<table>
<thead>
<tr>
<th>Title</th>
<th>On Classification of Q-Fano 3-Folds of Gorenstein Index 2 and Fano Index 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takagi, Hiromichi</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 1999, 1999: 8-20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/214710</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON CLASSIFICATION OF Q-FANO 3-FOLDS OF
GORENSTEIN INDEX 2 AND FANO INDEX $\frac{1}{2}$

HIROMICHI TAKAGI

Notation and Conventions.

\sim linear equivalence
\cong numerical equivalence
ODP ordinary double point, i.e., singularity analytically isomorphic to \{xy + $z^2 + u^2 = 0 \subset \mathbb{C}^4$\}
QODP singularity analytically isomorphic to \{xy+$z^2+u^2 = 0 \subset \mathbb{C}^4/\mathbb{Z}_2(1,1,1,0)$\}
F_n Hirzebruch surface of degree n
$F_{n,0}$ surface which is obtained by the contraction of the negative section of F_n
Q_3 smooth 3-dimensional quadric.

B_i (1 \leq i \leq 5) Q-factorial Gorenstein terminal Fano 3-fold of Fano index 2, and with Picard number 1 and $(-K)^3 = 8i$, where K is the canonical divisor

A_{2i} (1 \leq i \leq 11 and $i \neq 10$) Q-factorial Gorenstein terminal Fano 3-fold of Fano index 1, and with Picard number 1 and $(-K)^3 = 2i$

contraction of (m,n)-type extremal contraction whose exceptional locus has dimension m and the image of the exceptional locus has dimension n

0. INTRODUCTION

In this article, we will work over \mathbb{C}, the complex number field.

Definition 0.0 (Q-Fano variety). Let X be a normal projective variety. We say that X is a Q-Fano variety (resp. weak Q-Fano variety) if X has only terminal singularities and $-K_X$ is ample (resp. nef and big).

Let $I(X) := \min\{I|IK_X$ is a Cartier divisor} and we call $I(X)$ the Gorenstein index of X.

Write $I(X)(-K_X) \equiv r(X)H(X)$, where $H(X)$ is a primitive Cartier divisor and $r(X) \in \mathbb{N}$. (Note that $H(X)$ is unique since PicX is torsion free.) Then we call $r(X)$ the Fano index of X and denote it by $F(X)$.

Remark 0.1.

(1) We can allow that a Q-Fano variety or a weak Q-Fano variety has worse singularities than terminal. When we have to treat such a variety in this paper, we indicate singularities which we allow, e.g., 'a Q-Fano 3-fold with only canonical singularities';

(2) if X is Gorenstein in Definition 0.0, we say that X is a Fano variety (resp. a weak Fano variety).

Key words and phrases. Q-Fano 3-fold, Extremal contraction.

Typeset by AMSTeX
HIROMICHI TAKAGI

For the classification theory of varieties, a Q-factorial Q-Fano variety with Picard number 1 is important because it is an output of the minimal model program. Here we mention the known result about the classification of Q-Fano 3-folds:

1. G. Fano started the classification of smooth Fano 3-folds and it was completed by V. A. Iskovskikh [I1] \sim [I4], V. V. Shokurov [Sh1], [Sh2], T. Fujita [Fu1] \sim [Fu3], S. Mori and S. Mukai [MM1] \sim [MM3];
2. S. Mukai [Mu] classified indecomposable Gorenstein Fano 3-folds with canonical singularities by using vector bundles;
3. T. Sano [San1] and independently F. Campana and H. Flenner [CF] classified non Gorenstein Fano 3-folds of Fano indices >1;
4. T. Sano [San2] classified non Gorenstein Fano 3-folds of Fano indices 1 and with only cyclic quotient terminal singularities. Recently T. Minagawa [Mi1] proved that non Gorenstein Q-Fano 3-folds with Fano indices 1 can be deformed to one with only cyclic quotient terminal singularities;
5. A. R. Fletcher [Fl] gave the classification of Q-Fano 3-folds which are weighted complete intersections of codimension 1 or 2. Recently S. Altinok [Al] (see also [RM2]) obtained a list of Q-Fano 3-folds which are subvarieties in a weighted projective space of codimension 3 or 4.

On the other hand K. Takeuchi [T1] simplified and amplified V. A. Iskovskih's method of classification by using the theory of the extremal ray. In particular he reproved the Shokurov's theorem [Sh2], the existence of lines on a smooth Fano 3-fold of Fano index 1 and with Picard number 1 by simple numerical calculations.

We formulate a slight generalization of Takeuchi's construction for a Q-factorial Q-Fano 3-fold X with $\rho(X) = 1$ and give a classification of a Q-factorial Q-Fano 3-fold with the following properties:

Main Assumption 0.2.

