<table>
<thead>
<tr>
<th>Title</th>
<th>On Classification of Q-Fano 3-Folds of Gorenstein Index 2 and Fano Index 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takagi, Hiromichi</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジューム記録 1999: 8-20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/214710</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON CLASSIFICATION OF \mathbb{Q}-FANO 3-FOLDS OF GORENSTEIN INDEX 2 AND FANO INDEX $\frac{1}{2}$

HIROMICHI TAKAGI

Notation and Conventions.

\begin{itemize}
 \item \sim linear equivalence
 \item \equiv numerical equivalence
 \item ODP ordinary double point, i.e., singularity analytically isomorphic to \{xy + z^2 + u^2 = 0 \subset \mathbb{C}^4\}
 \item QODP singularity analytically isomorphic to \{xy+z^2+u^2 = 0 \subset $\mathbb{C}^4/\mathbb{Z}_2(1,1,1,0)$\}
 \item F_n Hirzebruch surface of degree n
 \item $F_{n,0}$ surface which is obtained by the contraction of the negative section of F_n
 \item Q_3 smooth 3-dimensional quadric.
 \item B_i (1 \leq i \leq 5) \mathbb{Q}-factorial Gorenstein terminal Fano 3-fold of Fano index 2, and with Picard number 1 and $(-K)^3 = 8i$, where K is the canonical divisor
 \item A_{2i} (1 \leq i \leq 11 and $i \neq 10$) \mathbb{Q}-factorial Gorenstein terminal Fano 3-fold of Fano index 1, and with Picard number 1 and $(-K)^3 = 2i$
 \item contraction of (m,n)-type extremal contraction whose exceptional locus has dimension m and the image of the exceptional locus has dimension n
\end{itemize}

0. INTRODUCTION

In this article, we will work over \mathbb{C}, the complex number field.

Definition 0.0 (Q-Fano variety). Let X be a normal projective variety. We say that X is a \mathbb{Q}-Fano variety (resp. weak \mathbb{Q}-Fano variety) if X has only terminal singularities and $-K_X$ is ample (resp. nef and big).

Let $I(X) := \min\{I|IK_X$ is a Cartier divisor$\}$ and we call $I(X)$ the Gorenstein index of X.

Write $I(X)(-K_X) \equiv r(X)H(X)$, where $H(X)$ is a primitive Cartier divisor and $r(X) \in \mathbb{N}$. (Note that $H(X)$ is unique since PicX is torsion free.) Then we call $r(X)$ the Fano index of X and denote it by $F(X)$.

Remark 0.1.

(1) We can allow that a \mathbb{Q}-Fano variety or a weak \mathbb{Q}-Fano variety has worse singularities than terminal. When we have to treat such a variety in this paper, we indicate singularities which we allow, e.g., 'a \mathbb{Q}-Fano 3-fold with only canonical singularities';

(2) if X is Gorenstein in Definition 0.0, we say that X is a Fano variety (resp. a weak Fano variety).
HIROMICHI TAKAGI

For the classification theory of varieties, a Q-factorial Q-Fano variety with Picard number 1 is important because it is an output of the minimal model program. Here we mention the known result about the classification of Q-Fano 3-folds:

1. G. Fano started the classification of smooth Fano 3-folds and it was completed by V. A. Iskovskih [I1] \sim [I4], V. V. Shokurov [Sh1], [Sh2], T. Fujita [Fu1] \sim [Fu3], S. Mori and S. Mukai [MM1] \sim [MM3];
2. S. Mukai [Mu] classified indecomposable Gorenstein Fano 3-folds with canonical singularities by using vector bundles;
3. T. Sano [San1] and independently F. Campana and H. Flenner [CF] classified non Gorenstein Fano 3-folds of Fano indices > 1;
4. T. Sano [San2] classified non Gorenstein Fano 3-folds of Fano indices 1 and with only cyclic quotient terminal singularities. Recently T. Minagawa [Mi1] proved that non Gorenstein Q-Fano 3-folds with Fano indices 1 can be deformed to one with only cyclic quotient terminal singularities;
5. A. R. Fletcher [Fl] gave the classification of Q-Fano 3-folds which are weighted complete intersections of codimension 1 or 2. Recently S. Altinok [Al] (see also [RM2]) obtained a list of Q-Fano 3-folds which are subvarieties in a weighted projective space of codimension 3 or 4.

On the other hand K. Takeuchi [T1] simplified and amplified V. A. Iskovskih’s method of classification by using the theory of the extremal ray. In particular he reproved the Shokurov’s theorem [Sh2], the existence of lines on a smooth Fano 3-fold of Fano index 1 and with Picard number 1 by simple numerical calculations.

We formulate a slight generalization of Takeuchi’s construction for a Q-factorial Q-Fano 3-fold X with $\rho(X) = 1$ and give a classification of a Q-factorial Q-Fano 3-fold with the following properties:

Main Assumption 0.2.

1. $\rho(X) = 1$;
2. $I(X) = 2$;
3. $F(X) = \frac{1}{2}$;
4. $h^0(-K_X) \geq 4$;
5. there exists an index 2 point P such that

$$(X, P) \simeq (\{xy + z^2 + u^a = 0\}/\mathbb{Z}_2(1, 1, 1, 0), o)$$

for some $a \in \mathbb{N}$.

