
ON THE Ki-GROUPS OF ALGEBRAIC CURVES

MASANeRI ASAKURA

1. !NTRODUCTION

  The K.-gfgup K.(X) ef a sckeme X is dekoee to bc tke (n + 1)-th homotopy gfeup
of the geometric realization of Quillen's 2-construction of the category of locally free
sheaves on X ([Q], [Sr]): K.(X) : = T.+i(B(?P(X),O). There are the pull-backs,
transfer maps for proper morphisms, and so on. It is well-known that Ko(X) is the
Grothendieck greup of locally free sheaves on X, Ki(A) = Ki(SpecA) = A' for a local
rlllg A ([Mil, [Srl), aad K2(A) l$ the Milz}er K2-grogp K,M(A) wheR A is a local rigg

with the residue field which has at ieast 5 elements ([vdK]).

  Let C be a nonsingular projective curve over C. We denote Zo(C) the free abelian
group of closed points of C, By the localization theorem, we have the following exact

sequence:

      • • • . K,M(C(C)) 4 C* Q Z,(C) . K,(C) - C(C)* -lt)k Z,(C) - • • • .

Here v is the valuation map, and T is the tame symbol map:

  v : f " 2vp(f)IP], T : {f,g} e Åí(-1)"p(f)"p(g)(f"p(y)/g"p(f))(p) x [p].

DeftRe SKi(C) := CekerT. Therefore we have tke exact sequence

                   O - SKi(a) - K,(C) -. C* - O,
There is the norm map SKi(C) - C' given by XAi X Pi v---gp rl Ai. To see the well-
definedness of the norm map, it sufices to see that it is induced from the transfer map
f. ; K2(cr) - KKC) : C' fgr the structuye morpklsm f ; C - SpecC. We wrke the
kerkel ef the llorm map by V(C):

                   O - V(C) - SK,(C) N2!IP c* - o.

V(C) is the subgroup generated by the images of E A x [P - P'1.

  It is knowg that SK2(C) is l$omorphic to Bloch's hlgker Chow greup CH2(C, l)
(IB2]). We de Aet make a dlstinction betweeR them. We a}$o write V(C) by F2CH2(C, l).
When cr = Pe, it is easy to see that SKi(C) = CH2(C, 1) = C'. However, ifthe genus
of C is not zero, the group SKi(e) is known to be enormous (J,Lewis, W.Raskind).

  In the previous papers [Al] and [A21, we introduced the notion of arithmetic Hodge
$tractnre (see a}so [SaM4]). We deRote lts categery by M(C), which ls defiged by
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M. ASAKwu
the inductive limit of variations of mixed Hodge structures (Definition 2.3). M(C)
admits au exact aRd faithful functer (cal}ed the real!zatioR fuactor) te the categery

MHS(C) of graded pelarizable mixed Hodge structures. There is the cohomology
object Hk(X, Z(r)) G MI(C) for each algebraic variety X over C. The main difference
between arithmetic Hodge structures and mixed Hodge structures is that higher Yoneda
exteksieR grgmp$ ix M(C) doe$ Rot vanish iR geaeral, tkougk $o dees IR MHS(C) (in
particular for degree 2 2).
  We use arithmetic Hodge structure to study Ki--groups of algebraic curves. Let us
explaiR mere preci$ely. We fust construct the cycle map

            p2 : v(c) == F2cH2(c, 1) --År Ext&t(.)(Z(o),Hi(C, Z(2))) (1.1)

for a projective nonsingular curve C over C. The cycle map (1.1) tensored with Q i$
already coRstr"cted ig [Al] (or esse=tially [SaM31). However, sii}ce we t!eat extefi$ign

groups of Z-coeMcient arithmetic Hodge structures, we give a self-contained construc--
tion of the cycle map again. Note that if we replace M(C) by MHS(C), the cycle
map (1.1) is zero, and enti!ely u$eles$ to the study of Ki(aÅr. Our arithmetic Hodge
strucbures cover the weakRess. More strongly, we conjecture:

Conjecture 1.1. The kernel of the cycle map (1.1) is at most torsion.

