
Projective plane curves whose

   complements have K == 1

Takashi KISHIMOTO

Abstract

   We consider an irreducible curve C with two cuspidal singular
points on the projective plane P2 such that the complement p2 - C
has logarithmic Kodaira dimension one. Since P2 -C is a Q-homology
plane, we have two cases to consider according to the unique reducible
fiber of a C'-fibration on P2 - C. In the first case, the reducible fiber

consists of two curves isomorphic to the affine line Ai and meeting
each other in one point. In this case we can write down explicitly a
defining equation of C. In the second case, the reducible fiber is a
disjoint union of two curves, one of which is isomorphic to C' and
the other to Ai. In the second case, we can give a defining equation
under some minor additional hypotheses. The case where P2 - C has
logarithmic Kodaira dimension -oo was studied in [81.

o Introduction

AII algebraic varieties considered in this paper are defined over the field of

complex numbers C. Let C be an irreducible curve on the projective plane
P2, which we simply call an irreducible plane curve. In order to analyze
the curve C, it is important to consider logarithmic Kodaira dimension of
its complement X := P2 - C, which we denote by 7i(X) (see Iitaka [3] for
the definition and the relevant results on logarithmic Kodaira dimension).
Miyanishi and Sugie [8] considered an irreducible plane curve C with K(P2 -
C) == -oo and determined possible types of such a curve by means of the
theory of Ai-rulings.
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   Meafiwhile, it is kmown by [I]suBeda P21 aRd Walcabayashi [l3] that an
irreducible plane curve C with degC 2 4 has ii(P2 - C) : 2 except for the
following two cases:

 (A) C is a rational curve with one singular point,

 (B) C is a rational curve wkh two cuspida} singular points.

   Tsunoda [12] showed that 7i(P2 - C) :1 or 2 in the case (B) and that
K(P2 - C) ilC O if C is a rational curve with only one cuspidal point.

   in the preseat aitic}e we cgksider aR irredgcible plage cgrve C of rc(P2 -
C) = 1 and with two cuspidal points. To be specific, our problem is stated
as follows:

(l) Describe the strueture of the co?npgementX :me P2-C via the existenee
   of C*-fibrations, e,g., the nttmber of singular fibers or multiple fibers

   and the distrtbution of multipgicities.

(2) Petermine a homogeneous defining equation ofC up to automorphisms
   ofP2 by making use of the informations given in (1?.

   If C is a ratioital plaxxe curvq with eniy cuspid&l singular points, its com-

plement X is a Q-homology plane, which is by definition a smooth afi}ne
surface with ffi(XlQ) :O for alliÅr O. See Miyanishi and Sugie [9] for the
relevant resuk$ oR Q-homolcgy p}axes. If C is Ret ratiefial er has singRl&ri-
ties other than the cuspidal singiilarity, X is not a Q-homology plane. Hence
the above problem (2) can be stated as follows:

(3) Ciassify the Q-homotogy planes itiith logarithrn,ic Kodaira dimension 1,

   which are obtained as the comptements of irreducible plane curves.

   The scheme of the present article is as follow$. In Section 1 we fix our
terminology and state preliminary results without proof. Irm particular, the
EncgddeGn tTansformations and the EM-transfermations play very important
roles, In Section 2 we $ha}l state the result (Theorem 2.1) concerning the
problem (1) and prove it. As seen there, such curves are classified into two
types, $ay a curve of the fcrst typue and of the second type. In Section 3 we
cellsider the curves of the first type and wurite down the definillg equatiells as

a solution to the problem (2) (cf. Theorem 3.5). In Section 4 we consider the
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curves of the second type. Not as in the case of the first type, the situation

is more complicated and tough. We shall give the answer to the problem
(2) with some additional hypotheses (cf. Theorems 4.5, 4.13 and 4.16). We
make frequent use of Lemma 1.4 which is mainly due to Miyanishi and Sugie
i9, Lemmas 2.15 and 2.16], though the statements given there centain some
mista[kes. We make the corrected statemeRts iR Lemma 1.4.

   Tke author would like to express his hearty thanks to ProÅí M. Miyanishi
and Dr. H. Kojima for the suggestion of these prob}ems and valuable advice.

1 Preliminaries

Let S be a smooth algebraic surface. A smooth compactification of S is a
smooth projective surface S such that S is an open set of S and that the
boundary divisor D :== g - S i$ a divi$er wkh simp}e kormai cro$sings. A
surjective =}crphism g : S --} B ftgm a smcQth algebraic surface oRtc a
smooth algebraie curve is ca}led an #nt2{;isted (resp. twtstedi C'-fibration if

S has a smooth compactification S of S and a Pi-fibration Åë : S - B such
that P is a smooth projective. curve containing B as an open set, ipls = g
and T has exactly two cross-sections (resp. one 2-section) contained in the

boundary S - S•
   We shall recall the definitions of Euclidean transformation and EM-trans-

formations, which will play very important roles in the subsequent argu-
ments. Let Ye be a smooth prejective surface, let po be a point en Vg aRd let
lc be gR irredgcible cgrve oxx Ve sgch tk&t pe is asimple poigt of gg. Let de
aRd di be poskive iRtegers sxch that d2 Åq de. By the E=clideaR algorithm
with respect Åío di Åq de, we find positive integer$ d2,...,da and qi,...,ga:

  do
  dl

da-2
da-1

Set N := 2g=s.. De
and the blgwifig-gps
inductive}y as follows:

qidi + d2

q2d2 + a3

qa-ida-i + da
Qada

d2 Åq dl

d3 Åq d2

d. Åq d.mu1

q. År1

fi:ke the ixfiRkely Re&T peints pi's of pg for

gi : Vi --År Viini with cegter at p{mai for 1
ISi
:EI{ i

Åq

Åq
N
N
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dv

dv :

   (i) pi is an iniinitely near point of order one of pi-i for i S i Åq N,

  (ii) Let Ei : = a,: i(piww!) for 1 S i S N and let E(s,t) :me Ei if i = qi +

     ...+g.nti+t with 1 Åq- sSa aiid lStK q,, where we set gc := O
     and E(O,O) := lo. The point pi is an intersection point of the proper
     transform of E(s - 1, q.pmi) on V, and the exceptional curve E(s,t) if
     i= gi +...+q,dwi+t with lSsS or akd 1StS g, (l StÅq g. if
     s= a).

 [Fhen a Åëomposite ff :ec th i • • • • ffN is caRed alt Euclidean transformation asse-

 ciated with the datum {pe, ge, do,di} (cÅí Miy&nishi [6, p.92]). The weighted

 dual graph of Supp (adwi(lo)) is given in Figure 1, where Eo := a'(lo) which
 denotes the proper transform of gg by cr and where we denote the proper
 traRsform cf E(s,t) oft YN by the same xxotaticfi.

           Eo E(ex,9a)
        (le2)-"+qD (ww1)
: odd
                gÅq2,q2År gÅqct-l,1) g(a-l,gc-"
A:E( tt,1) E(2g2-1). E(g!:lt-) .......e(apt-3.,qa-3)tt=-:-Sl!(:a1,ga-i-ig

                                -(2+qa-2) (-2) -(1+qa)        (-2) -(2A-q3)

              E(a-2,q.-2) E(1,qi)
B,E(ex, tti) me(g,i).w ..liL(g,i)oE(i,zcsiiiL:-L.:-Lillss) me(g,1)

                                 -{2ÅÄg2År (-2År        (-2År -(2ÅÄqctwD

 even
                E(2,q2) E(ex,1)
A:EÅqtttÅr Eeg2-o. gÅqgul)........gÅqa.'2.,qa-2)t,lz".:-lll(IIII2or,ga'"

                                pm(2+qa-1) (-2)        (-2) -(2-Fcr3)

     g(a-1,q.-i-1) E(a-3,ga-3År E(i,qD               E(a--1,1) E(3,1) E(1,qi-1)                                                  E(1,X)  E(or-1,ga-:)B: o o- •••• -o o- ------••• -o o                                           o- •••- -o
                                     -(2-+-q`2) (-2)   -(1-Fqa) (-2) --(2+qa-2)

                          Figure 1:

l ocr 1
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   Let Ce be afi iTreducible curve oll Vo siich that po Ss a one-plaÅíe poiRt of

Co, let do be the local intersection number i(Co•lo;po) of Co and lo at po and

}et di be the multiplicity mult.(Ce) of Cg at pc. Thexx cS{} År di. The preper

transform Ci :-- (ai•••ai)'(Co) passes through pi so that (Ci-E(s, t)) == d,
and the intersection rmmber of Ci with the proper transform of E(s - 1, q.-D
on V, is d,-i --- td,, where i = qi + . . . + q,.i + t. The smailer one of d. and

d,-i - td, is the multiplicity of Ci at pi for pi is a one-place point of Ci.

Iete that the prgper tyag$form ff'(Co) og VN meets the last exceptional
curve E7(a, q.) with order d. and does not Eo : : a'(lo) and other exceptional

curves arisiBg in the blowing-up process ff.
   We now explain EM-tramsformation, which is cailed an (e, i)-transforma--
tion in Miyanishi [6, p.100]. Let Vo,po and lo be the same as above. Let
r År e be a positive integer. An egui-multipgieity transformation (er EM-
transformation, for short) of length r with center at po is a composite T me

rit•iT. of blowiRg-"ps defined as feBows. Fgr1 E{lif{ r, ri:Yi - Vi-"s
defined inductively as the blowing-up with center at piwwi and pui is a point on
rimbi (p,-D other than the intersection point 7,'• (T"-ii (pi-2)) A Ti-'i(pi-D (7{(ge) A

rri(po) if i = 1). Let Co be an irreducible curve on Vo sttch that po is a one--

place point of Co. Suppose do := i(Co-lo;po) is equal to di :=: mult p,(Co)•
Let ri : va - Ve be the b}owiRg-"p wkh cegter pfi, and see Ei :== Tfi(po)
and Ci : = T{(Co). Then the point pi := Ci nEi differs from r{(lo)nEi. Set
dge := i(C;•Ei;pD =: gi a=d dS') :== m=lt,,(CD. Sgppese dgy == dSi). As

above, let T2:V2 -- Vi be the blowing-up with center pi, let E2::Tii(pD
and !et C2 := rS(CD. Then p2 := C2 n E2 differs from the point 75(ED A E2.
Thus this process can be urepeated as }ong as the intersection rmmber of
the proper transforrn of Co with the last exceptional curve is equal to the
raultiplicity of the preper tra[i]L$form ef Cc at the intersectioll pgiRt. If we

perform the blowing-ups r times, the cornposite of r blowing--ups is an EM-
transformatien of length r.
   We define the notion of an osciiating transformation which is to be used
in Sections 3 and 4. Let Vo, le and po be the same as above. Let (ni,•••,n.)
be a sequence of positive integers. Lee Si : Vi - Yo be a composite ef the ni
successive blowing-ups with centers at po and its infinitely near point,s lying
oR the proper traRsforms cf gg aRd }et pi be tke inteysectieR peiRt cf the IEmst

and the second last exceptional components in the process ei. We define the
birational morphism ei : Vi --+ V,wwi and the point pi on V, for 2 S i S r

i52
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inductively as follows: Suppose that ei-i : V,-i -, Vi-2 and the point piwwi
on V,wwi are defined. Let ei : V, -År V,1-i be a composite of the ni successive
blowing-"ps with cexxters at pi-i and it$ infikitely lieaur points lying on the

propeur traRsforms of the secoRd last exceptional compoRent in the process
eiwwi. Then a composite 0 =me ei •••e. is called an oscilating transformation
associated with (po, lo;ni,•••,nr)•

   The following elementaJry result concerning the singular fibers of a pi-
fibration is ttseful in various arguments (cf. Miyanishi [6, p.l15]).

