ON CLASSIFICATION OF Q－FANO 3－FOLDS OF GORENSTEIN INDEX 2 AND FANO INDEX $\frac{1}{2}$

Hiromichi Takagi

Notation and Conventions．
\sim linear equivalence
\equiv numerical equivalence
ODP ordinary double point，i．e．，singularity analytically isomorphic to $\{x y+$ $\left.z^{2}+u^{2}=0 \subset \mathbb{C}^{4}\right\}$

QODP singularity analytically isomorphic to $\left\{x y+z^{2}+u^{2}=0 \subset \mathbb{C}^{4} / \mathbb{Z}_{2}(1,1,1,0)\right\}$
\mathbb{F}_{n} Hirzebruch surface of degree n
$\mathbb{F}_{n, 0}$ surface which is obtained by the contraction of the negative section of \mathbb{F}_{n}
Q_{3} smooth 3－dimensional quadric．
$B_{i}(1 \leq i \leq 5) \mathbb{Q}$－factorial Gorenstein terminal Fano 3－fold of Fano index 2， and with Picard number 1 and $(-K)^{3}=8 i$ ，where K is the canonical divisor
$A_{2 i}(1 \leq i \leq 11$ and $i \neq 10) \quad \mathbb{Q}$－factorial Gorenstein terminal Fano 3 －fold of Fano index 1 ，and with Picard number 1 and $(-K)^{3}=2 i$
contraction of（ m, n ）－type extremal contraction whose exceptional locus has dimension m and the image of the exceptional locus has domension n

0 ．Introduction

In this article，we will work over \mathbb{C} ，the complex number field．
Definition 0.0 （ \mathbb{Q}－Fano variety）．Let X be a normal projective variety．We say that X is a \mathbb{Q}－Fano variety（resp．weak \mathbb{Q}－Fano variety）if X has only terminal singularities and $-K_{X}$ is ample（resp．nef and big）．

Let $I(X):=\min \left\{I \mid I K_{X}\right.$ is a Cartier divisor $\}$ and we call $I(X)$ the Gorenstein index of X ．

Write $I(X)\left(-K_{X}\right) \equiv r(X) H(X)$ ，where $H(X)$ is a primitive Cartier divisor and $r(X) \in \mathbb{N}$ ．（Note that $H(X)$ is unique since $\operatorname{Pic} X$ is torsion free．）Then we call $\frac{r(X)}{I(X)}$ the Fano index of X and denote it by $F(X)$ ．

Remark 0．1．

（1）We can allow that a \mathbb{Q}－Fano variety or a weak \mathbb{Q}－Fano variety has worse singularities than terminal．When we have to treat such a variety in this paper，we indicate singularities which we allow，e．g．，＇a \mathbb{Q}－Fano 3 －fold with only canonical singularities＇；
（2）if X is Gorenstein in Definition 0．0，we say that X is a Fano variety（resp． a weak Fano variety）．

HIROMICHI TAKAGI

For the classification theory of varieties, a \mathbb{Q}-factorial \mathbb{Q}-Fano variety with Picard number 1 is important because it is an output of the minimal model program. Here we mention the known result about the classification of \mathbb{Q}-Fano 3-folds:
(1) G. Fano started the classification of smooth Fano 3 -folds and it was completed by V. A. Iskovskih [I1] ~ [I4], V. V. Shokurov [Sh1], [Sh2], T. Fujita [Fu1] ~ [Fu3], S. Mori and S. Mukai [MM1] ~ [MM3];
(2) S. Mukai [Mu] classified indecomposable Gorenstein Fano 3-folds with canonical singularities by using vector bundles;
(3) T. Sano [Sanl] and independently F. Campana and H. Flenner [CF] classified non Gorenstein Fano 3 -folds of Fano indices >1;
(4) T. Sano [San2] classified non Gorenstein Fano 3 -folds of Fano indices 1 and with only cyclic quotient terminal singularities. Recently T. Minagawa [Mi1] proved that non Gorenstein \mathbb{Q}-Fano 3 -folds with Fano indices 1 can be deformed to one with only cyclic quotient terminal singularities;
(5) A. R. Fletcher [Fl] gave the classification of \mathbb{Q}-Fano 3 -folds which are weighted complete intersections of codimension 1 or 2. Recently S. Altinok [Al] (see also [RM2]) obtained a list of \mathbb{Q}-Fano 3-folds which are subvarieties in a weighted projective space of codimension 3 or 4 .
On the other hand K. Takeuchi [T1] simplified and amplified V. A. Iskovskih 's method of classification by using the theory of the extremal ray. In particular he reproved the Shokurov's theorem [Sh2], the existence of lines on a smooth Fano 3 -fold of Fano index 1 and with Picard number 1 by simple numerical calculations.

We formulate a slight generalization of Takeuchi's construction for a \mathbb{Q}-factorial \mathbb{Q}-Fano 3 -fold X with $\rho(X)=1$ and give a classification of a \mathbb{Q}-factorial \mathbb{Q}-Fano 3 -fold with the following properties:

Main Assumption 0.2.

(1) $\rho(X)=1$;
(2) $I(X)=2$;
(3) $F(X)=\frac{1}{2}$;
(4) $h^{0}\left(-K_{X}\right) \geq 4$;
(5) there exists an index 2 point P such that

$$
(X, P) \simeq\left(\left\{x y+z^{2}+u^{a}=0\right\} / \mathbb{Z}_{2}(1,1,1,0), o\right)
$$

for some $a \in \mathbb{N}$.
Takeuchi's construction 0.3. Here we explain a slight generalization of Takeuchi's construction. Let X be a \mathbb{Q}-factorial \mathbb{Q}-Fano 3-fold with $\rho(X)=1$. Suppose that we are given a birational morphism $f: Y \rightarrow X$ with the following properties:
(1) Y is a weak \mathbb{Q}-Fano 3 -fold;
(2) f is an extremal divisorial contraction such that f-exceptional locus E is a prime \mathbb{Q}-Cartier divisor.
Then we obtain the following diagram:

Q-FANO 3-FOLDS

where
(1) $Y_{0} \rightarrow Y_{1}$ is a flop or a flip and $Y_{i} \rightarrow Y_{i+1}$ is a flip for $i \geq 1$;
(2) f^{\prime} is a crepant divisorial contraction (in this case, $i=0$) or an extremal contraction which is not isomorphic in codimension 1.

