<table>
<thead>
<tr>
<th>Title</th>
<th>On Classification of Q-Fano 3-Folds of Gorenstein Index 2 and Fano Index 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takagi, Hiromichi</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジューム記録 (1999), 1999: 8-20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/214710</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON CLASSIFICATION OF Q-FANO 3-FOLDS OF GORENSTEIN INDEX 2 AND FANO INDEX $\frac{1}{2}$

HIROMICHI TAKAGI

Notation and Conventions.

\begin{itemize}
 \item \sim linear equivalence
 \item \equiv numerical equivalence
 \item ODP ordinary double point, i.e., singularity analytically isomorphic to \(\{xy + z^2 + u^2 = 0 \subset \mathbb{C}^4\}\)
 \item QODP singularity analytically isomorphic to \(\{xy+z^2+u^2 = 0 \subset \mathbb{C}^4/Z_2(1,1,1,0)\}\)
 \item \(F_n\) Hirzebruch surface of degree \(n\)
 \item \(F_{n,0}\) surface which is obtained by the contraction of the negative section of \(F_n\)
 \item \(Q_3\) smooth 3-dimensional quadric.
 \item \(B_i\) (1 \(\leq\) \(i\) \(\leq\) 5) \(Q\)-factorial Gorenstein terminal Fano 3-fold of Fano index 2, and with Picard number 1 and \((-K)^3 = 8i\), where \(K\) is the canonical divisor
 \item \(A_{2i}\) (1 \(\leq\) \(i\) \(\leq\) 11 and \(i\) \(\neq\) 10) \(Q\)-factorial Gorenstein terminal Fano 3-fold of Fano index 1, and with Picard number 1 and \((-K)^3 = 2i\)
 \item contraction of \((m,n)\)-type extremal contraction whose exceptional locus has dimension \(m\) and the image of the exceptional locus has dimension \(n\)
\end{itemize}

0. INTRODUCTION

In this article, we will work over \(\mathbb{C}\), the complex number field.

Definition 0.0 (Q-Fano variety). Let \(X\) be a normal projective variety. We say that \(X\) is a \(Q\)-Fano variety (resp. weak \(Q\)-Fano variety) if \(X\) has only terminal singularities and \(-K_X\) is ample (resp. nef and big).

Let \(I(X) := \min\{I|IK_X\text{ is a Cartier divisor}\}\) and we call \(I(X)\) the Gorenstein index of \(X\).

Write \(I(X)(-K_X) \equiv r(X)H(X)\), where \(H(X)\) is a primitive Cartier divisor and \(r(X) \in \mathbb{N}\). (Note that \(H(X)\) is unique since Pic\(X\) is torsion free.) Then we call \(\frac{r(X)}{I(X)}\) the Fano index of \(X\) and denote it by \(F(X)\).

Remark 0.1.

(1) We can allow that a \(Q\)-Fano variety or a weak \(Q\)-Fano variety has worse singularities than terminal. When we have to treat such a variety in this paper, we indicate singularities which we allow, e.g., 'a \(Q\)-Fano 3-fold with only canonical singularities';

(2) if \(X\) is Gorenstein in Definition 0.0, we say that \(X\) is a Fano variety (resp. a weak Fano variety).

\textit{Key words and phrases.} Q-Fano 3-fold, Extremal contraction.

Typeset by AM\$-\TeX
HIROMICHI TAKAGI

For the classification theory of varieties, a Q-factorial Q-Fano variety with Picard number 1 is important because it is an output of the minimal model program. Here we mention the known result about the classification of Q-Fano 3-folds:

(1) G. Fano started the classification of smooth Fano 3-folds and it was completed by V. A. Iskovskih [I1] ~ [I4], V. V. Shokurov [Sh1], [Sh2], T. Fujita [Fu1] ~ [Fu3], S. Mori and S. Mukai [MM1] ~ [MM3];

(2) S. Mukai [Mu] classified indecomposable Gorenstein Fano 3-folds with canonical singularities by using vector bundles;

(3) T. Sano [San1] and independently F. Campana and H. Flenner [CF] classified non Gorenstein Fano 3-folds of Fano indices > 1;

(4) T. Sano [San2] classified non Gorenstein Fano 3-folds of Fano indices 1 and with only cyclic quotient terminal singularities. Recently T. Minagawa [Mi1] proved that non Gorenstein Q-Fano 3-folds with Fano indices 1 can be deformed to one with only cyclic quotient terminal singularities;

(5) A. R. Fletcher [Fl] gave the classification of Q-Fano 3-folds which are weighted complete intersections of codimension 1 or 2. Recently S. Altinok [Al] (see also [RM2]) obtained a list of Q-Fano 3-folds which are subvarieties in a weighted projective space of codimension 3 or 4.

