ON CLASSIFICATION OF Q-FANO 3-FOLDS OF GORENSTEIN INDEX 2 AND FANO INDEX $\frac{1}{2}$

HIROMICHI TAKAGI

Notation and Conventions.

 \sim linear equivalence

 \equiv numerical equivalence

ODP ordinary double point, i.e., singularity analytically isomorphic to $\{xy + z^2 + u^2 = 0 \subset \mathbb{C}^4\}$

QODP singularity analytically isomorphic to $\{xy+z^2+u^2=0 \subset \mathbb{C}^4/\mathbb{Z}_2(1,1,1,0)\}$ \mathbb{F}_n Hirzebruch surface of degree n

 $\mathbb{F}_{n,0}$ surface which is obtained by the contraction of the negative section of \mathbb{F}_n Q_3 smooth 3-dimensional quadric.

 B_i $(1 \le i \le 5)$ Q-factorial Gorenstein terminal Fano 3-fold of Fano index 2, and with Picard number 1 and $(-K)^3 = 8i$, where K is the canonical divisor

 A_{2i} $(1 \le i \le 11 \text{ and } i \ne 10)$ Q-factorial Gorenstein terminal Fano 3-fold of Fano index 1, and with Picard number 1 and $(-K)^3 = 2i$

contraction of (m, n)-type extremal contraction whose exceptional locus has dimension m and the image of the exceptional locus has domension n

0. INTRODUCTION

In this article, we will work over \mathbb{C} , the complex number field.

Definition 0.0 (Q-Fano variety). Let X be a normal projective variety. We say that X is a Q-Fano variety (resp. weak Q-Fano variety) if X has only terminal singularities and $-K_X$ is ample (resp. nef and big).

Let $I(X) := \min\{I | IK_X \text{ is a Cartier divisor}\}$ and we call I(X) the Gorenstein index of X.

Write $I(X)(-K_X) \equiv r(X)H(X)$, where H(X) is a primitive Cartier divisor and $r(X) \in \mathbb{N}$. (Note that H(X) is unique since $\operatorname{Pic} X$ is torsion free.) Then we call $\frac{r(X)}{I(X)}$ the Fano index of X and denote it by F(X).

Remark 0.1.

- We can allow that a Q-Fano variety or a weak Q-Fano variety has worse singularities than terminal. When we have to treat such a variety in this paper, we indicate singularities which we allow, e.g., 'a Q-Fano 3-fold with only canonical singularities';
- (2) if X is Gorenstein in Definition 0.0, we say that X is a Fano variety (resp. a weak Fano variety).

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

1

Key words and phrases. Q-Fano 3-fold, Extremal contraction.

Mathematics Subject Classification. Primary : 14J45. Secondary : 14N05, 14M20.

For the classification theory of varieties, a \mathbb{Q} -factorial \mathbb{Q} -Fano variety with Picard number 1 is important because it is an output of the minimal model program. Here we mention the known result about the classification of \mathbb{Q} -Fano 3-folds:

- G. Fano started the classification of smooth Fano 3-folds and it was completed by V. A. Iskovskih [I1] ~ [I4], V. V. Shokurov [Sh1], [Sh2], T. Fujita [Fu1] ~ [Fu3], S. Mori and S. Mukai [MM1] ~ [MM3];
- (2) S. Mukai [Mu] classified indecomposable Gorenstein Fano 3-folds with canonical singularities by using vector bundles;
- (3) T. Sano [San1] and independently F. Campana and H. Flenner [CF] classified non Gorenstein Fano 3-folds of Fano indices > 1;
- (4) T. Sano [San2] classified non Gorenstein Fano 3-folds of Fano indices 1 and with only cyclic quotient terminal singularities. Recently T. Minagawa [Mi1] proved that non Gorenstein Q-Fano 3-folds with Fano indices 1 can be deformed to one with only cyclic quotient terminal singularities;
- (5) A. R. Fletcher [Fl] gave the classification of Q-Fano 3-folds which are weighted complete intersections of codimension 1 or 2. Recently S. Altinok [Al] (see also [RM2]) obtained a list of Q-Fano 3-folds which are subvarieties in a weighted projective space of codimension 3 or 4.

On the other hand K. Takeuchi [T1] simplified and amplified V. A. Iskovskih 's method of classification by using the theory of the extremal ray. In particular he reproved the Shokurov's theorem [Sh2], the existence of lines on a smooth Fano 3-fold of Fano index 1 and with Picard number 1 by simple numerical calculations.

We formulate a slight generalization of Takeuchi's construction for a Q-factorial Q-Fano 3-fold X with $\rho(X) = 1$ and give a classification of a Q-factorial Q-Fano 3-fold with the following properties:

Main Assumption 0.2.

- (1) $\rho(X) = 1;$
- (2) I(X) = 2;
- (3) $F(X) = \frac{1}{2};$
- (4) $h^0(-K_X) \ge 4;$
- (5) there exists an index 2 point P such that

$$(X, P) \simeq (\{xy + z^2 + u^a = 0\}/\mathbb{Z}_2(1, 1, 1, 0), o)$$

for some $a \in \mathbb{N}$.