1. $\rho(X) = 1$;
2. $I(X) = 2$;
3. $F(X) = \frac{1}{2}$;
4. $h^0(-K_X) \geq 4$;
5. there exists an index 2 point P such that

$$(X, P) \simeq (\{xy + z^2 + u^a = 0\}/\mathbb{Z}_2(1,1,1,0), o)$$

for some $a \in \mathbb{N}$.

Takeuchi's construction 0.3. Here we explain a slight generalization of Takeuchi's construction. Let X be a Q-factorial Q-Fano 3-fold with $\rho(X) = 1$. Suppose that we are given a birational morphism $f : Y \to X$ with the following properties:

1. Y is a weak Q-Fano 3-fold;
2. f is an extremal divisorial contraction such that f-exceptional locus E is a prime Q-Cartier divisor.

Then we obtain the following diagram:

$$
\begin{array}{ccc}
Y_0 := Y & \xrightarrow{g_0} & Y_1 \ldots \xrightarrow{g_{k-1}} Y_k \\
\downarrow f & & \downarrow f' \\
X & & X'
\end{array}
$$
where

1. $Y_0 \to Y_1$ is a flop or a flip and $Y_i \to Y_{i+1}$ is a flip for $i \geq 1$;
2. f' is a crepant divisorial contraction (in this case, $i = 0$) or an extremal contraction which is not isomorphic in codimension 1.

We use the following notation:

- $Y' := Y_k$;
- $E_i :=$ the strict transform of E on Y_i;
- $\hat{E} :=$ the strict transform of E on Y';
- $e := E^3 - E_1^3$ if $Y_0 \to Y_1$ is a flop or $:= 0$ otherwise;
- $d_i := (-K_{Y_i})^3 - (-K_{Y_{i+1}})^3$ (resp. $a_i := \frac{E_{i+1}}{-(-K_{Y_{i+1}})}$) if $Y_i \to Y_{i+1}$ is a flip, where l_i is a flipping curve, or $:= 0$ (resp. $:= 0$) otherwise;
- z and u is defined as follows:
 - If f' is birational, then let E' be the exceptional divisor of f' and set $E' \equiv z(-K_{Y'}) - uE$ or if f' is not birational, then let L be the pull back of an ample generator of $\text{Pic}X'$ and set $L \equiv z(-K_{Y'}) - uE$.

We note the following:

1.

 $$(-K_{Y'})^2 \hat{E} = (-K_Y)^2 E - \sum a_i d_i;$$

2.

 $$(-K_{Y'})\hat{E}^2 = (-K_Y)E^2 - \sum a_i^2 d_i;$$

 $$\hat{E}^3 = E^3 - e - \sum a_i^3 d_i;$$

(2) On the other hand the value or the relation of the value (expressed with z and u) of $(-K_{Y'})^3$, $(-K_{Y'})^2 \hat{E}$, $(-K_{Y'})\hat{E}^2$ and \hat{E}^3 are restricted by the properties of f'.

By these (1) and (2), we obtain equations of Diophantine type.

Under Main Assumption 0.2, Construction 0.3 works for a suitable choice of f and we can solve the equations as noted above.

Main Theorem. Let X be as in Main Assumption 0.2. Let $f : Y \to X$ be the weighted blow up at P with weight $1/2(1, 1, 1, 2)$. Then Y is a weak Q-Fano 3-fold.

Consider the diagram as in 0.3. Let $h := h^0(-K_X)$, $N := \text{aw}(X)$ and $n := \sum \text{aw}(Y_i, P_{i,j})$ (the summation is taken over the index 2 points on flipping curves), where $\text{aw}(X)$ is the number of $1/2(1, 1, 1)$-singularities which we obtain by deforming non Gorenstein points of X locally and $\text{aw}(Y_i, P_{i,j})$ is defined similarly. Then we can solve the equations above and obtain a geographic classification of X as below (in the table means that we don't know the existence of an example).
HIROMICHI TAKAGI

<table>
<thead>
<tr>
<th>$(K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>$(-K_Y.C)$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2}{9}$</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td>$(2,0)_{4a}, (-K_X)^3 = \frac{5}{9}, I(X') = 2$</td>
</tr>
<tr>
<td>$\frac{2}{5}$</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>1</td>
<td>/</td>
<td>crep. div., $(-K_X)^3 = 2, I(X') = 1$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td>$(2,0)_{6b}, A_4$</td>
</tr>
<tr>
<td>$\frac{4}{7}$</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$(2,1), A_5$</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>$(2,1), A_6$</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>/</td>
<td>$(2,0){10}, A{10}$</td>
</tr>
<tr>
<td>$\frac{5}{9}$</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>$(2,1), A_{10}$</td>
</tr>
<tr>
<td>$\frac{5}{9}$</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>/</td>
<td>$(2,0){15}, A{16}$</td>
</tr>
<tr>
<td>$\frac{5}{9}$</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>/</td>
<td>$(3,1), deg F = 6$</td>
</tr>
<tr>
<td>?5</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>$(2,1), A_{12}$</td>
</tr>
</tbody>
</table>

$z = u$ if f' is not a crepant divisorial contraction.
$u = 2$ if f' is a crepant divisorial contraction.

