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Projective plane curves whose
complements have g = 1

Takashi KISHIMOTO

Abstract

We consider an irreducible curve C with two cuspidal singular
points on the projective plane P2 such that the complement P2 — C
has logarithmic Kodaira dimension one. Since P2—( is a Q-homology
plane, we have two cases to consider according to the unique reducible
fiber of a C*-fibration on P2 — C. In the first case, the reducible fiber
consists of two curves isomorphic to the affine line A' and meeting
each other in one point. In this case we can write down explicitly a
defining equation of C. In the second case, the reducible fiber is a
disjoint union of two curves, one of which is isomorphic to C* and
the other to A!. In the second case, we can give a defining equation
under some minor additional hypotheses. The case where P2 — C has
logarithmic Kodaira dimension —oo was studied in [8].

0 Introduction

All algebraic varieties considered in this paper are defined over the field of
complex numbers C. Let C be an irreducible curve on the projective plane
P2, which we simply call an irreducible plane curve. In order to analyze
the curve C, it is important to consider logarithmic Kodaira dimension of
its complement X := P2 — C, which we denote by g(X) (see Iitaka [3] for
the definition and the relevant results on logarithmic Kodaira dimension).
Miyanishi and Sugie [8] considered an irreducible plane curve C' with (P2 —
C) = —oc and determined possible types of such a curve by means of the
theory of Al-rulings. '



Meanwhile, it is known by Tsunoda [12] and Wakabayashi [13] that an
irreducible plane curve C with deg C' > 4 has K(P? — C) = 2 except for the
following two cases:

(A) C is a rational curve with one singular point,
(B) C is a rational curve with two cuspidal singular points.

Tsunoda [12] showed that K(P? — C) = 1 or 2 in the case (B) and that
&(P% — C) # 0 if C is a rational curve with only one cuspidal point.

In the present article we consider an irreducible plane curve C' of x(P? —
C) = 1 and with two cuspidal points. To be specific, our problem is stated
as follows:

(1) Describe the structure of the complement X := P?—(C via the existence
of C*-fibrations, e.g., the number of singular fibers or multiple fibers
and the distribution of multiplicities.

(2) Determine a homogeneous defining eguation of C up to automorphisms
of P? by making use of the informations given in (1).

If C is a rational plane curve with only cuspidal singular points, its com-
plement X is a Q-homology plane, which is by definition a smooth affine
surface with H;(X;Q) = 0 for all { > 0. See Miyanishi and Sugie {9} for the
relevant results on Q-homology planes. If C is not rational or has singulari-
ties other than the cuspidal singularity, X is not a Q-homology plane. Hence
the above problem (2) can be stated as follows:

(3) Classify the Q-homology planes with logarithmic Kodaira dimension 1,
which are obtained as the complements of irreducible plane curves.

The scheme of the present article is as follows. In Section 1 we fix our
terminology and state preliminary results without proof. In particular, the
Euclidean transformations and the EM-transformations play very important
roles. In Section 2 we shall state the result (Theorem 2.1) concerning the
problem (1) and prove it. As seen there, such curves are classified into two
types, say a curve of the first type and of the second type . In Section 3 we
consider the curves of the first type and write down the defining equations as
a solution to the problem (2) (cf. Theorem 3.5). In Section 4 we consider the
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curves of the second type. Not as in the case of the first type, the situation
is more complicated and tough. We shall give the answer to the problem
(2) with some additional hypotheses (cf. Theorems 4.5, 4.13 and 4.16). We
make frequent use of Lemma 1.4 which is mainly due to Miyanishi and Sugie
[9, Lemmas 2.15 and 2.16], though the statements given there contain some
mistakes. We make the corrected statements in Lemma 1.4.

The author would like to express his hearty thanks to Prof. M. Miyanishi
and Dr. H. Kojima for the suggestion of these problems and valuable advice.

1 Preliminaries

Let S be a smooth algebraic surface. A smooth compactification of S is a
smooth projective surface S such that S is an open set of S and that the
boundary divisor D := § — S is a divisor with simple normal crossings. A
surjective morphism ¢ : S — B from a smooth algebraic surface onto a
smooth algebraic curve is called an untwisted (resp. twisted) C*-fibration if
S has a smooth compactification S of S and a P!-fibration 3 : § — B such
that B is a smooth projective curve containing B as an open set, |s = ¢
and 3 has exactly two cross-sections (resp. one 2-section) contained in the
boundary S — S.

We shall recall the definitions of Euclidean transformation and EM-trans-
formations, which will play very important roles in the subsequent argu-
ments. Let 1/, be a smooth projective surface, let p, be a point on V;; and let
I, be an irreducible curve on V} such that p, is a simple point of ;. Let d,
and d; be positive integers such that d, < dy. By the Euclidean algorithm

with respect to d; < dgy, we find positive integers d,,...,d, and q, ..., ga:
do = qudi+dy dy < dy
di = qody+dj d3 < dy
oz = Gu-1dq-1+ dq do < dawl
do-1 = QQda fo > 1

Set N := 3°%_, ¢s- Define the infinitely near points p;’s of p, for 1 < i < N
and the blowing-ups ¢; : V; — V,_, with center at p; ; for 1 < i < N
inductively as follows:
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(i) p; is an infinitely near point of order one of p; ; for 1 <¢ < N.

(i) Let E; := o7 (pi_,) for 1 < i < N and let E(s,t) := E; if i = ¢; +
oot g +twithl<s<aandl <t < g, where we set g := 0
and F(0,0) := lp. The point p; is an intersection point of the proper
transform of E(s —1,q,.;) on V; and the exceptional curve FE(s,t) if
i=q+...+ga+twithl<s<aand1<t<q(1<t<yq,if

s = a).

Then a composite ¢ := ¢y -----oy is called an Euclidean transformation asso-
ciated with the datum {py, lp, do, d1} (cf. Miyanishi [6, p.92]). The weighted
dual graph of Supp (0~*(ly)) is given in Figure 1, where E, := ¢'(ly) which
denotes the proper transform of [, by o and where we denote the proper
transform of E(s,t) on Vy by the same notation.
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Let C, be an irreducible curve on Vj such that p, is a one-place point of
Cy, let dy be the local intersection number (Cy - lp; po) of Cy and [, at py and
let d, be the multiplicity mult ,,(Co) of Cy at py. Then dy > d;. The proper
transform C; := (o} - - 0;)(Co) passes through p; so that (C; - E(s,t)) = d,
and the intersection number of C; with the proper transform of F(s—1,q,_;)
onV, is d;_; — tds, where i = q; + ... + ¢;_1 + t. The smaller one of d; and
ds_y — tds is the multiplicity of C; at p; for p; is a one-place point of C;.
Note that the proper transform o'(Cy) on Vy meets the last exceptional
curve E(a, q,) with order d, and does not E, := ¢'(l) and other exceptional
curves arising in the blowing-up process ¢.

We now explain EM-transformation, which is called an (e, 1)-transforma-
tion in Miyanishi [6, p.100]. Let V;,p, and I, be the same as above. Let
r > 0 be a positive integer. An equi-multiplicity transformation (or EM-
transformation, for short) of length r with center at p, is a composite 7 =
1 - - -7, of blowing-ups defined as follows. For 1 <i <r, 7y : V, = V,_, is
defined inductively as the blowing-up with center at p;_, and p; is a point on
77 1(p;_,) other than the intersection point 7/(7;2} (pi—2)) N7 (piz1) (1{(lo) N
1 }(po) if 4 = 1). Let Cy be an irreducible curve on V; such that p, is a one-
place point of Cy. Suppose dg := i(Cy - lo; po) is equal to d; := mult ,,(Cp)-
Let 7; : Vi — V, be the blowing-up with center p,, and set E; := 77 (pg)
and C; := 7{(Cp). Then the point p, := C; N E; differs from 7{(l;) N E;. Set
dP = i(Cy - Ey;py) = d, and dV = mult p(Ch)- Suppose d) = diV. As
above, let 7, : Vo — V; be the blowing-up with center p), let E; := 75'(p;)
and let Cy := 74(C}). Then p, := Cy N E, differs from the point 7}(E;) N Es.
Thus this process can be repeated as long as the intersection number of
the proper transform of C, with the last exceptional curve is equal to the
multiplicity of the proper transform of Cy at the intersection point. If we
perform the blowing-ups 7 times, the composite of r blowing-ups is an EM-
transformation of length r.

We define the notion of an oscilating transformation which is to be used
in Sections 3 and 4. Let Vj, |, and p,y be the same as above. Let (ny,---,n,)
be a sequence of positive integers. Let 8, : V; — V;, be a composite of the n,
successive blowing-ups with centers at p, and its infinitely near points lying
on the proper transforms of [, and let p, be the intersection point of the last
and the second last exceptional components in the process §,. We define the
birational morphism §; : V; — V,_; and the point p; on V; for 2 < i < r



inductively as follows: Suppose that §,_; : V;_; — V,_, and the point p;_,;
on V,_, are defined. Let §; : V; — V;_; be a composite of the n; successive
blowing-ups with centers at p;,_, and its infinitely near points lying on the
proper transforms of the second last exceptional component in the process
9;_;. Then a composite § = @, ---6, is called an oscilating transformation
associated with (po, lo; 11, -+, My )-

The following elementary result concerning the singular fibers of a P!-
fibration is useful in various arguments (cf. Miyanishi [6, p.115]).

Lemma 1.1 Let f : V — B be a P!-fibration on a smooth projective surface
V with a smooth complete curve B. Let F := n,C, +...+n,C, be a reducible
singular fiber of f, where C; is an irreducible component. Then we have :

(1) ged(ny,...,n,) =1 and Supp (F) = U[_,C; is connected.
For 1< i <r, C; is isomorphic to P! and (C;*) < 0.
Fori#3j, (C;-C;) =0 orl.