We use the following notation:
$Y^{\prime}:=Y_{k} ;$
$E_{i}:=$ the strict transform of E on Y_{i};
$\tilde{E}:=$ the strict transform of E on Y^{\prime};
$e:=E^{3}-E_{1}{ }^{3}$ if $Y_{0} \rightarrow Y_{1}$ is a flop or $:=0$ otherwise;
$d_{i}:=\left(-K_{Y_{i}}\right)^{3}-\left(-K_{Y_{i+1}}\right)^{3}$ (resp. $\left.a_{i}:=\frac{E_{i} \cdot l_{i}}{\left(-K_{Y_{i}}\right) \cdot l_{i}}\right)$ if $Y_{i} \rightarrow Y_{i+1}$ is a flip, where l_{i} is a flipping curve, or $:=0$ (resp. $:=0$) otherwise;
z and u is defined as follows:
If f^{\prime} is birational, then let E^{\prime} be the exceptional divisor of f^{\prime} and set $E^{\prime} \equiv$ $z\left(-K_{Y^{\prime}}\right)-u \tilde{E}$ or if f^{\prime} is not birational, then let L be the pull back of an ample generator of $\operatorname{Pic} X^{\prime}$ and set $L \equiv z\left(-K_{Y^{\prime}}\right)-u \tilde{E}$.

We note the following:
(1)

$$
\begin{gathered}
\left(-K_{Y^{\prime}}\right)^{2} \tilde{E}=\left(-K_{Y}\right)^{2} E-\sum a_{i} d_{i} ; \\
\left(-K_{Y^{\prime}}\right) \tilde{E}^{2}=\left(-K_{Y}\right) E^{2}-\sum a_{i}^{2} d_{i} ; \\
\tilde{E}^{3}=E^{3}-e-\sum a_{i}^{3} d_{i} ;
\end{gathered}
$$

(2) On the other hand the value or the relation of the value (expressed with z and u) of $\left(-K_{Y^{\prime}}\right)^{3},\left(-K_{Y^{\prime}}\right)^{2} \tilde{E},\left(-K_{Y^{\prime}}\right) \tilde{E}^{2}$ and \tilde{E}^{3} are restricted by the properties of f^{\prime}.
By these (1) and (2), we obtain equations of Diophantine type.

Under Main Assumption 0.2, Construction 0.3 works for a suitable choice of f and we can solve the equations as noted above.

Main Theorem. Let X be as in Main Assumption 0.2. Let $f: Y \rightarrow X$ be the weighted blow up at P with weight $\frac{1}{2}(1,1,1,2)$. Then Y is a weak \mathbb{Q}-Fano 3-fold.

Consider the diagram as in 0.3. Let $h:=h^{2}\left(-K_{X}\right), N:=a w(X)$ and $n:=$ $\sum a w\left(Y_{i}, P_{i j}\right)$ (the summation is taken over the index 2 points on flipping curves), where auv (X) is the number of $\frac{1}{2}(1,1,1)$-singularities which we obtain by deforming non Gorenstein points of X locally and aw $\left(Y_{i}, P_{i j}\right)$ is defined similarly. Then we can solve the equations above and obtain a geographic classification of X as below (? in the table means that we don't know the existence of an example) :

HIROMICHI TAKAGI

$\left(-K_{X}\right)^{3}$	N	e	n	z	$\left(-K_{Y^{\prime}} \cdot C\right)$	f^{\prime}, X^{\prime}
$\frac{5}{2}$	1	15	0	1	$/$	$(2,0)_{4},\left(-K_{X^{\prime}}\right)^{3}=\frac{5}{2}, I\left(X^{\prime}\right)=2$
$\frac{5}{2}$	1	$/$	$/$	1	$/$	crep. div., $\left(-K_{X^{\prime}}\right)^{3}=2, I\left(X^{\prime}\right)=1$
3	2	12	0	1	$/$	$(2,0)_{8}, A_{4}$
$\frac{7}{2}$	3	10	0	1	1	$(2,1), A_{6}$
4	4	8	0	1	2	$(2,1), A_{8}$
4	4	9	3	1	$/$	$(2,0)_{1}, A_{10}$
$? \frac{9}{2}$	5	6	0	1	3	$(2,1), A_{10}$
$? \frac{9}{2}$	5	8	3	1	$/$	$(2,0)_{5}, A_{16}$
$? \frac{9}{2}$	5	9	0	2	$/$	$(3,1), \operatorname{deg} F=6$
$? 5$	6	4	0	1	4	$(2,1), A_{12}$

$z=u$ if f^{\prime} is not a crepant divisorial contraction.
$u=2$ if f^{\prime} is a crepant divisorial contraction.
$F:=$ a general fiber of f^{\prime} if f^{\prime} is $(3,1)$-type.
See Appendix for $(2,0)_{i}$.
$g(C)=0$ in case f^{\prime} is of type E_{1} and every singularity of Y is a $\frac{1}{2}(1,1,1)-$ singularity.

$\left(-K_{X}\right)^{3}$	N	e	n	z	$\operatorname{deg} \Delta$	$\operatorname{deg} F$	f^{\prime}, X^{\prime}
$\frac{9}{2}$	1	9	0	1	$/$	3	$(3,1)$
5	2	8	1	1	$/$	4	$(3,1)$
$? \frac{11}{2}$	3	7	2	1	$/$	5	$(3,1)$
$? \frac{11}{2}$	3	8	0	2	8	$/$	$(3,2), \mathbb{F}_{2,0}$
$? 6$	4	7	1	2	6	$/$	$(3,2), \mathbb{F}_{2,0}$
$? 6$	4	6	3	1	$/$	6	$(3,1)$
$? \frac{13}{2}$	5	6	2	2	4	$/$	$(3,2), \mathbb{F}_{2,0}$

$$
z=u
$$

$\Delta:=$ the discriminant divisor of f^{\prime} if f^{\prime} is (3,2)-type.
$F:=$ a general fiber of f^{\prime} if f^{\prime} is (3,1)-type.

