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O. Introduction

  In this paper, we work over an algebraically closed field k. Let E be a rank 2 vector
bundle on n-dimensional projective spaces P2.
  In [3], H. Sumihiro showed the following theorem in the case char k = O.

Theorem O.1. Let P be a 4- or 5-dimensional projective linear subspace of P2 and
E == EIP be the restm'ction of E to P. Then E splits into line bundles if and only if
Hi(P, Snd(E)) == O.

  The aim of this article is to prove that this theorem holds aMrmatively true in char
k = p År O. The proof is almost same with the one of char k = O, namely, is obtained
by studying some geometric structures of the Hilbert scheme of PZ at determinantal
subvarieties. In char k = p År O, however, since we can not use Kodaira vanishing theorem
and Le-Potier vanishing theorem, we have to observe some vanishings of cohomologies
appeared in [3] carefuIly.

1. Determinantal Varieties

  We first recall the definition and some properties of determinantal varieties associated
to 2-bundles (cf. [3]).

1.1. Definition of determinantal varieties. Let E be a rank 2 vector bundle on an
PZ, T : P(E) - PZ the projective bundle associated to E over PZ, LE the tautological
line bundle on P(E) and let G = Grass(HO(E),m + 1) be the Grassmann variety which
parametrizes (m+1)-dimensional linear subspaces of HO(PZ, E). We assume that E is very
ample, i.e., LE is a very ample line bundle. Then we can take s = Åqsi,s2,... ,sm+iÅr E G
(si E HO(P:,E)) with n = 27n (resp. n == 2m + 1) satisfying the following condition

     1) Y = Y, == Di n D2 n • • } A D.+i is a smo oth closed subscheme of P( E)

 (*) of pure codimension m+1,
     2) w(si) n vv(s2) n • • • fi w(s.+i) = ca,

where Di is the tautological divisor on P(E) defined by si and W(si) is the zero locus on

P# of si (1 SiSm+1).
  Let X. = T(Y.). Then we can show that X. is a closed subscheme of Pit which is
isomorphic to Y, through T with the followlng defining equations:

                       si A sj =O (1 SiS 1' Åq- m+ 1).

Definition 1.1. We call the closed subscheme X = X. ofPZ the (smooth) determinantal
variety associated to E defined by s E G.
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Remark i.1. X depellds oll the cholce of s E G subjectto the collditiefi (*År.

  As for determinantal varieties, we obtain the following.

Theorem 1.1. Let the notaion be as above.

  1) U == {s E GIs satis:fies the condition (*)} is a Zariski opuen subset ef G.

 2) There exists a ciosed su5scheme :' of PZ Å~ U snch that the second pro2`ection q :
    :' c PZ Å~ U - U is faithfully flat and X, = q-"i(s) for any s G U. Thus smooth
    detemeingntal vgrz'eties asseeiated to E ferm g smeeth famiiy ever an epen sn5set ef
    G and hence they are diffeomomphic to eaeh other.

  WheR n = 4 er 5, let Ix be the defining ldeal of a determinantal subvarieÅíy X ln P".
Then Ix has the foliowing resolution of vector bundies.

Lemma 1.2. In abeve notaion, there extsts on an exact seguence

                                 3
                 O - E'(-ci) - (IDOpn(-ci) - Ix -)- O,

where ci is the first Chem number ofE.

1.2. TaRgent bundle axxd nermal bundle of determinantal varleties. }R thls sllb-
section, we consider when n = 4 or 5, i.e., m = 2.

1.2.1. Let E be a very ample rank two bundle en P'ki and X a determinantal variety
associated to E. Let H be the restriction of a hyperplane of P" to X and D the restriction
of a tautologic&l divlser of P(E) to X through the lsomorphism K.
  Then we can obtain the following diagram of exact sequences:

                              go

Tp{g}fpn lY 4 0x (2D - ei H)

e- Ty -

O- Tx -

t
T.(E"Y

1
TpniX

l
o

where a is an injectioit induced
condition of Y, we obtain the following.