(2)
(3)
(4) For three distinct indices i,7 and k, C;NC; N Cr = 0.
(5) At least one of the C;’s, say C,, is a (—1)-curve.

(6)

If one of the n;’s, say n,, is equal to 1, then there erists a (—1) curve
among the C;’'s with 2 < 1 < r.

The next result is a corollary of Lemma 1.1, but we encounter the situation
which we can apply it to.

Lemma 1.2 With the above notations, we suppose that
(1) there are two cross-sections Hy, Hy of f,

(ii) there is a component H of F' such that Fr,g — H 15 a disjoint union of
connected components By, B,, ..., B, withr > 3, and

(iii) The component H is linked to the cross-sections H, (resp. H,) via a
linear chain contained in B, (resp. By),

Then each of the connected components B; (3 < i < r) contains a (—1)
component and is contractible to a smooth point.
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Proof. Suppose that either B, or B, is not contractible to a smooth point.
Suppose further that some of the components Bj, ..., B,, say Bs, is not
contractible to a smooth point. After suitable contractions of the components
of Bs, ..., B,, we may assume that B; is not empty and that any of By, ..., B,
contains no (—1) components if it is not empty. Then B, or B, contains a
(—1) component, say E. Suppose that E is contained in B,. Contarct the
component E and subsequently contractible components of B,. Suppose B,
then becomes empty. Hence B, is not contractible to a smooth point by the
assumption. Then, after suitable contractions of the components in B,, we
may assume that B, contains no (—1) component and that H is a unique
(—1) component of the fiber F. But this is a contradiction because two or
more different components of the same fiber meet the cross-section H, after
the contraction of H. Suppose B, (as well as B,) does not become empty
after possible contractions of the components of B, (in B,). Then we may
assume that H is a unique (—1) component in F'. This is also a contradiction
because there are distinct three or more components of F' meeting a (—1)
component Ff. Next suppose that both B, and B, are contractible to smooth
points. Then the component H has multiplicity one in the fiber F'. Then we
can contract the components Bj, ..., B, to smooth points. Q.E.D.

In order to look into the structures of Q-homology planes with C*-
fibrations, the following result is important (cf. Miyanishi and Sugie [9,
Lemma 1.4)).

Lemma 1.3 Let S be a Q-homology plane with a C*-fibration ¢ : S — B,
where B is a smooth curve. Then B is isomorphic to P! or A'. Furthermore,
the following assertions hold true:

(1) If B ts isomorphic to P! then ¢ is untwisted, every fiber of ¢ is irre-
ducible and there is exactly one fiber, say F', such that F,q4 = Al.

(2) If B s isomorphic to A! and ¢ is untwisted, then all fibers of ¢ are
wrreducible except for one singular fiber which consists of two irreducible
components. If B is isomorphic to A! and ¢ is twisted, all fibers are ir-
reducible and there is exactly one fiber which is isomorphic to a multiple

of Al.

The following result is useful to calculate the value of %(S) for a Q-
homology plane § with an untwisted C*-fibration onto an A!. This result



is due to Miyanishi and Sugie [9, Lemmas 2.15 and 2.16]. The original
statement of the result has some minor flaws, and the rectified statement is
given as follows. The proof is easy, and we omit it.

Lemma 1.4 Let S be a Q-homology plane with an untwisted C*-fibration
¢: S — Al. Then the following assertions hold true:

(1) ¢ has a unique reducible fiber, say Gy, which consists of two compo-
nents, say Go, and Go,- All other singular fibers of ¢ are multiples of
curves isomorphic to C*. Let mg; and myg o be the multiplicities of Gy,
and Gg, in Gy, respectively and let G; := m;C* ezhaust all irreducible
multiple fibers of ¢ (if there exist such curves at all) for 1 <i <r.

(2) The configuration of Supp (Gp) = Go1 U Gy is described in one of the
following fashions:

1 Gy = Gos = A, and Gy, and Go, meet in one point transver-
sally.
2 Gogy = A, Go2 = C* and Goy NGop = 0.

(3)(3-1) In the case 1, then ®(S) = 1,0 or —oc if and only of

1 .1 ,
r— — — — >0, =0 or <0, respectively.
min(mg 1, Mo2) = M4

(3-2) In the case 2, then ®(S) = 1,0 or —oo if and only if
r— .___1 — Z _1_ >0, =0 or <0, respectively.
Mop,2 i=1 my
The following lemma is shown by a straightforward computation. So, we
shall omit the proof.

Lemma 1.5 Let dy and d, be positive integers such that dy > dy and ged(dp, d,) =
1. Letd,,...,d, and qy,...,q, be the positive integers obtained by the Eu-
clidean algorithm with respect to d; < dy. Let ¢l = qor1-s for 1 < s < .
Define positive integers b(s,t) for 1 < s<a and1 <t < ¢, as follows:

b(1,8) = 1+t 1<t<dq
b(2,t) = b(1,q1) +tb(1,q; — 1) 1<t< g
b(s,t) = b(s—1,q ) +th(s—1,q;1—1) 2<s<a1<t<g

Then b(a — i,q,_;, —1)=d; for0<i <o —1.
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2 The complement of an irreducible plane curve

In this section we treat the problem (1) in Section 0 and prove the following
result.

Theorem 2.1 Let C be an irreducible plane curve with two cuspidal points
and let X := P? — C. Suppose ®(X) = 1. Then there exists an irreducible
linear pencil A on P? such that the restriction of &, onto X gives rise to an
untwisted C*-fibration

p = (I)AlX X — A.l,

where &, is the rational mapping defined by A. More precisely, the linear
pencil A satisfies the following properties:

(1) A has two base points which are the singular points of C.

(2) A has a unique reducible member with two irreducible components, say
Fy = my F11 + miaFla, and a unique irreducible multiple member, say
.

(3) C is an irreducible reduced member of A.

The unique reducible member | produces a reducible fiber of o, Fy =
FINX = my Fiy +mygFia, where Fyj .= Fy; N X for j =1,2. Furthermore,
the fiber Fy has one of the following configurations:

1. F; = Fip = A, and Fy, and Fy, meet each other in one point transver-
sally.

2. Fu= Al Fip =C* and Py N Fy = 0.

We say that a curve C is of the first type (resp. of the second type) if the
case 1 (resp. the case 2) occurs.

Our proof consists of several steps. First of all, by Kawamata [4], there
exists a C*-fibration ¢ on X. Since the base curve of y is rational, the
closures of general fibers of  generates an irreducible linear pencil A on P2
such that ®,|x = . We first prove the following result.

Lemma 2.2 The curve C is contained in a member of A.
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Proof. Suppose that C is not contained in any member of A. Let C, be
a general member of A. Noting that | has two places lying on C, we have
the following three cases to consider:

1. ¢, meets C in only one point.
2. () meets C in two smooth points.

3. C; meets C in one smooth point and one of the two singular points.

In the first case, let p, = C; N C. Then p, is a singular point of C; because
two places of C lie over the point p,. Since p; moves as C| moves in A, this
contradicts the second theorem of Bertini. In the second case, two general
members C;, C, do not meet on P?, which is impossible. Here note that if
A has two base points on C then C is contained in a member of A. In the
third case, the singular point, say py, is a base point of A. Let o : V — P?
be the shortest succession of blowing-ups with centers at py and its infinitely
near points such that the proper transform o’(A) of A by ¢ has no base
points. Note that ¢ is a composite of Euclidean transformations and EM-
transformations, which are uniquely determined by the general members of
A because a general member of A has the point p, as a one-place point.
Note that we may identify ¢=!(X) with X. Among the boundary curves in
D =V — X, the last exceptional curve in the process of ¢, say H, and the
proper transform ¢’(C) of C are the cross-sections of a P!-fibration defined
by ¢’(A), and all other boundary components are contained in some members
of ¢’(A). Thus ¢ is an untwisted C*-fibration with base curve P!. By Lemma
1.3 every fiber of ¢ is irreducible and there is exactly one fiber, say F', such
that F..4 = Al. Such a fiber exists only when H and ¢/(C) meet in one
point or they are connected by exceptional components in the process ¢.
By looking at the configuration of the boundary D, all other fibers of ¢ are
isomorphic to C*. Hence X contains a Zariski open subset [/ isomorphic to
C* x C*. But then §(X) < ®(U) = 0, a contradiction to the hypothesis
B(X)=1 Thus the third case does not occur. Q.E.D.

Lemma 2.3 BsA consists of two singular points, say p, and py, of C.

Proof. Since C is contained in a member of A by Lemma 2.2 and since
any irreducible component of a P!-fibration is smooth by Lemma 1.1, two
singular points are contained in the base locus of A. Q.E.D.
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Let A be a member of A which contains C as an irreducible component.
Let o : V — P2 be the shortest succession of blowing-ups with centers at BsA
including their infinitely near points such that the proper transform ¢/(A)
has no base points. We shall collect more informations on the construction
of the process o.

Construction of ¢: For a general member G of A, let [, ], be the tangent
lines of G at p;,p,, respectively. Set d; o := (G - l;;p;),d;1 := mult ,,G for
¢ = 1,2. Note that d;, > d;;. Indeed, if the equality occurs for ; = 1 say,
G is a line and A consists of lines. So C is a line and (X ) = oo, which
is a contradiction. Note again that the point p; is a one-place point of a
general member G of the pencil A for ; = 1,2. Hence, after a succession
of blowing-ups, say 7, with centers at p; and its infinitely near points, the
proper transform 7/(G) has only one point, say g;, lying above p;, which is,
by the Bertini theorem, a base point of the proper transform 7/(A) as long
as g; is a singular point of 7/(G). This implies that the process of eliminating
the base points of A is the process of resolving the singularities of G at the
points p; followed by the process of separating two (already resolved) general
members. Hence the process of eliminating the base points of A is written as
a composite of the Euclidean transformations and the EM-transformations
applied independently at the points p;. Let ¢; (¢ = 1,2) be the shortest one,
which starts with the Euclidean transformation associated with the datum
{ps, i, di 0,d; 1} (cf. Section 1), such that o](A) has no base points on the last
exceptional curve H; in the process ¢;. Note that ¢; and ¢, can be performed
independently. Then a composite ¢ = ¢, -04 : V — P2 is the one we require.
Note that among the boundary components of D = V — X, H; and H, are
cross-sections of Ay := ¢’(A) and all other components are contained in some
members of Ay .