$F :=$ a general fiber of f' if f' is $(3,1)$-type.

See Appendix for $(2,0)_{4a}$.

$g(C) = 0$ in case f' is of type E_1 and every singularity of Y is a $\frac{1}{2}(1,1,1)$—singularity.

<table>
<thead>
<tr>
<th>$(K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>$deg \Delta$</th>
<th>$deg F$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2}{9}$</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td>3</td>
<td>$(3,1)$</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>/</td>
<td>4</td>
<td>$(3,1)$</td>
</tr>
<tr>
<td>$\frac{11}{7}$</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>/</td>
<td>5</td>
<td>$(3,1)$</td>
</tr>
<tr>
<td>$\frac{11}{7}$</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>/</td>
<td>$(3,2), P_{2,0}$</td>
</tr>
<tr>
<td>$\frac{7}{6}$</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>/</td>
<td>$(3,2), P_{2,0}$</td>
</tr>
<tr>
<td>$\frac{13}{6}$</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>/</td>
<td>6</td>
<td>$(3,1)$</td>
</tr>
<tr>
<td>$\frac{13}{6}$</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>/</td>
<td>$(3,2), P_{2,0}$</td>
</tr>
</tbody>
</table>

$z = u$.

$\Delta :=$ the discriminant divisor of f' if f' is $(3,2)$-type.

$F :=$ a general fiber of f' if f' is $(3,1)$-type.

<table>
<thead>
<tr>
<th>$(K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>$deg \Delta$</th>
<th>$(-K_Y.C)$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{7}{13}$</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>/</td>
<td>$(3,2), P_{2}$</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>/</td>
<td>35</td>
<td>$(2,1), [5]$</td>
</tr>
<tr>
<td>$\frac{7}{11}$</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>/</td>
<td>$(3,2), P_{2}$</td>
</tr>
<tr>
<td>$\frac{7}{11}$</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>$2, [2], I(X') = 2$</td>
<td></td>
</tr>
<tr>
<td>$\frac{7}{11}$</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>/</td>
<td>30</td>
<td>$(2,1), [5]$</td>
</tr>
<tr>
<td>$\frac{13}{13}$</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>/</td>
<td>$(3,2), P_{2}$</td>
</tr>
<tr>
<td>$\frac{13}{13}$</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>/</td>
<td>$(3,2), P_{2}$</td>
</tr>
<tr>
<td>$\frac{13}{13}$</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>/</td>
<td>$(3,2), P_{2}$</td>
</tr>
</tbody>
</table>
Q-FANO 3-FOLDS

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T. Sano in [San2].

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>$h = 7$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>$(-K_{Y'}.C)$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2$</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>36</td>
<td>$(2,1), P^3$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>18</td>
<td>$(2,1), [3]$</td>
<td></td>
</tr>
<tr>
<td>$9/2$</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>32</td>
<td>$(2,1), P^3$</td>
<td></td>
</tr>
<tr>
<td>$19/2$</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>$(2,1), [3]$</td>
<td></td>
</tr>
</tbody>
</table>

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T. Sano in [San2].

$u = z + 1.$

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>$h = 8$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>$(-K_{Y'}.C)$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$21/2$</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>$(2,1), B_3$</td>
<td></td>
</tr>
<tr>
<td>$21/2$</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>27</td>
<td>$(2,1), Q_3$</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>$(2,1), Q_3$</td>
<td></td>
</tr>
</tbody>
</table>

$u = z + 1.$

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>$h = 9$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>u</th>
<th>$(-K_{Y'}.C)$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25/2$</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>$(2,1), B_4$</td>
<td></td>
</tr>
</tbody>
</table>

$z = 1$ and $u = 2.$

In particular we have $(-K_X)^3 \leq 15$ and $h^0(-K_X) \leq 10.$

Based on this result, we can derive the following properties for X as in the main theorem:

Theorem A. if any index 2 point satisfies the assumption (5) of 0.2, then $|−K_X|$ has a member with only canonical singularities.

So the general elephant conjecture by M. Reid is affirmative for such an $X.$
Theorem B. Let X be a Q-factorial Q-Fano 3-fold with (1)~(4) of 0.2. Let $N := aw(X)$. Then if $N > 1$ (resp. $N = 1$), X can be transformed to a Q-factorial Q-Fano 3-fold \tilde{Z}' with (1)~(4) of 0.2 and with only $QODP's$ or $\frac{1}{2}(1,1,1)$-singularities as its singularities and $h^0(-K_{\tilde{Z}'}) = h$ and $aw(\tilde{Z}') = N - 1$ (resp. a smooth Fano 3-fold \tilde{Z}' with $\rho(\tilde{Z}') = 1$, $F(\tilde{Z}') = 1$ and $h^0(-K_{\tilde{Z}'}) = h$) as follows:

\[\begin{array}{ccc} \tilde{Y} & \overset{\text{def}}{\longrightarrow} & \tilde{X} \\ f & \searrow & \searrow \tilde{g} \\ & \tilde{Z} & \overset{\text{def}}{\longrightarrow} \tilde{Z}', \end{array} \]

where $* \overset{\text{def}}{\rightarrow} **$ means that ** is a small deformation of *

\tilde{X} is a Q-Fano 3-fold as in 0.2 and with only $ODP's$, $QODP's$ or $\frac{1}{2}(1,1,1)$-singularities as its singularities;

$f : Y \rightarrow \tilde{X}$ is chosen as f in the main theorem;

$\tilde{g} : \tilde{Y} \rightarrow \tilde{Z}$ be the anti-canonical model.