$\left(-K_{X}\right)^{3}$	N	e	n	z	$\operatorname{deg} \Delta$	$\left(-K_{Y^{\prime} \cdot C}\right)$	f^{\prime}, X^{\prime}
$\frac{13}{2}$	1	7	0	1	7	$/$	$(3,2), \mathbb{P}^{2}$
7	2	7	0	4	$/$	35	$(2,1),[5]$
$? 7$	2	6	1	1	6	$/$	$(3,2), \mathbb{P}^{2}$
$\frac{15}{2}$	3	7	0	2	$/$	9	$(2,1),[2], I\left(X^{\prime}\right)=2$
$\frac{15}{2}$	3	6	1	4	$/$	30	$(2,1),[5]$
$? \frac{15}{2}$	3	5	2	1	5	$/$	$(3,2), \mathbb{P}^{2}$
$? 8$	4	4	3	1	4	$/$	$(3,2), \mathbb{P}^{2}$
$? \frac{17}{2}$	5	3	4	1	3	$/$	$(3,2), \mathbb{P}^{2}$

Q-FANO 3-FOLDS

Type [i] means the \mathbb{Q}-Fano 3 -fold of type [i] which was classified by T.Sano in [San2].

$h=7$						
$\left(-K_{X}\right)^{3}$	N	e	n	z	$\left(-K_{Y^{\prime}} \cdot C\right)$	f^{\prime}, X^{\prime}
$\frac{17}{2}$	1	6	0	3	36	$(2,1), \mathbb{P}^{3}$
9	2	6	0	2	18	$(2,1),[3]$
9	2	5	1	3	32	$(2,1), \mathbb{P}^{3}$
$\frac{19}{2}$	3	5	1	2	15	$(2,1),[3]$
$\frac{19}{2}$	3	4	2	3	28	$(2,1), \mathbb{P}^{3}$

Type [i] means the \mathbb{Q}-Fano 3 -fold of type [i] which was classified by T.Sano in [San2].

$$
u=z+1
$$

| 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(-K_{X}\right)^{3}$ N e n z
 $\left(-K_{Y}, C\right)$ f, X^{\prime}
 $\frac{21}{2}$ 1 6 0 1
 $\frac{1}{2}$ 1 5 0 2
 1 2 4 1 2
 11 24 $(2,1), B_{3}$ |

$$
u=z+1
$$

$\left(-K_{X}\right)^{3}$	N	e	n	z	u	$\left(-K_{Y}, C\right)$	f^{\prime}, X^{\prime}
$\frac{25}{2}$	1	5	0	1	2	10	$(2,1), B_{4}$

$h=10$						
$\left(-K_{X}\right)^{3}$	N	e	n	$\operatorname{deg} \Delta$	$\left(-K_{\left.Y^{\prime}, C\right)}\right.$	f^{\prime}, X^{\prime}
$\frac{29}{29}$	1	4	0	$/$	14	$(2,1), B_{5}$
$\frac{29}{2}$	1	6	0	0	$/$	$(3,2), \mathbb{P}^{2}$
15	2	3	1	$/$	12	$(2,1), B_{5}$

$$
z=1 \text { and } u=2 .
$$

In particular we have $\left(-K_{X}\right)^{3} \leq 15$ and $h^{0}\left(-K_{X}\right) \leq 10$.
Based on this result, we can derive the following properties for X as in the main theorem:

Theorem A. if any index 2 point satisfies the assumption (5) of 0.2, then $\left|-K_{X}\right|$ has a member with only canonical singularities.

So the general elephant conjecture by M . Reid is affirmative for such an X.

HIROMICHI TAKAGI

Theorem B. Let X be a \mathbb{Q}-factorial \mathbb{Q}-Fano 3 -fold with (1)~(4) of 0.2. Let $N:=\operatorname{aw}(X)$. Then if $N>1$ (resp. $N=1$), X can be transformed to a \mathbb{Q} factorial \mathbb{Q}-Fano 3-fold \tilde{Z}^{\prime} with (1)~(4) of 0.2 and with only QODP's or $\frac{1}{2}(1,1,1)$ singularities as its singularities and $h^{0}\left(-K_{Z^{\prime}}\right)=h$ and au($\left.\tilde{Z}^{\prime}\right)=N-1$ (resp. a smooth Fano 3 -fold \tilde{Z}^{\prime} with $\rho\left(\tilde{Z}^{\prime}\right)=1, F\left(\tilde{Z}^{\prime}\right)=1$ and $\left.h^{0}\left(-K_{\tilde{Z}^{\prime}}\right)=h\right)$ as follows:

$$
\tilde{f} \swarrow \begin{array}{ccccc}
& \tilde{Y} \\
& \searrow \tilde{g} & & & \\
& & \tilde{Z} & \xrightarrow{\text { def }} & \tilde{Z}^{\prime},
\end{array}
$$

where $* \xrightarrow{\text { def }} * *$ means that $* *$ is a small deformation of $*$;
\tilde{X} is a \mathbb{Q}-Fano 3 -fold as in 0.2 and with only ODP's, QODP's or $\frac{1}{2}(1,1,1)$ singularities as its singularities;
$\tilde{f}: \tilde{Y} \rightarrow \tilde{X}$ is chosen as f in the main theorem;
$\tilde{g}: \tilde{Y} \rightarrow \tilde{Z}$ be the anti-canonical model.
This is an analogue to the Reid's fantasy about Calabi-Yau 3-folds [RM1].
Theorem C. If any index 2 point is a $\frac{1}{2}(1,1,1)$-singularity, X can be embedded into a weighted projective space $\mathbb{P}\left(1^{h}, 2^{N}\right)$, where $h:=h^{0}\left(-K_{X}\right)$ and N is the number of $\frac{1}{2}(1,1,1)$-singularities on X.

We hope that this fact can be used for the classification of Mukai's type (see [Mu]).