Since o~!(p;) (i = 1,2) is a tree consisting of H; and two connected trees
Ti1, T 2 lying on both sides of H;, where T}, or T; , might be an empty set:
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The trees T;,,T;, are contained in two reducible fibers. If a fiber of Ay
containing 77, has only one more component A then the closure 4 of A
meets the cross-section H,. Hence the multiplicity of A must be one. So, for
A to be a multiple fiber, 4 meets one tree from the Ty ;'s and one tree from
the Ty ,’s, where j = 1,2. It follows from this consideration that A has at
most two multiple members.

Let A be the member of A containing C as an irreducible component.
Then either C G Supp(A) or C = Supp(A). We prove, in fact, the following
result.

Lemma 2.4 The first case does not occur. Namely, C is a unique irreducible
component of A.

Proof. Suppose the contrary that A contains another component C;. Then
¢ is an untwisted C*-fibration on X parametrized by P!. Hence Lemma 1.3
says that all fibers of ¢ are irreducible and there exists exactly one fiber,
say Fp, with Fyeq = Al. Write A = mC + m,C;. Suppose further that
A cuts out the fiber F;. We claim that there exist exactly two irreducible
multiple members of A, say A; and A,, such that A; N X and A, N X are
the multiples of C*. In fact, if there exists none or only one such fiber, then
X would contain a Zariski open subset U isomorphic to C* x C*. But then
%(X) < ®(U) = 0, a contradiction to the hypothes~is ®(X) = 1. Let A be
the member of Ay corresponding to A. Note that A consists of C := ¢/(C)
and C; := ¢’(C)), for all components of Supp (¢~ (py, p2))\(H, U H,) are
contained in the members of Ay corresponding to A; and A,. Moreover, it
follows that ' and C; meet transversally in one point other than the base
points p,, p; and that C, does not pass through p,, p,. For H, and H, are the
cross-sections of Ay and C meets H; and H,. This implies that ¢} does not
pass through no centers of the process ¢. Hence (C}?) = (5’12) < 0, which
is a contradiction. Thus it follows that AN X # F,. Since H, N Hy = 0,
the only way to obtain the singular fiber Fj is that H; and H, are linked by
some exceptional components of the process ¢. This is clearly not possible.
So, C is a unique irreducible component of A. Q.E.D.

As a consequence of Lemma 2.4, we know that ¢ is an untwisted C*-
fibration parametrized by A!. Then Lemma 1.4 says that ¢ has a unique
reducible fiber, say F), which consists of two irreducible components, say Fj;
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and Fy,. The configuration of Supp (F}) is described in one of the following
fashions:

(1) Fiy = Fp 2 Al and Fyy N Fyy # 0.
(2) Fi; @ Al Fi, = C* and Fj; N Fra = 0.

In the first case (resp. the second case), we say that the curve C is of the first
type (resp. of the second type). Let F, be the member of Ay corresponding
to Fi.

Suppose F| contains no components of the boundary D. Then F consists
of the closures Cj; and C), of Fy; and Fj; on V, respectively. If C is a curve
of the first type, then the multiplicities of C;; and Cj, in the fiber F, are
equal to 1. Then the Bezout theorem implies that deg(F};) = deg(Fi2) = 1
and that the degree of a general member of A is equal to 2, where Fy, Fi,
are the closures of Fy,, F}, on P2, respectively. Since C or its multiple is a
member of A, it follows that C is a line or a conic and that (X) = —oo. This
is a contradiction. If C is a curve of the second type, C;; and C;, meet each
other at a point on the cross-section H,; or H,. This is also a contradiction.

Thus F, contains some exceptional components of the process ¢ and A
has at most one irreducible multiple member. If either A has no irreducible
multiple members or A itself is a multiple member, say A = mC withm > 1,
then X contains a Zariski open subset U isomorphic to C* x C*, which leads
to a contradiction to the hypothesis ®(X) = 1. Hence it follows that A
has one and only one irreducible multiple member, say F,, and that C is a
member of A, ie, A=C.

Thus we proved all the assertions of Theorem 2.1.

3 Case C is a curve of the first type

In this section, we consider the case where C is an irreducible plane curve
of the first type and determine its defining polynomial (see Theorem 3.5).
Let F} = my, Fi1 + mioF1, be the unique reducible fiber of o, where Fy; =
Fi, 2 Al and Fy, N Fi3 # 0. Let F, be a unique irreducible multiple fiber of
@. Let Fy = m11F1y + my2F1a (resp. F3) be the member of A corresponding
to F, (resp. F,), where Fy, and Fy, are lines on P2. Let F (resp. Fj) be
the member of Ay corresponding to Fy (resp. Fj). Let Cy, Cia, C; be the
closures of Fy;, Fy2, F» on V, respectively. Then we prove the following:

13



Lemma 3.1 The configurations of Fy, and F, are linear chains.

Proof. Note that by the construction of o (see Section 2), all exceptional
components in the process ¢ other than H; and H, have self-intersection
number less than or equal to —2. Suppose F} is not a linear chain. Then

the configuration of F; U H, U H, is as shown in Figure 2, where there are

one or more branches sprout out of the chain connecting H; and H,. Note

H1 H2
s —O—0—0 &—«———%——i—o-«-"j

Ciy Ciz

Figure 2:

that Cy; or Cy, is a (—1)-curve by Lemma 1.1. By successive contractions
of (—1)-curves in the fiber Fy starting with the contraction of (—1) curve
Cy; or Cyy, we obtain a smooth fiber of a P!-fibration, which is the image of
the component of F} intersecting the cross-section H,. But in the course of
the contraction process we encounter the configuration as shown in Figure
3, where a (—1)-curve £ meets three other irreducible fiber components.

[

(1)

Figure 3:

This is impossible by Lemma 1.1. By a similar argument, F; is also a linear
chain. Q.E.D.

161

14



162

It follows from Lemma 3.1 that the configurations of Supp (¢7(p;)) and
Supp (¢ !(p,)) are rational linear chains. In general, Supp (¢7!(p,)) has two
linear subchains on both sides of H;, one of which is contained in the fiber
F, and the other in F,. Similar is the case of Supp (6-!(p,)). Note that
o = 0, - 04 (cf. Section 2).

Lemma 3.2 For ; = 1,2, let D; = {p;,l;,dip,d; 1} be the datum for the
first Euclidean transformation with center p;. Then the configuration of
Supp (67 Y(p;)) is a hinear chain if and only if o; is written in one of the
following two fashions:

(1) o; coincides with the first Euclidean transformation, gcd(d;p,di)) =
1 and two general members of A are separated from each other after
applying the first Euclidean transformation.

(2) 0; = o’_‘(l)-’r(l) o'( where 09 (j = 1,2) is the Euclidean transformation

1

associated with the datum D(J) = {p(J) 1Y) d,o,dm} DY =D,;) and

i 2 A T
Ti(l) is an EM-transformation and where T( ) and 0(2) are possibly the
identity morphism. Furthermore, d(l)[dflo), gcd(a'”),dl 2 =1 and two
general members of A are separated from each other aﬂer applying the

second Fuclidean transformation.

Proof. The exceptional curves arising from the Euclidean transiormation
with the proper transform of [; form a linear chain. So, the first case is that
the proper transform of a general member of A becomes smooth after the
first Euclidean transformation and separated from the proper transform of a
second general member. If the first Euclidean transformation 0'1(1) is followed
by an EM-transformation Ti(l) (or the second Euclidean transformation g§2)
when Ti(l) = id ), then the last exceptional curve of o( ) must meet the proper
transform of [;. This condition is expressed as d ]d(l) It is clear that
there is no EM-transformation following o Hence gcd(df%), d(2)) = 1 and
two general members of A are separated from each other after applying the
second Euclidean transformation. Q.E.D.

We shall prove, in fact, the following result.

Lemma 3.3 Only the first case in Lemma 3.2 occurs for both ¢, and o,.

15



Proof. We assume that F}, passes through the point p;. Then F}, passes
through p,. Let G be a general member of A. Since F| = mq, Fi; + myoFig
and G meet only in the points p;,p,, Fy; meets G only in one point p;. This
implies that 7, is the tangent line of G at p;. Similarly, F7, is the tangent
line of G at p,. Assume that ¢, is as in the second case of Lemma 3 2. Then,

after performing agl), the configuration of a (Fu) U Supp (0} ()~ (pl)) is as
shown in Figure 4, where the component named A is the last exceptional

"&UI(FM /&/

~ /

Figure 4:

curve in the process o\” and the chain on the right side of A (called H in
the figure) is not empty. Let G(1) be the proper transform of G and let Q, =

GWNA. Note that the point Q; differs from the point agl)/(MF’H) NA. We claim

that the component A belongs to the member FI(I) of ogl)l( A) corresponding
to Fy. Otherwise, A belongs to the member corresponding to F; which
gives a multiple irreducible fiber of the C*-fibration ¢ and the member F; 1(1)
would not pass through the point Q,, a contradiction. The components of

gl) (p;) then belong to the member F‘I(l). If the EM-transformation 7-(1)
is not the identity morphism, the same argument shows that the exceptional
curves arising from 711 (1) belongs to the member corresponding to | and the
component 4 would be a branching component in Fl, which is a contradiction
by Lemma 3.1. Hence 7(1) id . The second Euclidean transformation 0(2)

is associated with the datum D?) = {Q, A>d(1?())7 (2)} where d( d(l)
and gcd(df&,dﬁ)) = 1. We claim that dﬁ = 1. Suppose that dl,l

Then there exists a non-empty linear chain between af),(A) and the last
exceptional curve B of ng)? and the components belonging to this linear chain
are contained in the member F;. Then the dual graph of F, has a branch
point, which is a contradiction to Lemma 3.1. By a similar argument, we can
draw the configuaration of o5 !(p,). Figure 5 is a picture of the configuration
of F, UF, U H, U H, when ¢, is in the case (2) of Lemma 3.2, where the
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member F is supported by the upper horizontal curves and where A4, and
A, are the proper transforms of the last exceptional curves of agl) and ggl),
respectively.