Lemma 1.1 Let f : V --År B be a Pi-fibration on a smooth purojeetive surface

Y with a smooth compjete onr'veB. LetF :--- niCi +...+n.C. be a reducible
singulGr fi5er of f, where Ci is an 2rredecibge comp6nent. Then ?i;e hgve :

 (1) gcd(ni,...,n.) =l and Supp(F) =V;•=,CRs cennected.

 (2) For1SiK r, Ci is isomomphic to Pi and (Ci2) Åqo.

 (3) Fori# 2', (Ci•Cj) =O or 1.

 (4) .Eor three distinct indices i,3' and ic, Ci A C, A Ck = op`

 (5) At gegst ene of the Ci 's, say Ci, is g(-1)-euTve.

 (6) If ene of the ni 's, say ni, is eguag te 1, then there exist$ a(-1) curwe

     a?nong the Ci 's with 2 S i S r•

   The Rext result is a corollary of Lemma l.1, but we enceiinter the situation

which we caR apply it to.

Lemma 1.2 With the aboxe netations, we suppose that

  (i) there are two cross-sections ffi,H2 off,

 (ii) there is a component ff ofF such that F,,d -H is a disj'oint union of
     connected components Bi, B2, . . . , B. with r ) 3, and

 (iii) The component H is linked to the cross-sections Hi (resp. H2? via a
     linear chain contained in Bi (resp• B2),

Then each of the connected component$ Bi (3 S i S r) contains a (-i)
component and is centractibge te G smgoth point.

i53
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Proof. Suppose that either Bi or B2 is not contractible to a smooth point.
Suppose further that some of the components B3,,,.,B., say B3, is not
contractible to a smooth point. After suitabie contractions of the components

of B3,...,B., we may assume that B3 is not empty and that any of B3,...,B.
contaills ne (-1) compenents if it is llet empty. Then Bi or B2 centaiRs a
(-1) compgkext, say E. Sgppcse th&t E is celltained ix B!. Ccgtarct the
compekekt E aRd sgbsequextly contTactible compokent$ of Bi. Sgppese Bi
then becorr}es empty. Kence B2 is llot contractible te a $meeth peint by the
assumption. Then, after suitable contractions of the components in B2, we
may assume that B2 contains no (-1) component and that H is a unique
(-1) component of the fiber F. But this is a contradiction because two or
more different components of the same fiber meet the cross-section Hi after
the contraction of H. Suppose Bi (as well as B2) does not become empty
after possible contractions of the components of Bi (in B2). Then we may
assgme that H is a unique (-l) compgllent in F. Thi$ is a}se a contradictiell

because tkere are distinct three gy mere cempoRexts ef F meetiRg a (-1)
compoRent H. Next suppose that beth Bi a[td B2 are contractible to smooth
points. Then the component H has multiplicity one in the fiber F. Then we

can contract the components B3,...,B. to smooth points. Q.E.D.

   In order to look into the structures of Q-homology planes with C"-
fibrations, the following result is important (cf. Miyanishi and Sugie [9,

Lemma 1.4]).

Lemma 1.3 Let S be a Q-homologg pgane with a C"-fibratien ip : S . B,
where B is G smeeth cscrve. Then B is issmerphic te Pi erAi. FTxrthemaere,
the feggewi?}.g gssertiens hegd tvae;

 (1) ijB is isomorphie to Pi then ip is untwisted, every fiber ofÅë is irre-
     ducible and there is exactly one flber, say F, snch that F,.d ;: Ai•

(2) ij B ib' isomouphic to Ai and ip is untwisted, then all fibers of ip are

   irreducible except for one singular J6ber which consists of two irreducible

   eomponents. ifB is isomorphic to Ai and ip is twisted, allfibers are ir-
   reducible and there is exactly one fiber whieh is isemorphic to a mugtiple

   of Ai.

   The followiRg result
homolegy plane S with

is u$eful to

am untwisted
calculate the
C'-fibration

vabue of K(S) for
oneo an Ai. This

a Q-
result
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is due to Miyanishi axxd Sugie [9, Lemmas 2.15 and 2.16]. The original
statement of the result has some minor flaws, and the rectified statement is
given as follows. The proof is easy, and we omit it.

llemma 1.4 Let S be a Q-homology plane with an untwisted C'-fibration
ip : S - Ai. Then the foggowing assertions hold true:

 (l) ip has a ecnigece reducible fiber, sgy Cg, which consists of t2go compo-
     nents, say Cg,i and Cg,2. Agg sther singalar fibers ofÅë Gre mwitiples of

     curwes isomomphie to C*. Let mG,i and mo,2 be the multipgicities ofGo,i
     and Go,2 in Go, respectively and let Gi : : miC" exhaust all irreducible
     multiple fibers ofw (if there exist sueh curves at all? for 1 s i s r.

 (2) The configuration ofSupp (Go) = Go,i uCo,2 is described in one of the
     following fashions:

       1 Go,i {;! Go,2 or- Ai, and Go,i and Go,2 meet in ene point transver-

         saggy•

       2 Ge,i {;! Ai, Ge,2 or C" and Gg,2 fi Gc,2 :e.

 (3)(3-1) In the case 1, then k(S) = 1,O or -oo if and only if

          r-mm(mok,mo,2) -tr.i;i;Åro, =:o or Åqo, respectzveiy

    (3-2) In the case 2, then 7Åqi(S) = 1,O or ---oo of and only if

               r- i --- ;il) l År o, =o or Åq o, respectivegy.

                        i=l Mi                  Me,2

   The follewikg lemma i$ shewR by & straightforward cog}putaticR. Se, we
sha}} emit the prooÅí

Lemma 1.5 Letdo anddi be positive integers sttch that do År di andgcd(do,di) rm
1• Let d2,...,d. and qi,,.,,q. be the positive integers obtained by the Eu-
clidean algorithm with respuect to di Åq do. Let qg :nt: qa+i-s for 1 fE{ s S a•

Define positive integers b(s,t) for 1 S s g cr and 1 K t S qg as fotlows:

   b(1,t) :== 1+t IStgql
   b(2,t) :-= b(1,gl)-ÅÄ-tb(1,g{-1) 1StSq5
   b(s, t) ;= b(s - l, gg.wD +tb(s - l, gg., -- 1) 2Ss -Åq a, l -Åq tS gg

Then b(a - i, ga-, - 1) xx di for e S i S or - 1.
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2 The compleme nt of an irreducible plane curve

In this section we treat the problem (1) in Section O and prove the following

result.

Theorem 2.1 Let C be an irreducible plane curve with two cuspidal points
and let X :== P2 - C. Suppose K(X) = 1. Then there exists an irreducible
linear pencil A on P2 such that the restriction of ÅqIÅrA onto X gives rise to an

untwisted C'-fibration
                      q:== ÅëAIx :x -+ Al,

where ÅëA is the rational mapping defined by A. More precisely, the linear
pencil A satisfies the following properties:

 (1) A has two base points which are the singular points ofC.

 (2) A has a unique reducible member with two irreducible components, say
     Fi = mnFii +mi2Fi2, and a unique irreducible multiple member, say
    7I•

 (3) C is an irreducible reduced member ofA.

   The unique reducible member Fi produces a redueible fiber of q, Fi :=
[FrnX = miiFii+mi2Fi2, where Fij := Fij nX for o' = 1,2. Furthermore,
the fiber Fi has one of the following configurations:

  1. Fn !l! Fi2 ;il Ai, and Fn and Fi2 meet each other in one point transver-

     sally.

  2. Fn ;x Al, F12 2! C* and FllnF12=O•

   We say that a curve C is of the first type (resp. of the second type) if the

case 1 (resp. the case 2) occurs.

   Our proof consists of several steps. First of all, by Kawamata [4], there

exists a C'-fibration q on X. Since the base curve of q is rational, the
closures of general fibers of g generates an irreducible linear pencil A on P2

such that ÅëAlx == g. We first prove the following result.

Lemma 2.2 The curve C is contained in a member ofA.
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ProoÅí S"ppose that C is not coRtained in aRy member of A. Let Ci be
a general member of A. Noting that Ci has two places lying on C, we have
the following three case$ to consider:

  1. Ci meets C in oniy one point.

2. Ci meets C in two smooth points.

  3. Ci meets C in one smooth point and one of the two singular points.

In the first case, let pi me Ci A C. Then pi is a singular point of C! because

twe places ef C"ie over the pgiAt pi. Sikce pi meves &s Ci moves in A, this
contradicts the second theorem of Bertini, In the second case, two general
members Ci, C2 do not meet on P2, which is impossible. Here note that if
A has two base peigts oxx C thexx C is contained i{} a member ef A. Ix the
third case, the $ingular point, say po, is a base point of A. Let a : V - P2
be the shortest succession of blewing-ups with centers at po and its ir]finitely

Reax poiRts such that the propEr traxsform (7i(A) of A by {r hgs Ro base
points. I ote that a is a composite of Euciidean transformations and EM-
transformations, which are uniquely determined by the general members of
A because a general member of A has the point pc as a one-place poikt.
Note that we may identify a'i(X) with X. Among the boundary curves in
D :== V - X, the last exceptional curve in the process of o, say H, and the
proper transform d(C) of C are the cross-$ectioRs of a Pi-fibratiop defilted

by a'(A), aRd a}} oÅíher boundary cempofients are contained in some members
of a'(A). Thus w is an untwisted C'-fibration with base curve Pi. By Lemma
1.3 every fiber of g is irreducible and tJhere is exactly one fiber, say F, such

that F,.d ;! Ai. Such a fiber exists gitly wheR ff aBd d(C) meet in oRe
point or they are connected by exceptional components in the process a.
By looking at the configuration of the boundary D, all other fibers of q are

isemorphic tc C'. Hence X cextains a Zariski open s"bset U isemorphic tg
C' Å~ C'. But then 7i(X) mÅq -K(U) = O, a contradiction to the hypothesis

k(X) xe 1. Thus the third case does not occur. Q.E.D.

Lemma 2.3 BsA consists of two sing2Llar points, say pi and p2, ofC,

PreoÅí Since C is contained in a member of A by Lemma 2.2 and since
aky irreducible component of a Pi--fibration is smooth by Lemma i.1, two

singular points are contained in the base locus of A. Q.E.D.
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   Let A be a member of A which contains C as an irreducible component.
Let a : V - P2 be the shortest succession of blowing-ups with centers at BsA

including their infinitely near points such that the proper tra[nsform a'(A)
has no base points. We shall collect more informations on the construction
of the process a.