On the other hand K. Takeuchi [T1] simplified and amplified V. A. Iskovskih's method of classification by using the theory of the extremal ray. In particular he reproved the Shokurov's theorem [Sh2], the existence of lines on a smooth Fano 3-fold of Fano index 1 and with Picard number 1 by simple numerical calculations.

We formulate a slight generalization of Takeuchi's construction for a Q-factorial Q-Fano 3-fold X with ρ(X) = 1 and give a classification of a Q-factorial Q-Fano 3-fold with the following properties:

Main Assumption 0.2.

(1) ρ(X) = 1;
(2) I(X) = 2;
(3) F(X) = 1/2;
(4) h^0(-K_X) ≥ 4;
(5) there exists an index 2 point P such that

\[(X, P) \simeq (\{xy + z^2 + ua = 0\}/\mathbb{Z}_2(1,1,1,0), o)\]

for some a ∈ N.

Takeuchi's construction 0.3. Here we explain a slight generalization of Takeuchi's construction. Let X be a Q-factorial Q-Fano 3-fold with ρ(X) = 1. Suppose that we are given a birational morphism f : Y → X with the following properties:

(1) Y is a weak Q-Fano 3-fold;
(2) f is an extremal divisorial contraction such that f-exceptional locus E is a prime Q-Cartier divisor.

Then we obtain the following diagram:

\[
Y_0 := Y \xrightarrow{g_0} Y_1 \xrightarrow{g_1} \ldots \xrightarrow{g_{k-1}} Y_k \xrightarrow{g_k} Y \xrightarrow{f} X',
\]

where f is a prime Q-Cartier divisor.
where

1. $Y_0 \rightarrow Y_1$ is a flop or a flip and $Y_i \rightarrow Y_{i+1}$ is a flip for $i \geq 1$;
2. f' is a crepant divisorial contraction (in this case, $i = 0$) or an extremal contraction which is not isomorphic in codimension 1.

We use the following notation:

$Y' := Y_k$;

$E_i :=$ the strict transform of E on Y_i;

$E :=$ the strict transform of E on Y';

$e := E^3 - E_1^3$ if $Y_0 \rightarrow Y_1$ is a flop or $:= 0$ otherwise;

$d_i := (-K_{Y_i})^3 - (-K_{Y_{i+1}})^3$ (resp. $a_i := \frac{E_i l_i}{(-K_{Y_i}) l_i}$) if $Y_i \rightarrow Y_{i+1}$ is a flip, where

l_i is a flipping curve, or $:= 0$ (resp. $:= 0$) otherwise;

z and u is defined as follows:

If f' is birational, then let E' be the exceptional divisor of f' and set $E' := z(-K_{Y'}) - uE$ or if f' is not birational, then let L be the pull back of an ample generator of $\text{Pic} X'$ and set $L := z(-K_{Y'}) - uE$.

We note the following:

1. $(-K_{Y'})^2 E = (-K_Y)^2 E - \sum a_i d_i$;

2. $(-K_{Y'})^2 E = (-K_Y)^2 E^2 - \sum a_i^2 d_i$;

$E^3 = E^3 - e - \sum a_i^3 d_i$;

On the other hand the value or the relation of the value (expressed with z and u) of $(-K_{Y'})^3$, $(-K_{Y'})^2 E$, $(-K_{Y'}) E^2$ and E^3 are restricted by the properties of f'.

By these (1) and (2), we obtain equations of Diophantine type.

Under Main Assumption 0.2, Construction 0.3 works for a suitable choice of f and we can solve the equations as noted above.

Main Theorem. Let X be as in Main Assumption 0.2. Let $f : Y \rightarrow X$ be the weighted blow up at P with weight $\frac{1}{2}(1, 1, 1, 2)$. Then Y is a weak \mathbb{Q}-Fano 3-fold.

Consider the diagram as in 0.3. Let $h := h^i(-K_X)$, $N := \text{aw}(X)$ and $n := \sum \text{aw}(Y_i, P_{ij})$ (the summation is taken over the index 2 points on flipping curves), where $\text{aw}(X)$ is the number of $\frac{1}{2}(1, 1, 1)$-singularities which we obtain by deforming non Gorenstein points of X locally and $\text{aw}(Y_i, P_{ij})$ is defined similarly. Then we can solve the equations above and obtain a geographic classification of X as below (?? in the table means that we don't know the existence of an example):
HIROMICHI TAKAGI

\[(-K_X)^3 \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(e)</th>
<th>(n)</th>
<th>(z)</th>
<th>(-K_Y, C)</th>
<th>(-K_X^3, X')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>/</td>
</tr>
<tr>
<td>(\frac{3}{2})</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>1</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>/</td>
</tr>
<tr>
<td>(\frac{5}{2})</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>/</td>
</tr>
<tr>
<td>(\frac{9}{2})</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(\frac{9}{2})</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>/</td>
</tr>
<tr>
<td>(\frac{9}{2})</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>/</td>
</tr>
<tr>
<td>(\frac{3}{2})</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

\(z = u \) if \(f' \) is not a crepant divisorial contraction.