X

Ca

Figure 5:

Note that the member F is contracted to a smooth rational curve with either
one of A, and A, left as the final image curve because A4, and A, meet the
cross-sections H; and H,, respectively. Meanwhile, all components in the
fiber F, other than C,; and C,, have self-intersection number less than or
equal to —2. We can obtain a smooth fiber of a P!-fibration from F}, which
is the image of the component A, intersecting the cross-section H;. Then the
chain H is left intact and not empty. This is a contradiction. This argument
applies also to the case when ¢, is in the case (1). Q.E.D.

By Lemma, 3.3, the pencil A is eliminated its base points by the Euclidean
transformations o, and o, associated with the datum D; = {p;, Fy;, d: o, d; 1}
such that ged(d;g,d;;) = 1 for = 1,2. Since Fy; is the tangent line of the
general members of A at the point p;, it follows that d;, = dy for ¢+ = 1,2,
where d, is the degree of a general member of A. We put d, := d, ;. By the
Euclidean algorithm with respect to dy > d;, we obtain as in Section 1 the
positive integers d,,---,d, and ¢, - -, g, Where d, = 1.

17



Lemma 3.4 With the above notations and assumptions, we have :
(1) a>2.

(2) With the weighted dual graph of Supp (071(p,)) given in Figure 1, Cy;
meets the components E(2,1) and C,, in the member Fy of Ay, and C,
meets E(1,1) in the member F,.

(3) After exchanging p, and p, if necessary, we may assume that q; > 2,
ie., dy> 2dy. If ¢ > 2, the weighted dual graph of Fy U Fy U H,UH,
is given as in Figure 6.

Proof. (1) Suppose oo = 1. Then the component C;; meet the cross-section
H,. Hence the multiplicity m,, of F}; in the fiber F} is equal to 1. Then
Lemma 1.4 (3-1)implies that ®(X) = —oc because there is a unique multiple
fiber F, in the fibration . This is a contradiction.

(2) Supp (¢7!(p1))\H; consists of two connected components, one of
which is contained in the member F; and the other is in the member F.
Furthermore, one of C;; and Cj, is a (—1)-curve. Since o > 2, Cy; meets
the component E(2,1). In the member F,, the component C,, which is a
unique (—1)-curve in F3, meets the component E(1, 1) or the component E;;
meeting the cross-section H,. But in the latter case, the contraction of Ej,
produces two components meeting the cross-section H,. This is impossible.
Hence C, meets the component E(1,1).

(3) Suppose first that gq; > 2. Figure 6 below then gives a picture of
the weighted dual graph of F; U F, U H, U H,, where A (resp. B) indicates
the linear chain in Figure 1 between F, and E(a, g,) With Ey and E(a, g,)
excluded (resp. the linear chain between F(q,q,) and E(1,1) with E(a, q,)
excluded) . In the linear chains C and D, the leftmost components intersect
Cy, and C,, respectively. By the Euclidean transformation ¢, the proper
transform Cp; of F;; which is a line has self-intersection number less than
or equal to —2. Hence C), is a unique (—1) curve in the member F;. Since
F, is a linear chain and is contracted to a smooth member by successive

“contractions, the linear chain C is determined uniquely by A as indicated in
Figure 6. Similarly, the linear chain D is uniquely determined by B.

Suppose nex‘E_that q1 = 1, i.e., dyp = dy +dy. Then (C1?) = (-FHZ) _
2 = —1. Since F) (resp. F,) is a linear chain and contracted to a smooth
rational curve via successive contractions, which start with the contraction
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0
A B
Cn Q
O C
Ci2 O
© (®)
Ha
o :odd
(q1—2)—times (ga—1)—times
C: Oo— —O0—0— —~O0——0— - —0
% @t ~(2tga1) TG
(g2—1)—times (ga—1—1)—times
D O—O— - —O——O— —O——-0— - - —O—0
—(ta) TG —(2tw) ~(+ga-2) TG ~(l4da)
& . even
(g1 —2)—times (gqa—1—1)—times
C O—  =O———O0— —O0—0— - —0—0
Ty (@) ~(+ga-2) T —(1+6)
(g2—1)—times (qa—1)—times
D O—0— =00 —O - —O— —O0
~(4q) Ty —(2+a) ~(2+a-) T2
Figure 6:
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of C; (resp. C,), the weighted dual graph of F, (resp. F,) is given as
in Figure 7, where we consider only the case  is even since the case ¢ is
odd is treated similarly. In Figure 7, the linear chains which are located
on the right hand side of Cj, and C, are contained in Supp (¢~!(p,)). By
looking at the configuration of Supp (67'(p2)), we know that the datum
Dy = {py, F1a,do, d2,1} for o, satisfies the following condition:

Hence it follows dy; = dy. Since dy > 2d,, after exchanging the roles of p,

and p,, we may assume that ¢; > 2. Q.E.D.
C12 (ga—1)—times (ga—1—1)—times
Blaga-1)  B@Y Cu TN L I et S

e ~(144¢2) N o . Lepa—t § 79|
/ A (-1 (-2)  —(2+q4) ~(24ga—2) (-2} |
a o Hjp
\ qz-times (QQ—I)"*timES/
Bla-lga-1) BEQLY C TN o ol T,

h B (-1) (—2) —(2+g¢3) ~(2+ga~1) (-2}

Figure 7:

With these observations in mind, we shall construct below an irreducible
plane curve C(dy, d,) of the first type with €(P2—C/(dy,d;)) = 1 for every pair
of positive integers dy and d, such that d, > 2, dy > 2d; and ged(dy, d;) = 1.

Construction of C(dy,d,) C P?. Given a pair of positive integers d, and
d, as above, we find the positive integers d,,...,d, and q;,...,q, by the
Euclidean algorithm with respect to d, and d,, where d, = 1 (see Section 1).
Let [, 1, and [, be three distinct fibers of the P!-bundle ¥} — P, where ¥, is
the Hirzebruch surface of degree 1. Let M, be the minimal section of ¥, and
let M, be the cross-section such that M; N M, = . We put Q, = [, N M,
and Qg == lg N MQ-
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Blowing up the points Q,,Q, and their infinitely near points, we obtain
a birational morphism p : V — ¥; such that the configuration of p*({,) and
0*(l,) are those of A+ Cy; +Ci+C and B+ C, +D in Figure 6, respectively.
Let Fy := o*(l), Fy := 0*(l2), Hy := ¢*(M;) and H, := ¢'M,. We denote by
C11 and C), the components with self-intersection number (—g,) and (—1)
in the fiber F}, respectively. We denote by C, a unique (—1)-curve in the
fiber f; The multiplicities of the components Cy;, C1, and C, in the fibers
F; and F, are d;,dy — d; and dy, respectlvely (see Lemma 1.5).

We can contract all components of F, U F, U H; U H, except for Cy;,Ca
and C, to the smooth points on P2, say p; and p,. Let ¢ : V — P2 be
the contraction and let C(dy,d;) be the image o(p*({)). Then the curves
Fi1 := 0(Cn), Flz := 0(C1p) and F; := ¢(C,) are the lines without a common
point. We can take the homogeneous coordinates X,Y and Z on P? such
that the lines Fi;, Fi, and F; are defined by X = 0,Y = 0 and Z = 0,
respectively. Let A be a linear pencil spanned by d,Fy; + (dg — d,)F}, and
doFy- Then C(dy, d,) is a member of A defined by Xd1ydo~ 4 )\ 7do = () with
A € C*. We may take \ = 1. Meanwhile, it is clear by the construction that
the complement X := P? — C(dy, d;) is a Q-homology plane of the first type
with an untwisted C*-fibration over the affine line. Note that d; < dy — d;.
Then Lemma 1.4 (3-1) implies that (X) = 1 if and only if

1—di1-—dio >0, te, d>2

Conversely, a plane curve C defined by X%y d—4 4 zdo — 0 with d; >
2,dy > 2d; and ged(dg,d;) = 1 is a curve of the first type and its com-
plement P2 — C has log Kodaira dimension 1. Given pairs of positive in-
tegers (dy,d;) and (eg,e;) satisfying dy,e; > 2,do > 2di,e9 > 2e; and
gcd(do, dy) = ged(eo, €1) = 1, it is easy to see that C(dy,d1) = C(eo,e€1)
up to PGL(2; C) if and only if dy = ¢y and d; = ¢,.

Summarizing the above arguments and lemmas, we obtain the following
theorem.

Theorem 3.5 There exists a bijective correspondence between the set of
pairs of positive integers (dy, d;) satisfying dy > 2,do > 2d, and ged(dp, d1) =
1 and the set of irreducible plane curves C of the first type with ®(P?—C) = 1
up to PGL(2;C). The correspondence is given by (do,d1) — C(do,d;) :=
{Xhydo—dr 4 Zdo = (}.
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REMARK 3.6 The lowest degree case in Theorem 3.5 is C(5,2). This curve
is listed in Yoshihara [14] as one of the irreducible plane curves whose com-
plement has log Kodaira dimension one.