1. Examples

We consider the case that $h^{0}\left(-K_{X}\right)=4$ and $N=4$. By the table of the main theorem, there are two possibilities of X in this case. We assume that every singularity of Y is a $\frac{1}{2}(1,1,1)$-singularity. Then one of the following holds:
[1]. f^{\prime} is an extremal divisorial contraction which contracts a divisor E^{\prime} to a curve C and $\left|-K_{Y^{\prime}}-E^{\prime}\right| \neq \phi . X^{\prime}$ is a ($2,2,2$)-complete intersection in \mathbb{P}^{6} and satisfies the following properties:
(1) X^{\prime} is factorial;
(2) C is a smooth conic;
(3) X^{\prime} has 3 singularities $P_{0} \sim P_{2}$ on C and P_{i} is an ODP or the singularity analytically isomorphic to the origin of $\left\{x y+z^{2}+w^{3}=0\right\} \subset \mathbb{C}^{4}$. Outside P_{i} 's, X^{\prime} is smooth.
[2]. f^{\prime} is blowing up at a smooth point $Q:=f^{\prime}\left(E^{\prime}\right)$ and $\left|-K_{Y^{\prime}}-E^{\prime}\right| \neq \phi . X^{\prime}$ is smooth, isomorphic to A_{10} and there exist exactly three lines through the point Q.

We will construct examples for these cases by the following three steps:
Step 1. We construct X^{\prime} satisfying the properties as stated as in [1] or [2];
Step 2. We construct f^{\prime} satisfying the properties as stated as in [1] or [2];
Step 3. We construct $f: Y \rightarrow X$ as in the main theorem from Y^{\prime}.
[1].
Step 1 for [1]. We construct X^{\prime} with only ODP's.

Q-FANO 3-FOLDS

Claim 1. Let V (resp. X^{\prime}) be a (2,2)-complete intersection in \mathbb{P}^{6} (resp. a quadric section of V) with the following properties:
(1) V (resp. X^{\prime}) contains a smooth conic C;
(2) V (resp. X^{\prime}) has three $O D P$'s $P_{0} \sim P_{2}$ on C and outside P_{i} 's, V (resp. X^{\prime}) is smooth.
Then X^{\prime} is factorial.
Proof. We claim that V contains the plane P spanned by C. Let σ be the pencil which consists of quadrics in \mathbb{P}^{6} containing V. Since P_{i} is an ODP on V, there is a quadric in σ which is singular at P_{i}. If there is a quadric in σ which is singular at all P_{i} 's, then it is singular on P and hence V is singular along C, a contradiction. So σ is generated by two quadrics which are singular at some P_{i}. But such quadrics contains P and hence V contains P.

Let $\nu: \tilde{V} \rightarrow V$ be the composition of the blowing ups at $P_{0} \sim P_{2}$ and F_{i} the exceptional divisor over P_{i}. Let \tilde{X}^{\prime} be the strict transform of X^{\prime} on \tilde{V} and H the total transform of a hyperplane section of V. Then $\tilde{X}^{\prime} \sim 2 H-F_{0}-F_{1}-F_{2}$. Note that $\left|H-F_{i}-F_{j}\right|$ is free outside the strict transform $l_{i j}$ of the line through P_{i} and P_{j} and $\left|H-F_{k}\right|$ is free (note that $l_{i j}$ is contained in V since $l_{i j} \subset P$). By this, we can easily see that $\left|\tilde{X}^{\prime}\right|$ is free and \tilde{X}^{\prime} is numerically trivial only for $l_{i j}$'s $((i, j)=(0,1),(1,2),(2,0))$.

Let ϕ be the morphism defined by $\left|\tilde{X}^{\prime}\right|$. Then ϕ-exceptional curves are $l_{i j}$'s. We will prove that Leff $\left(\tilde{V}, \tilde{X}^{\prime}\right)$ holds and \tilde{X}^{\prime} meets every effective divisor on \tilde{V}. By $[\mathrm{H}$, p.165, Proposition 1.1] and the argument of [H, p.172, the proof of Theorem 1.5], it suffices to prove that $\operatorname{cd}\left(\tilde{V}-\tilde{X}^{\prime}\right)<3$, i.e., for any coherent sheaf F on $\tilde{V}-\tilde{X}^{\prime}$, $H^{i}\left(\tilde{V}-\tilde{X}^{\prime}, F\right)=0$ for all $i \geq 3$. Let $\bar{V}:=\phi(\tilde{V})$ and $\overline{X^{\prime}}:=\phi\left(\tilde{X}^{\prime}\right)$. Consider the Leray spectral sequence

$$
E_{2}^{p q}=H^{p}\left(\bar{V}-\overline{X^{\prime}}, R^{q} \phi_{*}^{\prime} F\right) \Rightarrow E^{p+q}=H^{p+q}\left(\tilde{V}-\tilde{X}^{\prime}, F\right),
$$

where $\phi^{\prime}:=\left.\phi\right|_{\tilde{V}-\tilde{X}^{\prime}}$. Since $\bar{V}-\overline{X^{\prime}}$ is affine and the dimension of every fiber of ϕ ≤ 1, we have $E_{2}^{p q}=0$ for $p \geq 1$ or $q \geq 2$ whence $E^{p+q}=0$ for $p+q \geq 2$. So the assertion follows.

Furthermore since \tilde{X}^{\prime} is nef and big, $H^{i}\left(\tilde{V}, \mathcal{O}\left(-n \tilde{X}^{\prime}\right)\right)=0$ for $n \geq 1$ and $i=$ 1,2 by KKV vanishing theorem. Hence by the Grothandieck-Lefschetz theorem $\left[G\right.$, p.135, 3.18] (or $\left[H\right.$, p.178, Theorem 3.1]), we have $\operatorname{Pic} \tilde{X}^{\prime} \simeq \operatorname{Pic} \tilde{V} \simeq \mathbb{Z}^{4}$. So $\rho\left(\tilde{X}^{\prime} / X^{\prime}\right)=3$ which imply that X^{\prime} is factorial.

We will give a pair $\left(V, X^{\prime}\right)$ satisfying the condition of Claim 1. Let C be a smooth conic in \mathbb{P}^{6} and $P_{0} \sim P_{2}$ three points on C. We can choose a coordinate of \mathbb{P}^{6} such that $C=\left\{x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{0}=x_{3}=x_{4}=x_{5}=x_{6}=0\right\}$ and $P_{i}=\left\{x_{j}=0\right.$ for $\left.j \neq i\right\}$.

Claim 2. Let X^{\prime} be a (2,2,2)-complete intersection in \mathbb{P}^{6} satisfying the following conditions:
(1) X^{\prime} is factorial;
(2) X^{\prime} contains a smooth conic C;
(3) X^{\prime} has three ODP's $P_{0} \sim P_{2}$ on C and outside P_{i} 's, X^{\prime} is smooth.