\(u = 2 \) if \(f' \) is a crepant divisorial contraction.

\(F := \text{a general fiber of } f' \) if \(f' \) is \((3,1) \)-type.

See Appendix for \((2,0)_4 \).

\(g(C) = 0 \) in case \(f' \) is of type \(E_1 \) and every singularity of \(Y \) is a \(\frac{1}{2}(1,1,1) \)-singularity.

\[(-K_X)^3 \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(e)</th>
<th>(n)</th>
<th>(z)</th>
<th>(\deg \Delta)</th>
<th>(\deg F)</th>
<th>(-K_Y, C)</th>
<th>(-K_X^3, X')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td>3</td>
<td>(3, (3,1))</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>/</td>
<td>4</td>
<td>(3, (3,1))</td>
</tr>
<tr>
<td>(\frac{11}{2})</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>/</td>
<td>5</td>
<td>(3, (3,1))</td>
</tr>
<tr>
<td>(\frac{11}{2})</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>/</td>
<td>((3,2), \mathbb{F}_{2,0})</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>/</td>
<td>((3,2), \mathbb{F}_{2,0})</td>
</tr>
<tr>
<td>(\frac{6}{2})</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>/</td>
<td>((3,2), \mathbb{F}_{2,0})</td>
</tr>
</tbody>
</table>

\(z = u \).

\(\Delta := \text{the discriminant divisor of } f' \) if \(f' \) is \((3,2) \)-type.

\(F := \text{a general fiber of } f' \) if \(f' \) is \((3,1) \)-type.
Q-FANO 3-FOLDS

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T. Sano in [San2].

\[
(-K_X)^3 h = 7
\]

\(\frac{13}{2}\)	1	6	0	3	36	\((2,1), P^3\)
9	2	6	0	2	18	\((2,1), P^3\)
9	2	5	1	3	32	\((2,1), P^3\)
\(\frac{19}{2}\)	3	5	1	2	15	\((2,1), P^3\)
\(\frac{19}{2}\)	3	4	2	3	28	\((2,1), P^3\)

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T. Sano in [San2].

\[u = z + 1. \]

\[
(-K_X)^3 h = 8
\]

\(\frac{21}{2}\)	1	6	0	1	6	\((2,1), B_3\)
\(\frac{13}{2}\)	1	5	0	2	27	\((2,1), Q_3\)
11	2	4	1	2	24	\((2,1), Q_3\)

\[u = z + 1. \]

\[
(-K_X)^3 h = 9
\]

| \(\frac{25}{2}\) | 1 | 5 | 0 | 1 | 10 | \((2,1), B_4\) |

\[z = 1 \text{ and } u = 2. \]

In particular we have \((-K_X)^3 \leq 15\) and \(h^0(-K_X) \leq 10\).

Based on this result, we can derive the following properties for \(X\) as in the main theorem:

Theorem A. If any index 2 point satisfies the assumption (5) of 0.2, then \(|-K_X|\) has a member with only canonical singularities.

So the general elephant conjecture by M. Reid is affirmative for such an \(X\).
Theorem B. Let X be a Q-factorial Q-Fano 3-fold with $(1)\sim(4)$ of 0.2. Let $N := \text{aw}(X)$. Then if $N > 1$ (resp. $N = 1$), X can be transformed to a Q-factorial Q-Fano 3-fold \tilde{Z}' with $(1)\sim(4)$ of 0.2 and with only $QODP$'s or $\frac{1}{2}(1,1,1)$-singularities as its singularities and $h^0(-K_{\tilde{Z}'}) = h$ and $\text{aw}(\tilde{Z}') = N - 1$ (resp. a smooth Fano 3-fold \tilde{Z}' with $\rho(\tilde{Z}') = 1$, $F(\tilde{Z}') = 1$ and $h^0(-K_{\tilde{Z}'}) = h$) as follows:

$$\tilde{Y} \xrightarrow{\tilde{f}} \tilde{X} \xrightarrow{g} \tilde{Z} \xrightarrow{\tilde{g}} \tilde{Z}',$$

where $* \xrightarrow{\text{def}} **$ means that $**$ is a small deformation of $*$;

\tilde{X} is a Q-Fano 3-fold as in 0.2 and with only ODP's, $QODP$'s or $\frac{1}{2}(1,1,1)$-singularities as its singularities;

$\tilde{f}: \tilde{Y} \rightarrow \tilde{X}$ is chosen as f in the main theorem;

$\tilde{g}: \tilde{Y} \rightarrow \tilde{Z}$ be the anti-canonical model.