4 Case (C is a curve of the second type

In this section we shall consider a curve of the second type. We can determine
a homogeneous polynomial to define such a curve only with some additional
hypotheses (cf. Theorems 4.5, 4.13 and 4.16). Let C be an irreducible plane
curve of the second type with ¥(P? — C) = 1. With the same notations
as in Section 3, let F} = m;, F\; + myF1, be a unique reducible fiber of
o such that F; = Al ,Fi 2 C* and Fy, N Fyp = (. The notations F} =
my Fly +myoFia, Fa, Fi, F2, C11, Ci and C, are the same as at the beginning
of Section 3. Among the base points of A, say p, and p,, F}, and F, pass
through p, and p,, while F}; passes through only p,. The arguments in
Lemma 3.1 implies that the configuration of F, is a linear chain, but the
configuration of F is not necessarily.
We write g, (cf. Section 2) as

0y = agl) - Tl(l) e agn—l) . Tl(n_l) . a§”) withn > 1,
where agj ) and 'rl(j ) are respectively the j-th Euclidean transformation and
EM-transformation for 1 < 7 < n and where Tl(j) might be the identity
morphism. Note that ¢, must end with an Euclidean transformation. In
fact, if it ends with an EM-transformation, then Supp (¢~*(p;))\H; consists
of one connected component, which is contained in the fiber F, because H,;
is a cross-section of Ay and Cy(= the closure of F;, in V) is a component of
Fy with multiplicity > 2. If Supp (67!(p;))\H, is contained in F, then C;
and C;, would meet each other at the point on the cross-section H,. This is
a contradiction.
First af all we prove the following:

Lemma 4.1 The curve C; s a (—1)-curve.

Proof. The configuration of the fiber 7| in a simplified form is given in
Figure 8.  Note that ), is the end component of a brached linear chain
which does not contain Cj,. Suppose C); is not a (—1)-curve. Then C, is
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H,y Cu Hy

Figure 8:

a unique (—1)-curve in the fiber F; and the contraction process to make B
smooth starts with the contraction of C;,. In the course of the successive
contractions, we have a (—1) component meeting at least three components
of the fiber or two components of the fiber plus a cross-section. This is a
contradiction by Lemma 1.1. Q.E.D.

Lemma 4.2 The configuration of Supp (0 !(py)) is a linear chain.

Proof. Assume to the contrary that there exists a branch component G in
Supp(o~!(p;)) from which three or more other components of Supp (c~*(p;))
sprout out. By Lemma 3.1, G with the adjacent components are included
in the fiber F;. Then the configuration of the fiber F| in a simplified form
is given in Figure 9, where the component denoted by S (resp. T') meets
the cross-section H, (resp. H,). Note that there are two or more branches
sprouting from the chain connecting the components S and T'. Then the suc-
cessive contractions to make the fiber smooth which start with the contrac-
tion of C); or C), will produce a (—1) curve with three or more components
intersecting it. This is a contradiction. Q.E.D.

In the rest of this section, we shall assume the following condition:
(#) I, is a line and C), is a (—1)-curve.

Then Fy, is the tangent line of a general member of A at the point p;.
We take a system of homogeneous coordinates (X, Y, Z) on P? so that p, =
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Figure 9:

(0:1:0),p,=(1:0:0) and the line F}; and the tangent line of the general
members of A at p,, say [, are defined respectively by X = 0 and Y = 0.
Write P2 — F|; = A? = Spec Cly, z] and let  : A? — P? be the canonical
open immersion as the complement of the line Fy;, where y := Y/X and
z:= Z/X. Let C° := C — {p;} and let f be an irreducible polynomial
of Cly, z] which defines C° in A% Clearly the polynomial f determines a
homogeneous polynomial which defines C.

Suppose that o, consists of a single Euclidean transformation, i.e., ¢, =
agl) in the notation at the beginning of this section, which is associated with
the datum D, := {p;, F1},dp, d; }, Where dy := i(C - F;;p,) =(the degree of
C)and d; := mult,, (C). Letdy,---,d, =1andq,---, g, be positive integers
obtained by the Euclidean algorithm with respect to d, > d;. Then the dual
graph of Suppo!(p,) is a linear chain A+ H,+ B, where H, = FE(a, q,) by the
notation of Section 1 and where A and B are linear chains. In particular, A is
the same as given in Figure 1. Since the dual graphes of F, and Supp a5 (p2)
are linear chains, we write them as B+ Cy,+ D and D+ H, + E, respectively,
where D and E are the linear chains. Since C, is a unique (—1) curve in F,
the linear chain B determines the linear chains D and then E successively.
But F is not uniquely determined by D. In fact, there is some ambiguity
depending on whether the last contraction occurs on the chain D or E when
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one contracts D + H, + E to the smooth point p,. If the last contraction
occurs on the chain F, then the dual graph of F is given as in Figure 10. If
it occurs on the chain D, the dual graph of F is the same figure with the
part F deleted off.

o : odd
(gz—1)—times (ga—1)—times
o— - - - — Qe Qe —— O —— - - - - — O———0—— - s —— o-——o—-—-/_—f%.—\o-----»--[!)2
(-2) —(3+¢2) (=2) —(2+q4) —(2+4ga-1) (-2)
F
a even
(g3—1)—times (gee—1~—1)—times
O — - - - — O———O0———O0—— + -+ -+ — O Qmrmm & e e o o I N o—o--------1<1>2
(-2) —(3+42) (=2) ~(2+g4) —(2+9a-2) (=2) ~(14ga)
F
Figure 10:

Now Suppﬁ is a union A+ C;; + C12 + F. In fact, we have the following
result:

Lemma 4.3 With the above assumptions and notations, we have:
1) a>2.
(2) the dual graph of F, is determined as giwen in Figure 12.

Proof. (1) Suppose first « = 1. Then A = (), and both C;; and C,
intersect the cross-section H,. This is impossible. Suppose next that o = 2.
Since F7y; is the tangent line of a general member of A at p,, the component
Cy intersects F(2,1) (see Figure 1) and (C1;%) = 1 — (1+¢,)- Since Cy; is a
(=1)-curve by Lemma 4.1, we have ¢; = 1. On the other hand, in the fiber
F;, the unique (—~1) component C; meets F(1,1) or the terminal component
of B which intersects the cross-section H;. But the latter case leads clearly
to a contradiction to Lemma 1.1. The dual graph of the fiber F] is given as
in Figure 11.

In order to obtain Figure 11, note that C}; is a (—1) curve by the hypoth-
esis (#) and connected to some component between E(2,1) and E(2, g, —1),

25



H, E(2,Q2 - 1) E(2, 1) Cu
O .............. C @
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O ........ O
—1
Figure 11:

say £(2,7). Then Cig+ E(2,7)+ E(2,7—1)+---+ E(2,1)+C), supports the
fiber Fy. Hence r = g, — 1 and the part E between C}, and Hy is void. Then
the multiplicity of Cj, is one and Lemma 1.4 (3-2) implies (P2~ C) = —o0,
which is a contradiction. Hence o > 2.

(2) In the dual graph of the fiber F,, the component C,, intersects some
component of the chain A. Since C); is a (—1) curve, one can contract
Cun, E(2,1),--+, E(2,q2 — 1) in this order. After this contraction the compo-
nent F(2,q,) has self-intersection number —(1 + g3) < —2. Hence E(2, ¢,)
is contractible after the component C,, is contracted. So, C), intersects the
component E(2,q,). Since the contraction to bring the fiber F;, down to
a smooth rational curve does not allow a branching (—1) component, i.e.,
a (—1) component meeting three other components, we can show that Ci,
intersects the end component of E which is not the component meeting H,.
Hence the dual graph is as given in Figure 12. Q.E.D.

We can construct the surface V and the P!-fibration with the specific
singular fibers F; and F; in the following fashion: Let ¥; be a Hirzebruch
surface of degree one. Let [; and I, be distinct two fibers of its P!-fibration
71 %, — P, let M, be the minimal section and let M, be the cross-section
such that M,NM, = 0. Put Q; := ;NM, fori =1,2. Let §y: Vj — ¥, be the
blowing-ups with centers at @, and Q,, and let Q! := I!N6;1(Q;) for i = 1,2,
where [} = 0;(l;). We perform the oscillating transformations 6, associated
with (Q,G;qu, -+, q4,93— 1) and (Q%, H; s, - - -, g2) independently (cf. Sec-
tion 1), where (G, H) = (6;(Q1), 1) if a is even and (G, H) = (I}, 65 (Q2))
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if o is odd, and denote by § = 6, - §,. Let R be the component in 6*(l;) with
self-intersection number —(1+ g¢3) and let @)} be a point of R not lying on the
other components. Let £ be an EM-transformation of length g, which starts
with the blowing-up with center Q7. Set ¢ :=§.£:V — %,. Then the fibers
o*(l;) and g*(ly) have respectively the same configurations as the fibers Fy
and F,. Furthermore, the proper transforms of M; and M, are (—1) curves.
So, we find a birational morphism ¢ : V — P2

By the above construction and Lemma 1.5, we can show that the multi-
plicities of the components C,;, Cy4 and C, in the fibers F; and F, are ds, dy
and d,, respectively. Hence the linear pencil A is spanned by d3Fy; + dyFia
and dyF,. Note that C is an irreducible and reduced member of A (cf. The-
orem 2.1). Since degC = dy, it follows that

do = d3 + dy deg F1p = do deg F>,

whence we know that deg Fy = g, +1 as q; = 1 (see the proof of lemma 4.3)
and that F, is a line. Set Fp, := F5 — {p;} and Fy := F;, — {p, }.

Lemma 4.4 With the notations as above, the curves F?, and Fy are iso-
morphic to the affine line. Moreover, they intersect each other in the point
po transversally.

Proof. Note that Cj, and C, meet the end components of Supp o~*(p,)
which is a linear chain (cf. Lemma 4.2). By successive contractions of the
components in Supp o ~!(py) which starts with H,, it is clear that the images
of Cy, and C, intersect each other transversally, so F}, and F, intersect in
the point p, transversally. It is then easy to show the assertion of the lemma.