Takeuchi's construction 0.3. Here we explain a slight generalization of Takeuchi's construction. Let X be a Q-factorial Q-Fano 3-fold with $\rho(X) = 1$. Suppose that we are given a birational morphism $f: Y \to X$ with the following properties:

- (1) Y is a weak \mathbb{Q} -Fano 3-fold;
- (2) f is an extremal divisorial contraction such that f-exceptional locus E is a prime Q-Cartier divisor.

Then we obtain the following diagram:

where

- (1) $Y_0 \rightarrow Y_1$ is a flop or a flip and $Y_i \rightarrow Y_{i+1}$ is a flip for $i \ge 1$;
- (2) f' is a crepant divisorial contraction (in this case, i = 0) or an extremal contraction which is not isomorphic in codimension 1.

We use the following notation:

 $\begin{array}{l} Y' := Y_k;\\ E_i := \text{ the strict transform of } E \text{ on } Y_i;\\ \tilde{E} := \text{ the strict transform of } E \text{ on } Y';\\ e := E^3 - E_1{}^3 \text{ if } Y_0 \dashrightarrow Y_1 \text{ is a flop or } := 0 \text{ otherwise};\\ d_i := (-K_{Y_i})^3 - (-K_{Y_{i+1}})^3 \text{ (resp. } a_i := \frac{E_i.l_i}{(-K_{Y_i}).l_i}) \text{ if } Y_i \dashrightarrow Y_{i+1} \text{ is a flip, where} \end{array}$

 l_i is a flipping curve, or := 0 (resp. := 0) otherwise;

z and u is defined as follows:

If f' is birational, then let E' be the exceptional divisor of f' and set $E' \equiv z(-K_{Y'}) - u\tilde{E}$ or if f' is not birational, then let L be the pull back of an ample generator of PicX' and set $L \equiv z(-K_{Y'}) - u\tilde{E}$.

We note the following:

(1)

$$(-K_{Y'})^2\tilde{E}=(-K_Y)^2E-\sum a_id_i;$$

$$(-K_{Y'})\tilde{E}^2 = (-K_Y)E^2 - \sum a_i^2 d_i;$$

$$\tilde{E}^3 = E^3 - e - \sum a_i{}^3d_i;$$

(2) On the other hand the value or the relation of the value (expressed with z and u) of $(-K_{Y'})^3$, $(-K_{Y'})^2 \tilde{E}$, $(-K_{Y'})\tilde{E}^2$ and \tilde{E}^3 are restricted by the properties of f'.

By these (1) and (2), we obtain equations of Diophantine type.

Under Main Assumption 0.2, Construction 0.3 works for a suitable choice of f and we can solve the equations as noted above.

Main Theorem. Let X be as in Main Assumption 0.2. Let $f : Y \to X$ be the weighted blow up at P with weight $\frac{1}{2}(1,1,1,2)$. Then Y is a weak Q-Fano 3-fold.

Consider the diagram as in 0.3. Let $h := h^{\odot}(-K_X)$, N := aw(X) and $n := \sum aw(Y_i, P_{ij})$ (the summation is taken over the index 2 points on flipping curves), where aw(X) is the number of $\frac{1}{2}(1, 1, 1)$ -singularities which we obtain by deforming non Gorenstein points of X locally and $aw(Y_i, P_{ij})$ is defined similarly. Then we can solve the equations above and obtain a geographic classification of X as below (? in the table means that we don't know the existence of an example) :

h	= 4					
$(-K_X)^3$	N	e	n	z	$(-K_{Y'}.C)$	f', X'
$\frac{5}{2}$	1	15	0	1	/	$(2,0)_4, (-K_{X'})^3 = \frac{5}{2}, I(X') = 2$
52	1	/	/	1	/	crep. div., $(-K_{X'})^3 = 2$, $I(X') = 1$
3	2	12	0	1	1	$(2,0)_8, A_4$
$\frac{7}{2}$	3	10	0	1	1	$(2,1), A_6$
4	4	8	0	1	2	$(2,1), A_8$
4	4	9	3	1	1	$(2,0)_1, A_{10}$
$?\frac{9}{2}$	5	6	0	1	3	$(2,1), A_{10}$
$?\frac{9}{2}$	5	8	3	1	1	$(2,0)_5, A_{16}$
$?\frac{9}{2}$	5	9	0	2	1	$(3,1), \deg F = 6$
?5	6	4	0	1	4	$(2,1), A_{12}$

z = u if f' is not a crepant divisorial contraction. u = 2 if f' is a crepant divisorial contraction. F := a general fiber of f' if f' is (3, 1)-type. See Appendix for $(2, 0)_i$.

g(C) = 0 in case f' is of type E_1 and every singularity of Y is a $\frac{1}{2}(1,1,1)$ -singularity.

= 5					_	
N	e	n	z	$\operatorname{deg}\Delta$	deg F	f', X'
1	9	0	1	/	3	(3, 1)
2	8	1	1	/	4	(3,1)
3	7	2	1	/	5	(3,1)
3	8	0	2	8		$(3,2), \mathbb{F}_{2,0}$
4	7	1	2	6	/	$(3,2), \mathbb{F}_{2,0}$
4	6	3	1	/	6	(3,1)
5	6	2	2	4	/	$(3,2),\mathbb{F}_{2,0}$
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

$$z = u$$
.