This is an analogue to the Reid's fantasy about Calabi-Yau 3-folds [RM1].

Theorem C. If any index 2 point is a $\frac{1}{2}(1,1,1)$-singularity, X can be embedded into a weighted projective space $\mathbb{P}(1^h, 2^N)$, where $h := h^0(-K_X)$ and N is the number of $\frac{1}{2}(1,1,1)$-singularities on X.

We hope that this fact can be used for the classification of Mukai's type (see [Mu]).

1. Examples

We consider the case that $h^0(-K_X) = 4$ and $N = 4$. By the table of the main theorem, there are two possibilities of X in this case. We assume that every singularity of Y is a $\frac{1}{2}(1,1,1)$-singularity. Then one of the following holds:

1. f' is an extremal divisorial contraction which contracts a divisor E' to a curve C and $| - K_Y - E'| \neq \phi$. X' is a $(2, 2, 2)$-complete intersection in \mathbb{P}^6 and satisfies the following properties:
 (1) X' is factorial;
 (2) C is a smooth conic;
 (3) X' has 3 singularities $P_0 \sim P_2$ on C and P_i is an ODP or the singularity analytically isomorphic to the origin of $\{xy + z^2 + w^3 = 0\} \subset \mathbb{C}^4$. Outside P_i's, X' is smooth.

2. f' is blowing up at a smooth point $Q := f'(E')$ and $| - K_{Y'} - E'| \neq \phi$. X' is smooth, isomorphic to A_{10} and there exist exactly three lines through the point Q.

We will construct examples for these cases by the following three steps:

Step 1. We construct X' satisfying the properties as stated as in [1] or [2];

Step 2. We construct f' satisfying the properties as stated as in [1] or [2];

Step 3. We construct $f: Y \rightarrow X$ as in the main theorem from Y'.

[1].

Step 1 for [1]. We construct X' with only ODP's.
Claim 1. Let V (resp. X') be a $(2,2)$-complete intersection in \mathbb{P}^6 (resp. a quadric section of V) with the following properties:

1. V (resp. X') contains a smooth conic C;
2. V (resp. X') has three ODP's $P_0 \sim P_2$ on C and outside P_i's, V (resp. X') is smooth.

Then X' is factorial.

Proof. We claim that V contains the plane P spanned by C. Let σ be the pencil which consists of quadrics in \mathbb{P}^6 containing V. Since P_i is an ODP on V, there is a quadric in σ which is singular at P_i. If there is a quadric in σ which is singular at all P_i's, then it is singular on P and hence V is singular along C, a contradiction. So σ is generated by two quadrics which are singular at some P_i. But such quadrics contains P and hence V contains P.

Let $\nu : \bar{V} \rightarrow V$ be the composition of the blowing ups at $P_0 \sim P_2$ and F_i the exceptional divisor over P_i. Let \bar{X}' be the strict transform of X' on V and H the total transform of a hyperplane section of V. Then $\bar{X}' \sim 2H - F_0 - F_1 - F_2$. Note that $[H - F_i - F_j]$ is free outside the strict transform l_{ij} of the line through P_i and P_j and $[H - F_k]$ is free (note that l_{ij} is contained in V since $l_{ij} \subset P$). By this, we can easily see that $|\bar{X}'|$ is free and \bar{X}' is numerically trivial only for l_{ij}'s $((i,j) = (0,1), (1,2), (2,0))$.

Let ϕ be the morphism defined by $|\bar{X}'|$. Then ϕ-exceptional curves are l_{ij}'s. We will prove that $\text{Eff}(\bar{V}, \bar{X}')$ holds and \bar{X}' meets every effective divisor on \bar{V}. By [H, p.165, Proposition 1.1] and the argument of [H, p.172, the proof of Theorem 1.5], it suffices to prove that $\text{cd}(\bar{V} - \bar{X}') < 3$, i.e., for any coherent sheaf F on $\bar{V} - \bar{X}'$, $H^i(\bar{V} - \bar{X}', F) = 0$ for all $i \geq 3$. Let $\bar{V} := \phi(\bar{V})$ and $\bar{X}' := \phi(\bar{X}')$. Consider the Leray spectral sequence

$$E^{pq}_2 = H^p(V - X', R^q\phi_* F) \Rightarrow E^{p+q} = H^{p+q}(\bar{V} - \bar{X}', F),$$

where $\phi' := \phi|_{\bar{V} - \bar{X}'}$. Since $\bar{V} - \bar{X}'$ is affine and the dimension of every fiber of ϕ is 1, we have $E^{pq}_2 = 0$ for $p \geq 1$ or $q \geq 2$ whence $E^{p+q} = 0$ for $p + q \geq 2$. So the assertion follows.

