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ON CLASSIFICATION OF Q-FANO 3-FOLDS OF
GORENSTEIN INDEX 2 AND FANO INDEX 1

HiroMICHI TAKAGI

Notation and Conventions.

~ linear equivalence

= numerical equivalence

ODP ordinary double point, i.e., singularity analytically isomorphic to {zy +
2+ul=0cC

QODP singularity analytically isomorphic to {zy+2z%+u? = 0 ¢ C*/Z,(1,1,1,0)}

F, Hirzebruch surface of degree n

Fno surface which is obtained by the contraction of the negative section of I,

@3 smooth 3-dimensional quadric.

B; (1 <1 <5) Q-factorial Gorenstein terminal Fano 3-fold of Fano index 2,
and with Picard number 1 and (—K)? = 8¢, where K is the canonical divisor

Az (1 <1 <11 and i # 10) Q-factorial Gorenstein terminal Fano 3-fold of
Fano index 1, and with Picard number 1 and (—K)3 = 2i

contraction of (m,n)-type extremal contraction whose exceptional locus has
dimension m and the image of the exceptional locus has domension n

0. INTRODUCTION

In this article, we will work over C, the complex number field.

Definition 0.0 (Q-Fano variety). Let X be a normal projective variety. We say
that X is a Q-Fano variety (resp. weak Q-Fano variety) if X has only terminal
singularities and —Kx is ample (resp. nef and big).

Let I(X) := min{/|IKx is a Cartier divisor} and we call I(X) the Gorenstein
index of X.

Write I(X)(—Kx) = r(X)H(X), where H(X) is a primitive Cartier divisor and
r(X) € N. (Note that H(X) is unique since PicX is torsion free.) Then we call

;E—i% the Fano index of X and denote it by F(X).

Remark 0.1.

(1) We can allow that a Q-Fano variety or a weak -Fano variety has worse
singularities than terminal. When we have to treat such a variety in this
paper, we indicate singularities which we allow, e.g., ’a Q-Fano 3-fold with
only canonical singularities’;

(2) if X is Gorenstein in Definition 0.0, we say that X is a Fano variety (resp.
a weak Fano variety).

Key words and phrases. Q-Fano 3-fold, Extremal contraction.
Mathematics Subject Classification. Primary : 14J45. Secondary : 14N05, 14M20.

Typeset by ApS-TEX



HIROMICHI TAKAGI

For the classification theory of varieties, a Q-factorial -Fano variety with Picard
number 1 is important because it is an output of the minimal model program. Here
we mention the known result about the classification of Q-Fano 3-folds:

(1) G. Fano started the classification of smooth Fano 3-folds and it was com-
pleted by V. A. Iskovskih [I1] ~ [I4], V. V. Shokurov [Sh1], [Sh2], T. Fujita
{Ful] ~ (Fu3], S. Mori and S. Mukai [MM1] ~ [MM3];
(2) S. Mukai {Mu] classified indecomposable Gorenstein Fano 3-folds with canon-
ical singularities by using vector bundles;
(3) T. Sano [Sanl} and independently F. Campana and H. Flenner [CF] classi-
fied non Gorenstein Fano 3-folds of Fano indices > 1;
(4) T. Sano [San2] classified non Gorenstein Fano 3-folds of Fano indices 1
and with only cyclic quotient terminal singularities. Recently T. Minagawa,
[Mil] proved that non Gorenstein Q-Fano 3-folds with Fano indices 1 can
be deformed to one with only cyclic quotient terminal singularities;
(5) A.R. Fletcher [F1] gave the classification of Q-Fano 3-folds which are weight-
ed complete intersections of codimension 1 or 2. Recently S. Altinok [Al]
(see also [RM2]) obtained a list of Q-Fano 3-folds which are subvarieties in
a weighted projective space of codimension 3 or 4.
On the other hand K. Takeuchi [T1] simplified and amplified V. A. Iskovskih
's method of classification by using the theory of the extremal ray. In particular
he reproved the Shokurov’s theorem [Sh2], the existence of lines on a smooth Fano
3-fold of Fano index 1 and with Picard number 1 by simple numerical calculations.
We formulate a slight generalization of Takeuchi’s construction for a Q-factorial
Q-Fano 3-fold X with p(X) = 1 and give a classification of a Q-factorial Q-Fano
3-fold with the following properties:

Main Assumption 0.2.
(1) p(X) =1
(2) I(X) =%
(3) F(X)=73;
(4) RO(—Kx) 2 4
(5) there exists an index 2 point P such that

(X, P) ~ ({zy + 2* + u® = 0}/Z2(1,1,1,0),0)

for some a € N.

