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Determinantal varieties associated to
rank two vector bundles on
projective spaces and splitting theorems
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(joint work with Hideyasu Sumihiro)

0. Introduction

In this paper, we work over an algebraically closed field k. Let E be a rank 2 vector
bundle on n-dimensional projective spaces P7.
In [3], H. Sumihiro showed the following theorem in the case char & = 0.

Theorem 0.1. Let P be a 4- or 5-dimensional projective linear subspace of P} and

= E|P be the restriction of E to P. Then E splits into line bundles if and only if
HY(P,End(E)) = 0.

The aim of this article is to prove that this theorem holds affirmatively true in char
k = p > 0. The proof is almost same with the one of char k¥ = 0, namely, is obtained
by studying some geometric structures of the Hilbert scheme of P? at determinantal
subvarieties. In char k = p > 0, however, since we can not use Kodaira vanishing theorem
and Le-Potier vanishing theorem, we have to observe some vanishings of cohomologies
appeared in (3] carefully.

1. Determinantal Varieties

We first recall the definition and some properties of determinantal varieties associated

to 2-bundles (cf. [3]).

1.1. Definition of determinantal varieties. Let E be a rank 2 vector bundle on an
P}, m : P(E) — P?} the projective bundle associated to E over P}, Lg the tautological
line bundle on P(E) and let G = Grass(H°(E), m + 1) be the Grassmann variety which
parametrizes (m+1)-dimensional linear subspaces of H°(P%, F). We assume that E is very
ample, t.e., Lg is a very ample line bundle. Then we can take s = (s1,82,... ,8my1) € G
(s; € HY(PE,E)) with n = 2m (resp. n = 2m + 1) satisfying the following condition
1) Y=Y, =D;NDyN---N Dypyy is a smooth closed subscheme of P(E)
(%) of pure codimension m + 1,
2) Wis)nW(s:)n---NW(smyr) =0,
where D; is the tautological divisor on P(E) defined by s; and W (s;) is the zero locus on
rofs; (1<i<m+1).
Let X; = n(Y;). Then we can show that X, is a closed subscheme of P} which is
isomorphic to Y, through = with the following defining equations:

Si/\S]‘:O (1_<_2§]§m+1)

Definition 1.1. We call the closed subscheme X = X of P} the (smooth) determinantal
variety associated to E defined by s € G.
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Remark 1.1. X depends on the choice of s € G subject to the condition (*).
As for determinantal varieties, we obtain the following.

Theorem 1.1. Let the notaion be as above.

1) U = {s € G|s satisfies the condition (*)} is a Zariski open subset of G.

2) There exists a closed subscheme = of PL x U such that the second projection q :
= C P x U = U is faithfully flat and X, = q~'(s) for any s € U. Thus smooth
determinantal varieties associated to E form a smooth family over an open subset of
G and hence they are diffeomorphic to each other.

When n = 4 or 5, let Ix be the defining ideal of a determinantal subvariety X in P".
Then Ix has the following resolution of vector bundles.

Lemma 1.2. In above notaion, there exists on an exact sequence

3
0 — E*(—c1) — POpn(—c1) — Ix — 0,

where ¢, is the first Chern number of E.

1.2. Tangent bundle and normal bundle of determinantal varieties. In this sub-
section, we consider when n =4 or 5, i.e., m = 2.

1.2.1. Let E be a very ample rank two bundle on P} and X a determinantal variety
associated to E. Let H be the restriction of a hyperplane of P™ to X and D the restriction
of a tautological divisor of P(E) to X through the isomorphism =.

Then we can obtain the following diagram of exact sequences:

0 y Tx y  Tpn]X —— Nxpn s 0,
0 0

3
where « is an injection induced by the snake lemma. Since Ny,pg) =~ @Ox(D) by the
condition of Y, we obtain the following.

Proposition 1.3. There exists an ezact sequence

3
00— Ox(QD - CIH) — @OX(D) — Nx/pn — 0.
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1.2.2. From the exact sequence of the above proposition, we have the following exact
sequence

0— HO(O)((QD — ClH)) — éHO(Ox(D)) — fIO(I\[X/pn)

— HY(Ox(2D — c,H)) — éH‘(OX(D)).
Now we recall Y = D; N Dy N D3. Consider the canonical exact sequence
(*)1 0 = Opi)(D —c1H) = Opgy(2D — yH) = Op, (2D — ¢, H) — 0,
from which we obtain the following exact sequence:
0 — H(Opgy(D — c1H)) — H(Opg)(2D — ¢ H)) — H*(Op, (2D - ¢, H))
— HY(Opg)(D — c1H)) — H (Opg)(2D — c1H)) - H'(Op, (2D — ¢, H))
— H*(Op(m)(D — e H)).
Since H(D — ¢;H) = H'(E*) (0 < 1 < 4) and we can show that H°(E*) = 0 and
HY(E*) = H*'(E® Kpn) = 0, where Kpn is the canonical divisor of P", it turns out that
H{(Op&)(2D — ¢, H)) =~ H(Op, (2D — 1 H)) (i = 0,1) if H(E*) = H* *(E® Kpn) = 0.