This is an analogue to the Reid's fantasy about Calabi-Yau 3-folds [RM1].

Theorem C. If any index 2 point is a $\frac{1}{2}(1,1,1)$-singularity, X can be embedded into a weighted projective space $\mathbb{P}(h,2N)$, where $h := h^0(-K_X)$ and N is the number of $\frac{1}{2}(1,1,1)$-singularities on X.

We hope that this fact can be used for the classification of Mukai's type (see [Mu]).

1. Examples

We consider the case that $h^0(-K_X) = 4$ and $N = 4$. By the table of the main theorem, there are two possibilities of X in this case. We assume that every singularity of Y is a $\frac{1}{2}(1,1,1)$-singularity. Then one of the following holds:

[1]. f' is an extremal divisorial contraction which contracts a divisor E' to a curve C and $| - K_{Y'} - E' | \neq \phi$. X' is a $(2,2,2)$-complete intersection in \mathbb{P}^6 and satisfies the following properties:

1. X' is factorial;
2. C is a smooth conic;
3. X' has 3 singularities $P_0 \sim P_2$ on C and P_i is an ODP or the singularity analytically isomorphic to the origin of \{xy + z^2 + w^3 = 0\} $\subset \mathbb{C}^4$. Outside P_i's, X' is smooth.

[2]. f' is blowing up at a smooth point $Q := f'(E')$ and $| - K_{Y'} - E' | \neq \phi$. X' is smooth, isomorphic to A_{10} and there exist exactly three lines through the point Q.

We will construct examples for these cases by the following three steps:

Step 1. We construct X' satisfying the properties as stated as in [1] or [2];
Step 2. We construct f' satisfying the properties as stated as in [1] or [2];
Step 3. We construct $f : Y \rightarrow X$ as in the main theorem from Y'.

[1].

Step 1 for [1]. We construct X' with only ODP's.
Claim 1. Let V (resp. X') be a $(2,2)$-complete intersection in \mathbb{P}^6 (resp. a quadric section of V) with the following properties:

1. V (resp. X') contains a smooth conic C;
2. V (resp. X') has three ODP's $P_0 \sim P_2$ on C and outside P_i's, V (resp. X') is smooth.

Then X' is factorial.

Proof. We claim that V contains the plane P spanned by C. Let σ be the pencil which consists of quadrics in \mathbb{P}^6 containing V. Since P_i is an ODP on V, there is a quadric in σ which is singular at P_i. If there is a quadric in σ which is singular at all P_i's, then it is singular on P and hence V is singular along C, a contradiction. So σ is generated by two quadrics which are singular at some P_i. But such quadrics contains P and hence V contains P.

Let $\nu : \tilde{V} \to V$ be the composition of the blowing ups at $P_0 \sim P_2$ and F_i the exceptional divisor over P_i. Let \tilde{X}' be the strict transform of X' on \tilde{V} and H the total transform of a hyperplane section of V. Then $\tilde{X}' \sim 2H - F_0 - F_1 - F_2$.

Let $u : V \to \mathbb{P}^6$ be the composition of the blowing ups at $P_0 \sim P_2$ and F_i the exceptional divisor over P_i. Let X' be the strict transform of X' on V and H the total transform of a hyperplane section of V. Then $X' \sim 2H - F_0 - F_1 - F_2$. Note that $|H - F_i - F_j|$ is free outside the strict transform l_{ij} of the line through P_i and P_j and $|H - F_k|$ is free (note that l_{ij} is contained in V since $l_{ij} \subset P$). By this, we can easily see that $|\tilde{X}'|$ is free and \tilde{X}' is numerically trivial only for l_{ij}'s $((i,j) = (0,1), (1,2), (2,0)).$