 $\Delta :=$ the discriminant divisor of f' if f' is (3, 2)-type. F := a general fiber of f' if f' is (3, 1)-type.

n =	= h						
$(-K_X)^3$	N	e	n	z	$deg \Delta$	$(-K_{Y'}.C)$	f', X'
$\frac{13}{2}$	1	7	0	1	7	/	$(3,2),\mathbb{P}^2$
7	2	7	0	4	/	35	(2,1),[5]
?7	2	6	1	1	6	/	$(3,2), \mathbb{P}^2$
$\frac{15}{2}$	3	7	0	2	/	9	(2,1), [2], I(X') = 2
$\frac{15}{2}$	3	6	1	4	/	30	(2,1),[5]
$?\frac{15}{2}$	3	5	2	1	5	/	$(3,2), \mathbb{P}^2$
?8	4	4	3	1	4	/	$(3,2),\mathbb{P}^2$
$?\frac{17}{2}$	5	3	4	1	3	/	$(3,2),\mathbb{P}^{2}$

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T.Sano in [San2].

h =	= 7					
$(-K_X)^3$	N	e	n	z	$(-K_{Y'}.C)$	f', X'
$\frac{17}{2}$	1	6	0	3	36	$(2,1), \mathbb{P}^3$
9	2	6	0	2	18	(2,1),[3]
9	2	5	1	3	32	$(2,1), \mathbb{P}^3$
$\frac{19}{2}$	3	5	1	2	15	(2,1),[3]
$\frac{19}{2}$	3	4	2	3	28	$(2,1), \mathbb{P}^3$

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T.Sano in [San2].

u = z + 1.

<i>h</i> .=	= 8					
$(-K_X)^3$	N	e	n	z	$(-K_{Y'}.C)$	f, X'
$\frac{21}{2}$	1	6	0	1	6	$(2,1), \overline{B_3}$
$\frac{21}{2}$	1	5	0	2	27	$(2,1), Q_3$
11	2	4	1	2	24	$(2,1), Q_3$

u = z + 1.

<i>h</i> =	= 9						
$(-K_X)^3$	N	e	n	z	u	$(-K_{Y'}.C)$	f',X'
$\frac{\frac{25}{2}}{2}$	1	5	0	1	2	10	$(2,1), B_4$

h =	: 10					
$(-K_X)^3$	N	e	n	$\deg\Delta$	$(-K_{Y'}.C)$	f', X'
$\frac{29}{2}$	1	4	0	/	14	$(2,1), B_5$
$\frac{29}{2}$	1	6	0	0	1	$(3,2), \mathbb{P}^2$
15	2	3	1	/	12	$(2,1), B_5$

z	===	1	and	u	=	2 .
~		-		~		~ ~ ~

In particular we have $(-K_X)^3 \leq 15$ and $h^0(-K_X) \leq 10$.

Based on this result, we can derive the following properties for X as in the main theorem:

Theorem A. if any index 2 point satisfies the assumption (5) of 0.2, then $|-K_X|$ has a member with only canonical singularities.

So the general elephant conjecture by M. Reid is affirmative for such an X.

Theorem B. Let X be a Q-factorial Q-Fano 3-fold with $(1)\sim(4)$ of 0.2. Let N := aw(X). Then if N > 1 (resp. N = 1), X can be transformed to a Q-factorial Q-Fano 3-fold \tilde{Z}' with $(1)\sim(4)$ of 0.2 and with only QODP's or $\frac{1}{2}(1,1,1)$ -singularities as its singularities and $h^0(-K_{\tilde{Z}'}) = h$ and $aw(\tilde{Z}') = N - 1$ (resp. a smooth Fano 3-fold \tilde{Z}' with $\rho(\tilde{Z}') = 1$, $F(\tilde{Z}') = 1$ and $h^0(-K_{\tilde{Z}'}) = h$) as follows:

where $* \xrightarrow{def} **$ means that ** is a small deformation of *;

 \tilde{X} is a Q-Fano 3-fold as in 0.2 and with only ODP's, QODP's or $\frac{1}{2}(1,1,1)$ -singularities as its singularities;

 $\tilde{f}: \tilde{Y} \to \tilde{X}$ is chosen as f in the main theorem; $\tilde{q}: \tilde{Y} \to \tilde{Z}$ be the anti-canonical model.

This is an analogue to the Reid's fantasy about Calabi-Yau 3-folds [RM1].

Theorem C. If any index 2 point is a $\frac{1}{2}(1,1,1)$ -singularity, X can be embedded into a weighted projective space $\mathbb{P}(1^h, 2^N)$, where $h := h^0(-K_X)$ and N is the number of $\frac{1}{2}(1,1,1)$ -singularities on X.

We hope that this fact can be used for the classification of Mukai's type (see [Mu]).