Q.E.D.
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We may assume that the line F}, is defined by Z = ( with respect to the
homogeneous coordinates (XY, Z) fixed after the proof of Lemma 4.2. Let
fi2 be an irreducible polynomial in Cly, 2] to define F}, on A% = P2 — F,.
The curve Fy is defined by f, = 2. Since the curves Fy, and Fy are two
affine lines intersecting each other in a point p, transversally (Lemma 4.4),
we have C[fy,, f2] = Cl[y, 7] (see Miyanishi [6]). Hence f}, is written as

fi2 = cy + g(2),

where ¢ # 0 and g(z) is a polynomial of degree g, +1 because deg Fj;, = g, +1.
As a consequence of the above arguments, we obtain the following theo-
rem.

Theorem 4.5 Suppose that oy consists of a single Euclidean transformation.
Then C° := C —{p1} is defined by a polynomial f in P? ~ F| = Spec Cl[y, 2|
of the following form:

f= ey + g(2) + A",
where ¢, A € C* and degg(z) = ¢ + 1.

From now on, we assume that ¢, does not end with a single Euclidean
transformation. Let DY) = {p?’ 17, 4§’ d9} be the datum of ¢\ for 1 <
j < n (see the notations at the beginning of this section). Let 43’ ..., dgj)
and qﬁj ). ,qg;,) be the positive integers obtained by the Euclidean algorithm

with respect to ¥’ > d?. Let EO (s, t) be the proper transform on V of the
exceptional component arising from the (qij Y4+ qgj_) , + t)-th blowing-up
in agj) for 1 < s < @jand1 <t < g¥. Let r; be the length of the j-th
EM-transformation Tl(j ) and let E(j)(l) be the proper transform on V of the
exceptional component from the [-th blowing-up in Tl(j ) for 1 <l<r; To
simplify the notations, we put dg := d(()”) and d; := d(ln) for the last Euclidean
transformation. Similarly, we let d,,---,d, and qy, - - -, g, be positive integers
obtained from dy > d;, where d, = 1. We also put E(s,t) := E™(s,t). We
prove the following result:

Lemma 4.6 With the assumptions as above, all the exceptional components

on V arising from o'gj) and rl(j) for 1 < j < n are contained in the fiber Fj.
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Proof. After the first Euclidean transformation o, let E” be the last

exceptional component in agl). The proper transform G’ by o'gl) of a general

member G of A intersects only E”, among the components in Suppgil)al(pl),

at a base point, say p), of a§l)/(A). The member F] corresponding to Fj
contains E”. In fact, the proper transform of F, is separated from G’ because
F7; is the tangent line of G and some component of F passes through the
point p,. Hence the connectedness of F] implies that E” as well as all the

-1 —
other exceptional components in Supp 09) (p1) are contained in F|. By the

same argumemt, we can show that all the components on V' arising from ¢
and 71(7) for 1 < j < n are contained in the member ﬁ‘; : Q.E.D.

Among the components in Suppo ~!(p;)\ H;, the member F, of Ay contains
the components F(s,t) with s odd (see the argument of Lemma 4.6). Since
the dual graph of Supp o~(p,) is a linear chain (Lemma 4.2), it is written
as D+ H, + E', where the part E’ is a linear chain contained in the fiber F’I
We prove the following result concerning the process o.

Lemma 4.7 With the assumptions as above, we have the following:

(1) The dual graph of the fiber F, is the same as B+Cy+ D given in Figure
6, where B consists of E(s,t) with s odd.

(2) If the last contraction to bring D+ Hy+ E’ to a smooth point p, occurs
on E' (resp. D) then the dual graph of the linear chain E' is given in
Figure 18 (resp. Figure 18 with the part F' deleted off ), where we treat
the case q; > 1. The figure for the case q, = 1 s the same as in Figure
10, where the part F should be replaced by F'.

(3) The linear chain E' is not empty.

Proof. (1) Since F, is a linear chain, the assertion of (1) is obtained by
the same argument as in the proof of Lemma 3.4.

(2) The assertion is easy to prove.

(3) Suppose that the linear chain E’ is empty. Then the component C,,
meets the cross-section H,, so the multiplicity of Cj, in the fiber F} is one.
But we then have (X ) = —oo by Lemma 1.4. This is a contradiction to the
assumption x(X) = 1. Q.E.D.
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a: odd
(g1 —2)—times (ga—1)—times
e e To YUY, SHUNNNING_—, SN —— o Y o SR — Qe Qe+ x o+ (}......%2
(~2) (-3) (~2) —(2+42) —(2+ga-1) (~2)
FI
o even
(q1—2)—times (ga~1—1)—times
Qo 4 4 4 — To DRI, prm— Lo T o Yo DM, YW, 0_._....0‘...“...%2
(~2) (-3) (=2 —(2+¢2) ~(2+ga-2) (~2) —(1449a)
F/
Figure 13:

Note that the component C;, meets the end component of E’ which lo-
cates on the opposite side of H,. For otherwise the contraction of C,, and
subsequently contractible components would produce a (—1)-curve meeting
three other components in a degenerate P!-fiber.

Let A’ be a tree in the fiber F} consisting of the exceptional components
from g,. Then A’ is written as

A'= B'+ By + By + Bs,

where B’ is the last exceptional component from ai"’_l) ,Bj is a tree consisting
of EM-Y(s,t) with s even and the exceptional components arising from a&J)
and Tl(j) for 1 < j < n—1 (ifany), B, is a linear chain consisting of E*~1) (s, ¢)

with s odd and Bj is a linear chain consisting of the components from 7{*~

and E(s,t) := E™(s,t) with s even.
Now we can specify the intermediate transformations agj) and Tl(j ) for
1 < j < n. Namely, we have:

Lemma 4.8 The following assertions hold:

(1) For1 < j < n, one of the following two cases occurs for the datum ng)
of o
(i) dff’ = 247"
(i) d) = d? +d5 and dF | af.

177

30



178

(2) For1 < j <n-—1, the length r; of the j-th EM-transformation ) is
determined by the foregoing a§’ ) as follows:

(iii) In the case (i) above, r; = 1.

(iv) In the case (ii) above, r; = dgj)/dgj)-

Proof. Let H be the component in A’ meeting the component C;, and
let I be a linear chain in A’ connecting the cross-section H, and H with
H included. By Lemma 1.2, the component H is chosen in such a way
that every branch sprouting out of the linear chain L + Cj + E' in F] is
contractible to a smooth point. Suppose that the component H is contained
in B’ + By. Then choose the component B’ as the component H in Lemma
1.2. It says that the linear chain B, which sprouts from B’ is contracted.
Since B, contains no (—1) curves, this is impossible. Hence H is contained in
B, + Bs. Furthermore, the maximal connected part B of ﬁ‘; which branches
out of the linear chain L + C,, + E’ and contains C,; + B, is contractible.
Suppose now that o; > 3. Note that since Fj; is the tangent line of
a general member of A at p;, C;; meets E()(2,1). After the contraction
of the components Cy;, EM(2,1),--., EM(2, qél) — 1) in this order, the self-
intersection number of EM (2, qél)) then remains less than or equal to —2 and
one cannot proceed further, which is a contradiction. So, o; < 2. In the case
ay = 1 (resp. a; = 2), we have q§1) =2, i.e., dgl) = 2d§1) (resp. qgl) =1, i.e.,
diP = dM +d) and €y, meets EM(1,2) (resp. EM(2, 1)) because (Cyy?) =
—1 (Lemma 4.1). Furthermore, after the contraction of C,;, EM(1,2) (resp.
Ci, E®(2,1),---, EW(2,¢")), the self-intersection number of E(M(1,1) is
—1 (resp. —-qél)), hence we know that the length r, of Tl(l) is 1 (resp. qgl) =
d(ll) /dg”) because of the contractibility of the branch B. Successively, when
we contract the components EM(1),..., EW(r; — 1), EM(1,1), the image
of EM(r;) must be a (—1) curve in order that the part B gets contractible.
Hence F(V)(r,) has self-intersection number —3 in the graph B;. This implies
that two points lying on E(M(r;) (one is infinitely near to the other) are
blown-up in the process ng). This observation on o§1) and 7-1(1) and the
contractibility of the part B imply either oy = 1,dg2) = 2d§2) and ry = 1, or
ay = 2, d((f) = dgg) + dgz) and ry, = d(lz) /dg). Successively, we can apply the
same argument to gij ) and 7. Thus we have shown the assertions of (1)

and (2). Q.E.D.
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As shown in the proof of Lemma 4.8, the component H meeting the
(—1) component C, is contained in By + Bs;. By Lemma 4.8, B, consists
only of the single component E~1(1,1) . We consider first the case where
H is contained in Bj, that is, H is one of the components E®~1)(]) with
1 <!l <r,and E(s,t) with s even. Then we have the following result,
where we use the simplified notations g; := qfn), o= o™, E(s,t) := E™ (s, t)
ete.

Lemma 4.9 Suppose that H is contained in Bs. Then the following asser-
tions hold:

(1) The component H in A’ meeting Cy, is determined in the following way
according to the value of q;.

(i) If g = 1, we have o > 2 and H is equal to the component E(2, q,).
(ii) If g > 1, the curve H is equal to the component EC~1(r, _ ).

(2) In both of the above cases (i) and (ii), the length r,_, of 7-1(”_1) is de-
termined by the foregoing aln'l) as follows:

(ii) Ifop_y =1, we haver,_; =1.

(iV) If Qp-1 = 2, we have r,_, = dgn'l)/dgrwl)'

(3) If ¢ =1, the part F in E' (see Figure 10) is empty, and if ¢ > 1, the
part F' in E' (see Figure 13) is empty.