Let ϕ be the morphism defined by $|\tilde{X}'|$. Then ϕ-exceptional curves are l_{ij}'s. We will prove that $\text{Leff}(\tilde{V}, \tilde{X}')$ holds and \tilde{X}' meets every effective divisor on \tilde{V}. By [H, p.165, Proposition 1.1] and the argument of [H, p.172, the proof of Theorem 1.5], it suffices to prove that $\text{cd}(\tilde{V} - \tilde{X}') < 3$, i.e., for any coherent sheaf F on $\tilde{V} - \tilde{X}'$, $H^i(\tilde{V} - \tilde{X}', F) = 0$ for all $i \geq 3$. Let $\overline{V} := \phi(\tilde{V})$ and $\overline{X} := \phi(\tilde{X}')$. Consider the Leray spectral sequence

$$E_2^{pq} = H^p(\overline{V} - \overline{X}', R^q\phi_* F) \Rightarrow E_\infty^{p+q} = H^{p+q}(\overline{V} - \overline{X}', F),$$

where $\phi' := \phi|_{\overline{V} - \overline{X}'}$. Since $\overline{V} - \overline{X}'$ is affine and the dimension of every fiber of ϕ ≤ 1, we have $E_2^{pq} = 0$ for $p \geq 1$ or $q \geq 2$ whence $E_\infty^{p+q} = 0$ for $p + q \geq 2$. So the assertion follows.

Furthermore since \tilde{X}' is nef and big, $H^i(\tilde{V}, O(-n\tilde{X}')) = 0$ for $n \geq 1$ and $i = 1, 2$ by KKV vanishing theorem. Hence by the Grothendieck-Lefschetz theorem [G, p.135, 3.18] (or [H, p.178, Theorem 3.1]), we have $\text{Pic}\tilde{X}' \cong \text{Pic}\overline{V} \cong \mathbb{Z}$. So $\rho(\overline{X}'/X') = 3$ which imply that X' is factorial. □

We will give a pair (V, X') satisfying the condition of Claim 1. Let C be a smooth conic in \mathbb{P}^6 and $P_0 \sim P_2$ three points on C. We can choose a coordinate of \mathbb{P}^6 such that $C = \{x_0x_1 + x_1x_2 + x_2x_0 = x_3 = x_4 = x_5 = x_6 = 0\}$ and $P_i = \{x_j = 0 \text{ for } j \neq i\}$.

Claim 2. Let X' be a $(2,2,2)$-complete intersection in \mathbb{P}^6 satisfying the following conditions:

1. X' is factorial;
2. X' contains a smooth conic C;
3. X' has three ODP's $P_0 \sim P_2$ on C and outside P_i's, X' is smooth.

Then X' is the intersection of three quadrics $Q_1 \sim Q_3$ of the following forms by permuting P_i's if necessary:
HIROMICHI TAKAGI

\[Q_1 := \{m_0 x_0 + m_1 x_1 + q_1 = 0\}; \]
\[Q_2 := \{p m_1 x_1 + m_2 x_2 + q_2 = 0\}; \]
\[Q_3 := \{x_0 x_1 + x_1 x_2 + x_2 x_0 + \sum_{i=3}^{6} l_i x_i = 0\}, \]

where \(p \in \mathbb{C}\), \(m_i\) (resp. \(q_i\)) is a linear form (resp. a quadratic form) of \(x_3 \sim x_6\) and \(l_i\) is a linear form of \(x_0 \sim x_6\).

Conversely if \(X' = Q_1 \cap Q_2 \cap Q_3\), where \(Q_i\) is of the form as above and \(m_i\), \(q_i\) and \(l_i\) are suitably general, then \(X'\) satisfies (1) \(\sim\) (3).

Proof. Let \(\gamma\) be the net which consists of quadrics containing \(X'\). \(\gamma\) contains a member \(Q_1\) which is singular at \(P_2\). Then \(Q_1\) is of the form as above. If \(m_1 = m_2 = 0\), then \(Q_1\) is singular on the plane \(P\) spanned by \(C\) and hence \(X'\) is singular along \(C\), a contradiction. Hence \(m_1 \neq 0\) or \(m_2 \neq 0\). By permuting \(P_1\) and \(P_2\) if necessary, we may assume that \(m_1 \neq 0\). \(\gamma\) contains a member \(Q_2\) which is singular at \(P_0\). \(Q_2\) is of the form as

\[\{m_1' x_1 + m_2 x_2 + q_2 = 0\}, \]

where \(m_1'\) and \(m_2\) (resp. \(q_2\)) are linear forms (resp. a quadratic form) of \(x_3 \sim x_6\).

\(\gamma\) also contains a member \(Q'\) which is singular at \(P_1\). If \(Q_1, Q_2\) and \(Q'\) generate \(\gamma\), then \(X'\) contains the plane \(P\), a contradiction to the factoriality and \(F(X') = 1\). Hence \(Q'\) is contained in the pencil generated by \(Q_1\) and \(Q_2\). So \(m_1' = p m_1\) for some \(p \in \mathbb{C}\) and

\[Q = \{-p m_0 x_0 + m_2 x_2 + (q_2 - pq_1) = 0\}. \]

Since \(X'\) does not contain \(P\) as noted above, \(\gamma\) contains a member \(Q_3\) of the form as in the statement. \(Q_3\) is not contained in the pencil generated by \(Q_1\) and \(Q_2\) and hence \(Q_i\)'s generate \(\gamma\).