  This is the Ki versioR of the Bleck coajecture (cÅí {Bll Chapter I).

  Our main theorem supports Conjecture 1.1, Before explaining it, we define the
notion of "generic".

Definition 1.2. (1) Let C G Pk be a itoRsingular plane curve defilled by the ho-
    moge"eous equation F. Let (Xo,Xi,X2) be a homogeneous coordinate of Pe,
    and let F = Z aiXi where I = (io,ii,i2) is a multi-index. We call C a generic
    plane carpte if all gi are got zere, agd the xllmbers {ailai,} are aigebraically

    independent over Q.
 (2) Let C be a generic plane curve. A set {Pi,••• ,R.} of closed points of C is
    called to be in a generz'c pesition, if there is a generic plane curve D defiRed by
    G = XbjXJ (whose degree ls arbitrary) such that the mumbers {ai/afo,bJfbJ,}
    are algebraically independent over Q, and the set {Pi,•••,P.} is contained in

    CAD.
  The following is the main theorem in this paper:

Theorem 1.3 ([A3] Theorem 1.3). Let C c P2c be a genem'c smooth plane curve of
degree d ) 4, and {Pi,i••,R.} giosed peints ofC in a genere'c positien. TheR the
following map induced fro7n (1.1)

              n-1              ,9.,C" X [Pi -- Pi.,] . Extk(.}(z(o), Hi(c, z(2)))

is injective.
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                  ON THE Ki-GROUPS OF ALGEBRAIC CURVES

  From the construction of the map (1.1), we cau reduce the proof to some calculation
of 1-extension groups of variations of mixed Hodge structures (see Proposition 3.1).
We will do it by using the symmetrizer lemma ([AS]) and the Mordell-Weil theorem
for function fields due to Lang and N6ron ([LN], [La2] Chapter 6).

  We finaJly mention an immediate corollary of Theorem 1.3:

Corollary 1.4 ([A3] Corollary 1.4). Let C and {Pi,••• ,P.} be as in Theorem 1.3.
Then the natural map

                    .fo C' X [Pi] ---År SK,(C) = CH2(C, 1)

                    t=1
is injective.
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Notation and Conventions

  1. A variety means a quasi-projective variety over a field.
  2. For a variety X over C, Xa" denotes the associated analytic space: X"" = X(C).
  3. For a nonsingular variety over a field k, Z'(X) (resp. Zd(X)) denotes the free
    abelian group generated by integral subvarieties of X of codimension r (resp.
    dimension d). Zo(X)d.g.o denotes the subgroup of O-cycles of degree O. Z"(X),.t
    is the subgroup of cycles which are rationally equivalent to zero (cf. [Bl]):

                  Z"(X),.t := lmage( O                                       rc(x)' - zr(x)).
                                  xEXr-1
    (Xr denotes the set of points of X of codimension r.) We put CH'(X) =
    z'(X)/Z'(X),.t•
  4. For a commutative ring A, K.M(A) denotes the Milnor K-group, which is defined
    as follows ([Mi], [Sr]):

  K.M(A) := (A')X"/{2xi x•••xy (g) •••X(1 -y) Åqg} •••Xx. ; xi,y,1 -- yE A'}•

         2. ARITHMETIC HODGE STRUCTURE AND MILNOR K-GROUPS

  We introduce arithmetic Hodge structure, and construct the cycle map (1.1) from
higher Chow groups of algebraic curves to 2-extension groups of arithmetic Hodge
structures. To do this, we construct the regulator maps (2.6) and (2.7) (for the latter,

we use the theory of mixed Hodge modules), and show Lemma 2.7 which defines the
cycle map•
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2.1. Admissible variation of mixed Hodge structure. We introduce the notion
of variation of mixed Hodge structure on a nonsingular variety X whose base field is
not necessarily C, but a subfield k of C, though it is a slight modification of [SZ]. We

simply write X"" := Xe" the associated analytic variety of X Xk C.