Furthermore since \bar{X}' is nef and big, $H^i(\bar{V}, \mathcal{O}(-n\bar{X}')) = 0$ for $n \geq 1$ and $i = 1,2$ by KKV vanishing theorem. Hence by the Grothendieck-Lefschetz theorem [G, p.135, 3.18] (or [H, p.178, Theorem 3.1]), we have $\text{Pic} \bar{X}' \sim \text{Pic} \bar{V} \sim \mathbb{Z}^4$. So $\rho(\bar{X}'/X') = 3$ which imply that X' is factorial. □

We will give a pair (V,X') satisfying the condition of Claim 1. Let C be a smooth conic in \mathbb{P}^6 and $P_0 \sim P_2$ three points on C. We can choose a coordinate of \mathbb{P}^6 such that $C = \{x_0x_1 + x_1x_2 + x_2x_0 = x_3 = x_4 = x_5 = x_6 = 0\}$ and $P_i = \{x_j = 0 \text{ for } j \neq i\}$.

Claim 2. Let X' be a $(2,2,2)$-complete intersection in \mathbb{P}^6 satisfying the following conditions:

1. X' is factorial;
2. X' contains a smooth conic C;
3. X' has three ODP's $P_0 \sim P_2$ on C and outside P_i's, X' is smooth.

Then X' is the intersection of three quadrics $Q_1 \sim Q_3$ of the following forms by permuting P_i's if necessary:
HIROMICHI TAKAGI

\[Q_1 := \{m_0 x_0 + m_1 x_1 + q_1 = 0\}; \]
\[Q_2 := \{pm_1 x_1 + m_2 x_2 + q_2 = 0\}; \]
\[Q_3 := \{x_0 x_1 + x_1 x_2 + x_2 x_0 + \sum_{i=3}^{6} l_i x_i = 0\}, \]

where \(p \in \mathbb{C} \), \(m_i \) (resp. \(q_i \)) is a linear form (resp. a quadratic form) of \(x_3 \sim x_6 \) and \(l_i \) is a linear form of \(x_0 \sim x_6 \).

Conversely if \(X' = Q_1 \cap Q_2 \cap Q_3 \), where \(Q_i \) is of the form as above and \(m_i, q_i \) and \(l_i \) are suitably general, then \(X' \) satisfies (1) \(\sim \) (3).

Proof. Let \(\gamma \) be the net which consists of quadrics containing \(X' \). \(\gamma \) contains a member \(Q_1 \) which is singular at \(P_2 \). Then \(Q_1 \) is of the form as above. If \(m_1 = m_2 = 0 \), then \(Q_1 \) is singular on the plane \(P \) spanned by \(C \) and hence \(X' \) is singular along \(C \), a contradiction. Hence \(m_1 \neq 0 \) or \(m_2 \neq 0 \). By permuting \(P_1 \) and \(P_2 \) if necessary, we may assume that \(m_1 \neq 0 \). \(\gamma \) contains a member \(Q_2 \) which is singular at \(P_0 \). \(Q_2 \) is of the form as

\[\{m_1' x_1 + m_2 x_2 + q_2 = 0\}, \]

where \(m_1' \) and \(m_2 \) (resp. \(q_2 \)) are linear forms (resp. a quadratic form) of \(x_3 \sim x_6 \). \(\gamma \) also contains a member \(Q' \) which is singular at \(P_1 \). If \(Q_1, Q_2 \) and \(Q' \) generate \(\gamma \), then \(X' \) contains the plane \(P \), a contradiction to the factoriality and \(F(X') = 1 \). Hence \(Q' \) is contained in the pencil generated by \(Q_1 \) and \(Q_2 \). So \(m_1' = p m_1 \) for some \(p \in \mathbb{C} \) and

\[Q = \{-p m_0 x_0 + m_2 x_2 + (q_2 - pq_1) = 0\}. \]

Since \(X' \) does not contain \(P \) as noted above, \(\gamma \) contains a member \(Q_3 \) of the form as in the statement. \(Q_3 \) is not contained in the pencil generated by \(Q_1 \) and \(Q_2 \) and hence \(Q_i \)'s generate \(\gamma \).