Conversely let \(X' := Q_1 \cap Q_2 \cap Q_3\), where \(Q_i\) is of the form as above and \(m_i, q_i\) and \(l_i\) are suitably general. We can easily check that \(X'\) satisfies (2) and (3). Set \(V := Q_1 \cap Q_2\). We may assume that \(V\) satisfies the condition of Claim 1. Hence by Claim 1, \(X'\) is factorial. \(\square\)

Step 2 for [1]. Let \(\nu' : \tilde{X}' \to X'\) be the composition of the blowing ups at \(P_0 \sim P_{N-2}\) and \(F_i\) the exceptional divisor over \(P_i\). Let \(\mu' : \tilde{X}' \to \tilde{X}'\) be the blowing up along the strict transform \(\tilde{C}\) of \(C\) and \(F'\) the \(\mu'\)-exceptional divisor. We will denote the strict transforms of the two fibers of \(F_i \simeq \mathbb{P}^1 \times \mathbb{P}^1\) through \(F_i \cap \tilde{C}\) by \(l_{ij}\) (\(i = 1, 2\)). Note that \(-K_{\tilde{X}'} l_{ij} = 0\). We can easily see that \(|-K_{\tilde{X}'}|\) is free by \(P \cap X' = C\), where \(P\) is the plane spanned by \(C\) and \(-K_{\tilde{X}'}\) is big. Hence \(l_{ij}\)'s are flopping curves on \(\tilde{X}'\) and we can see that the classes of \(l_{11}\) and \(l_{22}\) belong to the same ray. Let \(\tilde{X}' \to \tilde{X}'^+\) be the flop. Then the strict transforms of \(F_i\)'s on \(\tilde{X}'^+\) are \(\mathbb{P}^2\)'s and we can contract them to \(\frac{1}{2}(1, 1, 1)\)-singularities. Let \(g' : \tilde{X}'^+ \to Y'\) be the contraction morphism, \(f' : Y' \to X'\) the natural morphism and \(E'\) the strict transform of \(F'\).

We will see that \(|-K_{Y'} - E'| \neq \phi\). Let \(F'\) be the strict transform of \(F'\) on \(\tilde{X}'^+\). Then \(-K_{\tilde{X}'^+} - F'^+ = g'^*(-K_{Y'} - E')\). Furthermore \(h^0(-K_{\tilde{X}'^+} - F'^+) = \)}
Q-PANO 3-FOLDS

\(h^0(-K_{X'}, -F') \). Hence it suffices to prove that \(h^0(-K_{X'}) \leq 3 \) since \(h^0(-K_{X'}) = 4 \). Since there is a smooth member of \(-K_{X'}\), we have \(N_{C/X'} \sim \mathcal{O}(1) \oplus \mathcal{O}(-2) \).

Hence \(F' \simeq \mathbb{F}_1 \) and \(-K_{X'}|_{F'} \sim C_0 + l\), where \(C_0 \) is the minimal section of \(F' \) and \(l \) is a fiber of \(F' \). So we are done.

Step 3 for [1]. Since \(Y' \) has only \(\frac{1}{2}(1,1,1) \)-singularities and \(-K_{Y'} \) is nef and big, we can construct a similar diagram \(Y_0' := Y' \to Y_1' \to \ldots \to Y_i' \to \ldots \to Y := Y \to X \) by considering extremal rays, where \(Y_i' \to Y_{i+1}' \) is a flop or a flip for \(i = 0 \) and a flip for \(i \geq 1 \). Let \(\tilde{E}_i \) (resp. \(E_i \)) be the strict transform of \(E \) on \(Y_i' \) (resp. \(Y \)). Let \(R_i \) be the extremal ray which is other than the ray associated to \(f' \) for \(i = 0 \) or the \(K_{Y_i} \)-negative extremal ray for \(i \geq 1 \). By similar calculations to 0.3, we have

\[
\begin{align*}
(1) & \quad (-K_{Y'})^{2} E = 1 + \sum a_i' d_i' ; \\
(2) & \quad (-K_{Y})^{2} E = -2 - \sum a_i'^2 d_i' ; \\
(3) & \quad E^3 = -6 + \sum a_i'^3 d_i' + e',
\end{align*}
\]

where \(e' \), \(a_i' \) and \(d_i' \) are similarly defined to 0.3 with respect to \(-K_{Y'} \) and \(\tilde{E}_i \) and furthermore we can see that \(a_i' \) is a non negative integer.

Claim 3. \(\tilde{E}_i, R_i < 0 \).