Takeuchi’s construction 0.3. Here we explain a slight generalization of Takeuchi’s
construction. Let X be a Q-factorial Q-Fano 3-fold with p(X) = 1. Suppose that
we are given a birational morphism f: Y — X with the following properties:
(1) Y is a weak @-Fano 3-fold;
{2) f is an extremal divisorial contraction such that f-exceptional locus E is a
prime Q-Cartier divisor.

Then we obtain the following diagram:

Hhi=Y 5 v... ¥ oy
v N Sf!
X X,
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where

(1) Yy --+ Y7 is a flop or a flip and Y; ~-» Y;41 is a flip for ¢ > 1;
(2) f' is a crepant divisorial contraction (in this case, 7 = 0) or an extremal
contraction which is not isomorphic in codimension 1.

We use the following notation:

Y =Yg;

E; := the strict transform of F on Yj;

E := the strict transform of E on Y’;

e:=E3—-E?if Yy --+ Y] is a flop or := 0 otherwise;

d; == (—Ky,)® = (—Ky,,,)? (resp. a; := (_-—f(%)"f:) if Y; --+ Y;41 is a flip, where

l; is a flipping curve, or :== 0 (resp. := 0) otherwise;
z and u is defined as follows:
If f’ is birational, then let E’ be the exceptional divisor of f’ and set E' =

2(—Ky/) — uE or if f' is not birational, then let L be the pull back of an ample
generator of PicX' and set L = z(—Ky+) — uE.

We note the following:

(1)

(K P~ (KB~ Y

(-‘*I(yl)E‘2 = (—Ky)E2 - Za"zd,‘;

E}=FE%—¢— Zaisdg;

(2) On the other hand the value or the relation of the value (expressed with
z and u) of (—Ky')3, (—Ky')*E, (—Ky+)E? and E® are restricted by the
properties of f.

By these (1) and (2), we obtain equations of Diophantine type.

Under Main Assumption 0.2, Construction 0.3 works for a suitable choice of f
and we can solve the equations as noted above.

Main Theorem. Let X be as in Main Assumption 0.2. Let f :' Y — X be the
weighted blow up at P with weight 3(1,1,1,2). Then Y is a weak Q-Fano 3-fold.

Consider the diagram as in 0.3. Let h .= h*(-Kx), N := aw(X) and n :=
3 aw(Y;, P;j) (the summation is taken over the index 2 points on flipping curves),
where aw(X) is the number of 3(1,1,1)-singularities which we obtain by deforming
non Gorenstein points of X locally and aw(Y;, P;;) is defined similarly. Then we
can solve the equations above and obtain a geographic classification of X as below
(7 in the table means that we don't know the existence of an example) :
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h=4
(*Kx)s N € n Z (—KYI.C) f’,X'
3 1 15§ 0 1 / (2,004, —Kx')*=3I(X") =2
2 1 /1 /11 / crep. div., (—Kx)°>=2,1(X") =1
3 2 12101 / (2,0)s, Ag
5 3 10 | 0 |1 1 (2,1), 4s
4 4 8 0|1 2 (2,1), Ag
4 4 9 3 1 / (2,0), A1g
72 5 6 [0 |1 3 (2,1), Ay
72 5 8 [ 311 / (2,0)s, A1s
72 5 9 0 2 / (3,1),deg F =6
75 6 4 0 1 4 (2,1), Arp

z=u if f' is not a crepant divisorial contraction.
u =2 if f' is a crepant divisorial contraction.
F = a general fiber of f' if f' is (3, 1)-type.
See Appendiz for (2,0);.