Conversely let \(X' := Q_1 \cap Q_2 \cap Q_3 \), where \(Q_i \) is of the form as above and \(m_i, q_i \) and \(l_i \) are suitably general. We can easily check that \(X' \) satisfies (2) \(\sim \) (3). Set \(V := Q_1 \cap Q_2 \). We may assume that \(V \) satisfies the condition of Claim 1. Hence by Claim 1, \(X' \) is factorial. \(\square \)

Step 2 for [1]. Let \(\nu' : \tilde{X}' \to X' \) be the composition of the blowing ups at \(P_0 \sim P_{N-2} \) and \(F_i' \) the exceptional divisor over \(P_i \). Let \(\mu' : \tilde{X}' \to \tilde{X}' \) be the blowing up along the strict transform \(\tilde{C} \) of \(C \) and \(F' \) the \(\mu' \)-exceptional divisor. We will denote the strict transforms of the two fibers of \(F_i \simeq \mathbb{P}^1 \times \mathbb{P}^1 \) through \(F_i \cap \tilde{C} \) by \(l_{ij} \) (\(j = 1, 2 \)). Note that \(-K_{\tilde{X}}.l_{ij} = 0 \). We can easily see that \(| -K_{\tilde{X}} | \) is free by \(P \cap X' = C \), where \(P \) is the plane spanned by \(C \) and \(-K_{\tilde{X}} \), is big. Hence \(l_{ij} \)'s are flopping curves on \(\tilde{X}' \) and we can see that the classes of \(l_{i1} \) and \(l_{i2} \) belong to the same ray. Let \(\tilde{X}' \to \tilde{X}'^+ \) be the flop. Then the strict transforms of \(F_i \)'s on \(\tilde{X}'^+ \) are \(\mathbb{P}^2 \)'s and we can contract them to \(\frac{1}{2}(1,1,1) \)-singularities. Let \(g' : \tilde{X}'^+ \to Y' \) be the contraction morphism, \(f' : Y' \to X' \) the natural morphism and \(E' \) the strict transform of \(F' \).

We will see that \(| -K_{Y'} - E' | \neq \phi \). Let \(F'^+ \) be the strict transform of \(F' \) on \(\tilde{X}'^+ \). Then \(-K_{\tilde{X}}^+ - F'^+ = g'^*(-K_{Y'} - E') \). Furthermore \(h^0(-K_{\tilde{X}}^+ - F'^+) = \)
Q-FANO 3-FOLDS

\(h^0(-K_{X'}, -F') \). Hence it suffices to prove that \(h^0(-K_{X'}, |F'|) \leq 3 \) since \(h^0(-K_{X'}) = 4 \). Since there is a smooth member of \(|-K_{X'}| \), we have \(N_{F'/X'} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-2) \).

Hence \(F' \simeq \mathbb{P}^1 \) and \(-K_{X'}|_{F'} \sim C_0 + l \), where \(C_0 \) is the minimal section of \(F' \) and \(l \) is a fiber of \(F' \). So we are done.

Step 3 for [1]. Since \(Y' \) has only \(\frac{1}{3}(1,1,1) \)-singularities and \(-K_{Y'} \) is nef and big, we can construct a similar diagram \(Y_0' := Y' \dashrightarrow Y_1' \ldots Y_i' \dashrightarrow Y_{i+1}' \ldots Y := Y_1' \xrightarrow{f} X \) to 0.3 by considering extremal rays, where \(Y_i' \dashrightarrow Y_{i+1}' \) is a flop or a flip for \(i = 0 \) and a flip for \(i \geq 1 \). Let \(\tilde{E}_i \) (resp. \(E \)) be the strict transform of \(E \) on \(Y_i' \) (resp. \(Y \)). Let \(R_i \) be the extremal ray which is other than the ray associated to \(f' \) for \(i = 0 \) or the \(K_{Y_i} \)-negative extremal ray for \(i \geq 1 \). By similar calculations to 0.3, we have

\[
\begin{align*}
(1) & \quad (-K_{Y'})^2 E = 1 + \sum a_i d_i; \\
(2) & \quad (-K_Y E^2 = -2 - \sum a_i d_i; \\
(3) & \quad E^3 = -6 + \sum a_i d_i + e',
\end{align*}
\]

where \(e', a_i \) and \(d_i \) are similarly defined to 0.3 with respect to \(-K_{Y'} \) and \(\tilde{E}_i \) and furthermore we can see that \(a_i \) is a non negative integer.

Claim 3. \(\tilde{E}_i.R_i < 0 \).

Proof. We can prove the assertion by induction. For \(i = 0 \), \(\tilde{E}_0.R_0 < 0 \) can be directly checked. Assume that the assertion holds for the numbers less than \(i \). So the other extremal ray than \(R_i \) is positive for \(E_i \). Since \(-K_{Y_i} \) is free outside a finite number of curves, \(-K_{Y_i}|_{E_i} \) is numerically equivalent to an effective 1-cycle. Hence by \(-K_{Y_i} E_i^2 \leq -K_{Y_j} E^2 = -2 \), we have \(E_i.R_i < 0 \).