Proof. Note that the component H is not a (—2) component E®~1(}) for
1 <1< 1, (if any). For otherwise, the contraction of the (—1) component
C1, would produce a (1) curve meeting three other components. Hence H
is either E(™=V(r,,_) or one of the F(s,t) with s even. Let B be the maximal
connected part which branches out of the linear chain L + C9 + E' (see the
proof of Lemma 4.8) and contains

Ci+Bi+By+B +E™ YD) +...+ E®Y(r,_; - 1),

where B, = E™-1)(1,1). Then B is contracted to a smooth point by Lemma
1.2.

As seen in the proof of Lemma 4.8, the part C); + B, of B is con-
tracted. Since the self-intersection number of E®~1(1,1)is ~2if o, _; = 1
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(resp. —(1 + @) if a,_; = 2), the length r,_; of 7" s 1 (resp.
qé""l) = dﬁ"'l) /dé"”l)) by the contractibility of B. When we contract the
components B', E®~V(1),..., E®=V(r,_; — 1), E®1(1,1) in this order af-
ter the contraction of C; + By, the image of E®~U(r, _,) has self-intersection
number —gq;. In the case ¢; > 1, the component H meeting C), is equal to
E®@=(r,_). For otherwise, a linear chain connecting H and E®"1(r, ;)
with H excluded cannot be contractd. This is a contradiction to Lemma
1.2. Meanwhile, in the case q; = 1, the image of E®~V(r, ;) is a (-1)
curve after the above contraction. Note that we then have o« > 2. Indeed,
it is clear o > 1 because ¢; = 1. Suppose that o = 2. Then the remaining
components of By after E™~VU(r, ;) are all (—2) components and we can
contract all the components of C; + A’ to a smooth point. Hence the (—1)
curve C;, meets the last component F(2,g, — 1) in A’. Then the part F' is
an empty set, which is a contradiction by Lemma 4.7. Thus we have o > 2.
When we contract the component E™=1(r _1), E(2,1), -+, E(2,q, — 1) in
this order, the self-intersection number of E(2, g;) remains less than or equal
to —2. Therefore we know that the component H is equal to E(2,¢q,) by
Lemma 1.2. Thus we proved the assertions of the lemma. The last assertion
(3) follows easily if one links Cy5 + E’ to the component H as indicated in
the assertion (1) and considers the contraction of H after the contractions of
the previous part including B, + B’ + B,, C}, and subsequently contractible
components in F'. Q.E.D.

We consider next the case where H is equal to the component EM™-1(1, 1).
Note that B, consists only of E(~1)(1,1) by Lemma 4.8. Then we have the
following result:

Lemma 4.10 Suppose that the component H which intersects C1, is
E=1(1,1). Then the following assertions hold:

(1) The length r,_, of 7—1(""1) is determined as follows:

(1) If Qp..1 = ]., Th—1 = 0.
(i) Ifop_1 =2, Thy < qén—l) - d(ln-l)/d(zn_l)'

(2) The number of (—2) curves contained in the part F' (see Figure 10 if
q1 = 1 or Figure 13 if q; > 1) is given as follows:

(iii) If ap_1 = 1, the number of the (—2) components in F' is zero.
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(iv) If an_) = 2, the number of the (—2) components in F' is equal to
(n—-1

') )~ (Tn—l + 1)
Proof. Let L be a linear chain in A’ connecting the cross-section H, and
EM™=1(1,1), i.e., L is

EM D1, 1)+ B +EC V1) +.. .+ EP D (r,_ )+ {all E(s,t)’s with s even}.

Then the connected part C;; + B in the fiber F}, sprouts out of the chain
L + Cyo + E', so it is contractable by Lemma 1.2. Note that a,_; < 2 by
Lemma 4.8. By successive contractions of the components B', E®=1(1), ...,
E®=Y(r,_; — 1) (if any), which follow after the contraction of the part
Ch1 + By, the image of E®-1)(1,1) has self-intersection number —2 + r,_,
if oy =1 (resp. —(1 + qén"—l)) + 71 if ap_; = 2), hence the length r,_;
of 7"V is zero (resp. smaller than g™ Y) because ¢y, and E™=1(1,1) are
the next components to be contracted in this order to make the whole fiber
F, smooth. Thus we proved the assertion (1). If ¢, _, = 1 and F’ contains
a (—2) component, the image of E(™=1)(1,1) would have non-negative self-
intersection number after the contraction of C;, and the subsequently con-
tractible components in F’. Hence the part F’ contains no (—2) components
and it consists only of one (—3) curve. If o, ; = 2, we have to make (the
image of) E™=1(1,1) a (—1) curve by the contraction of Cj, and the (-2)
components in the part F” following after the contractions of the part C;,+B;
and the components B’, E®~1(1),... EM~U(r,_; — 1) successively in this
order (if any). It then follows that the number of (—2) curves contained in

the part F’ is qé"_l) — Tp1 — 1. Q.E.D.

We can construct the surface V and the P!-fibration with the specific
singular fibers F} and F; as follows. Let the notations 7 : &, — P11}, [, M;,
M,, @, and @, be the same as those given after the proof of Lemma 4.3,
where M, is the minimal section and Q; = [; N M, for 1 = 1,2. Let g, be
the blowing-ups with centers at Q; and Q,, and let @ := I!N§;"(Q;), where
U= 6p(l;) fori=1,2.

We consider first the case (), meets a component in the part Bs, i.e., C},
meets either E(2,g,) or E®Y(r, ;) (cf. Lemma 4.9).

(1) Suppose (), meets the component E(2,q;). In order to produce the
fiber Fy, we perform the oscillating transformation 8, associated with
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(Q1,G';4as "+, q0,q3 — 1) (cf. Section 1), where G' = 6;(Q,) if
is even and G’ = [} if o is odd, and let § = 6y - 0,. Let R’ be the
component with self-intersection number —(1 + g3) in the fiber §*(1,).
With the notations in the proof of Lemma 4.9, the configuration of
6*(1,) corresponds to the one of the linear chain L + C; + F’, and we
can make the connected part B which sprouts out of L 4+ C\, + E’ by a
succession of blowing-ups starting with the blowing-up with center at a
point on R’ and not lying on other components. Let £ be this process.

(2) Suppose C}, meets the component E™~V(r,_,). In order to produce
the fiber F}, we perform the oscillating transformation ¢, associated
with (Q1,G’;qa, -+, q2,q1 — 2), Where G’ is the same as in the above
case (1). Let 8 = 6,-6,. Let R’ be the component with self-intersection
number —gq; in the fiber §*(/;). Let £ be the same process as above to

produce the connected part B.

(3) To produce the fiber F,, we perform the oscillating transformation
associated with (Q}, H'; qa, " ,q2,q1 — 1), where H' = [}, if o is even
and H' = 6;(Q,) if o is odd. By the abuse of notations, we assume
hereon that g includes this oscillating transformation to produce F.

Let o = - & Then the fiber p*(/;) has the same configuration as the fiber
F, for = 1,2, and the images of the unique (—1) components in the fibers
6*(1,) and 6*(ly) are respectively the components C}, and C,. Furthermore,
the image of R’ is the component H in A’ meeting Cj,.

By the above construction and Lemma 1.5, we can show that the multi-
plicities of the components Cy, and C, in the fibers F} and F, are equal to
do — d; and dy, respectively.

We consider next the case Cy, meets the component E~1(1,1). Since
the construction of the fiber F, from [, is the same as in the case C;, meets

either E(2, g;) or E~V(r,_,), we consider below only the construction of the
(n—1)

fiber Fy from ;. To simplify the notations, we put 7 :=r,_; and ¢ := ¢}

(resp. q:=1) if a1 =2 (resp. a,_; = 1).

In order to produce the fiber F}, we perform the oscillating transformation
9, associated with (@, G'; ¢a, -, @2, 1 — 1, 1, g— (r+1)), where &’ = 6;1(Q,)
if o is even and G’ = [} if o is odd. Note that ¢ — (r + 1) > 0 by Lemma
4.10, (1). Let R’ and §’ be the components with self-intersection number
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—(1+4 ¢1) and —(1 + ¢) + r in the fiber (6, - §,)*(l;), respectively. Let T" be
the last exceptional component in the process ;- ;. We put @} := R'n S’
and perform the oscillating transformation g, associated with (QY, S’;r). Set
§ = 6y -6, 0, and let ' be the last component in the process §. With
the notations as in the proof of Lemma 4.10, the configuration of §*(;)
corresponds to the one of the linear chain L + C;, + E’, and one can make
the connected part C;; + B; which sprouts out of L +C,,+ £’ by a succession
of blowing-ups starting with the blowing-up with center at a point on U’ and
not lying on other components. Let £ be this process and set g := #-£. Then
the fiber p*(I;) has the same configuration as the fiber F, and an image of
T' is Cy,. By the above construction and Lemma 1.5, we can show that the
multiplicity of the component C, in the fiber F; is equal to (g—7r+1)do—d;-

Now we shall determine the defining polynomial of the curve C by finding
the polynomials in Cly, z], say f1, and f,, to define F}, and Fy on A? =
P? — F; = Spec Cly, 2.

We first consider the case where 'y, meets either £(2, g,) or E@~U(r, ;).
We contract all the components in ¢~ 1(p;, p) UC); — E™V(r,,_1) by starting
with the contractions of H,, H; and C;,. Let p : V — P? be this contraction.
Let I/ = p(E"V(r,_1)), which is a line. Then a composite

(P2 ISV L, P2

is a Cremona transformation which induces the identity morphism between
P2—Fj; and P2-[/_. Let (X', Y’, Z') be asystem of homogeneous coordinates
on P2 such that [/  is defined by X' = 0. Let l{, = p(C1s) = ¢(F}2) and
I = p(Ca) = ((Fy). Then we prove the following result.