1
g(C) = 0 in case f' is of type E; and every singularity of Y is a 5(1, 1, 1)—singularity.

h=5
(—Kx)3 N e n z deg A deg F X
2 1 9101 / 3 (3,1
5 2 8 1 1 / 4 (3,1)
?12—1 3 7 2 1 / 5 (3,1)
?—21 3 8 0 2 8 / {3, 2),]F2,0
76 4 7 1 2 6 / (3,2),Fap
76 4 6 3 1 / 6 (3,1)
73 5 6 2 2 4 / (3,2),Fa0
Z = u.
A := the discriminant divisor of f' if f' is (3,2)-type.
F := a general fiber of f' if f' is (3,1)-type.
h=6
(—-Kx)® N e n z deg A (—Ky'.C) X
3 1 7 0 1 7 / (3,2),P?
7 2 7 0 4 / 35 (2,1),15]
27 2 6 1 1 6 / (3,2),P?
1 3 7 i} 2 / 9 (2,1),[2, I(X") =2
17155 3 6 1 4 / 30 (2,1),[5]
232 3 5 2 1 5 / (3,2),P%
?78 4 4 3 1 4 / (3,2),P?
7 5 3 4 1 3 / (3,2),P?

11
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Type [i] means the Q-Fano 3-fold of type [i] which was classified by T.Sano in
[San2].

=7
(AKX)"’h N e n z (—Ky:.C) X
1Y 1 | 6 ] 0|3 36 (2,1),P°
9 2 6 | 0| 2 18 (2,1),[3]
9 2 5 1 | 3 32 (2,1),P3
2 3 5 | 1 | 2 15 (2,1),[3]
2 3 4 | 2 ] 3 28 (2,1),P?

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T.Sano in
[San2].

u=2z+1.
h=28
(—KX}S N [ n A ("KYI.C) f,X[
2 1 6 0 1 6 (2,1), B3
2 1 5 1012 27 (2,1),Qs
11 2 4 1 2 24 (2,1),Qs3
u=2z+1.
h=29
(—-Kx)s N € n FA u ("K}N.C) f’,X’
B 1 5 | 0 1 | 2 10 (2,1), By
h=10
(—Kx)® N | e n | degA (—Ky:.C) X
pic) 1 110 / 14 (2,1),Bs
i 1 6] 0 0 / (3,2),P?
15 2 3 1 / 12 (2,1), Bs

z=1andu=2.
In particular we have (—Kx)?® <15 and h®(—Kx) < 10.

Based on this result, we can derive the following properties for X as in the main
theorem:

Theorem A. if any indez 2 point satisfies the assumption (5) of 0.2, then | — K x|
has a member with only canonical singularities.

So the general elephant conjecture by M. Reid is affirmative for such an X.
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Theorem B. Let X be a Q-factorial Q-Fano 3-fold with (1)~(4) of 0.2. Let
N = aw(X). Then if N > 1 (resp. N = 1), X can be transformed to a Q-
factorial Q-Fano 3-fold Z' with (1)~ (4) of 0.2 and with only QODP’s or 3(1,1,1)-
singularities as its singularities and h°(—K 3,) = h and aw(Z') = N —1 (resp. a
smooth Fano 3-fold Z' with p(Z') =1, F(2') =1 and h%(—~K 3,) = h) as follows:
Y
v g

def yd jod def ied
=X z 5 7,

X

where * 3% «x means that ** is a small deformation of x;

X is a Q-Fano 3-fold as in 0.2 and with only ODP’s, QODP’s or 1(1,1,1)-
singularities as its singularities;

f: Y — X is chosen as f in the main theorem;

g: Y — Z be the anti-canonical model.

This is an analogue to the Reid’s fantasy about Calabi-Yau 3-folds [RM1].

Theorem C. If any index 2 point is a ﬁl-(l, 1, 1)-singularity, X con be embedded
into a weighted projective space P(1%,2N), where h := h%(~Kx) and N is the
number of 3(1,1,1)-singularities on X.

We hope that this fact can be used for the classification of Mukai’s type (see
[Mu]).