By this claim, we know that \(f \) is an divisorial contraction whose exceptional divisor is \(E \). If \(f \) is a crepant divisorial contraction, then \(l = 0 \). But \((-K_{Y'})^2 E = 1 \), a contradiction. Hence \(f \) is a \(K_Y \)-negative contraction. Assume that \(f \) is \((2,1) \)-type which contracts \(E \) to a curve \(C' \). Then \((-K_X.C') = (-K_Y + E)(-K_Y)E = -1 - \sum d_i a_i(a_i - 1) < 0 \), a contradiction since \(X \) is a Q-Fano 3-fold.

By the classification of a \((2,0) \)-type contraction from a 3-fold with only index 2 terminal singularities (see Appendix), if \(f \) is such an contraction, then we have \(-K_Y E^2 \geq -2 \). On the other hand \(-K_Y E^2 \leq -K_{Y_i} E^2 = -2 \). Hence there is no flip. So \((-K_Y)^2 E = (-K_{Y})^2 E = 1 \) and hence again by the classification of a contraction as above, \(f \) is the blow up at a \(\frac{1}{2}(1,1,1) \)-singularity or the weighted blow up at a QODP with weight \((\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, 1) \) (we use the coordinate as stated in the definition of QODP). In any case \(X \) is a Q-Fano 3-fold with \(f(X) = 2 \). We can easily check that \((-K_X)^3 = 4 \) and \(aw(X) = 4 \). Furthermore by this, \(F(X) \) must be \(\frac{1}{2} \). So \(X \) is what we want.

[2].
Step 1 for [2]. The Grassmannian $G(2,5)$ (parameterizing 2-dimensional subspaces of 5-dimensional vector space) can be embedded into \mathbb{P}^9 by the Plücker embedding. Its defining equations are $x_{ij}x_{kl} - x_{ik}x_{jl} + x_{jk}x_{il} = 0$ for all $1 \leq i < j < k < l \leq 5$, where x_{pq} $(1 \leq p < q \leq 5)$ is a Plücker coordinate. Let Q be the point defined by $x_{pq} = 0$ for any $(p,q) \neq (1,2)$. Let l_1 (resp. l_2) be the line $l \subset G(2,5)$ defined by $x_{pq} = 0$ for any $(p,q) \neq (1,2),(1,3)$ (resp. $(p,q) \neq (1,2),(2,4)$). Let l_3 be the line $l \subset G(2,5)$ defined by the equations $x_{pq} = r_{pq}x_{12}$ for $(p,q) \neq (1,2)$ such that $r_{34} = r_{35} = r_{45} = 0$, $r_{13}r_{24} - r_{23}r_{14} = 0$, $r_{13}r_{25} - r_{23}r_{15} = 0$, $r_{14}r_{25} - r_{24}r_{15} = 0$ and $r_{15}r_{25} \neq 0$. Let H be the 3-plane spanned by l_1, l_2 and l_3. Then $G(2,5) \cap H = l_1 \cup l_2 \cup l_3$. Hence by [MM3, Proposition 6.8], there are two hyperplane H_1, H_2 and a quadric Q such that $X' := G(2,5) \cap H_1 \cap H_2 \cap Q$ is smooth and X' contains l_1, l_2 and l_3. Since the tangent space of X' at Q also contains all the lines on X' through Q, it is equal to H. Hence there are only three lines on X' through Q.

Step 2 for [2]. Let $f' : Y' \to X'$ be the blow up at Q and E' the exceptional divisor. Let l_1', l_2' and l_3' be the transforms of l_1, l_2 and l_3 on Y'. Since $Bs[-K_{Y'}] = l_1' \cup l_2' \cup l_3'$, the rank of the natural map $H^0(-K_{Y'}) \to H^0(O(-K_{Y'}|E'))$ is 3. Hence there is a unique member \tilde{E} of $-K_{Y'} - E'$ since $h^0(-K_{Y'}) = 4$.