Construction of a: For a general member G of A, let li,l2 be the tangent
lines of G at pi,p2, respectively. Set di,o := i(G • li;pi),di,i := mult p,G for

i = 1,2. Note that di,o År di,i. Indeed, if the equality occurs for i = 1 say,

G is a line and A consists of lines. So C is a line and k(X) == -cxD, which
is a contradiction. Note again that the point pi is a one-place point of a
general member G of the pencil A for i = 1,2. Hence, after a succession
of blowing-ups, say T, with centers at pi and its infinitely near points, the
proper transform T'(G) has only one point, say qi, lying above pi, which is,
by the Bertini theorem, a base point of the proper transform T'(A) as long
as qi is a singular point of r'(C). This implies that the process of eliminating

the base points of A is the process of resolving the singularities of G at the
points pi followed by the process of separating two (aiready resolved) general

members. Hence the process of eliminating the base points of A is written as

a composite of the Euclidean transformations and the EM-transformations
applied independently at the points pi. Let ai (i == 1,2) be the shortest one,

which starts with the Euclidean transformation associated with the datum
{pi, li, di,o, di,i} (cÅí Section 1), such that crI•(A) has no base points on the last

exceptional curve Hi in the process ai. Note that ai and a2 can be performed
independently. Then a composite a =: ai • a2 : V --År P2 is the one we require.

Note that among the boundary components of D = V - X, Hi and H2 are
cross-sections of Av := a'(A) and all other components are contained in some

members of Av•
   Since a-i(pi) (i == 1, 2) is a tree consisting of Hi and two connected trees

Ti,i, Ti,2 Iying on both sides of Hi, where Ti,i or Ti,2 might be an empty set:

Ti,1 Hi Ti,2
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The tTees Ti,2,Ti,2 axe coRtained in two reducible fibers. If a fiber ef Ay
cometaining Ti,i has only one more component A then the closure X of A
meets the cross-section H2. HeRce the mllkip}icity of A ragst be oke. Se, for
A to be a multiple fiber, A meets one tree from the Ti,j 's and one tree from
the T2,3•'s, where 2' = 1,2. It fo}lows ftom this ceksideratie= that A has at

most two multiple members.
   Let A be ehe member gf A centaiking C &s an irredgcible compeAe;it.
Then either C g Supp(A) or C = Supp(A). We prove, in fact, the foIIowing
resg}t.

Lemma 2.4 The first case dees not eecur. Namegy, C is a nnig#e irreducibge

component ofA.

Proof. Suppose the cormtrary that A contains another component Ci. Then
g i$ ax uatwisted C"-fibratioxx eft X parametrized by P2. Hence Lemma 1.3
says that all fibers of ge are irreducible and there exists exactly one fiber,

say Fo, with Fo,,,d El! Ai. Write A = mC+miCi. S"ppese fwther that
A cuts out the fiber Fo. We claim that there exist exactly two irreducible
multip}e members of A, say Ai and A2, such that Ai nX and A2 fi X are
the multiples of C'. In fact, if there exists none or only one such fiber, then

X would contain a Zariski open smbset U isomorphic to C' Å~ C". But then
K(X) S K(U) = O, a contradiction to the hypothesis K(X) ex 1. Let A be
the mNtmber of Av corresponding to A. Note that A consists of C :-rm a'(C)
and C, := a'(C!), for a!! cemponents ef Supp (gde'(pi,p2))X(H} U H2) are
contained in the members of Av corresponding to Ai and A2, Moreover, it
fo!lows that C Emd Ci meet transversally in one poiRg other thaR the base
points pi,p2 and that Ci does not pass through pi,p2. For Hi and ",2 are the
cyo$$-sectiolls Qf Ay aRd C meets Hi aRd H2. This implies thag Ci dees itot
pass through no centers of the process cr, Hence (Ci2) rm (CNi2) Åq o, which

is a cgRtradictiex. Thgs it follews that A fi X f Fe• Since Hi A H2 rm e,
the only way to obtain the singular fiber Fo is that Hi and H2 are linked by
scme exceptioka3 components ef the pyocess ff. This is clearly Ret pcssible.

So,Cisaunique irreducible component of A. Q.E.D.
   As a consequence of Lemma 2.4, we know that g is an untwisted C'-
fibration paranietrized by Ai. Then Lemma 1.4 says that g has a unique
reducible fiber, say Fi, which consists of two irreducible components, say I7ii
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and Fi2. The configuration of Supp (Fi) is described in one of the following

fashions:

 (1) Ki E; R2 or Ai and Fn A-2 lg•

 (2) Fn ;! Ai,Fi2 gls C' and KiAFi2 == e•

In the first case (resp. the second case), we say that the curve C is of the first

type (resp. of the second type). Let Fi be the member of Av corresponding

te F2•
   Suppose K coi}tains Bo compoxent$ of the bogRdafy D. IIrheR Fi comsists
of the closures Cn and Ci2 of Fii and Fi2 on V, respectively, If C is a curve
of the first type, then the multiplicities of Cn and Ci2 in the fiber F"" i"

 are
equal to 1. Then the Bezout theorem implies that deg(Fii) = deg(Fi2) ww- 1
ai}d th&t the degree ef a geReral member of A is equake 2, where Fx, Fi2
are the c}osures of Fii, Fi2 on iP2, respectively. SiRce C or its multiple i$ a

member ofA, it fo11ows that C is a line or a conic and that K(X) = -oo. This
is a contradiction, If C is a curve of the second type, Cn and Ci2 meet each
other at a point on the cross-section Hi or ll2. This is also a contradiction.
   Ilrhgs F'Vi coRtains sgme exceptigRal cempoueges cf the p:ocess g axd A

has at most one irreducible multiple member. If either A has no irreducible
multiple members or A itself is a multiple member, say A = mC with m År 1,
then X contains a Zariski open subset U isomorphic to C" Å~ C", which leads
to a contradiction to the hypothesis k(X) me 1. Hence it follows that A
has eke 3Rd ogly ene iyredgcib}e multiple membey, say F2, akd that C is a
member of A, i.e., A == C.
   Thus we proved all the assertions of Theorem 2.1.

3 Case C i$ a curve of the first type

In this section, we consider the case where C is an irreducible plane curve
of the first type and determine its defining polynomial (see Theorem 3.5).

Let K = miiFn + mi2Fi2 be the unique reducible fiber of g, where Ki or
A`2 Nxe Ai aMd Fg fi A2 l e. Let F2 be a ggiqge i:redgcible ragltiple fiber ef

q. Let IZ7r = mnFn + mi2Fi2 (resp. IFII) be the member ofA correspgwnding
to Fi (resp. F2), where Fn and Fi2 are lines on P2. Let Fi (resp. E2) be
the member of Av correspondimg to [iiT (resp. III). Let Cn,Ci2, C2 be the
closures of f7ii, Fi2, F2 on V, respectively. Then we prove the following:
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Lemma 3.1 The configurations of F-V i and EN2 are linear chains.

Proof. Note that by the constructien of a (see Section 2), all exceptional
components in the process a other than ffi and H2 have se}f-intersection
muraber less than er eqgal te -2. Sgppose F"s xot alineas cbaik. Thex
the configuration of Fi U Hi U H2 is as shown in Figure 2, where there are
one or more branches sprout out of the chain connecting lli and H2. Note

l

l

l

i

Hl

---
         Cll C12

     H2

--

                           Figure 2:

that Cit er C!2 i$ a (-l)-curve by Lemm& l.l. By sgccessive cgntraceioxs
of (-i)-curves in the fiber Fi starting with the contraÅítion of (-1) curve
Cii or Ci2, we obtain a smooth fiber of a Pi-fibration, which is the image of
the component of FNi intersecting the cross-section Hi. But in the course of

the contraction process we encounter the configuratioR a$ showit in Figure
3, where a (-l)-c=rve E meets three ethey irredgcib}e fiber ccmpouexts.

,

l

1

I

Ik
g--.h

This is impossible by Lemma 1.
chain.

              g2
         --i

(dvE

i)

 Figure 3:

1. By a similar argument, F2 is also a linear

                               Q.E.D.
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   It follows from Lemma 3.1 that the configurations of Supp (ami(pi)) and
Supp (a"i(p2)) are rational linea[r chains. In general, Supp (a-'(pi)) has two

linear subchains on both sides of Hi, one of which is contained in the fiber
FNi and the other in FN 2. Similar is the case of Supp (cr-i(p2)). Note that
ff =ui•g2 (cf. Sectioxx 2).

Lemma 3.2 Fer i =: 1,2, get Di == {pi,gi,di,g,di,i} be the dgtum for the
first Euclidean transformation with eenter pi. Then the configeeration of
Supp (anti(pi)) is a linear chain if and oniy if ai is written in one of the
following two fashions:

 (1) ai coincides with the first Euclidean transformation, gcd(di,o,di,i) =:

     1 and two general members of A are separated from each other after
     applying the first Euclidean transformation.

 (2) cTi == ff5.i)•Ti(i)•cr5•2), zvhere g5•j') (7' = 1,2) is the ,Ei7uclidean tran$fermGtion

     Gssecigted with t}se datum tzÅr5-3') := {pS•3'),g5•jÅr,di?,),d5?2} (p5•i) = ctÅri? and

     TiÅqiÅr is an EM-transformation and where ri(iÅr and a5•2) are possibgy the

     identity morphism, Furthermore, dÅí',)IdS•l,), gcd(d[•3,),dl?,)) = 1 and two

     general members ofA are separated from each other after applying the
     second Euclidean transformation.

Proof. The exceptional curves arising from the Euclidean transformation
with the proper transform of li form a linear chain. So, the first case is that

the preper transform ef a geReyal member of A become$ smoeth after the
first EgcligeaR traRsfermatiok aRd separated from the proper traRsfo;m ef a
secoitd geReral member. If the fust EgclideaR tramsformatioR g5.i) is followed

by an EM-transformation ri(i) (or the second Euclidean transformation ai.2)

when r,(i) = id), then the last exceptional curve of ai•i) must meet the proper

transform of l,. This condition is expressed as dS•,ii)ldE]o). It is clear that

there is no EiM-transformation following ai•2). Hence gcd(di,2o), d[,2i)) == 1 and

two general members of A are separated from each other after applying the

second Euclidean transformaation. Q.E.D.
   We shail preve, ill fact, the follewiRg resglt.

Lemma 3.3 0nly the pt'rst ca.ge in Lemmes S.2 occ?irs for both gi ang g2.

i62

15



Proof. We assume that Fn passes through the point pi. Then Fi2 passes
threugh p2. Let G be a general member of A. Since i7I : miiFn + mi2Fi2
and G meet only in the points pui,p2, Fii meets G only in one point pi. This
imp}ies that A"s the tangeltt line of G at pi. Similax}y, Fm is the taxxgeRt

line of C at p2. A$$ume that ff"s as in the secoRd case of Lemma 3.2. Thell,
after performing crii), the configuration of crii)'(li Yi) u supp (ali)-i(p,)) is as

shown in Figure 4, where the component named A is the last exceptional

  taS!) (rvii)

          H
Figure 4:

curve in the process aii) and the chain on the right side of A (called H in

the figure) is not empty. Let C(i) be the proper transform of G and let (?i =
G(i)fiA. Ncte that the poigt Q2 differs from the pcixt ffii)'(K"fiA. We claim

that the componeTit A belongs to the member FYÅqi) of aii)'(A) corresponding

to par. Otherwise, A belongs to the member corresponding to IZII which
gives a multiple irreducible fiber of the C"-fibration q and the member liijir(i)

would Rot pass through the peint Qi, a contradictieR. The compeRents ef
ff9Årww2(pD then be}eng to the member liiY(i). If the EM-trallsformation ri(i)

is not the identity morphism, the same argument shows that the exceptional
curves arising from 7i(i) belongs to the member corresponding to I and the

component A would be a branching component in F"V i , which is a contradiction
by Lemma 3.l. HeRce 75i) = id . The second Egclideall tra=sfor;;}&tiox ffS2)

is associated with the datum zÅri2) == {Qi,A,dS2,8,d12,l}, where d12,3 ex dSi,l

and gcd(di?3,di?l) =- 1. We claim that di?l = 1. Suppose that di?l År 1.