1. EXAMPLES

We consider the case that h°(—~Kx) = 4 and N = 4. By the table of the
main theorem, there are two possibilities of X in this case. We assume that every
singularity of Y is a (1, 1, 1)-singularity. Then one of the following holds:

[1]. f’is an extremal divisorial contraction which contracts a divisor E' to a curve
C and | — Ky — E'| # ¢. X' is a (2,2,2)-complete intersection in P® and satisfies
the following properties:
(1) X’ is factorial;
(2) C is a smooth conic;
(3) X’ has 3 singularities Py ~ P; on C and P; is an ODP or the singularity
analytically isomorphic to the origin of {zy + 22 + w® = 0} C C*. Outside
Py’s, X' is smooth.

[2]). f' is blowing up at a smooth point Q := f'(E') and | — Ky — E'| # ¢. X' is
smooth, isomorphic to Ajg and there exist exactly three lines through the point Q.

We will construct examples for these cases by the following three steps:
Step 1. We construct X’ satisfying the properties as stated as in [1] or [2];
Step 2. We construct f’ satisfying the properties as stated as in [1] or [2];
Step 3. We construct f : Y — X as in the main theorem from Y.

{1].

Step 1 for [1]. We construct X’ with only ODP’s.

13
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Claim 1. Let V (resp. X') be a (2,2)-complete intersection in P® (resp. a quadric
section of V') with the following properties:

(1) V (resp. X') contains a smooth conic C;
(2) V (resp. X') has three ODP’s Py ~ Py on C and outside P;’s, V (resp.
X') is smooth.

Then X' is factorial.

Proof. We claim that V contains the plane P spanned by C. Let o be the pencil
which consists of quadrics in P® containing V. Since P; is an ODP on V, there is a
quadric in o which is singular at P;. If there is a quadric in ¢ which is singular at
all P;’s, then it is singular on P and hence V is singular along C, a contradiction.
So o is generated by two quadrics which are singular at some P,. But such quadrics
contains P and hence V contains P.

Let ¥ : V — V be the composition of the blowing ups at Py ~ P, and Fj the
exceptional divisor over P;. Let X’ be the strict transform of X’ on V and H the
total transform of a hyperplane section of V. Then X'~ 2H — Fy— F) — Fy. Note
that |H — F; — Fj| is free outside the strict transform l;; of the line through P;
and P; and |H —~ Fy| is free (note that [;; is contained in V since I;; C P). By
this, we can easily see that |X' ’| is free and X' is pumerically trivial only for ;s
((Z»]) = (071)’(1a2)’(270))' .

Let ¢ be the morphism defined by |X’|. Then ¢-exceptional curves are /;;’s. We
will prove that Leff(f/, X! ) holds and X' meets every effective divisor on V. By [H,
p.165, Proposition 1.1] and the argument of [H, p.172, the proof of Theorem 1.5},
it suffices to prove that cd(V — X’) < 3, ie., for any coherent sheaf F on V — X/,
HY(V — X' F) =0forall i > 3. Let V := ¢(V) and X' := ¢(X'). Consider the
Leray spectral sequence

B} = HY(V - X', R/ ,F) = EP*9 = HPV9(V — X', F),

where ¢' := ¢|y_ 5. Since V — X' is affine and the dimension of every fiber of ¢
<1, we have F§9 =0for p > 1 or ¢ > 2 whence EPt9 =0 for p+q > 2. So the
assertion follows.

Furthermore since X’ is nef and big, H*(V,O(-nX')) =0 forn > 1 and i =
1,2 by KKV vanishing theorem. Hence by the Grothandieck-Lefschetz theorem
[G, p.135, 3.18] (or [H, p.178, Theorem 3.1]), we have PicX’ ~ PicV ~ Z*. So
p(X'/X') = 3 which imply that X’ is factorial. [

We will give a pair (V,X’) satisfying the condition of Claim 1. Let C be a
smooth conic in P® and Py ~ P, three points on C. We can choose a coordinate
of P8 such that C = {zqz; + 7172 + TaTop = T3 = T4 = 5 = T¢ = 0} and
P; = {z; =0 for j # i}.