Definition 2.1. Let X be a nonsingular variety over k. Then an admissible variation
of mixed Hodge structure on X is defined to be the data (Hz, Ho, WQ,., IiV., Fe,V,i)

where:

  e Hz is a local system of finite Z-module on Xa",
  e Ho is a locally free (Zariski) sheaf of Ox-module of the same rank as Hz,
  e WQ,. (resp. I7V.) is a finite increasing filtration of HQ := Hz XQ (resp. He),
    called the weight .filtration,

  e F' is a finite decreasing filtration on Ho by locally free Ox-submodules, called
    the Hodge filtration,
  e V : He - Ho oX. st}!k an integrable connection (called the (algebraic) Gattss-

    Manin connection),
  ei: Hz x Oft" -; HS" (called the comparison isomorphism), or equivalently, i
    induces an isomorphism Hz x Cx - 5b kerVan,

and these satisfy:

 (1) WQ,. and W. are compatible under the comparison isomorphism i.
 (2) For all points s E X"", the fiber Hz,, c-!+ Ho X C(s) with the induced filtrations

    W.,. on HQ,, and F,' on Ho X C(s) defines a mixed Hodge structure.
 (3) (Grif6ths transversality) VV. and F' satisfy the following:

           V( We) c We X stNlc, V(FP) c FP-' X stNlc for Ve, p.

 (4) (polarizability) For each e, there is a Q-bilinear form e : GreW(HQ)XGrtVV(HQ) -

    Q(-e) and Ox-bilinear form qx : GreW(Ho) x GrtW(Ho) - Ox satisfying:

    (a) Q and ex are compatible under the comparison isomorphism i.
    (b) e defines a polarization form on the Q-Hodge structure (GreW(HQ,.), F,') for

       al1 s E xan.
    (c) (?x(V(x),y) + ex(x,V(y)) = d(?x(x,y) for any local sections x,y E Ho.
 (5) (admissibility) When the data (HQ, Ho, W., F',V,i) is pulled back to a nonsin-
    gular complex algebraic curve C, it satisfies the admissibility ([K] 1.9):

    (a) Any local monodromy around C - C is quasi-unipotent. Here C denotes the
       smooth completion of C.
    (b) The logarithm N of the unipotent part of the local monodromy admits a
       weight filtration relative to W. ([SZ] g2).
    (c) The Hodge filtration "Fi' can be extended to a locally free subsheaf 7P of

       Deligne's canonical extension 77c such that GrFGrev(71'c) is locally free.
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  We denote the category of admissible variations of mixed Hodge structures on X
by VMHS(X). We write VMHS(k) by MHS(k), aRd call ig the category cf (graded
polariiabie ) mixed Hodge structures.

  We denote Zx(r) == ((2nt)"Zx,Ox,WQ,VU, F,V,i) the Tate variation of Hodge
sdwcture on X of weight --•2r, where GrW2.Qx(r) == Qx(r) and GrlOx me Ox.

2.2. Let X be a nonsingnlar variety over a subfield k of C, Let f be an invertible
algebraic function on X: f E O(X)E.. Then we define the variation of mixed Hodge
sgrucSure Yf = (Vf,z, Vf,e, WQ, W, F, V, i) as follows.

Vf,z = Zx(1)e-2ff)Zx(O)(eo-log fa"•ew-2), WQ,o = Vf,Q ) VVQ,-i = WQ,.-2 = Q(1)eww2,

     Vf,e := Ox •e-2eOx •e{}, Wo,e = Vf,o ) We,-1 == Wo,--2= Ox 'e-2,

                      F-i= Vf,o ) FO = Ox •eo,

the comparison isomorphism

                           i: Vz - "Vf,ean

is defined in the natural way, and the Gauss-Manin connection is given as follows

              V : Vf,e - Vf,e X st}fk, eps2 H e, ee A $t e-2.