Then there exists a non-empty linear chain between aS2)'(A) and the last

exceptieRal cgrve B of ffi2), axxd the compoAents beloRgiRg to this lkear chain

are contalked in the member Ftw i. Thefi the dual graph of F"V i has a brallch
point,, which is a contradiction to Lemma 3.1. By a similar argument, we can
draw the configuaration of aii (pu2). Figure 5 is a picture of the configuration
of .Nllii U F'V 2 U Hi U H2 when a`2 is in the case (2) of Lemma 3.2, where the
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member Fi is supported by the upper horizontal curves and where Ai and
A2 are the proper transforms of the last exceptional curves of aii) and aSi),

respectively.

       H

--------

Figure 5:

Note that the member Fi is contracted to a smooth rational curve with either
one of Ai and A2 left as the final image curve because Ai and A2 meet the
cross-sections Hi and H2, respectively. Meanwhile, all components in the
fiber Fi other than Cn and Ci2 have self-intersection number less than or
equal to -2. We can obtain a smooth fiber of a Pi-fibration from Fi, which
is the image of the component Ai intersecting the cross-section Hi. Then the
chain H is left intact and not empty. This is a contradiction. This argument

applies also to the case when a2 is in the case (1). Q.ED.

   By Lemma 3.3, the pencil A is eliminated its base points by the Euclidean
transformations ai and a2 associated with the datum TÅri == {pi, Fii, di,o, di,i}

such that gcd(di,o,di,i) =1 fori= 1,2. Since liITt is the tangent line of the

general members of A at the point pi, it follows that di,o = do for i = 1,2,

where do is the degree ofageneral member of A. We put di :== di,i. By the
Euclidean algorithm with respect to do År di, we obtain as in Section 1 the
positive integers d2,•••,d. and qi,•••,q., where d. = 1.
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Lemma 3.4 With the above notations and assumptions, we have :

(1) a)2•

(2) With the weighted gecal graph efS=pp(ff-i(pD) given in I7igure 1, Cii
   meets the components E(2, l) .glnd Ci2 in the member Fth"i ofAv, and C2

   meets E(1, 1) in the member F2.

(3) Afcer exchanging pi and pu2 if necessary, we may assttme that g2 2 2,
   i.e., de År 2di. if gi ) 2, the weighted duGg graph of i5il u F--2" u ff: u H,

   is given as in Figztre 6.

ProoÅí (1) Suppose a = 1. Then the component Cn meet the cross-section
Hi. Hence the multiplicity mn of Fn in the fiber Fi is equal to 1. Then
Lemma 1.4 (3--l)implies that ff(X) = -oo becagse theTe is a gkiqge multiple
fiber F2 in the fibration g. This is a contradietion.

   (2) Supp (crajwi(pi))XHi consists of two connected components, one of

                             ts.- "-vwhiÅëh is contained in the member Fi and the other is in the member F2.
Fttrthermore, one of Ci! aRd Ci2 is a (-l)-curve. Since dv ) 2, C!i meets
the cempekeRt E(2, 1;t IR the membey FN2, the component C2, whichi$ a
unique (-1)-curve in F2, meets the component E(1, 1) or the component En
meeting the cross-section Hi. But in the latter case, the contraction of Eii
produces two components meeting the cross-section Hi. This is impossible.
Hence C2 meets the compgRent E(1, !).
   (3) Suppese ftrst that gi k 2. Figure 6 belew thek gives a picture cf
the weighted dual graph of F'tw i u FtV 2 U Hi u H2, where A (resp. B) indicates
the linear chain in Figure 1 between Eo and E(a, g.) with Eo and E(ctz,ga)
excluded (resp. the linear chain between E(dv, g.) and E(1, 1) with E(dv, q.)

exclEded) . in the }iReai chaims C aRd D, tke leftmgst compeReRts iktersect

Ci2 and C2, respectively. By the Euclideaxx transfermation oi, the proper
transform Cn of Fn which is a line has self-intersection number less than
or equal to -2. Hence Ci2 is a unique (-1) curve in the member Fi. Since
Fi is a linear chain and is contracted to a $mooth member by succes$ive
cgntracticRs, the linear chaik C is determined gRiquely by AL as indicated iR
Figure 6. Similarly, the lineaJr chain D is uniquely determined by B.
   Suppose next that gi = 1, i.e., do == di + d2. Then (Cn2) == (.Fn2) -
2 == -1. Since Ftw i (resp. FN2) is a Iinear chain and contracted to a smooth

rational curve via successive contractions, which start with the coRtraetiolt
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Hl

Cl1

C12

A

c

B

D

H2

a:odd

c
 (qi -2)-times

CF--•---ÅqÅr--O-••
           -(2+q2)   (-2)

          (qa-1)-times
          -•-  --o---o-••••-o  -(2+qa-i) W.2)

D:
       (q2-1)-times
       t"'O-"--x  (w•---ÅqÅr--o--
- (1+qi) X.2) -(2+q3)

            (qa-i-1)-times
             -----•-- O---O--••••-CF--O      -(2+qa-2) r.2) -(1+qa)

cM : even

C:
 (qi-2)-times

c"-•-••--o---ÅqÅr-•-•
           -(2+q2)   (-2)

       (qa-1-1)-times
        -- o--o-•-ou' (2+qa-2) T.2) -(1+qa)

          (q2-1)-times
          -D: o----o--•---o------o-- •-•-•
   -(1+qi) V.2) -(2+q3)

       (qa-1)-times
        ---•-•-••".-•
•-- o-o------o
- (2+qa-i) T.2)

Figure 6:
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of Cll (rresp. C2), the weighted duaJ graph of F'Vi (resp. IN;:2) is given as

in Figure 7, where we censider only the case a is even since the case a is
odd is treated $imilarly. IR Figute 7, the linear chaix$ which atre }ecated
on the right hand side of Ci2 and C2 are contained in Supp (a-i(p2)). By
looking at the conf}guration of Supp (a-i(p2)), we know that the datum
TÅr2 = {p2, Fn, dg, d2,i} for g2 satisfies the fo}lowing con{litieR:

                  de 1                 d2,i ex q2+1+g3+. 1 1'

                                   '' qa-1 +-
                                           qa
Hence it follows d2,i ex d2. Since de År 2d2, after exchanging the roles of pi

and p2, we may assume that qi)2. QE.D.

 'v E(ct,qa-1) E(2,1).e'./O-Ao
   Xt(-1,qa-i}

F2 ' o- • v ........

  Cl2
CX1
 o-o -(1+g2)
(wwi)

E(1,1)
- o

C2
 c
(-i)

Åqq3-lÅr-times (g.-1-vlÅr-times
a- •••• -o-o- •---•• -opto- -••• -o-o NA.N NmevW-Åq!-l-qa)   (--2) -(2+q4) -(2+qcr-2) (-2) Å~Å~,

   ,Sit=UIiSE,tiMeS (qtpmt)times/

  e-H •••• -o-o- -••--- -e.o- •••- -o
     (-2) -(2+q3) -(2+q.--i) (-2)

o H2

Figure 7:

   With these observations in mind, we shall construct below an irreducible
plane curve C(do, di) of the first type with 7Åqi(P2-C(do, di)) = 1 for every pair

of poskive iRtegers dc agd di sueh that di År- 2, de År 2di and gcd(dc,di) == i•

Construction of C(do, dD c P2. Given a pair of positive integers do and
di as above, we fikd the positive integers d2,...,d. and qi,...,q. by the
Euclidean algorithm with respect to dc and di, where d. =: 1 ($ee Section 1).
Let l, li and l2 be three distinct fibers of the Pi-bundle 2)i - Pi, where Xi is

the Hirzebrgch surfaÅíe of degree 1. Let Mi be the minimai sectieR of Åíi and
let rvf2 be the cross-section such that Mi fi M2 xx Åë. We put Qi : : gi n NI2

and Q2 :== l2 n M2•
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   Blowing up the points Qi, (?2 aAd their iR{lnitely kear poiRts, we ebtaixx
a birational morphism e : V -. Zi such that the coniiguration of e'(li) and

g* (l211Lare thgse ef.vA + Cg + Ci2+C aRd B+ C2 +D in Ngure 6, respectively.
Let Fi :ww e"(li),F2 :ww e'(l2),Hi :ex e'(MD and H2 :== e'M2. We denote by
Cii and Ci2 the components with self-intersection number (-gi) and (-1)
in the fiber F'-V i, respectiveiy. We denote by C2 a unique (-l)--curve in the
fiber F2. The multiplicities of the components Cii, Ci2 and C2 in the fibers
F'twi and 1tw;l2 are di, do -- di aud gg, respectiveiy (see Lemraa l.5).

   We can contract all components of F'Wi U FN2 U Hi U H2 excePt for Cii, Ci2

aRd C2 to the smeeth peints on P2, say pi and p2. Let ff:V -ab P2 be
the contraction and let C(do,di) be the image a(e'(l)). Then the curves
nyt :== cr(Cn)} Fi2 :-- cr(Ci2) and IFII :== a(C2) arethe lines without acommon

point. We can ta[ke the horcogeneous coordiRates X,Y aRd Z oli P2 such
that the lines Fn,Fi2 and F2 are defined by X = O,Y == O and Z = o,
re$pectively. Let A be a liRear pexcil spaxxked by diA2 + (dg - dDA2 and
doli5. Then C(do, di) is amember ofA defined by Xdiydontdi +Azdo .. o with
A E C'. We may take A = 1. Meanwhile, it is cleaac by the construction that
the compiement X :== P2 - C(do, dD is a Q-homolegy plaite of the fiurst type
with an untwisted C"--fibration over the aifline line. Note that di Åq do - di.

TheR Lemma 1.4 (3-1) implies that K(X) = 1 if and oRly if

                     11                 i- zil - as Åre, i•e. di )- z

   Conversely, a plane curve C defined by XdiYdo-di + Zdo me O with di )
2,do År 2di and gcd(do,di) = 1 is a curve of the ftrst type and its com-
plement P2 - C has log Kodaira dimension 1. Given pairs of positive in-
tegers (de,d" afid (eo,e}) $atisfying di,ei ) 2,do År 2di,ee År 2ei akd
gcd(do,di) == gcd(eo,ei) == 1, it is easy to see that C(do,di) = C(eo,ei)
up tg PGL(2;C) if alld only if dg rm ec and di = eii

   Summarizing the above arguments and Iemmas, we obtain the following
theorem.