Then X^{\prime} is the intersection of three quadrics $Q_{1} \sim Q_{3}$ of the following forms by permuting P_{i} 's if necessary:

HIROMICHI TAKAGI

$$
\begin{gathered}
Q_{1}:=\left\{m_{0} x_{0}+m_{1} x_{1}+q_{1}=0\right\} ; \\
Q_{2}:=\left\{p m_{1} x_{1}+m_{2} x_{2}+q_{2}=0\right\} ; \\
Q_{3}:=\left\{x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{0}+\sum_{i=3}^{6} l_{i} x_{i}=0\right\},
\end{gathered}
$$

where $p \in \mathbb{C}$, m_{i} (resp. q_{i}) is a linear form (resp. a quadratic form) of $x_{3} \sim x_{6}$ and l_{i} is a linear form of $x_{0} \sim x_{6}$.

Conversely if $X^{\prime}=Q_{1} \cap Q_{2} \cap Q_{3}$, where Q_{i} is of the form as above and m_{i}, q_{i} and l_{i} are suitably general, then X^{\prime} satisfies $(1) \sim(3)$.

Proof. Let γ be the net which consists of quadrics containing $X^{\prime} . \gamma$ contains a member Q_{1} which is singular at P_{2}. Then Q_{1} is of the form as above. If $m_{1}=$ $m_{2}=0$, then Q_{1} is singular on the plane P spanned by C and hence X^{\prime} is singular along C, a contradiction. Hence $m_{1} \neq 0$ or $m_{2} \neq 0$. By permuting P_{1} and P_{2} if necessary, we may assume that $m_{1} \neq 0 . \gamma$ contains a member Q_{2} which is singular at $P_{0} . Q_{2}$ is of the form as

$$
\left\{m_{1}{ }^{\prime} x_{1}+m_{2} x_{2}+q_{2}=0\right\}
$$

where $m_{1}{ }^{\prime}$ and m_{2} (resp. q_{2}) are linear forms (resp. is a quadratic form) of $x_{3} \sim x_{6}$. γ also contains a member Q^{\prime} which is singular at P_{1}. If Q_{1}, Q_{2} and Q^{\prime} generate γ, then X^{\prime} contains the plane P, a contradiction to the factoriality and $F\left(X^{\prime}\right)=1$. Hence Q^{\prime} is contained in the pencil generated by Q_{1} and Q_{2}. So $m_{1}{ }^{\prime}=p m_{1}$ for some $p \in \mathbb{C}$ and

$$
Q=\left\{-p m_{0} x_{0}+m_{2} x_{2}+\left(q_{2}-p q_{1}\right)=0\right\} .
$$

Since X^{\prime} does not contain P as noted above, γ contains a member Q_{3} of the form as in the statement. Q_{3} is not contained in the pencil generated by Q_{1} and Q_{2} and hence Q_{i} 's generate γ.

Conversely let $X^{\prime}:=Q_{1} \cap Q_{2} \cap Q_{3}$, where Q_{i} is of the form as above and m_{i}, q_{i} and l_{i} are suitably general. We can easily check that X^{\prime} satisfies (2) and (3). Set $V:=Q_{1} \cap Q_{2}$. We may assume that V satisfies the condition of Claim 1. Hence by Claim 1, X^{\prime} is factorial.
Step 2 for [1]. Let $\nu^{\prime}: \tilde{X}^{\prime} \rightarrow X^{\prime}$ be the composition of the blowing ups at $P_{0} \sim P_{N-2}$ and F_{i}^{\prime} the exceptional divisor over P_{i}. Let $\mu^{\prime}: \hat{X}^{\prime} \rightarrow \tilde{X}^{\prime}$ be the blowing up along the strict transform \tilde{C} of C and F^{\prime} the μ^{\prime}-exceptional divisor. We will denote the strict transforms of the two fibers of $F_{i} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ through $F_{i} \cap \tilde{C}$ by $l_{i j}(j=1,2)$. Note that $-K_{\hat{X}^{\prime}}, l_{i j}=0$. We can easily see that $\left|-K_{\hat{X}},\right|$ is free by $P \cap X^{\prime}=C$, where P is the plane spanned by C and $-K_{\hat{X}^{\prime}}$ is big. Hence $l_{i j}$'s are flopping curves on \hat{X}^{\prime} and we can see that the classes of $l_{i 1}$ and $l_{i 2}$ belong to the same ray. Let $\hat{X}^{\prime} \rightarrow \hat{X}^{\prime}+$ be the flop. Then the strict transforms of $F_{i}^{\prime \prime}$ s on $\hat{X}^{\prime+}$ are \mathbb{P}^{2} 's and we can contract them to $\frac{1}{2}(1,1,1)$-singularities. Let $g^{\prime}: \hat{X}^{\prime+} \rightarrow Y^{\prime}$ be the contraction morphism, $f^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ the natural morphism and E^{\prime} the strict transform of F^{\prime}.

We will see that $\left|-K_{Y^{\prime}}-E^{\prime}\right| \neq \phi$. Let $F^{\prime+}$ be the strict transform of F^{\prime} on $\hat{X}^{\prime+}$. Then $-K_{\hat{X}^{\prime}}+-F^{\prime+}=g^{\prime *}\left(-K_{Y^{\prime}}-E^{\prime}\right)$. Furthermore $h^{0}\left(-K_{\hat{X}^{\prime+}}-F^{\prime+}\right)=$
$h^{0}\left(-K_{\hat{X}^{\prime}}-F^{\prime}\right)$. Hence it suffices to prove that $h^{0}\left(-K_{\hat{X}^{\prime}} \mid F^{\prime}\right) \leq 3$ since $h^{0}\left(-K_{\hat{X}^{\prime}}\right)=$ 4. Since there is a smooth member of $\left|-K_{\tilde{X}^{\prime}}\right|$, we have $\mathcal{N}_{\tilde{\mathcal{C}} / \bar{X}^{\prime}} \simeq \mathcal{O}(-1) \oplus \mathcal{O}(-2)$. Hence $F^{\prime} \simeq \mathbb{F}_{1}$ and $-\left.K_{\hat{X}^{\prime}}\right|_{F^{\prime}} \sim C_{0}+l$, where C_{0} is the minimal section of F^{\prime} and l is a fiber of F^{\prime}. So we are done.