Then Vf defines the following extension of variations of mixed Hodge structure:

                  g-År zxu) -År vf --År zx(g) --F e. (zi)

  The following lemma is well known to specialists:

Lemma 2.2 (cÅí [A31 g2). LetX be a nensiRgeclar glgebraie variety ever a s#gfield k
ofC. Assume that k is algebraically closed.

 (1) The natttral map

             ExtVMHs(x)(z(c), z(1)) - Ext"MHs(x.)(z(e), z(l))

    is bi]'ective.

 (2) The regulator map

           r}. : O(Xc)E. - ExtVMHs(x.)(Z(O),Z(i)), f- [Vf]

    is bi]'ective. Here [Vfl denotes the exten$ion class (2.1).

 (3) The reg#ggtermgp

       rk:K,M(O(X)) --År Exte..,(.)(Z(O),Z(2)), {f,g} H [VflU[V,]

    ts weil-defined, thgt i$, the SteiR5ers symbei {f, l -- f} is gnnihiggted iR the right

    hand side.
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2.3. Arithmetic Hodge structure.

Definition 2.3. We define the category of art'thmetic Hodge structures by

                          M(C)=ILigVMHS(S), (2.2)
                                   s
where S == SpecA runs over all sub-algebras A c C which are regular and finitely
generated over Q, and the transition morphisms are the pull-backs of variations of
mixed Hodge structures (cf. Definition 2.1 k == Q).

  We first construct the k-th cohomology functor Hk from the category of algebraic
varieties over C to lly!(C). Let X be an algebraic variety over C. By considering
the coeficients of the defining equations of X as parameters, we can obtain a model
f : Xs - S and the Cartesian diagram:

                            Xs----- X

                            4 i (,.,)
                             S " SpecC,
where S is a nonsingular variety over Q, and the map a factors through the generic
point Spec Q(S) g S. If necessary, by replacing S by a sufliciently small open
S', we may assume that the higher direct image Rkf.Zx.(r) is a local system, and
admits a variation of mixed Hodge structure. Let (Rkf.Zx.(r)] be the arithmetic
Hodge structure represented by the variation of mixed Hodge structure Rkf.Zx.(r).
Although the model (2.3) is not uniquely determined, any two models Xs, and Xs,
can be imbedded into the following diagram:

Xs,

Xst

xth .

Therefore the representative [Rkf.Zx.(r)] does not depend on the choice of the model
(2.3). We define the k-th cohomology of X by Hk(X, Z(r)) := [Rkf.Zx.(r)] E M(C).

  Next we construct the realization functor M(C) - MHS(C) to the category of graded
polarizable mixed Hodge structures. The morphism a : SpecC - S in the diagram
(2.3) defines the closed point s of Sc = SXQ C. Then, for a variation of mixed Hodge
structure H E VMHS(S), we associate the fiber H, E MHS(C) over the point s. These
are functorial and commute with the transition functors VMHS(S) - VMHS(S').
Therefore these define the functor IY!(C) - MHS(C), which we call the realization
functor. It is clear that the realization'functor is exact and faithfu1.
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Lemma 2.4. There is the isomomphism

               ExtM(.}(Z(g),Z")) .f (C xQ C)'(c! C' xQ. C"). (2.4År

Under the above isemorphism, the naturai map induced .iivm the realiiation junctor

              ExtM(c)(Z(O),Z(1)) -----+ ExtMHs(c)(Z(O),Z(1)) t C" (2.5)

is given by the multiplication A c2) pa s A". ( The isomorphism in the rt'ght hand side is

due te Lemma 2.2 (3) ).

Proof By Lemma 2.2 (2) aad (3), we have

              ExtSue(c)(Z(O),Z(1)) == hLgilExtVMHs(s))(Zs(O),Zs(1))

                                   s
                                cy ILig}(0ÅqS)z. XQ C)"
                                   s
                                = (C Åq8)Q C)".

The latter assertion is clear from the construction of the above i$omorphism. O

  Let A be a subalgebra of C which is regular and finitely generated over Q. Put
S = SpecA. There is the regglator map (cÅí S2.2):

               rg : /1* ---ÅÄ ExtVMHs(,)(zs(o),zs(1)), f . [vf].