1. EXAMPLES

We consider the case that $h^0(-K_X) = 4$ and N = 4. By the table of the main theorem, there are two possibilities of X in this case. We assume that every singularity of Y is a $\frac{1}{2}(1, 1, 1)$ -singularity. Then one of the following holds:

[1]. f' is an extremal divisorial contraction which contracts a divisor E' to a curve C and $|-K_{Y'}-E'| \neq \phi$. X' is a (2,2,2)-complete intersection in \mathbb{P}^6 and satisfies the following properties:

- (1) X' is factorial;
- (2) C is a smooth conic;
- (3) X' has 3 singularities $P_0 \sim P_2$ on C and P_i is an ODP or the singularity analytically isomorphic to the origin of $\{xy + z^2 + w^3 = 0\} \subset \mathbb{C}^4$. Outside P_i 's, X' is smooth.

[2]. f' is blowing up at a smooth point Q := f'(E') and $|-K_{Y'} - E'| \neq \phi$. X' is smooth, isomorphic to A_{10} and there exist exactly three lines through the point Q.

We will construct examples for these cases by the following three steps:

Step 1. We construct X' satisfying the properties as stated as in [1] or [2];

Step 2. We construct f' satisfying the properties as stated as in [1] or [2];

Step 3. We construct $f: Y \to X$ as in the main theorem from Y'.

[1].

Step 1 for [1]. We construct X' with only ODP's.

Claim 1. Let V (resp. X') be a (2,2)-complete intersection in \mathbb{P}^6 (resp. a quadric section of V) with the following properties:

- (1) V (resp. X') contains a smooth conic C;
- (2) V (resp. X') has three ODP's $P_0 \sim P_2$ on C and outside P_i 's, V (resp. X') is smooth.

Then X' is factorial.

Proof. We claim that V contains the plane P spanned by C. Let σ be the pencil which consists of quadrics in \mathbb{P}^6 containing V. Since P_i is an ODP on V, there is a quadric in σ which is singular at P_i . If there is a quadric in σ which is singular at P_i . If there is a quadric in σ which is singular at all P_i 's, then it is singular on P and hence V is singular along C, a contradiction. So σ is generated by two quadrics which are singular at some P_i . But such quadrics contains P and hence V contains P.

Let $\nu : \tilde{V} \to V$ be the composition of the blowing ups at $P_0 \sim P_2$ and F_i the exceptional divisor over P_i . Let \tilde{X}' be the strict transform of X' on \tilde{V} and H the total transform of a hyperplane section of V. Then $\tilde{X}' \sim 2H - F_0 - F_1 - F_2$. Note that $|H - F_i - F_j|$ is free outside the strict transform l_{ij} of the line through P_i and P_j and $|H - F_k|$ is free (note that l_{ij} is contained in V since $l_{ij} \subset P$). By this, we can easily see that $|\tilde{X}'|$ is free and \tilde{X}' is numerically trivial only for l_{ij} 's ((i,j) = (0,1), (1,2), (2,0)).

Let ϕ be the morphism defined by $|\tilde{X}'|$. Then ϕ -exceptional curves are l_{ij} 's. We will prove that Leff (\tilde{V}, \tilde{X}') holds and \tilde{X}' meets every effective divisor on \tilde{V} . By [H, p.165, Proposition 1.1] and the argument of [H, p.172, the proof of Theorem 1.5], it suffices to prove that $cd(\tilde{V} - \tilde{X}') < 3$, i.e., for any coherent sheaf F on $\tilde{V} - \tilde{X}'$, $H^i(\tilde{V} - \tilde{X}', F) = 0$ for all $i \geq 3$. Let $\overline{V} := \phi(\tilde{V})$ and $\overline{X'} := \phi(\tilde{X}')$. Consider the Leray spectral sequence

$$E_2^{pq} = H^p(\overline{V} - \overline{X'}, R^q \phi'_* F) \Rightarrow E^{p+q} = H^{p+q}(\tilde{V} - \tilde{X'}, F),$$

where $\phi' := \phi|_{\tilde{V} - \tilde{X}'}$. Since $\overline{V} - \overline{X'}$ is affine and the dimension of every fiber of $\phi \leq 1$, we have $E_2^{pq} = 0$ for $p \geq 1$ or $q \geq 2$ whence $E^{p+q} = 0$ for $p+q \geq 2$. So the assertion follows.

Furthermore since \tilde{X}' is nef and big, $H^i(\tilde{V}, \mathcal{O}(-n\tilde{X}')) = 0$ for $n \ge 1$ and i = 1, 2 by KKV vanishing theorem. Hence by the Grothandieck-Lefschetz theorem [G, p.135, 3.18] (or [H, p.178, Theorem 3.1]), we have $\operatorname{Pic} \tilde{X}' \simeq \operatorname{Pic} \tilde{V} \simeq \mathbb{Z}^4$. So $\rho(\tilde{X}'/X') = 3$ which imply that X' is factorial. \Box

We will give a pair (V, X') satisfying the condition of Claim 1. Let C be a smooth conic in \mathbb{P}^6 and $P_0 \sim P_2$ three points on C. We can choose a coordinate of \mathbb{P}^6 such that $C = \{x_0x_1 + x_1x_2 + x_2x_0 = x_3 = x_4 = x_5 = x_6 = 0\}$ and $P_i = \{x_j = 0 \text{ for } j \neq i\}.$

Claim 2. Let X' be a (2, 2, 2)-complete intersection in \mathbb{P}^6 satisfying the following conditions:

- (1) X' is factorial;
- (2) X' contains a smooth conic C;
- (3) X' has three ODP's $P_0 \sim P_2$ on C and outside P_i 's, X' is smooth.