Proof. We can prove the assertion by induction. For \(i = 0 \), \(\tilde{E}_0, R_0 < 0 \) can be directly checked. Assume that the assertion holds for the numbers less than \(i \). So the other extremal ray than \(R_i \) is positive for \(\tilde{E}_i \). Since \(-K_{Y_i} \) is free outside a finite number of curves, \(-K_{Y_i}|_{\tilde{E}_i} \) is numerically equivalent to an effective 1-cycle. Hence by \(-K_{Y_i}, \tilde{E}_i^2 \leq -K_{Y_i}, \tilde{E}^2 = -2 \), we have \(\tilde{E}_i, R_i < 0 \). \(\square \)

By this claim, we know that \(f \) is an divisorial contraction whose exceptional divisor is \(E \). If \(f \) is a crepant divisorial contraction, then \(l = 0 \). But \((-K_{Y'})^{2} E = 1 \), a contradiction. Hence \(f \) is a \(K_Y \)-negative contraction. Assume that \(f \) is \((2,1)\)-type which contracts \(E \) to a curve \(C' \). Then \((-K_X, C') = (-K_Y + E)(-K_Y)E = -1 - \sum d_i' a_i'(a_i' - 1) < 0 \), a contradiction since \(X \) is a Q-Fano 3-fold.

By the classification of a \((2,0)\)-type contraction from a 3-fold with only index 2 terminal singularities (see Appendix), if \(f \) is such an contraction, then we have \(-K_Y, E^2 \geq -2 \). On the other hand \(-K_Y, E^2 \leq -K_Y, \tilde{E}^2 = -2 \). Hence there is no flip. So \((-K_Y)^2 E = (-K_{Y'})^2 \tilde{E} = 1 \) and hence again by the classification of a contraction as above, \(f \) is the blow up at a \(\frac{1}{2}(1,1,1) \)-singularity or the weighted blow up at a QODP with weight \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1)\) (we use the coordinate as stated in the definition of QODP). In any case \(X \) is a Q-Fano 3-fold with \(I(X) = 2 \). We can easily check that \((-K_X)^3 = 4 \) and \(aw(X) = 4 \). Furthermore by this, \(F(X) \) must be \(\frac{1}{2} \). So \(X \) is what we want.

[2].
HIROMICHI TAKAGI

Step 1 for [2]. The Grassmannian $G(2, 5)$ (parameterizing 2-dimensional subspaces of 5-dimensional vector space) can be embedded into \mathbb{P}^9 by the Plücker embedding. Its defining equations are $x_{ij} x_{kl} - x_{ik} x_{jl} + x_{jk} x_{il} = 0$ for all $1 \leq i < j < k < l \leq 5$, where x_{pq} $(1 \leq p < q \leq 5)$ is a Plücker coordinate. Let Q be the point defined by $x_{pq} = 0$ for any $(p, q) \neq (1, 2)$. Let l_1 (resp. l_2) be the line $\subset G(2, 5)$ defined by $x_{pq} = 0$ for any $(p, q) \neq (1, 2),(1, 3)$ (resp. $(p, q) \neq (1, 2),(2, 4)$). Let l_3 be the line $\subset G(2, 5)$ defined by the equations $x_{pq} = r_{pq} x_{12}$ for $(p, q) \neq (1, 2)$ such that $r_{34} = r_{35} = r_{45} = 0$, $r_{13} r_{24} - r_{23} r_{14} = 0$, $r_{13} r_{25} - r_{23} r_{15} = 0$, $r_{14} r_{25} - r_{24} r_{15} = 0$ and $r_{15} r_{25} \neq 0$. Let H be the 3-plane spanned by l_1, l_2 and l_3. Then $G(2, 5) \cap H = l_1 \cup l_2 \cup l_3$. Hence by [MM3, Proposition 6.8], there are two hyperplane H_1, H_2 and a quadric Q such that $X' := G(2, 5) \cap H_1 \cap H_2 \cap Q$ is smooth and X' contains l_1, l_2 and l_3. Since the tangent space of X' at Q also contains all the lines on X' through Q, it is equal to H. Hence there are only three lines on X' through Q.

Step 2 for [2]. Let $f' : Y' \rightarrow X'$ be the blow up at Q and E' the exceptional divisor. Let l_1', l_2' and l_3' be the transforms of l_1, l_2 and l_3 on Y'. Since $B_s(-K_{Y'}) = l_1' \cup l_2' \cup l_3'$, the rank of the natural map $H^0(-K_{Y'}) \rightarrow H^0(O(-K_{Y'}, E'))$ is 3. Hence there is a unique member E of [$-K_{Y'} - E' |$ since $h^0(-K_{Y'}) = 4$.