Theorem 3.5 There exists a bijective correspondence between the set of
pairs ofpesitive integeTs ({ic, cgD satisfying cli ;}l 2, clc År 2cSi .anÅql gcd(ale, (ID xe

1 and the set of irredttcible plane curves C of the first tmpe with xi(P2-C) == 1

up to pGL(2;C). The correspondence is given by (do,di) H C(do,di) : =
{xdiydg-di + zaEe = o}.
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REMARK 3.6 The lowest degree case in Theorem 3.5 is C(5,2). This curve
is listed in Yoshihara [14] as one of the irreducible plane curves whose com-

p}emeRt has lcg Kodaka dimeRsioxx ei}e.

4 Case C is a curve of the second type

In this section we shall consider a curve of the second type. We can determine

a homegeReous polyRomial to define such a curve oniy with some additioRa}
hypotheses (cf. Theorems 4.5, 4.13 and 4.16). Let C be an irreducible plane
curve of the secoud type with K(P2 - C) =: l. With the $ame netations
as in Section 3, let Fi = mnFii + mi2Fi2 be a unique reducible fiber of
g snch that Ki -t".-- Ai,K2 X C' and I3i fi K2 = e. The xotatioks Fi =
miiFn + rni2Fi2, iU, FNi, J"VZ2, Cii, Ci2 and C2 are the same as at the beginning

of Sectien 3. Apeexxg the base points of A, say pi aRd p2, A2 aRd F2 pass
through pi and p2, while Fii passes through only pi. The arguments in
LeiBg}a 3.l implies thaÅí the conilguratieB gf F2 is a linear chain, bgt the
configuration of Fi is not necessarily.

   We write ffi (cf. SectieR 2) as

          ffi = ffi') • 7-SÅr • • •gS"-i) • r,("-iÅr • ffin) with n År- i,

where ffi]'År and TP') aie respectively the ith EgclideaR trafisfeTmatieit aRd

EM-transformation for 1 S 2' Åq n and where rfO') might be the idenbity

morphism. Note that ffi m"$t end with aB EuclideaA traRsformatioit. in
fact, if it ends with an EM-transformation, then Supp (a-i(pi;tl!XHi consists

of ofie coftnected compoxxent, which is contained in the fiber F2 because Hi
is a cross-section of Av and C2(= the closure of F2 in V) is a component of
FtV, with multiplicity ) 2. If Supp (a-i(pi))Xffi is contained in F-V2 then Cn

and Ci2 would meet each other at the point on the cross-section Hi. Thi$ is
a contradiction.
   First af all we prove the following:

Lemma 4.1 The curve Cn is a (-1)-curve.

Proof. The configuration of the fiber Fi in a simplified form is given in
Figure 8. Note that crn is the end component of a brached linear chain
which does not contain C!2. Suppose Cll is not a (-1)--curve. Then Cve is
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Figure 8:

                            N t----a unique (-1)-curve in the fiber Fi and the contraction process to make Fi
smooth starts with the contraction of Ci2. In the course of the successive
contractions, we have a (-1) component meeting at least three components
of the fiber or two components of the fiber plus a cross-section. This is a

contradiction by Lemma l.1. Q.E.D.
Lemma 4.2 The configuration of Supp (a-i(p2)) is a linear chain.

Proof. Assume to the contrary that there exists a branch component G in
Supp (a-i (p2)) from which three or more other components of Supp (a-i (p2))

sprout out. By Lemma 3.1, G with the adjacent components are included
in the fiber Fi. Then the configuration of the fiber Fi in a simplified form

is given in Figure 9, where the component denoted by S (resp. T) meets
the cross-section Hi (resp. H2). Note that there are two or more branches
sprouting from the chain connecting the components S and T. Then the suc-
cessive contractions to make the fiber smooth which start with the contrac-
tion of Cii or Ci2 will produce a (-1) curve with three or more components

intersecting it. This isacontradiction. Q.E.D.
   In the rest of this section, we shall assume the following condition:

   (#) Fn is a line and Ci2 is a(-1)-curve.

   Then Fii is the tangent line of a general member of A at the point pi.
We take a system of homogeneous coordinates (X, Y, Z) on P2 so that pi ==
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C12 .------

:

:

Cl1

Figure 9:

(e:1:C),p2 == (1:O:O) acd the }ixe Fx akd the taxxgept }iRe of the geReral
members of A at p2, say l2 are defued ye$pectively by X == g akd y = g.
Write P2 -- IPTt == A2 --- SpecC[y,z] and let t : A2 g P2 be the canonical

open immersion as the complement of the line Fn, where y := Y/X and
z:= Z/X. Let C" :ex C - {pi} and let f be an irreducible polynomial
of C[y,z] which defines C" in A2. Clearly the polynomial f determines a
homogeneous polynomial which defines C.

   Suppose that oi consists of a single Euclidean transformation, i.e., ai ==
crii) iR the notatioB at the beginniRg of this section, which is associated with

the datum Pi :== {p2, Fx,do,di}, where dg :--- i(C - Xlrt;pD =(the degyee ef
C) aRd di := mgltp,(C)• Let d2,••t,d. =1aRd qk,•••,q. be positive integer$
obtained by the Euclidean algorithm with respect to do År ai. Then the dual
graph of Suppa,-i(pi) is a linear chain A+Hi+B, where Hi = E(or, q.) by the
notation of Section 1 and where A and B are linear chains. In particular, A is

the same as given in Ngure 1. Since the dual graphes of F2 and Suppaii(p2)
are Iinear chains, we write them as B+ C2 +D and D+ H2 +E, respectively,
where D and E are the linear chains. Since C2 is a unique (-1) curve in E'"W

2,
the linear chain B determines the }inear chains D and then E successively.
But E l$ kot gRiquely det,erfftiRed by D. IB faÅít, there is some ambiguity
depeRdillg cg wheeherkhe last cof}tracSigx eccgr$ oA the chaiR D gr E] wheit
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 one contracts D+ H2 +E to the smooth point p2. If the last contraction
 occurs on the chain E, then the dual graph of E is given as in Figure 10. If

 it occurs on the chain D, the dual graph of E is the same figure with the
 part F deleted off.

a: odd
                  (q3-1)-times                                               (qa-1)-times
o---••-o o o--•-••-o o--••••••••-o o".,...-o........Ho2
                                               v                     (-2)           -(3+q2)                            -(2+q4) -(2+qa-i)   (-2)                                                  (-2)

      F

a : even

o- •-•• -o
   (-2)

o

(q3-1)-times

           -(3+q2)
V--,.--.P..-.--..----•••,

      F

o-
   (-2) - o o- ••-•-•-•

    -(2+q4)

       (qa-i-1)-times

       " H2• -o o- •••- -o                    o•--•--•c       "- (2+qa-2)          (-2)                  -(1+qa)

Figure 10:

   Now Supp Fi is a union A+Cn +Ci2+E. In fact, we have the following
result:

Lemma 4.3 VVith the above assumptions and notations, we have:

(1) aÅr2•

(2) the dual graph of I7i is determined as given in Figure 12.

Proof. (1) Suppose first a= 1. Then A= O, and both Cii and Ci2
intersect the cross-section Hi. This is impossible. Suppose next that a == 2.

Since Fii is the tangent line of a general member of A at pi, the component
Cn intersects E(2, 1) (see Figure 1) and (Cn2) = 1 - (1 +qi). Since Cn is a

g[-L 1)-curve by Lemma 4.1, we have qi = 1. 0n the other hand, in the fiber
F2, the unique (-1) component C2 meets E(1, 1) or the terminal component
of B which intersects the cross-section Hi. But the latter case leads clearly

to a contradiction to Lemma 1.1. The dual graph of the fiber I7i is given as
in Fig ure 11.

   In order to obtain Figure 11, note that Ci2 is a (-1) curve by the hypoth-
esis (#) and connected to some component between E(2, 1) and E(2, q2 - 1),
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Hi E(2,q2-1) E(2,1) Cii
o----• --- ---------o--           -2 -2 -1
           "                  A

C12 H2
o

- 1

Figure 11:

say EICL2,r). Then Ci2+E(2, r)+E(2,r- 1)+- • •+E(2, 1)+Cii supports the
fiber I7i. Hellce r exxe g2 -l aRd the past E betweeR Cm and H2 is vgid. TheR
the multiplicity of Ci2 is ene altd Lemma 1.4 (3-2) implies 7{i(P2 -- C) , : wwoo,

which is a contradiction. Hence dv År 2.

   (2) In the dual graph of the fiber Fi, the component Ci2 intersects some
component of the chain A. Since Cn is a (-1) curve, one can contract
Cx,E(2, l),i••,E(2, g2 - 1) in this efder. After this cektractiox the compe-

nent E(2,q2) hemg self-intersection number -(1 + q3) S -2, Hence E(2,q2)
is contractible after the component Ci2 is contracted. So, Ci2 intersects the

component E(2,q2). Since the contractiorm to bring the fiber Fi down to
a smooth rational cuTve does not allow a branching (-1) compollent, i.e.,
a (-D compokexxt meetikg three ethey compcgents, we can shew that, Ci2
intersects the end component of E which is not the component meeting H2.

Hence the dual graph is as given in Figure 12. Q.ED.
   We can construct the surface V and the Pi-fibration with the specific
singular fibeys ,rw FE2 aRd F-'l2 ik the followigg fa$higR: Let X2 be a HiTzebr"ch

surface of degree one. Let li and g2 be distinct twe fibers of its Pi-fibratioll

T : Xi - P, let Mi be the minimal section and let M2 be the cross-section
such that MinM2 =Åë. Put Qi::linM2 fori =1,2. Let eo:Vo --+ Zi be the
blowing-ups with centers at (2i and C22, and let Q;• := l;• Aeeimi(Q" fer i -- 1,2,

where g;. = e6(g". We perfcym the g$cil}ating tragsformatiogs ei Gssociated
with (Q',,G;q.,•••,q4,q3 - 1) and (Q',,H;g.,-•-,q2) independently (cÅí Sec-
tion 1), where (C, H) = (e,-i(Qi), IS) if a is even and (C, N) = (ll, e,-i(op2))
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Hl
o-----•--

           A
i-  E(2,q2),

T••O- ....
,

L.---.--..

E(2,1)' Cn r-

 E (F is deleted off)

                 t H2                 ,o- - • • - • • - • • -o•••-r•--•-----o
                 1 -----------------e

Figure 12:

if a is odd, and denote by e = eo • ei. Let R be the component in e'(li) with

self-intersection number -(1 + q3) and let Q'i' be a point of R not lying on the

other components. Let C be an EM-transformation of length q2 which starts
with the blowing-up with center (?1'. Set e := e•C : V --År Zi. Then the fibers

e' (li) and e'(l2) have respectively the same configurations as the fibers F'Vi

and iii21. Furthermore, the proper transforms of Mi and M2 are (-1) curves.

