and a diagram

(X", 2"
*) v g
(X, 2) (X', 2"

and one has f* : A(X,Z) > A(X",Z”) and g* : A(X',Z') 5 A(X”,Z") by Theorem (2.8).
Therefore one obtains an isomorphism

vi=(g") Yo f* WX, Z) - h(X',Z)).

The isomorphism ¢ is independent of the choice of the diagram (¥). The isomorphisms ¢ satisfy
the cocycle condition: if (X", Z") is a another compactification of U the following diagram is

commutative.
h(X, Z) 4 MX',Z")
LNy N
h(Xf/’ ZH)
Thus define A (U) = A(X, Z) up to the canonical isomorphism ¢. Let f: U’ — U be a proper
map of quasi-projective varieties, (X', Z’), (X, Z) be compactifications of U’, U respectively,
and f: X' — X be an extension of f. Let

[*:he(U) = h(U")

be defined by f* : h(X,Z) — h(X',Z’). Since two compactifications of the same map f can
be dominated by a third, one shows this map is independent of the choice of f. Hence one has
a functor h¢ : ( Q-Proj /k; proper)°P? — D(k).
The composition
he(U) = h(X,Z) — h(X) = h(U)

is the canonical morphism as stated in (iv).

(if) To show the covariant functoriality for open immersions let j : U’ — U be an open
immersion. Let U ¢ X be an open immersion into a projective variety, Z = X — U, and
Z" = X — U’. Then the canonical morphism

WX, Z') = h(X, Z)
is by definition the morphism j. : ho(U’) — h.(U). The independence of the choice and
functoriality is proved easily.

(iif) Let X be a projective variety and A, B C X be closed subsets. One then has a
distinguished triangle

h(X,AUB) - h(X,A) > (AU B, A) 2% .

By Theorem (2.7), h(AU B, A) & h(B, AN B). Hence follows the distinguished triangle.
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(v) If Zo — X, is a hyperresolution of Z — X,

zy i zy e T gy
v |
Xy« XY « 4 XY

Ta Ty |

where X is placed in degree 0. Since Z7%(XV) = Z,(X) for X smooth projective, one has

Z,(Z0) ¢ 2y(Z)) 2 B 2(20)
zemx = | | |
Zi(Xo) ¢ — Z(X)) +2— -t Z,(X,)

the maps are push-forwards by the face maps of Z,, X, and the maps Z, - X,. By Theorem
(2.3) the natural map

Z7*(h(X,Z)") — Cone[Zs(Z) — Z,(X)]
is a quasi-isomorphism, and by Theorem (2.1) there is a natural quasi-isomorphism
Cone[Z4(Z) = Z4(X)] — Z,(U) .

Hence one has a quasi-isomorphism Z7%(h(X,Z)Y) — Z,(U). This quasi-isomorphism is
compatible with different choices of (X, Z).

Remark. To show (2.9) one only needs a functor
h:(2— (Proj/k))°P? — D(k)

the restriction of h in Theorem (2.6) to the subcategory of 2-diagrams of projective varieties.
The existence of such a functor is also proved in [Ha 1].
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