Step 3 for [1]. Since Y^{\prime} has only $\frac{1}{2}(1,1,1)$-singularities and $-K_{Y}$, is nef and big, we can construct a similar diagram $Y_{0}^{\prime}:=Y^{\prime} \rightarrow Y_{1}{ }^{\prime} \ldots Y_{i}^{\prime} \rightarrow Y_{i+1}{ }^{\prime} \ldots Y:=$ $Y_{l}^{\prime} \xrightarrow{f} X$ to 0.3 by considering extremal rays, where $Y_{i}^{\prime} \xrightarrow{\prime} Y_{i+1}{ }^{\prime}$ is a flop or a flip for $i=0$ and a flip for $i \geq 1$. Let \vec{E}_{i} (resp. E) be the strict transform of \tilde{E} on Y_{i}^{\prime} (resp. Y). Let R_{i} be the extremal ray which is other than the ray associated to f^{\prime} for $i=0$ or the $K_{Y_{i}}$-negative extremal ray for $i \geq 1$. By similar calculations to 0.3 , we have

$$
\begin{gather*}
\left(-K_{Y}\right)^{2} E=1+\sum a_{i}^{\prime} d_{i}^{\prime} \tag{1}\\
\left(-K_{Y}\right) E^{2}=-2-\sum{a_{i}^{\prime}}^{\prime 2} d_{i}^{\prime} ; \\
E^{3}=-6+\sum{a_{i}}^{\prime 3} d_{i}^{\prime}+e^{\prime},
\end{gather*}
$$

where $e^{\prime}, a_{i}{ }^{\prime}$ and $d_{i}{ }^{\prime}$ are similarly defined to 0.3 with respect to $-K_{Y_{i}{ }^{\prime}}$ and \tilde{E}_{i} and furthermore we can see that $a_{i}{ }^{\prime}$ is a non negative integer.
Claim 3. $\tilde{E}_{i} \cdot R_{i}<0$.
Proof. We can prove the assertion by induction. For $i=0, \tilde{E}_{0} \cdot R_{0}<0$ can be directly checked. Assume that the assertion holds for the numbers less than i. So the other extremal ray than R_{i} is positive for \tilde{E}_{i}. Since $-K_{Y_{i}^{\prime}}$ is free outside a finite number of curves, $-\left.K_{Y_{i}}\right|_{\bar{E}_{i}}$ is numerically equivalent to an effective 1-cycle. Hence by $-K_{Y_{i}^{\prime}} \tilde{E}_{i}^{2} \leq-K_{Y}, \tilde{E}^{2}=-2$, we have $\tilde{E}_{i} \cdot R_{i}<0$.

By this claim, we know that f is an divisorial contraction whose exceptional divisor is E. If f is a crepant divisorial contraction, then $l=0$. But $\left(-K_{Y^{\prime}}\right)^{2} \tilde{E}=1$, a contradiction. Hence f is a K_{Y}-negative contraction. Assume that f is (2,1)type which contracts E to a curve C^{\prime}. Then $\left(-K_{X} \cdot C^{\prime}\right)=\left(-K_{Y}+E\right)\left(-K_{Y}\right) E=$ $-1-\sum d_{i}{ }^{\prime} a_{i}{ }^{\prime}\left(a_{i}{ }^{\prime}-1\right)<0$, a contradiction since X is a \mathbb{Q}-Fano 3 -fold.

By the classification of a (2,0)-type contraction from a 3 -fold with only index 2 terminal singularities (see Appendix), if f is such an contraction, then we have $-K_{Y} E^{2} \geq-2$. On the other hand $-K_{Y} E^{2} \leq-K_{Y}, \tilde{E}^{2}=-2$. Hence there is no flip. So $\left(-K_{Y}\right)^{2} E=\left(-K_{Y}\right)^{2} \tilde{E}=1$ and hence again by the classification of a contraction as above, f is the blow up at a $\frac{1}{2}(1,1,1)$-singularity or the weighted blow up at a QODP with weight $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\right)$ (we use the coordinate as stated in the definition of QODP). In any case X is a \mathbb{Q}-Fano 3 -fold with $I(X)=2$. We can easily check that $\left(-K_{X}\right)^{3}=4$ and aw $(X)=4$. Furthermore by this, $F(X)$ must be $\frac{1}{2}$. So X is what we want.
[2].