Taking the inductive limit over S xe SpecA, we have the regulatorr map to the extension

group of arithmetic Hodge structures:

                      re:c" --År ExtSl(.)(z(e),z(l)). e.6)
Under the isomorphi$m (2.4), re is given by A N AX1 or 1 Q A. The ambiguity
depends on the choice of the isomorphism (2.4),
  ln particular, we have:

Lemma 2.5. The regulgter map (2.6) is injective.

Remark 2.6. 0nly to show Lemma 2.5, we do not need Lemma 2.4. In fact, it follows
from the fact that the compositiom of (2.6) and (2.5) is bljective,

2.4. Cycle maps. Let C be a Ronsingular projective curve over C. Let U be a Zariski
opeR set of C. We take a mcdel f ; Us - S ef U. By Lemma 2.2, we have

    rg. : K,M(O(Us)) - ExtiMHs(v.)(Zu.(O),Zu.(2)), {f,g} e [Vf] U [Vg]•

Moreover, if U 4 C, we have

         Ext2vMHsÅqu,)(Zu.(O), Zu.(2)) ---År ExtVMHs(s)(Zs(O), Ri f.Zu.(2))

as fo}lows. For a 2--extensieft of variatioR cf mixed Hodge structgre oR Us

                 O --År Zu.(2) - V, - V, --År Zu.(O) - O,
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we associate the extension of variation of mixed Hodge structure on S

            o - Rif.Zu.(2) - Rif.[V, - V,] - Zs(O) - O•

Note that the middle term admits the vajriatieR of mlxed Hodge structure by the theory
ef mixed Hodge medules ([SaM2]).
  We Shgs have #he map

              K,M(o(us)) -År ExteMHs(sÅr(z.(e),Rif.zu,(2)).

Taking the inductive rfrru't over S and U, we have

            re(.) : K,M(C(C)) . Extg!(.)(Z(O), Hi(C(C),Z(2))). (2,7)

Here we put ExtM(c)(Z(O), Hi(C(C),Z(2))) := ILigisExtSlt(c)(Z(O),Hi(U, Z(2))).

                                      U
Lemma 2.7. The following diagram is cemmutative:

            K2M(C(C)) 4 KY(C)XZg(C)Geg-g
             re(c}t irbxid
     ExtS,!(c)(Z(O),Hi(C(C),Z(2))) - ExtSe(c)(Z(O),Z(1))X Zo(C)deg=-7o•

llere T is the tame symbol (of. Sl), and the below map is the one induced from the
residue map H'(U, Z(2)) --År Z(1) X Zo(C)deg=o-

Proof See [A3] Lemma 3.5. nm
By Lemma 2.7 and tke loag exact sequeRce

  •• • . ExtSgÅq.)(Z(e), Hi(C(U),Z(2))) . ExtgfÅqc)(Z(C), Z(1)) X Ze(C)deg-c

                                  - Exti.(c)(Z(g), lli(c, z(2År) - . . . ,

we obtain the cycle map (cf.(1.1)):

          p2 , I72CH2(C, 1)(,,, V(C)) - Ext&(.)(Z(O), lli(C, Z(2))). (2,8)

                   3, PRooF oF THE MAIN THEeREM

  We prove Theorem 1.3. By Lemma 2.5 and the construction of the map (1.1) (cf.
(2,8)), we can reduce k to the following:

Prepesitien 3.1. Let C and {Pi,•i•,jP.} be as in Thecrem l.3. Put U := C-
{R,''',P.}• TheR the image of the residue f}}ap

                                n-- 1      ExtS!(.)(Z(O),Hi(U, Z(2))) - ,C=I), ExtS!(.)(Z(O),Z(1)) X [P, -- Pi+,]

ts 2ero.
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3.1. Reduction of Proposition 3.1. In order to prove proposition 3.1, we reduce it
to three parts (3.3), (3.4) aRd (3.5) belew.