Claim 2. Let X’ be a (2,2,2)-complete intersection in P® satisfying the following
conditions:

(1) X’ is factorial;

(2) X' contains a smooth conic C;

(3) X’ has three ODP’s Py ~ P, on C and outside P,’s, X' is smooth.

Then X' is the intersection of three quadrics Q) ~ Q3 of the following forms by
permuting P;’s if necessary:
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Q1 = {mpzo + m1z1 + q1 = 0};

Q2 = {pmiz1 + mazs + g2 = 0};
6
Q3 := {Io.’l}l + Z1Z2 + To2Zg + Zl.‘fb,‘ = 0},
=3
where p € C, m; (resp. g;) is a linear form (resp. a quadratic form) of z3 ~ Tg
and l; is a linear form of Ty ~ xs.
Conversely if X' = Q1N Q2 N Qs, where Q; is of the form as above and my, ¢;
and l; are suitably general, then X' satisfies (1) ~ (3).

Proof. Let v be the net which consists of quadrics containing X’. < contains a
member @, which is singular at P,. Then Q is of the form as above. If m; =
mg = 0, then Q) is singular on the plane P spanned by C and hence X' is singular
along C, a contradiction. Hence m; # 0 or my # 0. By permuting P; and P if
necessary, we may assume that m; # 0. -y contains a member @2 which is singular
at Py. @ is of the form as

{ml'zl + MoZo + g2 = 0},

where m;’ and mg (resp. gz} are linear forms (resp. is a quadratic form) of z3 ~ .
« also contains a member @’ which is singular at P;. If @1, Q2 and Q’ generate v,
then X’ contains the plane P, a contradiction to the factoriality and F(X') = 1.
Hence Q' is contained in the pencil generated by @1 and Q2. So mi’ = pm; for
some p € C and

Q = {—pmozo + M2z + (g2 — pq1) = 0}.

Since X’ does not contain P as noted above, v contains a member @3 of the form
as in the statement. @3 is not contained in the pencil generated by ¢)1 and Q2 and
hence @;’s generate .

Conversely let X' := Q1 N Q2N Q3, where @; is of the form as above and m;, ¢;
and I; are suitably general. We can easily check that X’ satisfies (2) and (3). Set
V := Q1N Q,. We may assume that V satisfies the condition of Claim 1. Hence by
Claim 1, X' is factorial. O

Step 2 for [1]. Let v/ : X’ — X' be the composition of the blowing ups at
Py ~ Pyn_y and F;' the exceptional divisor over P;. Let pu' : X" — X’ be the
blowing up along the strict transform C of C and F’ the p/-exceptional divisor. We
will denote the strict transforms of the two fibers of F; ~ P! x P! through F; N C
by li; (7 = 1,2). Note that —K g, .l;; = 0. We can easily see that | - K ¢, | is free by
PN X' = C, where P is the plane spanned by C and —K 4, is big. Hence [;;s are

flopping curves on X’ and we can see that the classes of l;; and l;» belong to the
5 5 . 5+
same ray. Let X' --» X" be the flop. Then the strict transforms of F;"’s on X’

are P?’s and we can contract them to 3(1,1,1)-singularities. Let g’ : X S5 Y be
the contraction morphism, f’ : Y’ — X’ the natural morphism and E’ the strict
transform of F’.

We will see that | — Ky — E'| # ¢. Let F'* be the strict transform of F’ on

X", Then ~Ky+ — F't = ¢"*(—~Ky' — E'). Furthermore hO(—K 4+ — Fty =

15
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h%(—K %, — F'). Hence it suffices to prove that h°(—K 3, |p) < 3 since h°(~K 4,) =
4. Since there is a smooth member of | — K z/|, we have Nz, 3, = O(—1) & O(-2).
Hence F' ~ T, and —Ky, |z ~ Cp + I, where Cy is the minimal section of F’ and
l is a fiber of F’'. So we are done.