So, we find a birational morphism a : V - P2.
   By the above construction and Lemma 1.5, we can show that the multi-
plicities of the components Cii, Ci2 and C2 in the fibers Fi and F2 are d3, d2

and do, respectively. Hence the linear pencil A is spanned by d3Fn + d2Fi2
and doliS. Note that C is an irreducible and reduced member of A (cf. The-
orem 2.1). Since degC = do, it follows that

do = d3 + d2 deg Fi2 = do deg F2,

whence we know that deg Fi2 == q2 +1 aS qi
and that F2 is a line. Set F,02:= Fi2 - {pi}

= 1 (see the proof of lemma 4.3)

and F,O := F2 - {Pi}•

Lemma 4.4 With the notations as above,
morphic to the afiine line. Moreover, they
p2 transversally.

the curves Fi02 and F20

intersect each other in
 are zso-
the point

Proof. Note that Ci2 and C2 meet the end components of Supp a-i(p2)
which is a linear chain (cf. Lemma 4.2). By successive contractions of the
components in Suppa7i(p2) which starts with H2, it is clear that the images
of Ci2 and C2 intersect each other transversally, so Fi2 and F2 intersect in
the point p2 transversally. It is then easy to show the assertion of the Iemma.

                                                           Q.E.D.
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   We may assume that the line F2 is defined by Z : O with respect to the
homogeneous coordinates (X, Y, Z) fixed after the proof of Lemma 4.2. Let
fi2 be an irreducible polynomial in C[y, z] to define Fi02 on A2 = P2 -- Ai.
The curve F20 js defined by f2 == z. Since the curves Fi02 and F20 are two
aMne lines intersecting each other in a point p2 transversally (Lemma 4.4),
we have C[fn,f2] =: C[y,z] (see Miya(}ishi [6]). Hellce A2 is writteR as

fi2 = czs+g(z),

where c 4 O and g(x) is a polynomial of degree q2+i because deg Fi2 = q2+1.
   As a consequence of the above arguments, we obtain the following theo-

rerr).

Theorem 4.5 Suppuose that ui consists of a single Euclidean transformation.
Then CO := C-{pi} is defined by a polynomialf in P2- Fn == SpecC[y,x]
of the foggewing form:

f =: (czx + g(z))d2 + Azde,

where c,AE C' and degg(z) == q2 +1•

   From now on, we a$sume that ai does not end with a single Euclidean
transformation. Let T)ij') :xe {piO),li"), d8J'),dSi)} be the datum of aiJ') for 1 s

2'  Åq- n (see the notations at the beginning of this section). Let dSi'),•••,d&il,)

and gij'), • i • , gSjl) be the positive integers obtained by the Euc}ideaR algorithm

with respect tg d8j') År d13'). Let E(3')(s, t) be the propertraRsform gft V of the

exceptioRal cgmpoRent, ari$ixg Åírom the (gY) -i- . . . + gg31Åri + t)-tk blewiRg-xp

in a[3') fer 1 f{ s f{{ eq and 1 fE{l t s{ qgj). Let r, be the length ef the ]'-th

EM-transformation rP') and let E(O')(Z) be the proper transform on V of the

exceptional component from the l-th blowing-up in rP') for 1 sls rj. To

simplify the notations, we put do := cl8") and di :me cli") for the last Euclidean

transformation. Similarly, we let d2,•••,d. and qi,•-•,q. be positive integers
obtained from do År di, where d. == 1. We also put E(s,t) := E(")(s,t). We
preve the fo}}owing result:

Lemma 4.6 With the Gss?smptigns gs gbeve, agg the exceptienGg cempenents
on V arising from ffS3') and rE2') for 1 s j Åq n are contained in the fZber Ftwii ,

175

28



Proof. After the first Euclidean transformation aSi), let E" be the last

exceptional component in aii). The proper transform G' by aii) of a general

member G of A intersects only E", among the components in suppaii)-i(pi),

at a base point, say pl, of aii)'(A). The member [iir' corresponding to liir

contains E". In fact, the proper transform of Fii is sepa[rated from G' because

7Tt is the tangent line of G and some component of Ff passes through the
point pl. Hence the connectedness of FI i'mplies that E" as well as all the
other exceptional components in suppaii)-i(pi) are contained in liiT'. By the

same argumemt, we can show that all the components on V arising from aij)

and TP) for1S 2' Åqn are contained in the member IN7i. Q.E.D.

   Among the components in Suppa-i (pi)XHi , the member F2 of Av contains
the components E(s, t) with s odd (see the argument of Lemma 4.6). Since
the dual graph of Supp a-i(p2) is a linear chain (Lemma 4.2), it is written
as D + H2 + E', where the part E' is a linear chain contained in the fiber Fi.

We prove the following result concerning the process a2.

Lemma 4.7 VVith the assumptions

 (1) The dual graph of the fiber ,F72

     6, where B consists ofE(s,t)

as above, we have the following:

is the same as B+C2+D given in Figure
with s odd.

(2) if the last contraction to bring D+H2 +E' to a smooth pointp2 occurs
   on E' (resp. D? then the dual graph of the linear chain E' is given in
   Figure 19 (resp. Figure 19 with the part F' deleted off?, where we treat
   the case qi År 1. The figure for the case qi = 1 is the same as in Figure

   10, where the part F should be replaced by F'.

(3) The linear chain E' is not empty.

Proof. (1) Since F2 is a linear chain, the assertion of (1) is obtained by

the same argument as in the proof of Lemma 3.4.
   (2) The assertion is easy to prove.
   (3) Suppose that the linear chain E' is empty. Then the component Ci2
meets the cross--section H2, so the multiplicity of Ci2 in the fiber Fi is one.

But we then have 7i(X) == -oo by Lemma 1.4. This is a contradiction to the

assumption K(X) == 1. Q.E.D.
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oc odd
                 (qi-2)-times
                 -o---••••-o o o- •-e
            (-3) (-2)   (-2)

      Fi

 a : even
                 (qi-2)-times
                 ,-----•-•,v
o---••••-o o o- -o
            (-3År (-2)   (-2)

      Fi

                   (q.-1)-times
                   " N2  o- •••-••••• -o o" ---•                         -o-•--••-•"                   v- (2+g2) -(2+qa-i)                     (-2År

                  (qcr-i-1)-times
                   - H2  o----••••-o e-•----e                               o-•--•-o                   "
ww(2ÅÄ42) -(2ÅÄga-2)                     (-2År -(1-+-q.)

Figure 13:

   Note that the compeRekt Cm meees the eRd cgmponent ef E' which lo-
cates on the opposite side of N2. For otherwise the contraction of Ci2 and
subsequently contractible components would produce a (-1)-curve meeting
three other components in a degenerate Pi-fiber.
   Let A' be a tree in the fiber ,"F-ii coltsisting of the exceptioRal compenents

from ffi. TheR .ttlt is wrkteA ems

At ., B, + Bl + B2 + B3,

where B' is the !ast exceptional cemponentfrom gi"-i),B"s a tree consistiBg

of E(n-i)(s, t) with s eveli aBd the exceptioxxal compeftents arising from ffi3')

and Ti(j') for 1 S ti Åq n-1 (if any), B2 is a linear chain consisting of E(n-i)(s, t)

with s odd and B3 is a linear chain consisting of the components from rf"-i)

and E(s,t) : = E(")(s,t) with s even.
   New we cak $pecify the intermediate trai}sformatioms gSj) aRd rf3') for

1 K 2' Åq n• Namely, we have:

Lemma 4.8 The following assertions hold:

 (1) Fer1 g 2' Åq n, ene of the fcgge2ging two cases gccurs for the dgtzzm P13)

     of gi3-) ,

      (i) d8j) -2dY).

     (ii) d8j) :dS")ÅÄdSj) andd2ts')idSJ)i
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(2) For 1 g 2' Åq n- 1, the le ngth

   determined by the foregoing a

(iii)

(iv)

In the

In the

case (i)

case (iO

ro'

(j)

1

above, rj =

above, rj =

of the 2'-th EM-transformation Tits') is

as follows:

1.

dS3)/dSj).

PreeÅí Let H be the compeReRt iR A' meeting the cempegept Ci2 and
let L be a linear chain in A' coRnectiRg the cros$-sectioll ffi and H with

H included. By Lemma i.2, the component H is chosen in such a way
that every branch sprouting out of the linear chain L + Ci2 + E' in F--i' i is

contractible to a smooth point. Suppose that the comaponent H is contained

in B' + Bi. Then choose the component B' as the component H in Lemma
1.2. It says that the linear chain B2 which sprouts from B' is contracted.
Since B2 contains no (-1) curves, this is impossible. Hence-vH is contained in

B2 + B3. Furthermore, the maximal connected part B of Fi which braRches
cgt ef the liReay chain L + Cn + E' aRd cgxtaiRs C= + B"s contractible.
   Suppose gew that dvk }}tr 3. Nete that sigce F7i"s the taRgekt liRe of
a generai member of A at pi, Cn meets EÅqi)(2,1). After the contraction
of the components Cn, E(i)(2, 1), • • • , E(i)(2, qSi) - 1) in this order, the self-

intersection number of lf(X) (2, qSi)) then remain$ less than or equal to -2 and

one cannot proceed further, which is a contradiction, So, ai S 2. In the case
dvi == 1 (resp• ai = 2), we have qi') = 2, i.e., d8i) :2d(,') (resp. qii) == 1, i.e.,

d8i) = d(,')+dS')) and Cii meets E(i)(1,2) (resp. E(i)(2, 1)) because (Cn2) ex

-
1 (Lemina 4.l). Ftirthermore, after the contraction ef Cii, E(iÅr(l, 2) (resp.

Cii,EÅqi)(2,1),•+•,EÅq2)(2,g,Åqi))), tke self-ikteTsectioxx Rumber gf EÅqi)(l,1) is

-
1 (resp. --gS!År), hekce we kkow tkat the lexgeh r2 of rfiÅr is l (resp. qY) =:

dii)/dSi)) because of the centractibility of the braxxch B. Successively, when

we contract the components E(i)(1),...,E(i)(ri - 1),E(i)(1,1), the image
of E(i)(ri) must be a (-1) curve in order that the part, B gets contractible.

}Ience E(i)(ri) has selCintersection number -3 in the graph Bi. This implies
that two points Iying on ff(i)(ri) (one is infinitely near to the other) are
blown-up in the proces$ cri2). This observation on crii) and Tfi) and the

contractibi}ity of the part B imply either or2 -- 1,d52) : 2dS2) and r2 = 1, our

tt, = 2, gg2) . dS2) + dS`2År axxd r2 == gi2)/dS2). Sgccessive}y, we caR apply the

sag}e arggmekt tc sYÅr and r53). Thg$ we have $howxx the asseytieRs gf (1)
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   A$ shewR in the proof ef Lemma 4.8, the componeRt H meeting the
(-1) component Ci2 is contained in B2 + B3. By Lemma 4.8, B2 consists
only of the single component E("wwi)(1, 1) . We consider fust the case where

H is celltained ix B3, that is, H is eRe of the compellent$ EÅqn-i)(i) with

1 S l S r.-i and E(s,t) with s even. Then we have the following result,
where we use the simplified notations q, := q5•"),a :me dv("),E(s,t) ;= E(n)(s,t)

etc.

Lemma 4.9 Suppose that H is contained in B3. Then the following asser-
tions hogd:

 (1) The component H in A' meeting Ci2 is determined in the following way
     according to the vatue of qi.

      (i) ifqi = 1, tve have dv År 2 andH is equai to the componentE(2, q2).