  Let f : Cs --År S and f : Us - S be models of C and U respectively, with the
embedding Q(S) c-År C. Let p{ ; Ri,s - S be a medel of Pi. By replaÅíiRg S by S' which
is generically finite over a sufliciently smail Zanciski open set of S, we may assume that

each pi is an isomorphism and that {R,s} are disjoint.
  Reca}l that C Emd {Pi, • •• , R.} are gelleric (Definkion 1.2), By definitioxx, {Pi, • • • , Pn}

is contained in Cn D for a generic plane curve D such that the coeMcients of the defin-
ing equatioRs of C aRd D are algebiaicaby indepegdent over Q. Let e be the degree cf
the curve D. Let S :== Q[Xo,Xi,X2] and S" denotes the homogeneous part of degree
r. There are the versal fatnilies e - Sd and P --År Se of plane curves of degree d and e

respectlvely. We also have tke versal family e( = e -- e fi tP - E"l where EM ls an epeR
set of Sd Å~ Se. Since C and {Pi,••• , P.} are generic, we may assume that the model

Us -S is a pull back ofU- ÅíM by a dominEmt merphism S -År gErl.

  We prepare some categories, Let LS(X"") be the category of local systems of finite
Z-modules on an analytic site Xa". Let MF(Dx) be the category of good filtered
Dx-modules. Note thae this ls Rot abe}ian but exact. For example, HaR(Us/S) :=
Rif*stir./s cr Rif*9b.ls(logXPi,s) is a Ds-module with the Hodge filtration I'p : =

Rif.stlrÅr'.Pls(}eg XPi,s) as a geod filtfatioR. We wr!te the ftltered Ps-medg}e (H3R(UslS), F'+')

by HaR(Us/S)(r) simply. Let VMHS(X)Q be the category of Q-variations of mixed
Hodge structures on X which is defined by replacing Hz by a Q-local system UQ in
Definition 2.l. We define M(C)Q :== ltwVMHS(S)Q.

                                s
  There are the natural exact fuRctors VMHS(X) - VMHS(X)Q, VMHS(X) -År
LS(Xa") and VMHS(X)Q --År MF(D]r) which induce the maps between each Yoneda
extenslon groups.

Lemma 3.2 ([A3] Lemma 4.2). There are the foliowing exact seguences:

 (i)

 O - ExtLs(san)(Zs(O), Rif*Zus(2))tor 4 EXtVMHs(s)(Zs(O), Rif*Zus(2))

                                  nvÅr ExtVMxs{sÅr.(Qs(O),Rif*Qu.(2)), (3.l)

    where Mt., denotes the torsion subgroup of an abelian yroup M,
 (2)

O - C' x r(S, Ri f.Qu. (1))-ExtVMHs(s).(Qs(O), Ri f*Qu. (2))

                                   -År ExtMF(D.År(Os, H3R(Us/S)(2))•

By Lemma 3.2, we have reduced' Proposition 3.1 to the followings:

                    ExtMF(D.)(Os, HdiR(Us/S)(2)) = e,

(3.2)

(3.3)

li2
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                           r(s, Ri f.Qu.(1))=o, (3.4)

      Image(ExtLs(s)(Zs(O), Rif*Zu,(2))t.r - ExtVMHs(s)(Zs(O), Zs(1))) = O•

                                                                    (3.5)

Remark 3.3. Due to (3.3) and (3.4), we have

                    EXtVMHs(s).(Qs(O),R'f.Qu.(2)) = O.

This shows the following vanishing

                      ExtM(c).(Q(O),H'(U, Q(2))) = O.

However, I do not know whether the above vanishing holds even for Z-coeficients.