Step 3 for [1]. Since Y has only (1,1, 1)-singularities and — Ky is nef and big,
we can construct a similar diagram Yy’ (= Y’ - Y1’ ¥/ - Vi .Y =
Y, Ly X003 by considering extremal rays, where Y;' --+ Y;1,’ is a flop or a flip
for i = 0 and a flip for i > 1. Let E; (resp. E) be the strict transform of EonY,/
(resp. Y). Let R; be the extremal ray which is other than the ray associated to f’
for ¢ = 0 or the Ky,-negative extremal ray for 1 > 1. By similar calculations to 0.3,
we have

(1) (-Ky)’E=1+ Z ai'di’;
(2) (~Ky)E*= -2~ a/"d/;
(3) B =—6+) a"d’ +¢,

where €/, a;’ and d;’ are similarly defined to 0.3 with respect to ~Ky,» and E,— and
furthermore we can see that a;’ is a non negative integer.

Claim 3. E,.R; < 0.

Proof. We can prove the assertion by induction. For i = 0, Ej.Rg < 0 can be
directly checked. Assume that the assertion holds for the numbers less than . So
the other extremal ray than R, is positive for E;. Since —Ky;: is free outside a
finite number of curves, —Ky,/|z, is numerically equivalent to an effective 1-cycle.

Hence by —KWE’? < —Ky:E2 = —2, we have E‘,R1 <0. O

By this claim, we know that f is an divisorial contraction whose exceptional
divisor is E. If f is a crepant divisorial contraction, then ! = 0. But (—Ky+)2E =1,
a contradiction. Hence f is a Ky-negative contraction. Assume that f is (2,1)-
type which contracts E to a curve C’. Then (-Kx.C') = (-Ky + E)(—Ky)E =
~1-3"d;'a;/(a;’ — 1) < 0, a contradiction since X is a Q-Fano 3-fold.

By the classification of a (2,0)-type contraction from a 3-fold with only index
2 terminal singularities (see Appendix), if f is such an contraction, then we have
~KyE? > —2. On the other hand —Ky E? < ~Ky/E? = —2. Hence there is
no flip. So (~Ky)?E = (~Ky/)?E = 1 and hence again by the classification of a
contraction as above, f is the blow up at a %(1, 1,1)-singularity or the weighted
blow up at a QODP with weight (%, %, %, 1) (we use the coordinate as stated in the
definition of QODP) . In any case X is a @Q-Fano 3-fold with I(X) = 2. We can
easily check that (—Kx)® = 4 and aw(X) = 4. Furthermore by this, F(X) must
be % So X is what we want. »

(2]
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Step 1 for [2]. The Grassmannian G(2,5) (parameterizing 2-dimensional sub-
spaces of 5-dimensional vector space) can be embedded into P® by the Pliicker
embedding. Its defining equations are z;;rg — TiTj + Tzy = 0 for all 1 <
i < j <k <l <5, where zp (1 < p < ¢ < 5) is a Pliicker coordinate.
Let @ be the point defined by z,, = 0 for any (p,q) # (1,2). Let I; (resp.
l3) be the line C G(2,5) defined by zp, = 0 for any (p,q) # (1,2),(1,3) (re-
sp. (p,q) # (1,2),(2,4)). Let I3 be the line C G(2,5) defined by the equations
Tpq = TpgZ12 for (p,q) # (1,2) such that r34 = r35 = r45 = 0, 713724 — T23714 = 0,
T13T25 — T23T15 — 07 T147T925 — T24T15 — 0 and T157T25 —7‘5 0. Let H be the 3—plane
spanned by Iy, I and I3, Then G(2,5) N H = I; Uly Ul3. Hence by [MM3,
Proposition 6.8}, there are two hyperplane H;, H; and a quadric @ such that
X' :=G(2,5) N Hy N Hy NQ is smooth and X’ contains {,, {» and I5. Since the
tangent space of X’ at () also contains all the lines on X’ through @, it is equal to
H. Hence there are only three lines on X’ through Q.

Step 2 for [2]. Let f' : Y/ — X' be the blow up at @ and E’ the exceptional
divisor. Let l;’, I" and I3’ be the transforms of 1, Iz and I3 on Y’. Since Bs|—Ky/| =
[;'Uly"Uly’, the rank of the natural map H®(—Ky+) — H?(O(-Ky«|g’)) is 3. Hence
there is a unique member E of | — Ky+ — E'| since h®(—Ky/) = 4.