Lemma 4.11 Suppose that Cy, meets either E(2,qy) or EU(r,,_,). After
a suitable choice of (X',Y' Z'), we may write the polynomial f, as f, = 2/
and the polynomial fi, as

[ e+ () if Cyy meets E(2,q,)
fi2= y if Cyp meets B (r,_y),

where y =Y'/X', 2 =Z'/X',c € C* and deg, g(z') = g2 + 1.
Proof. When we contract all the exceptional components of

(01 7o ) ) J Cn = EO D (),
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the image of the fiber F| has the same configuration as the one in Figure 12
(resp. Figure 6) if C;, meets E(2,q;) (resp. E™V(r,_})), where the image
of E=V(r,_,) replaces C);. Successively, we contract all the exceptional
components from the last Euclidean transformation ag") and the components
from o~ (p,). Since C), and C, meet the end components of the linear chain
Supp (07 1(py)) (see Lemma 4.2), their images [}, and [, intersect each other
transversally in a point of P2 — I/ | = Spec C[y/, 2/]. Suppose that C), meets
the component E(2, g;). By Lemma 4.9, (1), we then have ¢; = 1 and « > 2.
When the component F(3,1) is contracted in the course of contracting the
exceptional components of ag"), we have the dual graph in Figure 14, where
the components from the left to the right are respectively the images of
E(L 1): E(Z, Q2)a E(Z, q2 — 1)7 T E(27 1)3 E(nul)(rn—l)'

Ca Ciz2
o o
(g2—1)—times
o o o—\'——ﬂ-wfwww}o o
—(14q2) -1 =2
Figure 14:

It then follows that [{, and [} intersect the line [/  with respective order
go +1 and 1. Hence we may assume that the polynomial f, is written as
fo = 2’ and, moreover, we may assume that the polynomial f;, is written as

f12 = cy' + g(zl)s

where ¢ € C*,degg(z') = go + 1 (see the same argumemt before Theorem
4.5). Suppose that C;, meets the component E("~U(r,_;). Then ¢, > 1 by
Lemma 4.9, (1). When we contract the exceptional components of ain), we
know that the curves [/, and [, intersect transversally the line [/  at distinct
points. Hence we may assume that [}, and [, are defined by Y’ = 0 and
7' = (), respectively. So, we may assume that fi, = and f, = 2/. Q.E.D.

Let Ly, and Ly be the lines defined by Y’ = 0 and Z’ = 0, respectively.
We consider the inverse 7 := ¢! of the Cremona transformation ¢ : P2 — P2,
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which induces a biregular automorphism 7 : SpecCly’, 2] — SpecCly, z]. We
consider how ¢/, 2’ are expressed as polynomials in y, 2.

Lemma 4.12 Assume thatn > 2. For 0 < j < n, define polynomials y; and
z; 1 Cly, z| inductively as follows:

Yo=Y 2= %

and
{ y; = Yj—1+ gj—1(zj-1) for1<j<n

zi = yj-1t¢izi+ g5-1(25-1)

where ¢; € C*,deg,, , g;-1(2;-1) = ; + 1 and g;_,(0) = (dg;_1/dz;-1)(0) =
0. Then we may assume thaty' =y,_, and 2/ = z,_,.

Proof. We prove the assertion by induction on n. Suppose n = 2. With
the notations preceding this lemma, the curves n(Ly+) and n(L;/) have the
point p, on F}; in common, where both curves meet F;; with the same order
r1 + 1 and the same multiplicity r,. Meanwhile, they intersect each other
in the point p, on A? = P? — F}; transversally. We choose homogeneous
coordinates (X,Y,Z) such that p; = (0:1:0) and p, = (1 : 0 : 0) and
that the curve 7)(Lg/) intersects the Y-axis at p, transversally. From these
conventions concerning the coordinates in neighborhoods of p, and p,, it
follows that the polynomials ¢/ and 2’ are respectively written as:

/

v = ytaz+t...+c 2™ o2t
? = y+z+... 4 2 o g2

where ¢ 11, ¢}, ,, and ¢| are non-zero. Note that the jacobian determinant
J((/,#')/(y, z)) is a non-zero constant because of C[y’, z/]| = Cly, z]. Hence
we have ¢; # ¢} and ¢; = c} for 2 < j < r; +1. Hence, after replacing y by
y + c1z if ¢; # 0, we may assume that 3/ and 2/ are written as in the stated
form.

Suppose now n > 2. We contract the components of

o ) JCu — EP(ry),

starting with the contractions of C;; and H,. Successively we contract the
part Supp o7 !(p;) and denote by o/ : V — P? a composite of the above

185



186

39

contractions. Let [, = p/(E®)(r,)), which is a line. Then we obtain a
Cremona transformation

q-p2 Ly 2, p?

which induces a biregular automorphism 7’ : Spec C[y/, 2] — Spec C[y, 2,
where we choose a system of homogeneous coordinates (X,Y, Z) on the right
P? such that the line [ is defined by X = 0 and where 5 =Y /X,z = Z/X.
By the inductive hypothesis, we may write ' = 7,23 and 2’ = z;73, where
polynomials 7, %; of C[g, ] for 0 < j < n — 1 are defined as follows:

%::@ 20 :ZEa

forl1<j<n-1,

Y o= Tio1+ 0-1(ZFoD)
Z = Y1t ¢-1Zo + Goi(Z1)

where ¢;_; € C*,deg g;-1(2=1) = rj41 + 1 and g573(0) = (dg;—1/dZz;-1)(0) =
0. We now reproduce the part (agl) . Tl(l))‘l(pl) U Cy, by a succession of
blowing-ups which starts with the blowing-up with center on [, and succes-
sively contract all the components of it except for C;;. Then we obtain a
Cremona transformation 7" satisfying = n” - 7/, which induces a biregular
automorphism n” : Spec C[7,z] — Spec Cly, z]. By the same argumemt as
in the case n = 2, we may write 5 = y, and z = z;, respectively. Therefore,
we may assume that ¢/ and 2’ are written as y,_; and z,_;, respectively.

Q.E.D.

As a consequence of Lemmas 4.11, 4.12, we have the following theorem:

Theorem 4.13 Suppose that g, is written as gy = aﬁl) -"rl(l) e aﬁ”_l) -Tfn“1)~
a%") with n. > 2 and , furthermore, that the component Ci5 meets E(2, go)
or E®=U(r,_). Then C° = C — {p} is defined by a polynomial f on
P? — I}, = Spec Cly, 2] of the following form.:

fo (cyf + g(Z) + A% if Cyy meets E(2, qs)
ydo—di 4 )\z/do if C1 meets E™Y(r,_,),

where the polynomaials y' and 2’ are those giwen in Lemma 4.12 and where
/\:C € C*adegg(‘z’) =gy + 1.



REMARK 4.14 Though we proved Theorem 4.13 under the assumption n > 2
it is clear that the theorem is valid also in the case where n = 1 (cf. Theorem
4.5). Note that if n = 1, the component C), meets E(2,g,) (cf. Figure 12).

We consider finally the case where C, meets E™-1(1,1) and determine
the defining polynomial of the curve C. We contract all the components in
o~ Hpy,p2) UCH — E® D (r,_y) (we put EO(ry) := Cy; for n = 2) starting
with the contractions of H,, H, and C;;. Let ¢ : V — P2 be this contraction
and let I’ := ¢(E("~?(r,_,)), which is a line. Then a composite

9Py 5, p?

is a Cremona transformation which induces a biregular automorphism be-
tween P2 — F}; and P? — [ . Let (X”,Y", Z") be a system of homogeneous
coordinates on the right P? such that the line I”_is defined by X” = 0. Let
Ity = e(Chy) = ¥9(F12) and I := £(Cy) = ¥(F,). Then we prove the following
result analogous to Lemma 4.11:

Lemma 4.15 Suppose that Cy, meets EV(1,1). After a suitable choice
of (X", Y" Z"), we may write the polynomials f1, and f, as fi, = 2" and
f2 — cyll_’_g(zll)’ where yll e YII/XII’ Z” = ZII/X//’ c e C* and degZ” g(zll) —
g+ 1.

Proof. In the course of the process ¢, we contract all the components in

-1

- - — -1 ~
CulU@e” - m? o™ ) ) U (Y o) (Q)- BT (1),

where Tl(nhl) starts with the blowing-up with center (). We have the dual
graph in Figure 15, where the components from the left to the right are re-
spectively the images of E®-1(1,1), E®-D(2,q), .-, E®~D(2,1), E®=2(r,_,)
if ap—1 = 2. They are the images of E®~1(1, 1), E®=V(1,2), EC®-2(y, _,) if
n-1 = 1.

It then follows that [{, and [ intersect the line /” with respective order
of contact 1 and ¢ + 1. Hence we may write the polynomials f;, and £, as

fiz=2" and fy=cy" + g(2"),
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C12 Ca
(o] (o)
{g-1)—times
o o og——uufw--—jo o
~(14q) -1 oY
Figure 15:

where ¢ € C* and deg,, g(2") = q + 1 (see the argument before Theorem
4.5). Q.E.D.

The argument in the proof of Lemma 4.12 implies that we may write
y" and 2" as polynomials in the affine coordinates (y,z). More precisely,
y" = yn_g and 2" = z,_, as in Lemma 4.12. Summarizing these observations
and Lemma 4.15, we have the following result.
Theorem 4.16 Suppose that o) = agl) -Tl(l) e a§"‘1) -Tl("—l) -a§") withn > 2
and that the component Cyy meets E®~V(1,1). Then the curve C° = C—{p,}
on P2~ F}; = SpecCly, 2] s defined by a polynomial f of the following form.:

f — z//(q—r+1)do—d1 + /\(cy" _*_g(zl/))do,

where y", 2" are polynomials in Cly,z] as specified as above, \,c € C*,
deg,, g(2") =g+ 1, 7 :=rp_1 and g := qé""l) (resp. ¢ :==1) if ap_y =2

(TCSp. Qp_-1 = 1)
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