Step 3 for [2]. Since $-K_{Y'} + E'$ is free and $-K_{Y'} + E'$ is numerically trivial only for l_1', l_2' and l_3' and positive for a curve in E', they are numerically equivalent and span an extremal ray R of $\mathcal{NE}(Y')$. Since $B_s(-K_{Y'}) = l_1' \cup l_2' \cup l_3'$ and $-K_{Y'}, l_1' < 0$, $\text{Supp } R = l_1' \cup l_2' \cup l_3'$. Furthermore by $B_s(-K_{Y'}) = l_1' \cup l_2' \cup l_3'$ again, there is a smooth anti-canonical divisor D ([MM3, Proposition 6.8]). Hence the contraction of l_1', l_2' and l_3' is a log flopping contraction for the pair (Y', D) and the log flop exists. Let $Y' \dashrightarrow Y_0'$ be the log flop. Since $D.l_i' = -1$, the normal bundle of l_i' is of type $(-1,-2)$. Hence Y_0' has three $\frac{1}{3}(1,1,1)$-singularities. Since $-K_{Y_0'}$ is nef and big, we can construct a similar diagram $Y_0' \rightarrow Y_1' \rightarrow \cdots Y_i' \rightarrow \cdots Y_i+1' \rightarrow Y := Y_i' \xrightarrow{f} X$ to Lemma 3.2 by considering extremal rays, where $Y_i' \rightarrow Y_{i+1}'$ is a flop or a flip for $i = 0$ and a flip if $i \geq 1$. Let E_i be the strict transform of E on Y_i'.

Similarly to Step 3 for [1], we can see that f is the blow up at a $\frac{1}{3}(1,1,1)$-singularity or the weighted blow up at a QODP with weight $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. In any case X is a Q-Fano 3-fold with $I(X) = 2$. Since $(-K_X)^3 = 4$ and $N = 4$, $F(X)$ must be $\frac{1}{2}$. So X is what we want.

APPENDIX

In this appendix, we give the table of a (2, 0)-type contraction from a 3-fold with only index 2 terminal singularities.

Proposition. Let X be a 3-fold with only index 2 terminal singularities and $f : X \rightarrow (Y, Q)$ a contraction of (2, 0)-type to a germ (Y, Q) which contracts a prime divisor E to Q. Then the following holds:

(1) Assume that E contains no index 2 point. Then one of the following holds:

$$(2, 0)_1 : (E, -E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)) \text{ and } Q \text{ is a smooth point};$$

$$(2, 0)_2 : (E, -E|_E) \simeq (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1)) \text{ and } (Y, Q) \simeq ((xy+zw = 0) \subset \mathbb{C}^4, o);$$
Q-FANO 3-FOLDS

\((2,0)_3 : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, \mathcal{O}_{\mathbb{F}_2^2}(1)|_{\mathbb{F}_{2,0}})\) and \((Y, Q) \simeq (((xy+z^2+w^k = 0) \subset \mathbb{C}^4), o)(k \geq 3)\);

\[(2,0)_4 : (E, -E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2))\) and \(Q\) is a \(\frac{1}{2}(1,1,1)\)-singularity.

Furthermore for all cases, \(f\) is the blow up of \(Q\).

(2) Assume that \(E\) contains an index 2 point. Then one of the following holds:

\[(2,0)_5 : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, l)\), where \(l\) is a ruling of \(\mathbb{F}_{2,0}\).

\(Q\) is a smooth point and \(f\) is a weighted blow up with weight \((2,1,1)\).

In particular we have \(K_X = f^*K_Y + 3E]\;

\[(2,0)_6 : K_X = f^*K_Y + E\) and \(Q\) is a Gorenstein singular point. \(E^3 = \frac{1}{2}\);

\[(2,0)_7 : K_X = f^*K_Y + E\) and \(Q\) is a Gorenstein singular point. \(E^3 = 1\);

\[(2,0)_8 : K_X = f^*K_Y + E\) and \(Q\) is a Gorenstein singular point. \(E^3 = \frac{3}{2}\);

\[(2,0)_9 : K_X = f^*K_Y + E\) and \(Q\) is a Gorenstein singular point. \(E^3 = 2\);

\[(2,0)_{10} : (E, -E|_E) \simeq (((xy + z^2 = 0) \subset \mathbb{F}(1,1,2,1)), \mathcal{O}(2)).\]

\((Y, Q) \simeq (((xy + z^2 + w^k = 0) \subset \mathbb{C}^4/\mathbb{Z}_2(1,1,0,1)), o).\)

\(f\) is a weighted blow up with a weight \(\left(\frac{1}{2},\frac{1}{2},1,\frac{1}{2}\right)\).

In particular we have \(K_X = f^*K_Y + \frac{1}{2}E\);

\[(2,0)_{11} : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, 3l).\)

\(Q\) is a \(\frac{1}{3}(2,1,1)\)-singularity and \(f\) is a weighted blow up with a weight \(\frac{1}{3}(2,1,1)\).

In particular we have \(K_X = f^*K_Y + \frac{1}{3}E\);
HIROMICHI TAKAGI

REFERENCES

[MM3] Classification of Fano 3-folds with B2 ≥ 2, I, to the memory of Dr. Takehiko MIYATA, Algebraic and Topological Theories, 1985, pp. 496-545.
Q-FANO 3-FOLDS

[T3] ———, a private letter to the author.

RIMS, KYOTO UNIVERSITY, KITASHIRAKAWA, SAKYO-ku, 606-8502 KYOTO, JAPAN
E-mail address: takagi@kurims.kyoto-u.ac.jp