Step 3 for [2]. Since |— Ky:+E'| is free and — Ky + E’ is numerically trivial only
for 1,’, 1" and I3" and positive for a curve in E’, they are numerically equivalent and
span an extremal ray R of NE(Y’). Since Bs|—Ky+| = I;'Uly’Ul3" and — Ky’ <0,
Supp R = [’ Uly’ Uls'. Furthermore by Bs| — Ky| = I;’Uly’ Ul3' again, there is a
smooth anti-canonical divisor D ((MM3, Proposition 6.8]). Hence the contraction of
I;', 1y’ and I3’ is a log flopping contraction for the pair (Y’, D) and the log flop exists.
Let Y’ --» Y] be the log flop. Since D./;" = —1, the normal bundle of I;" is of type
(-1, —2). Hence Yy has three %(1, 1,1)-singularities. Since —Kyy is nef and big, we
can construct a similar diagram Yy --» ¥/ --» ... Y/ -5 Y/ ... Y =Y/ 4, Xto
Lemma 3.2 by considering extremal rays, where Y/ --+ Y/, is a flop or a flip for
i=0and a flip if i > 1. Let E; be the strict transform of E on Y.

Similarly to Step 3 for [1], we can see that f is the blow up at a %(1,1,1)-
singularity or the weighted blow up at a QODP with weight (%, %, %, 1). In any
case X is a Q-Fano 3-fold with I(X) = 2. Since (~Kx)? = 4 and N = 4, F(X)
must be 1. So X is what we want.

APPENDIX

In this appendix, we give the table of a (2, 0)-type contraction from a 3-fold with
only index 2 terminal singularities. ‘

Proposition. Let X be a 3-fold with only inder 2 terminal singularities and f :
X — (Y, Q) a contraction of (2,0)-type to a germ (Y, Q) which contracts a prime
divisor E to Q. Then the following holds:

(1) Assume that E contains no index 2 point. Then one of the following holds:

(2,0); : (E,—E|g) = (P?,0p2(1)) and Q is a smooth point ;

(2,0)2: (E,—Elg) = (P! x P!, Ops (1)|p1 yp1) and (Y, Q) = (((xzy+2zw = 0) C C*), 0);
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(2,0)3 : (E, —E|g) = (F2,0, Ops (Dlrs,0) and (Y, Q) = (((zy+22+w* = 0) € C*),0)(k > 3);

1
(2,0)4: (E,~E|g) = (P%,0p2(2)) and Q is a —2—(1, 1, 1)-singularity.

Furthermore for all cases, f is the blow up of Q.
(2) Assume that E contains an indezr 2 point. Then one of the following holds:

(2,0)s5 : (E,—E|g) ~ (F2,0,1) , where | is a ruling of Fa.
Q is a smooth point and f is a weighted blow up with weight (2,1,1).
In particular we have Kx = f* Ky + 3F;

1
(2,0)6: Kx = f*Ky + E and Q is a Gorenstein singular point. E3= 3

(2,0)7: Kx = f*"Ky + FE and Q is a Gorenstein singular point. E3=1;
(2,0)s: Kx = f*Ky + E and Q is a Gorenstein singular point. E* = g;

(2,0)e: Kx = f*Ky + E and Q is a Gorenstein singular point. E3 =2

(270)10 : (Ez "EIE) = (({'Ey + w? = 0} C P(L L2, 1))30(2))'
(Y, Q) = (((zy + 2* + w? = 0) € C*/Z,(1,1,0,1)),0).

. . . : 11 1
f is a weighted blow up with a weight (5, 3 1, -2—)

1
In particular we have Kx = f* Ky + EE;

(2, 0)11 < (E,—E;E) o= (F270,3l).
1 1
Q s a 5(2., 1,1)-singularity and f is a weighted blow up with a weight 5(2, 1,1).

1
In particular we have Kx = f*Ky + -?;E;

11
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