Then X' is the intersection of three quadrics $Q_1 \sim Q_3$ of the following forms by permuting P_i 's if necessary:

$$\begin{split} Q_1 &:= \{m_0 x_0 + m_1 x_1 + q_1 = 0\};\\ Q_2 &:= \{pm_1 x_1 + m_2 x_2 + q_2 = 0\};\\ Q_3 &:= \{x_0 x_1 + x_1 x_2 + x_2 x_0 + \sum_{i=3}^6 l_i x_i = 0\}, \end{split}$$

where $p \in \mathbb{C}$, m_i (resp. q_i) is a linear form (resp. a quadratic form) of $x_3 \sim x_6$ and l_i is a linear form of $x_0 \sim x_6$.

Conversely if $X' = Q_1 \cap Q_2 \cap Q_3$, where Q_i is of the form as above and m_i , q_i and l_i are suitably general, then X' satisfies $(1) \sim (3)$.

Proof. Let γ be the net which consists of quadrics containing X'. γ contains a member Q_1 which is singular at P_2 . Then Q_1 is of the form as above. If $m_1 = m_2 = 0$, then Q_1 is singular on the plane P spanned by C and hence X' is singular along C, a contradiction. Hence $m_1 \neq 0$ or $m_2 \neq 0$. By permuting P_1 and P_2 if necessary, we may assume that $m_1 \neq 0$. γ contains a member Q_2 which is singular at P_0 . Q_2 is of the form as

$$\{m_1'x_1 + m_2x_2 + q_2 = 0\},\$$

where m_1' and m_2 (resp. q_2) are linear forms (resp. is a quadratic form) of $x_3 \sim x_6$. γ also contains a member Q' which is singular at P_1 . If Q_1 , Q_2 and Q' generate γ , then X' contains the plane P, a contradiction to the factoriality and F(X') = 1. Hence Q' is contained in the pencil generated by Q_1 and Q_2 . So $m_1' = pm_1$ for some $p \in \mathbb{C}$ and

$$Q = \{-pm_0x_0 + m_2x_2 + (q_2 - pq_1) = 0\}.$$

Since X' does not contain P as noted above, γ contains a member Q_3 of the form as in the statement. Q_3 is not contained in the pencil generated by Q_1 and Q_2 and hence Q_i 's generate γ .

Conversely let $X' := Q_1 \cap Q_2 \cap Q_3$, where Q_i is of the form as above and m_i , q_i and l_i are suitably general. We can easily check that X' satisfies (2) and (3). Set $V := Q_1 \cap Q_2$. We may assume that V satisfies the condition of Claim 1. Hence by Claim 1, X' is factorial. \Box

Step 2 for [1]. Let $\nu': \tilde{X}' \to X'$ be the composition of the blowing ups at $P_0 \sim P_{N-2}$ and F_i' the exceptional divisor over P_i . Let $\mu': \hat{X}' \to \tilde{X}'$ be the blowing up along the strict transform \tilde{C} of C and F' the μ' -exceptional divisor. We will denote the strict transforms of the two fibers of $F_i \simeq \mathbb{P}^1 \times \mathbb{P}^1$ through $F_i \cap \tilde{C}$ by l_{ij} (j = 1, 2). Note that $-K_{\hat{X}'}.l_{ij} = 0$. We can easily see that $|-K_{\hat{X}'}|$ is free by $P \cap X' = C$, where P is the plane spanned by C and $-K_{\hat{X}'}$ is big. Hence l_{ij} 's are flopping curves on \hat{X}' and we can see that the classes of l_{i1} and l_{i2} belong to the same ray. Let $\hat{X}' \longrightarrow \hat{X}'^{\dagger}$ be the flop. Then the strict transforms of F_i' 's on $\hat{X'}^{\dagger}$ are \mathbb{P}^2 's and we can contract them to $\frac{1}{2}(1,1,1)$ -singularities. Let $g': \hat{X'}^{\dagger} \to Y'$ be the contraction morphism, $f': Y' \to X'$ the natural morphism and E' the strict transform of F'.

We will see that $|-K_{Y'}-E'| \neq \phi$. Let F'^+ be the strict transform of F' on $\hat{X'}^+$. Then $-K_{\hat{X'}^+}-F'^+=g'^*(-K_{Y'}-E')$. Furthermore $h^0(-K_{\hat{X'}^+}-F'^+)=$

 $h^0(-K_{\hat{X}'}-F')$. Hence it suffices to prove that $h^0(-K_{\hat{X}'}|_{F'}) \leq 3$ since $h^0(-K_{\hat{X}'}) = 4$. Since there is a smooth member of $|-K_{\hat{X}'}|$, we have $\mathcal{N}_{\hat{C}/\hat{X}'} \simeq \mathcal{O}(-1) \oplus \mathcal{O}(-2)$. Hence $F' \simeq \mathbb{F}_1$ and $-K_{\hat{X}'}|_{F'} \sim C_0 + l$, where C_0 is the minimal section of F' and l is a fiber of F'. So we are done.