      (ii) lfqi År 1, the curve H is equal to the component E("-i)(r.wwi).

 (2) in both of the above eases (i) and (ii), the iength r.-i of T,Åqn-i) is de-

     termined by the foregoing aÅí"-i) as follows:

     (iii) if or.wwi = 1, we haye r.-i = 1.

     (iV) If an rw i =: 2, we have r. ww i = di" ww i)/dS"-i) .

 (3) ff gi = l, the part F in Ef (see figure iO) gs e?npty, and if gi År 1, the

     part F' in E' (see Figure IS? is empty.

ProoÅí Note that the compoBent H is ftot a (-2) corr}ponent EÅqn-i)(g) for
l S l Åq r.-i (if any). For otherwi$e, the contractioxx ef the (-1) component

Ci2 would produce a (--1) curve meeting three other components. Hence H
is either E(n-i)(r.-" or one of the E(s,t) with s even. Let B be the maximal

cennected part which braBches out ef the 1inear chain L + Ci2 + E' ($ee the
proof of Lemma 4.8) and contains

        Cg + Bi + B2 + B' + E("-i)(1) + . . . + E(nrei)(r.-} - O,

where B2 = E("whi)(1, 1). Then B is contracted to a smooth point by Lemma

12.
   As $eeit in the proef of Lemma 4.8, the part Cn + Bi of B is coll-
tracted. Since th, e self-intersectidwa number of E("wwi)(1, 1) is --2 if a.whi = 1
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(resp. -(1 + qS"wwi)) if cy.-i me 2), the length r.-i of n("-i) is 1 (resp.

qS"wwi) .. dS"'i)/dS"wwi)) by the contractibility of B. When we contract the

components B',E("wwi)(1),•• • ,E(n'i)(r.Hi - 1),E(n-i)(1, 1) in this order af-

terkhe coi}tractioR ef Cii+Bi, the image of E(n'i)(r.-" kas seif-igtersectiox

number -qi. In the case qi År 1, the component H meeting Ci2 is equal to
E(nwwi)(r.-i). For otherwise, a linear chain connecting " and E("'i)(r.whi)

with H excluded cannot be contractd. This is a contradiction to Lemma
1.2. Meanwhile, in the case qi = l, the image of E("wwi)(r.-" is a (-1)
curve after ehe above coRtraction. Nete ehat we theR have & År 2. Iitdeed,
it is clear a År 1 because qi == 1. Suppose that a = 2. Then the remaining
components of B3 after E("mui)(r.-i) are all (-2) components and we can
contract all the components of Cn + A' to a smooth point. Hence the (---1)
curve Cn meets the last compenent E(2, g2 - 1) iR A'. Then the part E' is
ak empty set, which is a contradictiefi by Lemma 4.7. Th"$ we kave ft År 2.
wnen we contract the component E("-i)(r.mei),E(2,1),••-,E(2, q2 - 1) in
this order, the self-intersection number of E(2, g2) remains less than or equal

to -2. Therefore we know that the comporment H is equal to E(2,q2) by
Lemma 1.2. Thus we proved the assertioRs ef the lemrr}a. The last assewioR
(3) follows easi}y if ene }inks Ci2 + E' to the compellekt H as indicated in
the assertion (1) and considers the contraction of H after the contractions of

the previous part including Bi + B' + B2, Ci2 and subsequently contractible

   We ceRsider next the case where H is eqikal te the compoxeRt EÅqn-!) (i, l).

Note that B2 consists only of ,El7("-i)(1, 1) by Lemma 4.8. Then we have the

following result:

Lemma 4.10 Suppose that the component H which intersects C!2 is
E(nwwi)(1, i). Then the foggewing asserticns hold:

 (1) The length r.wi of 7i("dii) is determined as follows:

      (i) lf orn-1 = 1, rn-1 == O'

     (ii) if C\n-2 == 2, T..i Åq qS"-iÅr .. dgnmhiÅr!,iSn-i).

 (2) The number of(-2) curves contained in the part F' (see Figure 10 if
     qi = 1 or Figure 13 if qi År 1? is given as follows:

     (iii) if a.nvi = 1, the nzzmber ef the (-2) eemponents in F' is zero.
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(iv) if a.mi = 2, the number of the (-2) companents in F' is equal to
    qS"-') - (r.imi + 1)•

ProoÅí Let L be a 1inear chain in A' connecting the cross-section Hi and
E(n-1)(1, 1), Le., L is

E(n'iÅra 1)+B'+E(n-2)(1)+. . .+ff{R'iÅr(r."" -f- {all E(s, t)'s witk s evek}.

Then the conitected part Cn + Bi in the fiber N7z sprouts out ef the chain
L+ Ci2 + E', so it is contractable by Lemma 1.2. Note that a.-i s 2 by
Lemma 4.8. By successive contractions of the components B', E(n-i)(1), • • - ,

E("-i)(r..i - 1) (if any), which follow after the contraction of the part
Cn + Bi, the image of E("wwi)(1, 1) has self-intersection number -2 + r.mai
if cy.-i == 1 (resp. -(1 + gS"-i)) + r.-i if ctz.-i = 2), hence the length r.-i

of 7f"-i) is zere (resp. smaller than gSn-i)) because Ci2 and E("-i)(l, l) axe

the Rext cgmpoReRts to be cektracted iR this order to g}ake the whele fiber
A smeeth. Thgs we prcved the asseySigk (D. If Åqx.wwi = l and F' cgRtaiRs
a (-2) compeRent, the im&ge ef E("-i)(l,l) would have lloll-negative se}Åí-

intersection number after the contraction of Ci2 and the subsequently con-
tractible components in F'. Hence the part F' contains no (-2) components
auad it consists only of one (-3) curve. If a.-i == 2, we have to make (the
image of) E("-i)(1,1) a (-1) curve by the contraction of Ci2 and the (---2)
components in the part F' following after the contractions of the part Cii+Bi
and the components B', ff("-i)(1),•••,E(""i)(T.-i - 1) successively in this
erder (if any). It ehen fo}}ows that the number of (-2) curves contained in

tke part .F' is gS"-iÅr-r.a-l• QtE•D•
   We caB con$truct ehe $urface Y aRd the Pi-ftbratien with the specific
singular fibers FA' i'  and EN2 as follows. Let the notations 7r : Åíi - Pi, li, l2, Mi,

M2,Qi and Q2 be the same as those given after the proof of Lemma 4.3,
where Mi is the minimal s,ection and Qi = linM2 fori= 1,2. Let eo be
the blowing-ups with centers at Qi and ([22, and let (?I• :=: II- neo-'(Qi), where

l;• := e6(li) for i == 1, 2.

   We consider first the case Ci2 meets a component in the part B3, i.e., Ci2
meets either E(2,g2) or E(nnti)(r.-" (cÅí Lemma 4.9).

 (i) Sgppgse Ci2 meets the compogekt E(2,Q2). in order to prgdgce the
     fiber A, we perferm the oscillatiRg trallsformatien ei asseciated with
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    (Q', , G'; q. , • • • , q4, q3 - 1) (cf. Sect ion 1), where G' = e,-'(Q,) if a

    is even and G' = ll jf a is odd, and let e = eo•ei. Let R' be the
    component with self-intersection number -(1 + q3) in the fiber e*(li).
    With the notations in the proof of Lemma 4.9, the configuration of
    e'(li) corresponds to the one of the linear chain L+ Ci2 + E', and we
    can make the connected part B which sprouts out of L + Ci2 + E' by a
    succession of blowing-ups starting with the blowing-up with center at a
    point on R' and not Iying on other components. Let e be this process.

 (2) Suppose Ci2 meets the component E("-i)(r.-i). In order to produce
    the fiber Fi, we perform the oscillating transformation ei associated
    with (Ql,G';q.,•••,q2,qi - 2), where G' is the same as in the above
    case (1). Let e = eo •ei. Let R' be the component with self-intersection
    number -qi in the fiber e"(li). Let 6 be the same process as above to
    produce the connected part B.

 (3) To produce the fiber F2, we perform the oscillating transformation
    associated with (Q'2, H';q.,•••,q2,qi - 1), where H' =: IS if a is even
    and H' = eo-i(Q2) if a is odd. By the abuse of notations, we assume
    hereon that e includes this oscillating transformation to produce F2.

   Let o == e•C. Then the fiber e*(li) has the same configuration as the fiber

Fi fori= 1,2, and the images of the unique (-1) components in the fibers
0*(li) and e"(l2) are respectively the components Ci2 and C2. Furthermore,
the image of R' is the component H in A' meeting Ci2.
   By the above construction and Lemma 1.5, we can show that the multi-
plicities of the components Ci2 and C2 in the fibers Fi and F2 are equal to
do - di and do, respectively.

   We consider next the case Ci2 meets the component E("-i)(1,1). Since
the construction of the fiber F2 from l2 is the same as in the case Ci2 meets
either E(2, q2) or E("mi)(r.-i), we consider below only the construction ofthe

fiber F'V i from li. To simplify the notations, we put r := r.-i and q := qS"-i)

(resp. q:= 1) if a."i == 2 (resp• ce.-i = 1)-

   In order to produce the fiber Fi , we perform the oscillating transformation
ei associated with (QC, G'; q., • • • , q2, qi-1, 1, q- (r+1)), where G' = e,-i(Qi)

if cr is even and G' = ll if a is odd. Note that q - (r + 1) 2 O by Lemma
4.10, (1). Let R' and S' be the components with self-intersection number

182

35



-
(1 + gi) &Rd -(1 + g) +r in the fiber (eo - ei)'(gD, respectively. Let T' be

the last exceptional component in the process 0o•ei, We put Ql' :--- R'nS'
a[nd perform the oscillating transformation e2 associated with (Q'i', S'; r). Set
e := ' ee•ei•e2 aBd let US be the }ast compekeut in the prccess S. With
the notations as in the proof of Lemma 4.10, the configuration of e'(li)
corresponds to the one of the linear chain L + Ci2 + E', aand one can make
the comaected part Ci!+Bi which spregts ogt cf L+Ci2ÅÄ E' by & sRccessigR
of blowing-ups starting with the blowing-up with center at a point on U' and
not lying on other components. Let C be this process and set e:= e•C. Then
the fiber g'(ID has the sag}e condgeratioxx as the fiber Fi and gR image of
T' is Ci2. By the above construction and Lemma 1.5, we can show that the
multiplicity ofthe component Ci2 in the fiber Fi is equal to (q-r+1)do-di•

   Now we shall determine the definillg polyxemial of the cutve C by finding

the polynomials in C[y,i], say A2 and fe, to define Fi02 and F20 on A2 =
P2 - Ki = Spec C[y, z]•
   We fu:st comsider the case where Ci2 meets eithey E(2, g2) or E(n'iÅr(r.-".

We contract all the components in a-i(pi,ge2)UCii-E("-i)(r.-i) by sta[rting
with the contractions of Hi, H2 and Cn. Let p : V " P2 be this contraction.
Let• g3. = p(EÅq"wwi)(r,,"D), which is & }iRe. TheR a eorapgsite

                       Åq , p2 2I:'s v wwfl" p2

is a CremcRa tvaxsfermaticx whichixdgces the idektity merphism betweex
P2-Fn and P2-lbo. Let (X', Y', Z') be a system ofhomogeneous coordinates
on p2 such that l&, is defined by X' = O• Let l12 = p(Ci2) = Åq(Fi2) and
IS = p(Ci2) = Åq(F2)• Theg we prove the followigg yesult.