Step 3 for [2]. Since $-K_{Y'} + E'$ is free and $-K_{Y'} + E'$ is numerically trivial only for l_1', l_2' and l_3' and positive for a curve in E', they are numerically equivalent and span an extremal ray R of $\overline{NE}(Y')$. Since $Bs[-K_{Y'}] = l_1' \cup l_2' \cup l_3'$ and $-K_{Y'}.l_i' < 0$, $\text{Supp } R = l_1' \cup l_2' \cup l_3'$. Furthermore by $Bs[-K_{Y'}] = l_1' \cup l_2' \cup l_3'$ again, there is a smooth anti-canonical divisor D ([MM3, Proposition 6.8]). Hence the contraction of l_1', l_2' and l_3' is a log flopping contraction for the pair (Y',D) and the log flop exists. Let $Y' \to Y'_0$ be the log flop. Since $D.l_i' = -1$, the normal bundle of l_i' is of type $(-1,-2)$. Hence Y'_0 has three $\frac{1}{2}(1,1,1)$-singularities. Since $-K_{Y'_0}$ is nef and big, we can construct a similar diagram $Y'_0 \to Y'_1 \to \cdots Y'_i \to Y := Y'_i \to X$ to Lemma 3.2 by considering extremal rays, where $Y'_i \to Y'_{i+1}$ is a flop or a flip for $i = 0$ and a flip if $i \geq 1$. Let E_i be the strict transform of E on Y'_i.

Similarly to Step 3 for [1], we can see that f is the blow up at a $\frac{1}{2}(1,1,1)$-singularity or the weighted blow up at a QODP with weight $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1)$. In any case X is a Q-Fano 3-fold with $I(X) = 2$. Since $(-K_X)^3 = 4$ and $N = 4$, $F(X)$ must be $\frac{1}{2}$. So X is what we want.

APPENDIX

In this appendix, we give the table of a $(2,0)$-type contraction from a 3-fold with only index 2 terminal singularities.

Proposition. Let X be a 3-fold with only index 2 terminal singularities and $f : X \to (Y,Q)$ a contraction of $(2,0)$-type to a germ (Y,Q) which contracts a prime divisor E to Q. Then the following holds:

1. Assume that E contains no index 2 point. Then one of the following holds:

 $(2,0)_1 : (E, -E|_{E}) \simeq (\mathbb{P}^2, O_{\mathbb{P}^2}(1))$ and Q is a smooth point ;

 $(2,0)_2 : (E, -E|_{E}) \simeq (\mathbb{P}^1 \times \mathbb{P}^1, O_{\mathbb{P}^3}(1)|_{\mathbb{P}^1 \times \mathbb{P}^1})$ and $(Y,Q) \simeq ((xy + zw = 0) \subset \mathbb{C}^4)$;
Q-PANO 3-FOLDS

$(2,0)_3 : (E,-E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)|_{\mathbb{P}^2_2,0})$ and $(Y,Q) \simeq (((xy+z^2+w^k = 0) \subset \mathbb{C}^4), o)(k \geq 3)$;

$(2,0)_4 : (E,-E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2))$ and Q is a $\frac{1}{2}(1,1,1)$-singularity.

Furthermore for all cases, f is the blow up of Q.

(2) Assume that E contains an index 2 point. Then one of the following holds:

$(2,0)_5 : (E,-E|_E) \simeq (\mathbb{P}^2, l)$, where l is a ruling of \mathbb{P}^2.

Q is a smooth point and f is a weighted blow up with weight $(2,1,1)$.

In particular we have $K_X = f^*K_Y + 3E$;

$(2,0)_6 : K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = \frac{1}{2}$;

$(2,0)_7 : K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = 1$;

$(2,0)_8 : K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = \frac{3}{2}$;

$(2,0)_9 : K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = 2$;

$(2,0)_{10} : (E,-E|_E) \simeq (((xy + w^2 = 0) \subset \mathbb{P}(1,1,2,1)), \mathcal{O}(2))$.

$(Y,Q) \simeq (((xy + z^k + w^2 = 0) \subset \mathbb{C}^4/\mathbb{Z}_2(1,1,0,1)), o)$.

f is a weighted blow up with a weight $\left(\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}\right)$.

In particular we have $K_X = f^*K_Y + \frac{1}{2}E$;

$(2,0)_{11} : (E,-E|_E) \simeq (\mathbb{P}^2, 3l)$.

Q is a $\frac{1}{3}(2,1,1)$-singularity and f is a weighted blow up with a weight $\frac{1}{3}(2,1,1)$.

In particular we have $K_X = f^*K_Y + \frac{1}{3}E$;
HIROMICHI TAKAGI

References

[MM3] ______, Classification of Fano 3-folds with $B_2 ≥ 2$, I, to the memory of Dr. Takehiko MIYATA, Algebraic and Topological Theories, 1985, pp. 496-545.

Q-FANO 3-FOLDS

[T3] ———, a private letter to the author.

RIMS, KYOTO UNIVERSITY, KITASHIRAKAWA, SAKYO-ku, 606-8502 KYOTO, JAPAN
E-mail address: takagi@kurims.kyoto-u.ac.jp