HIROMICHI TAKAGI

Step 1 for [2]. The Grassmannian $G(2,5)$ (parameterizing 2-dimensional subspaces of 5 -dimensional vector space) can be embedded into \mathbb{P}^{9} by the Plücker embedding. Its defining equations are $x_{i j} x_{k l}-x_{i k} x_{j l}+x_{j k} x_{i l}=0$ for all $1 \leq$ $i<j<k<l \leq 5$, where $x_{p q}(1 \leq p<q \leq 5)$ is a Plücker coordinate. Let Q be the point defined by $x_{p q}=0$ for any $(p, q) \neq(1,2)$. Let l_{1} (resp. l_{2}) be the line $\subset G(2,5)$ defined by $x_{p q}=0$ for any $(p, q) \neq(1,2),(1,3)$ (resp. $(p, q) \neq(1,2),(2,4))$. Let l_{3} be the line $\subset G(2,5)$ defined by the equations $x_{p q}=r_{p q} x_{12}$ for $(p, q) \neq(1,2)$ such that $r_{34}=r_{35}=r_{45}=0, r_{13} r_{24}-r_{23} r_{14}=0$, $r_{13} r_{25}-r_{23} r_{15}=0, r_{14} r_{25}-r_{24} r_{15}=0$ and $r_{15} r_{25} \neq 0$. Let H be the 3 -plane spanned by l_{1}, l_{2} and l_{3}. Then $G(2,5) \cap H=l_{1} \cup l_{2} \cup l_{3}$. Hence by [MM3, Proposition 6.8], there are two hyperplane H_{1}, H_{2} and a quadric Q such that $X^{\prime}:=G(2,5) \cap H_{1} \cap H_{2} \cap Q$ is smooth and X^{\prime} contains l_{1}, l_{2} and l_{3}. Since the tangent space of X^{\prime} at Q also contains all the lines on X^{\prime} through Q, it is equal to H. Hence there are only three lines on X^{\prime} through Q.
Step 2 for [2]. Let $f^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ be the blow up at Q and E^{\prime} the exceptional divisor. Let $l_{1}{ }^{\prime}, l_{2}{ }^{\prime}$ and $l_{3}{ }^{\prime}$ be the transforms of l_{1}, l_{2} and l_{3} on Y^{\prime}. Since $\mathrm{Bs}\left|-K_{Y^{\prime}}\right|=$ $l_{1}{ }^{\prime} \cup l_{2}{ }^{\prime} \cup l_{3}{ }^{\prime}$, the rank of the natural map $H^{0}\left(-K_{Y^{\prime}}\right) \rightarrow H^{0}\left(\mathcal{O}\left(-\left.K_{Y^{\prime}}\right|_{E^{\prime}}\right)\right)$ is 3 . Hence there is a unique member \tilde{E} of $\left|-K_{Y^{\prime}}-E^{\prime}\right|$ since $h^{0}\left(-K_{Y^{\prime}}\right)=4$.
Step 3 for [2]. Since $\left|-K_{Y^{\prime}}+E^{\prime}\right|$ is free and $-K_{Y^{\prime}}+E^{\prime}$ is numerically trivial only for $l_{1}{ }^{\prime}, l_{2}{ }^{\prime}$ and $l_{3}{ }^{\prime}$ and positive for a curve in E^{\prime}, they are numerically equivalent and span an extremal ray R of $\overline{\mathrm{NE}}\left(Y^{\prime}\right)$. Since $\mathrm{Bs}\left|-K_{Y^{\prime}}\right|=l_{1}{ }^{\prime} \cup l_{2}{ }^{\prime} \cup l_{3}{ }^{\prime}$ and $-K_{Y^{\prime}} \cdot l_{i}{ }^{\prime}<0$, Supp $R=l_{1}{ }^{\prime} \cup l_{2}{ }^{\prime} \cup l_{3}{ }^{\prime}$. Furthermore by $\mathrm{Bs}\left|-K_{Y^{\prime}}\right|=l_{1}{ }^{\prime} \cup l_{2}{ }^{\prime} \cup l_{3}{ }^{\prime}$ again, there is a smooth anti-canonical divisor D ([MM3, Proposition 6.8]). Hence the contraction of $l_{1}{ }^{\prime}, l_{2}{ }^{\prime}$ and $l_{3}{ }^{\prime}$ is a log flopping contraction for the pair $\left(Y^{\prime}, D\right)$ and the log flop exists. Let $Y^{\prime} \rightarrow Y_{0}^{\prime}$ be the \log flop. Since $D . l_{i}^{\prime}=-1$, the normal bundle of $l_{i}{ }^{\prime}$ is of type $(-1,-2)$. Hence Y_{0}^{\prime} has three $\frac{1}{2}(1,1,1)$-singularities. Since $-K_{Y_{0}^{\prime}}$ is nef and big, we can construct a similar diagram $Y_{0}^{\prime} \rightarrow Y_{1}^{\prime} \rightarrow \ldots Y_{i}^{\prime} \rightarrow Y_{i+1}^{\prime} \ldots Y:=Y_{l}^{\prime} \xrightarrow{f} X$ to Lemma 3.2 by considering extremal rays, where $Y_{i}^{\prime} \rightarrow Y_{i+1}^{\prime}$ is a flop or a flip for $i=0$ and a flip if $i \geq 1$. Let \tilde{E}_{i} be the strict transform of \tilde{E} on Y_{i}^{\prime}.

Similarly to Step 3 for [1], we can see that f is the blow up at a $\frac{1}{2}(1,1,1)$ singularity or the weighted blow up at a QODP with weight ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1$). In any case X is a \mathbb{Q}-Fano 3 -fold with $I(X)=2$. Since $\left(-K_{X}\right)^{3}=4$ and $N=4, F(X)$ must be $\frac{1}{2}$. So X is what we want.

Appendix

In this appendix, we give the table of a (2,0)-type contraction from a 3 -fold with only index 2 terminal singularities.

Proposition. Let X be a 3 -fold with only index 2 terminal singularities and f : $X \rightarrow(Y, Q)$ a contraction of (2,0)-type to a germ (Y, Q) which contracts a prime divisor E to Q. Then the following holds:
(1) Assume that E contains no index 2 point. Then one of the following holds:

$$
(2,0)_{1}:\left(E,-\left.E\right|_{E}\right) \simeq\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right) \text { and } Q \text { is a smooth point }
$$

$(2,0)_{2}:\left(E,-\left.E\right|_{E}\right) \simeq\left(\mathbb{P}^{\mathbf{1}} \times \mathbb{P}^{1},\left.\mathcal{O}_{\mathbb{P}^{3}}(1)\right|_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right)$ and $(Y, Q) \simeq\left(\left((x y+z w=0) \subset \mathbb{C}^{4}\right), o\right) ;$

Q-FANO 3-FOLDS

$(2,0)_{3}:\left(E,-\left.E\right|_{E}\right) \simeq\left(\mathbb{F}_{2,0},\left.\mathcal{O}_{\mathbb{P}^{3}}(1)\right|_{\mathbb{F}_{2,0}}\right)$ and $(Y, Q) \simeq\left(\left(\left(x y+z^{2}+w^{k}=0\right) \subset \mathbb{C}^{4}\right), o\right)(k \geq 3) ;$
$(2,0)_{4}:\left(E,-\left.E\right|_{E}\right) \simeq\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(2)\right)$ and Q is a $\frac{1}{2}(1,1,1)$-singularity.
Furthermore for all cases, f is the blow up of Q.
(2) Assume that E contains an index 2 point. Then one of the following holds:
$(2,0)_{5}:\left(E,-\left.E\right|_{E}\right) \simeq\left(\mathbb{F}_{2,0}, l\right)$, where l is a ruling of $\mathbb{F}_{2,0}$.
Q is a smooth point and f is a weighted blow up with weight $(2,1,1)$.
In particular we have $K_{X}=f^{*} K_{Y}+3 E$;
$(2,0)_{6}: K_{X}=f^{*} K_{Y}+E$ and Q is a Gorenstein singular point. $E^{3}=\frac{1}{2} ;$
$(2,0)_{7}: K_{X}=f^{*} K_{Y}+E$ and Q is a Gorenstein singular point. $E^{3}=1 ;$
$(2,0)_{8}: K_{X}=f^{*} K_{Y}+E$ and Q is a Gorenstein singular point. $E^{3}=\frac{3}{2} ;$
$(2,0)_{9}: K_{X}=f^{*} K_{Y}+E$ and Q is a Gorenstein singular point. $E^{3}=2 ;$