Lemma 4.11 Suppose that Ci2 meets either E(2, q2) or E("wwi)(r.-i). After
a szeitable choice of (X',Y', Z'), we may ivrite the pogynomial f2 as f2 == x'

and the pogynemial fi2 as

                f cy'+g(z') if Ci2 meets E(2, q2)
           fi2 = l y' if Ci2 meet$ EÅq"-i)(r.-D,

where y' == Y'/X', z' = Z'/X',c ff C' and deg., g(z') = q2 + lt

PrgoÅí Whexx we coRtract all the exceptioRg} compoRents of

         (aii) • ri(') • • • ai'V') • T("wi))-i(pi) U Cn -- E("-i) (r.-i),
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the image of the fiber Fi has the same coiulguration as the one in Figure 12
(resp. Figure 6) if Ci2 meets E(2, q2) (resp. E7("-i)(r..i)), where the image

of E(n-i)(r.-i) replaces Cn. Successively, we contract all the exceptional
cgmpoRei}t$ frgm the }ast EgciideaR traRsfourmatioR gS") aad the compexexts

from ff-i(p2). Since Ci2 and C2 meet the end compeRents of the linear chain
Supp (a-'(p2)) (see Lemma 4.2), their images l12 and l5 intersect each other
transversally in a point of P2 - lbo = Spec C[y', z']. Suppose that Ci2 meets
the component E(2, q2). By Lemma 4.9, (1), we then have qi = 1 and dv År 2.
wrek the cgg}pomeRt EÅq3,1) is coRtTacted in t}}e ceur$e of cgRtractikg the
exceptional components of ai"År, we have the dual graph in Figure 14, where

the components from the left to the right ance respectively the images of
E(1, 1), E(2, q2), E(2, q2 - 1), • • • , E(2, 1), E("-i) (r.-i).

C2

o

  o
- (1-Fq2)

Cl2

 o

o

- l

   (q2-1)-times

O- •••--•-•• -O
      -2

c

Figure 14:

   It theR follow$ t}}&t g12 aftd g6 ixteTsect the lille gbo with respective erder

g2 +1 and 1. Nence we may assume that the polynomial f2 is written as
f2' : x' and, moreover, we may emgsume that the polynomial fi2 is written as

fm : cy' + g(z'),

where c E C',degg(z') == g2 +1 (see the $ame argumemt before Theorem
4.5). Suppose that Ci2 meets the component E("-i)(r.mmi). Then qi År 1 by
Lemma 4.9, (1). When we contract the exceptional components of cri"), we

kxxow that the curves g12 and IS iptersect tyalt$versal}y the }ine gbo at distinct

point$. Hei}ce we may assume that l12 and gS are defiked by Y' == e alld
Z' xxxe O, respectively. So, we may assume that fi2 = y' and f2 == z'. Q.E.D.

   Let Ly, and Lz, be the lines defined by Y' = O and Z' = O, respectively.
We consider the inverse n ;== Åq-i of the Cremona traRsformation Åq : P2 - p2,
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which induces a biregulamr automorphism n : SpecC[y', x'] -ÅÄ SpecC[y, z]. We
consider how g', z' are expressed as polynomials in y, x.

Lemma 4.12 Assume that n ) 2. ForO S j' Åq n, deflne polynomials yj and
zj in C[y,z] inductively as follows:

Yc :--Y zg := q

and
         (Zl ll: Zl,:l1g;.ESZ,j-i;,H,(.,-,) forigjÅqn•

where c, E C',deg.,ma, gjtwi(ziwui) = ro• +1 and go•wwi(O) = (dgo-i/dzj-i)(O) :

O. Then we may assume                     that y' == y.-i and z' rm z.wwi,

Proof. We prove the assertion by induction oxx n. Suppose n = 2. Wkh
the netatioRs preceding this lemma, the curves ny(Lyt) aRd n(Lzi) have the
poiRt pi eg Fx ik comraeR, where bgth curve$ meet F7ii with tke same erder
ri + 1 aRd the same multiplicity ri. Meafiwhile, they intersect each ether
in the point p2 on A2 ww P2 -- Fn transversally. We choose homogeneous
coordinates (X,Y, Z) such that pi = (O:1:O) and p2 = (1:O:O) and
that the curve n(Lz,) intersects the Y-axis at p2 transversally. Iirom these

conventions concerning the coordinates in neighborhoods of pi and p2, it
follows that the polyxxomials y' and z' are respectively written as:

               Y' = Y -F Cig + • • . -l- cr, zri -l- c,i-}.izri+i

               zi =: y+ elx+ . . . + d.i z'i + c;i -g.2zri +i,

where e.,",c;,+i and cl are noR-zere. Note thae the jacobiaB deteyminant
J((y', x')/(y, z)) is a noxiaero constant because of C[y', z'] = C[y, z]. Hence

we have ci f cl and c2• --- cS• for2Sj -Åq ri +1, Hence, after replacingy by
y+ ciz if ci X O, we may assume that y' and x' are written as in the stated
form.
   Suppose now n År 2. We contract the components of

                      ff wwi (p" U Cii - E(i) (r",

startigg wiek the centraetiolls ef C= axtd Hi. Successively we cgntract the
part Supp ff"i(p2) and denote by p' : Y - P2 a composite of the above
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contractions. Let ZIms ex p'(E(i)(ri)), which is a line. Then we obtain a

Cremona transformation

                      n':p22:i,v-eL'.p2,

whick induces a biregul&r autog}orphism ny' : Spec Ciy',z'] . Spec C[y,7],
whe:e we chgese a system of homogegecg$ ceordinates (X, Y, Z) enthe right
P2 such that the }ine g. is defined by X = e Emd where y = Y/liSi,7 == 2/:Slr.

By the inductive hypothesis, we may write y' == y.ww2 and z' = z.-2, where
polynomials ioj•,1aj• of C[y,7] for O S j' Åq n- 1 are dehned as follows:

                        Yo :== y zo := z,

      (Zt l;' ec"+g;:ISIii2,,-,(.n forisjÅqn-i,

wheTe e,•mi E C', {ileg gj-i(z,•whi) = r,-ÅÄi -i- l aRd g,•pm.i(O) = (ctg57:-;, VdZ,=Ti)(e) =

o. We now reproduce the part (6[i) • T;i))-i(pi) u Cii by a succession of

blowing-ups which starts with the blowing-up with center on l.. and succes-
sively contract all the components of it except for Cii. Then we obtain a
Cremona transformation n" satisfying n == op" • n', which induces a biregular

automorphism ep" : Spec C[y,7] - Spec C[y,z]. By the same argumemt as
in the case n = 2, we may write y= yi and 7 == zi, respectively. Therefore,
we may assume that y' and z' are writteit as y.whi and z.-i, respectively.

                                                        Q.E.D.

   As a coi.tseqgence of Lemma$ 4.ll, 4.12, we have the fo}lowiRg theerem:

Theorem 4.13 Suppose that ai is written as ai ue aY)•7Y) .. . ai"-i).Ti("-i).

cri") with n ) 2 and , furthermore, that the component Ci2 meets E(2, q2)

or E(n'i)(r..i). The'n C" : C- {pi} is defined by a polynomial f on
P2 - Fii = Spec C[y, x] of the folloMng form:

           J (cy' + g(x'))d2 + Az'do if Ci2 meets Ii](2, q2)
       f=l ytdo-di -y A.7.'de if Ci2 meets E(n-i)(r.-i),

?bihere the pegynemigls y' and z' are Shg$e ptven in LemmG 4.g2 and 2ghere
A,cE C', deg g(z") = q2 + 1,
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REMARK 4.14 Though we proved Theorem 4.13 under the assumption n 2 2
it is clear that the theorem is valid also in the case where n == 1 (cf. Theorem

4.5). Note that ifn == 1, the component Ci2 meets E(2,g2) (cf. Figure 12).

   We consider finally the case where Ci2 meets E("-i)(1, 1) and determine

the defining polynomial of the curve C. We contract all the components in
a-i (pi,p2) U Cn - E("-2)(r.m2) (we put E(O)(ro) := Cii for n == 2) starting

with the contractions of Hi, H2 and Cii. Let e : V . P2 be this contraction
and let lg'. :== E(E("-2)(r.-2)), which is a line. Then a composite

e: p2 e 4' v -E-. p2

is a Cremona transformation which induces a biregular automorphism be
tween P2 - Fn and P2 - lbo' . Let (X", Y", Z") be a system of homogeneous
coordinates on the right P2 such that the line lbo' is defined by X" == O. Let

ll'2 := e(Ci2) == 0(Fi2) and IS' := 6(C2) = 0(F2). Then we prove the following

result analogous to Lemma 4.11:

Lemma 4.15 Suppose that Ci2 meets E("-i)(1,1). After a suitable choice
of (X",Y",Z"), we may write the polynomials fi2 and f2 as fi2 = z" and
f2 = cy"+g(z"), where y" :== Y"/X", z" := Z"/X",c E C* and deg." g(z") =

q+L
Proof. In the course of the process e, we contract all the components in

cii U (aii) • Tf') • • • aS"-2) • Tf"r2))-' (pi) U (T5nN') • ai"))"((2)-E("-2)(r.-,),

where 7fn-i) starts with the blowing-up with center Q. We have the dual

graph in Figure 15, where the components from the left to the right are re-
spectively the images of E("-i)(1, 1), E(nHi) (2, q), • • • , E("-i) (2, 1), E("-2) (r.-2)

if a.-i = 2. They are the images of E("-i)(1, 1), E("-i)(1, 2), E(n-2)(r.-2) if

orn-1 = 1•

   It then follows that l'i'2 and IS' intersect the line lbo' with respective order

of contact 1 and q+ 1. Hence we may write the polynomials fi2 and f2 as

f12 == z" and f2 = cy" +g(z"),
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C12

 o

  o

- (1+q)

C2

o

o

- 1

   (q- 1)-times

o- ••••••••• -o N......•------V-••-"'

      -2
o

Figure 15:

where c E C' and deg."g(z") = q+ 1 (see the argument before Theorem

   The argument in the proof of Lemma 4.12 implies that we may write
y" and z" as polynomials in the affine coordinates (y,z). More precisely,
y" = y.-2 and z" = z.-2 as in Lemma 4.12. Summarizing these observations
and Lemma 4.15, we have the following result.

Theorem 4.16 Suppose that ai = aSi) • Tli) • • • oi"-i) • 7I"'i) •aSn) with n ) 2

and that the component Ci2 meets E(n-i)(1, 1). Then the curve CO = C-{pi}
on P2 - Fii = SpecC[y, z] is defcned by a polynomial f of the following form:

                f = z"(q-r+1)do-di + A(cz/" + g(l"))dO ,

where y",z" are polynomials in C[y,z] as speciified as above, A,c E C',
deg.. g(z") == q+ 1, r := r.-i and q := qS"Hi) (resp. q :== 1? if a.-i = 2

(resp, or.ffi = 1?•
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