Prepesklen l.3. There exists an

by the snake lemma.

  la

Nyfp(E)

l
Nxlpn

i
o

-o,

              3SIRce .3Vy/p(EÅr ue eOx(D) by the

               exact segvenee

                      3
g - Ox(2D- ciff) -År (l)Ox(P) -ÅÄ ASxlp- ----År e•
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1.2.2. From the exact sequence of the above proposition, we have the following exact

sequence

                                    3
            e - llO(O.\(2D - cill)) - (DHO(Ox(D)) - IIO(Nx/pn)

                  '3              --År Eli(Ox(2D - c,N)) . eHi(Ox(D)).

  Now we recall Y me Pi n D2 n D3. Consider the canonical exact sequence

(*), O - O.{E)(D - c, H) - Op(E)(2D - c, rr) A 0D, (2D - c, H') - O,

f;om whick we obtain the follgwiRg exact segueRce:

     O pm-År HO(0p(E)(D - c,H)) --)p llO(Op(E)(2D --- c,H)) -År HO(OD,(2D - ciH))

      --År Hi(O.(E)(D - ,,H)) --"le IYi(0p(E)(2D - ct,H)) - Hi(OD,(2D - c,H))

      -)- H'2(0p{E)(D-qH')).

Slnce ff'(D-ciH) rm ff'(E") (e f i Åq- 4) attd we can skow that ffg(E") rm e afid
lli(E') = H"'i(ExKpn) = O, where Kpn is the canonical divisor ofP", it turns out that
Hi(Op(E)(2D-ciH)) t H'`(OD,(2D-cilEir)) (i -- O,1) if ,El'2(E') =: ff"-2(Ex K7p.) == o.

  Considering the exact sequences similarly

(*)2

(*)3

e - 0D,(P --- ei H) - Op, (2D - ciH) - OD,fiD, (2D - efl) - g,

e - Åq }p(ff)(-Ci ff) - OpÅqE)(D - ci ff) ---År OD,(D - cill) ---År e,

we obtain isomorphisms H'(OD, (2D ----ci ff))
ciH)) whrs,

H't(Ox (2D - c, H))
  On the other hand,

we have a canonical isomorph
dim H"(Snd(E)) - 1
  In addition we easily see that dim H
  SitmmariziRg t}}

Propo$ition
then
           dim UO(Arxlpn) = 3(dim HO(E) - 3) - dim llO(Snd(E)) + !

Re?nark i2. Wheit char k = g, we get ff'(E'År cr ff"ww'(ExKp:) : e for gg i Åqwy n-2
by Le-Potler vEtBlshing theGrem. So we do ltot fieed the assumption ffn-2(E x Kpn) == e

in the above proposition. Also the proof itself becomes slightly simpler because we can
use the vanishing theorems.

O - ODifiD2(D ti ciU) -År OD,nD, (2D - ci Hr) - Oy(2D - ciH) - O,

O - OD,(-ciH) -År OD,(D - ci H) - OD,np,(D - ci ff) -År O,

e -År OpÅqgÅr(-P - ei ff) - Op{EÅr(-c! ff) - OD,(-ci") - C,

                            ft Hi(On,nD, (2D-ci jNr)) and Hi(OD,nD,(2D-
 Ht(0y(2D - ciH)) (i -- O,1). Summing up the above, we conclnde that
         nt Ht(pn, S2(E)(--ci)).
          since there exi$ts an exact seqttence

         e ----År Opn - Snd(E) - S2(E)(-e,) --År e,

               ism Hi(S2(E)(-ci)) t ll'(Snd(E)) and dim HO(S2(E)(-ci)) =

         .                        o(ox(D)) =: dim HO(E) - 3.
       e above, vve get the followlgg proposltloR.

'  1.4. Assurne that n : 4 or 5 and H"-2(EX Kpn) = e. ij H'(Snd( E)) = O,
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2. Hilbert Schemes

  In this section, we assume that n me 4 or 5. Let 7tilb be the Hilbert scheme of P".