$$
\begin{aligned}
&(2,0)_{10}:\left(E,-\left.E\right|_{E}\right) \simeq\left(\left(\left\{x y+w^{2}=0\right\} \subset \mathbb{P}(1,1,2,1)\right), \mathcal{O}(2)\right) \\
&(Y, Q) \simeq\left(\left(\left(x y+z^{k}+w^{2}=0\right) \subset \mathbb{C}^{4} / \mathbb{Z}_{2}(1,1,0,1)\right), o\right) . \\
& f \text { is a weighted blow up with a weight }\left(\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}\right) .
\end{aligned}
$$

In particular we have $K_{X}=f^{*} K_{Y}+\frac{1}{2} E$;

$$
(2,0)_{11}:\left(E,-\left.E\right|_{E}\right) \simeq\left(\mathbb{F}_{2,0}, 3 l\right)
$$

Q is a $\frac{1}{3}(2,1,1)$-singularity and f is a weighted blow up with a weight $\frac{1}{3}(2,1,1)$.

$$
\text { In particular we have } K_{X}=f^{*} K_{Y}+\frac{1}{3} E \text {; }
$$

HIROMICHI TAKAGI

References

[Al] S. Altinok, Graded rings corresponding to polarized K3 surfaces and Q-Fano 3-folds, Univ. of Warwick, ph.D. thesis.
[CF] F. Campana and H. Flenner, Projective threefolds containing a smooth rational surface with ample normal bundle, J. reine angew. Math 440 (1993), 77-98.
[Fl] A. R. Fletcher, Working with weighted complete intersections, preprint (1989), MaxPlank Institute.
[Fu1] T. Fujita, On the structure of polarized manifolds with total deficiency one, part I, J. Math. Soc. of Japan 32 (1980), 709-725.
[Fu2] __, On the structure of polarized manifolds with total deficiency one, part II, J. Math. Soc. of Japan 33 (1981), 415-434.
[Fu3] - On the structure of polarized manifolds with total deficiency one, part III, J. Math. Soc. of Japan 36 (1984), 75-89.
[G] A. Grothandieck, Cohomologie Local des Faisceaux Cohérant et Théorème de Lefschetz Locaux et Globaux - SGA2 (1968), North Holland.
[H] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Mathematics 156 (1970), Springer-Verlag.
[I1] V. A. Iskovskih, Fano 3-folds 1, Izv. Akad. Nauk SSSR Ser. Mat 41 (1977), 516-562, English transl. in Math. USSR Izv. 11 (1977), 485-527.
[I2] , Fano 3-folds 2, Izv. Akad. Nauk SSSR Ser. Mat 42 (1978), 506-549, English transl. in Math. USSR Izv. 12 (1978), 469-506.
[I3] _, Anticanonical models of three-dimensional algebraic varieties, Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki 12 (1979), 59-157, English transl. in J. Soviet. Math. 13 (1980), 745-814.
[I4] , Double projection from a line on Fano threefolds of the first kind, English transi. in Math. USSR Sbornik 66 (1990) 265-284.
[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Adv. St. Pure Math. 10 (1987), 287-360.
[Mi1] T. Minagawa, Deformations of \mathbb{Q}-Calabi-Yau 3-folds and \mathbb{Q}-Fano 3-folds of Fano index 1, J. Math. Sci. Univ. Tokyo 6 (1999), 397-414.
[Mi2] , Deformations of weak Fano 3-folds with only terminal singularities, preprint (1999).
[Mu] S. Mukai, New development of the theory of Fano threefolds: Vector bundle method and moduli problem, Sugaku 47 (1995), 125-144.
[MM1] S. Mori and S. Mukai, Classification of Fano 3-folds with $B_{2} \geq 2$, Manuscripta Math. 36 (1981), 147-162.
[MM2] , On Fano 3-folds with $B_{2} \geq 2$, Algebraic and Analytic Varieties, Adv. Stud. in Pure Math. 1 (1983), 101-129.
[MM3] , Classification of Fano 3-folds with $B_{2} \geq 2, I$, to the memory of Dr. Takehiko MIYATA, Algebraic and Topological Theories, 1985, pp. 496-545.
[RM1] M. Reid, The moduli space of 3 -folds with $K \equiv 0$ may nevertheless be irreducible, Math. Ann. 278 (1987), 329-334.
[RM2] __, Graded rings over K3s, preprint (1996).
[San1] T. Sano, On classification of non-Gorenstein \mathbb{Q}-Fano 3-folds of Fano index 1, J. Math. Soc. Japan 47, No 2 (1995), 369-380.
[San2] _- Classification of non-Gorenstein Q-Fano d-folds of Fano index greater than d-2, Nagoya Math. J 142 (1996), 133-143.
[Sh1] V.V.Shokurov, Smoothness of the general anticanonical divisor on a Fano 3-fold, Izv. Akad. Nauk SSSR Ser. Mat 43 (1979) 430-441, English transi. in Math. USSR Izv. 14 (1980), 395-405.
[Sh2] _, The existence of a straight line on Fano 3-folds, Izv. Akad. Nauk SSSR Ser. Mat 43 (1979) 921-963, English transl. in Math. USSR Izv. 15 (1980), 173-209.
[T1] K. Takeuchi, Some birational maps of Fano 3-folds, Compositio Math. 71 (1989), 265283.
[T2] ——, Del Pezzo fiber spaces whose total spaces are weak Fano 3-folds, in Japanese, Proceedings, Hodge Theory and Algebraic Geometry, 1995 in Kanazawa Univ. (1996), 84-95.

Q-FANO 3-FOLDS

[T3]
a private letter to the author.
RIMS, Kyoto University, Kitashirakawa, Sakyo-ku, 606-8502 Kyoto, Japan
E-mail address: takagi@kurims.kyoto-u.ac.jp