Step 3 for [1]. Since Y' has only $\frac{1}{2}(1,1,1)$ -singularities and $-K_{Y'}$ is nef and big, we can construct a similar diagram $Y'_0 := Y' \to Y'_1 \dots Y'_i \to Y'_{i+1} \dots Y :=$ $Y'_i \xrightarrow{f} X$ to 0.3 by considering extremal rays, where $Y'_i \to Y'_{i+1}$ is a flop or a flip for i = 0 and a flip for $i \ge 1$. Let \tilde{E}_i (resp. E) be the strict transform of \tilde{E} on Y'_i (resp. Y). Let R_i be the extremal ray which is other than the ray associated to f'for i = 0 or the K_{Y_i} -negative extremal ray for $i \ge 1$. By similar calculations to 0.3, we have

(1)
$$(-K_Y)^2 E = 1 + \sum a_i' d_i';$$

(2)
$$(-K_Y)E^2 = -2 - \sum a_{i'}{}^2 d_i';$$

(3)
$$E^{3} = -6 + \sum a_{i}{}^{\prime 3}d_{i}{}^{\prime} + e^{\prime},$$

where e', a_i' and d_i' are similarly defined to 0.3 with respect to $-K_{Y_i'}$ and \tilde{E}_i and furthermore we can see that a_i' is a non negative integer.

Claim 3. $\tilde{E}_i R_i < 0$.

Proof. We can prove the assertion by induction. For i = 0, $\tilde{E}_0.R_0 < 0$ can be directly checked. Assume that the assertion holds for the numbers less than i. So the other extremal ray than R_i is positive for \tilde{E}_i . Since $-K_{Y_i'}$ is free outside a finite number of curves, $-K_{Y_i'}|_{\tilde{E}_i}$ is numerically equivalent to an effective 1-cycle. Hence by $-K_{Y_i'}\tilde{E}_i^2 \leq -K_{Y'}\tilde{E}^2 = -2$, we have $\tilde{E}_i.R_i < 0$. \Box

By this claim, we know that f is an divisorial contraction whose exceptional divisor is E. If f is a crepant divisorial contraction, then l = 0. But $(-K_{Y'})^2 \tilde{E} = 1$, a contradiction. Hence f is a K_Y -negative contraction. Assume that f is (2, 1)-type which contracts E to a curve C'. Then $(-K_X.C') = (-K_Y + E)(-K_Y)E = -1 - \sum d_i'a_i'(a_i'-1) < 0$, a contradiction since X is a Q-Fano 3-fold.

By the classification of a (2,0)-type contraction from a 3-fold with only index 2 terminal singularities (see Appendix), if f is such an contraction, then we have $-K_Y E^2 \ge -2$. On the other hand $-K_Y E^2 \le -K_{Y'} \tilde{E}^2 = -2$. Hence there is no flip. So $(-K_Y)^2 E = (-K_{Y'})^2 \tilde{E} = 1$ and hence again by the classification of a contraction as above, f is the blow up at a $\frac{1}{2}(1,1,1)$ -singularity or the weighted blow up at a QODP with weight $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1)$ (we use the coordinate as stated in the definition of QODP). In any case X is a Q-Fano 3-fold with I(X) = 2. We can easily check that $(-K_X)^3 = 4$ and $\operatorname{aw}(X) = 4$. Furthermore by this, F(X) must be $\frac{1}{2}$. So X is what we want.

Step 1 for [2]. The Grassmannian G(2,5) (parameterizing 2-dimensional subspaces of 5-dimensional vector space) can be embedded into \mathbb{P}^9 by the Plücker embedding. Its defining equations are $x_{ij}x_{kl} - x_{ik}x_{jl} + x_{jk}x_{il} = 0$ for all $1 \leq i < j < k < l \leq 5$, where x_{pq} $(1 \leq p < q \leq 5)$ is a Plücker coordinate. Let Q be the point defined by $x_{pq} = 0$ for any $(p,q) \neq (1,2)$. Let l_1 (resp. l_2) be the line $\subset G(2,5)$ defined by $x_{pq} = 0$ for any $(p,q) \neq (1,2)$, (1,3) (resp. $(p,q) \neq (1,2), (2,4)$). Let l_3 be the line $\subset G(2,5)$ defined by the equations $x_{pq} = r_{pq}x_{12}$ for $(p,q) \neq (1,2)$ such that $r_{34} = r_{35} = r_{45} = 0$, $r_{13}r_{24} - r_{23}r_{14} = 0$, $r_{13}r_{25} - r_{23}r_{15} = 0$, $r_{14}r_{25} - r_{24}r_{15} = 0$ and $r_{15}r_{25} \neq 0$. Let H be the 3-plane spanned by l_1 , l_2 and l_3 . Then $G(2,5) \cap H = l_1 \cup l_2 \cup l_3$. Hence by [MM3, Proposition 6.8], there are two hyperplane H_1 , H_2 and a quadric Q such that $X' := G(2,5) \cap H_1 \cap H_2 \cap Q$ is smooth and X' contains l_1 , l_2 and l_3 . Since the tangent space of X' at Q also contains all the lines on X' through Q, it is equal to H. Hence there are only three lines on X' through Q.