2.1. Let g : U ) s H X. E 7Sii5 be the morphism l=dgced by Tkeerem l.l. Let Aut(E)
be the automorphism group of E. Then Aut(E) is a reduced cormnected linear algebraic
group of dimension dimHO(Snd(E)).
  For every element g e Aut(E) armd s = Åqsi,s2,s3År E G, we define

                          g•$ rm Åqg(s",g(s2),g(s3)År,

where g(si) is the composite of si with g. Then it defines an action of Aut(E) oma G and

we have

                   g- si Ag• sj : detg si A s,• (1 f{l i Åq- 1' Åq- 3),

where det:Aut(E) Dg }-ÅÄ detÅqg) G le' = kX{O} ls the determinaRt eharacter. Heftce
Xg.. rm Xs. Therefore Aut(E) act$ oxx U aRd g is an erbit merphism, i.e., y !s ccnstallt
on any orbit O(s) =: {g •slg E Aut(Er)}.

  Then we have the following.

Lemma 2.1. The stabili2er Stab(.g) ofs E U is egual to the mttltiplicative greup k".

  A$ a trMal corollary ef tke above lemma aRd PropositloR l.3, we observe the following.

  a) Every orbit has the same dimemsion dimAut(E)/k'. Hence the action of Aut(E) on
    U is closed, i.e., every orbit is closed in U.

 b) dimO(s) = dimHO(8nd(E)) - 1
                                                              'Prepe$itioR 2.2. Ufider the 3ame as$n'mpSigR$ iR Prepesitign 1.4 if ffi(gRd(EÅr)-= g
then

                         dim g(U) = dim HO(Nx,lpn)-

Proof. Using the exact sequence in IProposition 1.3, we see that gpdei(cp(s)) (s E U) consists

of finkely many orbit$. geRce

             dim ge(U) -- dimU - dimO(s)

                      = dim Grass( HO(E), 3) - dim UO(Snd(E)) + 1

                      = 3(dirn "O(E) - 3) - dim HO(Snd(E)) + 1.

Se the reslllt fcl}ows 5y Peopo$itlon l.4. =

2.2. Let (HitbO be axx irreducible component of 7tilb containing g(U) and Tx,,Gp{iib the
Zariski tangent space of GP-tilb at X,. Then it is known that Tx,,uitb tf HO(Nx,lpn)• So we

have the fo}lowing proposit}on from Proposition 2.2.

Prope$kion 2.3. U7utef' the $amff as$umptiens 'in i'roposition 1.!s, if ffi(End(E)År = e

then

  1) 7tilbO coincides with g(U)-
 2) 7-tilbO is smooth at the determirzantal subvarieties associated to E.
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3. Probf "f Theerem

  Let PGL(n + 1,k) be the automorphism group of P" and let T. : P" ) x e ax E P"
be the transformation of P" defiRed by a E PGL(n + l,k).
  Since lt ls well-kxxowB that E sp}lts if aRd oniy if E splits, we may assume that E ls a
rank two vector bundle on P" (n being either 4 or 5). In addition after multiplying E by
a suitable line bundle, we may assume that E is a very arnple vector bundle enjoying the
assllmpt}oxx }R P!opes}#2eR l.4.

  Suppose that Hi(Snd(E)) = O. Hence it follows from Proposition 2.3 that aq(U) me
g(U) for every element a E PGL(n + 1,k). Since g(U) is a constructible set, there exist
two e}ement s, t E U satisfying X..(.) = Xt, where X..{.) is the determiRa[nta1 $ubvariey
asseciated te T.'Åqg) defifieCl by ff'(s) == ÅqT."Åqsi), T."(s2), T.*(s3)År. Conslder the resolutioA$

of the defiping ideal sheaves f.x, of Xt and Ix..(,) of X..(,) respectively (cf. Lemma 1.2):

                                3          O- E' -eeOpn- Ix,XO@ -e

                                3          e- T."(E') - eOpn - Ix..,.,XO(ci) -- g•
                                                  33Then it is observed that there exists an isomorphism th:(DOpn --År (IDOpn such that th
rnakes the diagram in (**) cornmutative and so we see that T.'(E) is isomorphic to E,
i.e., g is a heg}ogeneogs vector buRdle. SIRce every hemogegeg=s bwadle o!} P" cf raRk
r Åq n is a direct surn of line bundles even if char le =p År O (cf. [2]), we can complete the

proof of Theorem O.1.
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