3.2. Proof of (3.3). We can easiiy see that ExtK(F(D.)(Os,HaR(Us/S)(2)) is iso-

morphic to the kernel of the Gauss-Manin connection V : F'H3R(Us/S) X stklQ -
HaR(Us/S) X flZIQ (see [Al] S3). Therefore it sufices to show the following:

Theorem 3.4 (Symmetrizer lemma for open curves). The following map

     I'iHa.(Us/S) ÅqgÅr S')klQ - FO/FiH3R(Us/S) cg) stk/Q, xxtu F-År V(x)Aw

                                                                    (3.6)

is inJ'ective.

Proof. See [AS] Theorem (III) or [A3] Theorem 5.4. D
Corollary 3.5. Let r == O, or 1. Then the following map

      HO(C, stblc(ÅíPi)) x stelQ - Hi(C, Oc) x str.+1iQ- , x xw HÅr v(x) Aw

is injective.

Proof, In case r = 1, it follows from the fact that the exactness of (3.6) also holds

when we take a base change by any dominant morphism S' - S. The case r = O is

straightforward from the caser=1. 0
3.3. Proof of (3.4). Let K := Q(S) be the function field of S, with the embedding
K g C. Put CK := Cs X K, UK := Us QK the generic fibers and aff. := Cs x K,
Uft := Us XK the geometric generic fibers. Let GK : = Gal(K/K) be the Galois group.

  Let t E Sa" be the associated point of the embedding K c--År C. Put Ut := f-'(t).
There is the isomorphism r(Sa",Rif.Qu.(1)) )t H'(Ut,Q(1))Ti(Sa",`), and a (non-
canonical) injection H'(Ut,Q(1)) g H6',(Ut,Qe(1)) ÅqZ- Hi(Uft,Qe(1)). UBder the
natural inclusion ri(San,t) g rSt(S,[k), we may assume that the action of those
on the 6tcohomology is compatible. Note that the image of Ti(Sa",t) is dense (with
respect to the profinite topology). Since the action of (t(S,7?) on the 6tcohomology

is e-adically continuous, the invariant part is the same as that by the action of any
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dense subgroup, in particular, rri(Sa",t). Moreover the naturaJ map GK - Tft(S,rr)
is surjective. Thus we have

r(San,Rif.Qu.(1)) fti Hi(U,,Q(1))Ti(Sa"•t) g H,i,(Urr, Qt(1))trf`(S•K) == Hi(Ulgr, Qt(1))GK.

fl7herefore, iR e!der to prove (3.4), lt sufices tg show

                          Heit(ULgr,Qe(l))GK :g,

or equivalently,

                          H,',(Uii?•, Zt(1))GK ur O. (3.7)
By the localization sequence and the smooth purity, we have the exact sequence

                                             n-1   o -----)F H,i,(Cr, z/ern(1)) - H.i.,(ULi?, ZleM(1)) . .- ZleM[Pi+i - Pi] - O.
                                             I :1
By applying the coRtinuous Galois cohemology functor RHoll}G.....t(Z!eM, -), we eb--
talll tbe glgeg?'gie Abei-Jaco5i map

           p. : ?(SiZ1eM[R+! --- Pi] - H,i..,(GK, lil'&t(Cli?', Z/e"Z(1)))•

               l=1
By the Picard-Lefschetz theory, we can easily see that Hg,(C77, Ze(1))GK == O. Therre-
fore, in order to show (3.7), it sufices to show that the fo11owing map is injective:

                n-1          leilmlLpm : ,e.,,Ze[Pi+i - Pi] - ltllmgL H.i..,(GK, ,lilig,(Orr, z!em(1))).

Due to the Hochschild-Serre spectral sequence (cf, IEt] Chapter III, 2.11.), the above
is equiva}eRt to tbat the following map is iajective:

          llllgcm :,ee=",Ze[Pi] - ISmL ff.2•t(CK,Z/eM(l))(:ff.2•,(CK,Ze(1))). (3.8)

          mmNote that c. is given by the Kummer theory, that is, by applying RT(CK,-) to the
exact sequence
                   o - z/em(1) ---År G. -ClÅr G. - o,

we obtain
             crn : HEit(CK, `Gm)(fÅrt CH'(CK)) - H.2•t(CK,Z/eM(1)).