HIROMICHI TAKAGI

Step 2 for [2]. Let $f': Y' \to X'$ be the blow up at Q and E' the exceptional divisor. Let l_1', l_2' and l_3' be the transforms of l_1, l_2 and l_3 on Y'. Since $Bs|-K_{Y'}| = l_1' \cup l_2' \cup l_3'$, the rank of the natural map $H^0(-K_{Y'}) \to H^0(\mathcal{O}(-K_{Y'}|_{E'}))$ is 3. Hence there is a unique member \tilde{E} of $|-K_{Y'}-E'|$ since $h^0(-K_{Y'}) = 4$.

Step 3 for [2]. Since $|-K_{Y'}+E'|$ is free and $-K_{Y'}+E'$ is numerically trivial only for l_1', l_2' and l_3' and positive for a curve in E', they are numerically equivalent and span an extremal ray R of $\overline{NE}(Y')$. Since $Bs|-K_{Y'}| = l_1' \cup l_2' \cup l_3'$ and $-K_{Y'}.l_i' < 0$, Supp $R = l_1' \cup l_2' \cup l_3'$. Furthermore by $Bs|-K_{Y'}| = l_1' \cup l_2' \cup l_3'$ again, there is a smooth anti-canonical divisor D ([MM3, Proposition 6.8]). Hence the contraction of l_1', l_2' and l_3' is a log flopping contraction for the pair (Y', D) and the log flop exists. Let $Y' \dashrightarrow Y_0'$ be the log flop. Since $D.l_i' = -1$, the normal bundle of l_i' is of type (-1, -2). Hence Y_0' has three $\frac{1}{2}(1, 1, 1)$ -singularities. Since $-K_{Y_0'}$ is nef and big, we can construct a similar diagram $Y_0' \dashrightarrow Y_1' \dashrightarrow Y_1' \dashrightarrow Y_{i+1}' \ldots Y := Y_i' \xrightarrow{f} X$ to Lemma 3.2 by considering extremal rays, where $Y_i' \dashrightarrow Y_{i+1}'$ is a flop or a flip for i = 0 and a flip if $i \ge 1$. Let \tilde{E}_i be the strict transform of \tilde{E} on Y_i' .

Similarly to Step 3 for [1], we can see that f is the blow up at a $\frac{1}{2}(1,1,1)$ singularity or the weighted blow up at a QODP with weight $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1)$. In any case X is a Q-Fano 3-fold with I(X) = 2. Since $(-K_X)^3 = 4$ and N = 4, F(X)must be $\frac{1}{2}$. So X is what we want.

Appendix

In this appendix, we give the table of a (2,0)-type contraction from a 3-fold with only index 2 terminal singularities.

Proposition. Let X be a 3-fold with only index 2 terminal singularities and $f: X \to (Y,Q)$ a contraction of (2,0)-type to a germ (Y,Q) which contracts a prime divisor E to Q. Then the following holds:

(1) Assume that E contains no index 2 point. Then one of the following holds:

$$(2,0)_1: (E,-E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1))$$
 and Q is a smooth point;

$$(2,0)_2: (E,-E|_E) \simeq (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^3}(1)|_{\mathbb{P}^1 \times \mathbb{P}^1}) \text{ and } (Y,Q) \simeq (((xy+zw=0) \subset \mathbb{C}^4), o)$$

$$(2,0)_3: (E,-E|_E) \simeq (\mathbb{F}_{2,0},\mathcal{O}_{\mathbb{P}^3}(1)|_{\mathbb{F}_{2,0}}) \text{ and } (Y,Q) \simeq (((xy+z^2+w^k=0) \subset \mathbb{C}^4),o)(k\geq 3);$$

$$(2,0)_4: (E, -E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2))$$
 and Q is a $\frac{1}{2}(1,1,1)$ -singularity.

Furthermore for all cases, f is the blow up of Q. (2) Assume that E contains an index 2 point. Then one of the following holds:

$$(2,0)_5: (E, -E|_E) \simeq (\mathbb{F}_{2,0}, l)$$
, where l is a ruling of $\mathbb{F}_{2,0}$.
 Q is a smooth point and f is a weighted blow up with weight $(2, 1, 1)$.
In particular we have $K_X = f^*K_Y + 3E$;

$$(2,0)_6: K_X = f^*K_Y + E$$
 and Q is a Gorenstein singular point. $E^3 = \frac{1}{2}$;
 $(2,0)_7: K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = 1$;
 $(2,0)_8: K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = \frac{3}{2}$;
 $(2,0)_9: K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = 2$;

$$\begin{split} (2,0)_{10} &: (E, -E|_E) \simeq ((\{xy + w^2 = 0\} \subset \mathbb{P}(1,1,2,1)), \mathcal{O}(2)). \\ &(Y,Q) \simeq (((xy + z^k + w^2 = 0) \subset \mathbb{C}^4 / \mathbb{Z}_2(1,1,0,1)), o). \\ &f \text{ is a weighted blow up with a weight } (\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}). \\ &In \text{ particular we have } K_X = f^* K_Y + \frac{1}{2}E; \end{split}$$

$$(2,0)_{11}: (E, -E|_E) \simeq (\mathbb{F}_{2,0}, 3l).$$

 Q is a $\frac{1}{3}(2,1,1)$ -singularity and f is a weighted blow up with a weight $\frac{1}{3}(2,1,1).$
In particular we have $K_X = f^*K_Y + \frac{1}{3}E;$