Considering the exact sequences similarly
0— ODI(D - CIH) — OD1(2D —CIH) — ODsz(QD - CIH) — 0,
0— OP(E)(—CIH) — OP(E)(D — ClH) — ODl(D — CIH) — 0,

(*)2

0 — ODlﬂDz(D - CIH) —r ODlﬂDz(QD —_ CIH) — OY(QD — CIH) —r O,
(%)3 0 — Op,(—a1H) = Op,(D —c1H) = Op,ap,(D — c1H) — 0,
0— OP(E)(--D — CIH) — OP(E)(——CIH) — OD;(”‘CI H) — 0,
we obtain isomorphisms H*(Op, (2D~c,H)) ~ H'(Op,np,(2D—c, H)) and H(Op,np,(2D—
aH)) =~ H(Oy(2D — a H)) (i = 0,1). Summing up the above, we conclude that
H{(Ox(2D — oyH)) ~ H'(P™, S*(E)(—c1)).
On the other hand, since there exists an exact sequence
0 — Opn — End(E) — S*(E)(~c,) — 0,
we have a canonical isomorphism H'(S*(E)(—¢q)) ~ H'(End(E)) and dim H°(S*(E)(—¢)) =
dim H°(End(E)) —
In addition we easily see that dim H®(Ox (D)) = dim H°(E) - 3.

Summarizing the above, we get the following proposition.

Proposition 1.4. Assume thatn =4 or5 and H" *(EQ Kpn) = 0. If H(End(E)) =0,
then
dim H°(Nx/pn) = 3(dim H°(E) — 3) ~ dim H%(End(E)) + 1

Remark 1.2. When char k = 0, we get H'(E*) ~ H*(E @ Kpp) =0for0 < i <n-2
by Le-Potier vanishing theorem. So we do not need the assumption H* *(E @ Kp») =0
in the above proposition. Also the proof itself becomes slightly simpler because we can
use the vanishing theorems.
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2. Hilbert Schemes
In this section, we assume that n = 4 or 5. Let Hilb be the Hilbert scheme of P™.

2.1. Letw:U 3s+— X, € Hilbbe the morphism induced by Theorem 1.1. Let Aut(E)
be the automorphism group of £. Then Aut(E) is a reduced connected linear algebraic
group of dimension dim H°(End(E)).

For every element g € Aut(F) and s = (s1, s2,s3) € G, we define

g s =(g(s1),9(s2),9(s3)),

where g¢(s;) is the composite of s; with g. Then it defines an action of Aut(£) on G and
we have

g-siNg-s;=detgs; As;j(1<i<3<3),

where det : Aut(E) 5 g — det(g) € k* = k\ {0} is the determinant character. Hence
Xg.s = X,. Therefore Aut(E) acts on U and ¢ is an orbit morphism, i.e., ¢ is constant
on any orbit O(s) = {g- s|g € Aut(F)}.

Then we have the following.

Lemma 2.1. The stabilizer Stab(s) of s € U is equal to the multiplicative group k*.

As a trivial corollary of the above lemma and Proposition 1.3, we observe the following.

a) Every orbit has the same dimension dim Aut(FE)/k*. Hence the action of Aut(E) on
U is closed, i.e., every orbit is closed in U.

b) dim O(s) = dim H°(End(E)) — 1

Proposition 2.2. Under the same assumptions in Proposition 1.4, if H'(End(E)) = 0
then

dim¢(U) = dim H°(Nx,/pn).

Proof. Using the exact sequence in Proposition 1.3, we see that ¢! (¢(s)) (s € U) consists
of finitely many orbits. Hence

dimp(U) = dimU — dim O(s)
= dim Grass(H°(E), 3) — dim H°(End(E)) + 1
= 3(dim H%(E) — 3) — dim H*(End(E)) + 1.

So the result follows by Proposition 1.4. |

2.2, Let Hilb® be an irreducible component of Hilb containing »(U) and T,y the
Zariski tangent space of Hilb at X,. Then it is known that Tx, 3 ~ H°(Nx,/ps). So we
have the following proposition from Proposition 2.2.

Proposition 2.3. Under the same assumptions in Proposition 1.4, if H'(End(E)) = 0
then

1) Hilb® coincides with o(U).

2) Hilb® is smooth at the determinantal subvarieties associated to E.
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3. Proof of Theorem

Let PGL(n + 1, k) be the automorphism group of P* and let T, : P* 3 z — oz € P*
be the transformation of P* defined by ¢ € PGL(n + 1, k).

Since it is well-known that E splits if and only if E splits, we may assume that E is a
rank two vector bundle on P® (n being either 4 or 5). In addition after multiplying E by
a suitable line bundle, we may assume that E is a very ample vector bundle enjoying the
assumption in Proposition 1.4. L

Suppose that H'(End(E)) = 0. Hence it follows from Proposition 2.3 that op(U) =
@(U) for every element o € PGL(n + 1,k). Since ¢(U) is a constructible set, there exist
two element s, t € U satisfying X,e(s) = Xi, where X+(s) is the determinantal subvariey
associated to T*(E) defined by o*(s) = (Ty(s1), Ty (s2), T;(ss)). Consider the resolutions
of the defining ideal sheaves Iy, of X; and Ix_.  of X, respectively (cf. Lemma 1.2):

*(s)

3
0 —— E* —— @0prn —— Ix,®0(¢;) —— 0

(%) w[ :[

3
0 —— THE") — BO0pn — Ix.. 0O(c;) — 0.

a*(s)
Then it is observed that there exists an isomorphism 1 : é@pn — éOPn such that
makes the diagram in (*%) commmutative and so we see that T;(E) is isomorphic to E,
i.e., £ is a homogeneous vector bundle. Since every homogeneous bundle on P" of rank
r < n is a direct sum of line bundles even if char k¥ = p > 0 (cf. [2]), we can complete the
proof of Theorem @.1.
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