(The isomorphism !n the left hand side is dge to Hi}bert 9e (IEtl Chapter lll, 4.9.)).
in particular, CH'(CK)/eM --År ff.2•,(CK,Zfe";(l)) is iajective. Tkerefere, the map (3.8)

i$ iajective if alld ogly if the maggral map

                      ,f.l), Ze[Pil.lsmL(cHi(eK)/em) (3.g)
                                  m
is injective. We can reduce it to the following two parts:
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Lemma3.6. (1) Thenaturalmap
                           ÅqIE) z[pi] - cHi(c)
                           i=1
    is injective.
 (2) CHi(CK) is a finitely generated abelian group, in particular, we have

                     lltLm(CH'(CK)leM) tr CH'(CK) x Ze.

                     m
Proof of (1). Consider the following commutative diagram:

HO(stblc)

i
- HO(stbic(ÅíR))

di

Hi(O.) x stelQ 4 Hi(Oc) X stelQ

                   n-1the coboundary map .O Z[Pi - Pi+i]
                    t=1

      n-1- eC[Pi-Pi+,] -o
      t=1

                                              n-1We obtain CQC[Pi -- Pi+il-Hi(Oc) {gÅr
                                              t=1
stb/QIHO(stc c) equivalence class. By Corollary 3.5
(i.e. the symmetrizer lemma), the middle vertical arrow d is injective. Thus we have
n-1(D Z[PidPi+i]nZo(C)rat == O• ,
i=1

Proof of (2). We use the Mordell-Weil theorem for function fields. Before to do this,
we recal1 it briefly.

  Let K ) k be a finitely generated extension of fields. We assume K/k is a regular
extension, that is, k is algebraically ciosed in K. Let A be an abelian variety defined

over K. Then there is an abelian variety B over k, and a homomorphism 7 : BXK - A
over K which satisfies the following universality: "Given an abelian variety B' over k

and a homomorphism 7' : B' X K --År A over K, there is a unique homomorphism
h : B' - B over k such that T•h = 7'." We call the pair (B,7) the K/k-trace ofA.
There are always Klle-traces for any abelian varieties over K ([Lal] Chapter VIII g3).
We also note that the kernel of7 is a finite group scheme (in case char(k) = O, T is a
closed immersion).
  The following theorem is the Mordell-Weil theorem for function fields, due to Lang
and N6ron ([LNI, [La2] Chapter 6).

Theorem 3.7 (Lang-N6ron). The abelian group A(K)/rB(k) is finitely generated.

  We apply the above theorem to the case k =: Q, K = Q(S) and A = J(CK)
the Jacobian variety of the curve CK. Note that there is the canonical isomorphism
J(CK)(K) t CH'(CK)h... To complete the proof of (2), we have to show B = O. By
definition, lmage(Hi,et(B,Qe)) is contained in Hi,6t(Cli?7,Qe)Gal(K/K). By the Picard--

Lefschetz theory, we have Hi,6t(Ci7, Qe)Gal(KIK) = O, which means B == O.
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3.4, Proof of (3.5). Since the map (3.5) factors as follows

ExtLs(san)(Zs(O), Rif*Zus(2))tur - Extis(san)(Zs(O), Zs(1))tor - EXtVMHs(s)(Zs(O), Zs(1))

it sufices to show

                         EXtis(san)(Zs(O),Zs(1))tor == O- (3•10)
Kowever, there are the isomerphisms

       Extls(san)(Zs(O),Zs(1)) - 5' Extg(san)(Zs(O),Zs(1)) t H,'i.,(Sa",Z(1))

where 5(Sa") dexxotes the categcry of abeli2m sheaves oR tke aua}ytic $lte Sa". By the
universal coethcient theerem ([Mac] Chapter III, Theorem 4.1.), there is the isomor-
phism H,ii ,(Sa",Z(1)) ft Hom(Hi(S"",Z),Z(l)), which is clearly torsion--free. This
completes the proof of (3.IC).
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