References

- [Al] S. Altinok, Graded rings corresponding to polarized K3 surfaces and Q-Fano 3-folds, Univ. of Warwick, ph.D. thesis.
- [CF] F. Campana and H. Flenner, Projective threefolds containing a smooth rational surface with ample normal bundle, J. reine angew. Math 440 (1993), 77–98.
- [F1] A. R. Fletcher, Working with weighted complete intersections, preprint (1989), Max-Plank Institute.
- [Fu1] T. Fujita, On the structure of polarized manifolds with total deficiency one, part I, J. Math. Soc. of Japan 32 (1980), 709-725.
- [Fu2] _____, On the structure of polarized manifolds with total deficiency one, part II, J. Math. Soc. of Japan 33 (1981), 415-434.
- [Fu3] _____, On the structure of polarized manifolds with total deficiency one, part III, J. Math. Soc. of Japan 36 (1984), 75-89.
- [G] A. Grothandieck, Cohomologie Local des Faisceaux Cohérant et Théorème de Lefschetz Locaux et Globaux - SGA2 (1968), North Holland.
- [H] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Mathematics 156 (1970), Springer-Verlag.
- [I1] V. A. Iskovskih, Fano 3-folds 1, Izv. Akad. Nauk SSSR Ser. Mat 41 (1977), 516-562, English transl. in Math. USSR Izv. 11 (1977), 485-527.
- [I2] _____, Fano 3-folds 2, Izv. Akad. Nauk SSSR Ser. Mat 42 (1978), 506-549, English transl. in Math. USSR Izv. 12 (1978), 469-506.
- [I3] _____, Anticanonical models of three-dimensional algebraic varieties, Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki 12 (1979), 59–157, English transl. in J. Soviet. Math. 13 (1980), 745–814.
- [I4] _____, Double projection from a line on Fano threefolds of the first kind, English transl. in Math. USSR Sbornik 66 (1990) 265-284.
- [KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Adv. St. Pure Math. 10 (1987), 287-360.
- [Mi1] T. Minagawa, Deformations of Q-Calabi-Yau 3-folds and Q-Fano 3-folds of Fano index 1, J. Math. Sci. Univ. Tokyo 6 (1999), 397–414.
- [Mi2] _____, Deformations of weak Fano 3-folds with only terminal singularities, preprint (1999).
- [Mu] S. Mukai, New development of the theory of Fano threefolds: Vector bundle method and moduli problem, Sugaku 47 (1995), 125-144.
- [MM1] S. Mori and S. Mukai, Classification of Fano 3-folds with $B_2 \ge 2$, Manuscripta Math. **36** (1981), 147-162.
- [MM2] _____, On Fano 3-folds with $B_2 \ge 2$, Algebraic and Analytic Varieties, Adv. Stud. in Pure Math. 1 (1983), 101–129.
- [MM3] _____, Classification of Fano 3-folds with $B_2 \ge 2$, I, to the memory of Dr. Takehiko MIYATA, Algebraic and Topological Theories, 1985, pp. 496-545.
- [RM1] M. Reid, The moduli space of 3-folds with $K \equiv 0$ may nevertheless be irreducible, Math. Ann. 278 (1987), 329-334.
- [RM2] _____, Graded rings over K3s, preprint (1996).
- [San1] T. Sano, On classification of non-Gorenstein Q-Fano 3-folds of Fano index 1, J. Math. Soc. Japan 47, No 2 (1995), 369–380.
- [San2] _____, Classification of non-Gorenstein Q-Fano d-folds of Fano index greater than d-2, Nagoya Math. J 142 (1996), 133-143.
- [Sh1] V.V.Shokurov, Smoothness of the general anticanonical divisor on a Fano 3-fold, Izv. Akad. Nauk SSSR Ser. Mat 43 (1979) 430-441, English transl. in Math. USSR Izv. 14 (1980), 395-405.
- [Sh2] _____, The existence of a straight line on Fano 3-folds, Izv. Akad. Nauk SSSR Ser. Mat 43 (1979) 921–963, English transl. in Math. USSR Izv. 15 (1980), 173–209.
- [T1] K. Takeuchi, Some birational maps of Fano 3-folds, Compositio Math. 71 (1989), 265– 283.
- [T2] _____, Del Pezzo fiber spaces whose total spaces are weak Fano 3-folds, in Japanese, Proceedings, Hodge Theory and Algebraic Geometry, 1995 in Kanazawa Univ. (1996), 84-95.

[T3] _____, a private letter to the author.

RIMS, KYOTO UNIVERSITY, KITASHIRAKAWA, SAKYO-KU, 606-8502 KYOTO, JAPAN *E-mail address*: takagi@kurims.kyoto-u.ac.jp