Takeuchi’s construction 0.3. Here we explain a slight generalization of Takeuchi’s construction. Let X be a Q-factorial Q-Fano 3-fold with $\rho(X) = 1$. Suppose that we are given a birational morphism $f : Y \to X$ with the following properties:

1. Y is a weak Q-Fano 3-fold;
2. f is an extremal divisorial contraction such that f-exceptional locus E is a prime Q-Cartier divisor.

Then we obtain the following diagram:

$$Y_0 := Y \xrightarrow{g_0} Y_1 \xrightarrow{g_1} \cdots \xrightarrow{g_k} Y_k \xrightarrow{f'} X'$$

$$X$$
Q-FANO 3-FOLDS

where

1. \(Y_0 \rightarrow Y_1 \) is a flop or a flip and \(Y_i \rightarrow Y_{i+1} \) is a flip for \(i \geq 1 \);
2. \(f' \) is a crepant divisorial contraction (in this case, \(i = 0 \)) or an extremal contraction which is not isomorphic in codimension 1.

We use the following notation:

\(Y' := Y_k \);

\(E_i := \) the strict transform of \(E \) on \(Y_i \);

\(\hat{E} := \) the strict transform of \(E \) on \(Y' \);

\(e := E^3 - E_1^3 \) if \(Y_0 \rightarrow Y_1 \) is a flop or \(:= 0 \) otherwise;

\(d_i := (-K_{Y_i})^3 - (-K_{Y_{i+1}})^3 \) (resp. \(a_i := \frac{E \cdot l_i}{(-K_{Y_i})^3} \)) if \(Y_i \rightarrow Y_{i+1} \) is a flip, where \(l_i \) is a flipping curve, or \(:= 0 \) (resp. \(:= 0 \)) otherwise;

\(z \) and \(u \) is defined as follows:

If \(f' \) is birational, then let \(E' \) be the exceptional divisor of \(f' \) and set \(E' = z(-K_{Y'}) - u\hat{E} \) or if \(f' \) is not birational, then let \(L \) be the pull back of an ample generator of \(\text{Pic} X' \) and set \(L = z(-K_{Y'}) - u\hat{E} \).

We note the following:

\[(-K_{Y'})^2 \hat{E} = (-K_Y)^2 E - \sum a_i d_i; \]

\[(-K_{Y'})\hat{E}^2 = (-K_Y)E^2 - \sum a_i^2 d_i; \]

\[\hat{E}^3 = E^3 - e - \sum a_i^3 d_i; \]

(2) On the other hand the value or the relation of the value (expressed with \(z \) and \(u \)) of \((-K_{Y'})^3 \), \((-K_{Y'})^2 \hat{E} \), \((-K_{Y'})\hat{E}^2 \) and \(\hat{E}^3 \) are restricted by the properties of \(f' \).

By these (1) and (2), we obtain equations of Diophantine type.

Under Main Assumption 0.2, Construction 0.3 works for a suitable choice of \(f \) and we can solve the equations as noted above.

Main Theorem. Let \(X \) be as in Main Assumption 0.2. Let \(f : Y \rightarrow X \) be the weighted blow up at \(P \) with weight \(\frac{1}{2}(1, 1, 1, 2) \). Then \(Y \) is a weak Q-Fano 3-fold.

Consider the diagram as in 0.3. Let \(h := h^\iota(-K_X) \), \(N := \text{aw}(X) \) and \(n := \sum \text{aw}(Y_i, P_{ij}) \) (the summation is taken over the index 2 points on flipping curves), where \(\text{aw}(X) \) is the number of \(\frac{1}{2}(1, 1, 1) \)-singularities which we obtain by deforming non Gorenstein points of \(X \) locally and \(\text{aw}(Y_i, P_{ij}) \) is defined similarly. Then we can solve the equations above and obtain a geographic classification of \(X \) as below (? in the table means that we don't know the existence of an example) :

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Main Assumption} & \text{Construction} & \text{Main Theorem} & \text{Geographic Classification} \\
\hline
0.2 & 0.3 & & \\
\hline
\end{array}
\]
HIROMICHI TAKAGI

\[\begin{array}{|c|c|c|c|c|c|c|} \hline
(-K_X)^3 & N & e & n & z & (-K_Y \cdot C) & f', X' \\
\hline
\frac{3}{2} & 1 & 15 & 0 & 1 & / & (2,0)_{14}, (-K_X)^3 = \frac{3}{2}, I(X') = 2 \\
\frac{3}{2} & 1 & / & / & 1 & / & \text{crep. div.}, (-K_X)^3 = 2, I(X') = 1 \\
3 & 2 & 12 & 0 & 1 & / & (2,0)_{8}, A_4 \\
\frac{7}{2} & 3 & 10 & 0 & 1 & 1 & (2,1), A_6 \\
4 & 4 & 8 & 0 & 1 & 2 & (2,1), A_8 \\
4 & 4 & 9 & 3 & 1 & / & (2,0)_{11}, A_{10} \\
\frac{9}{2} & 5 & 6 & 0 & 1 & 3 & (2,1), A_{10} \\
\frac{9}{2} & 5 & 8 & 3 & 1 & / & (2,0)_{15}, A_{16} \\
\frac{9}{2} & 5 & 9 & 0 & 2 & / & (3,1), \deg F = 6 \\
\frac{7}{2} & 6 & 4 & 0 & 1 & 4 & (2,1), A_{12} \\
\hline
\end{array} \]

\[z = u \text{ if } f' \text{ is not a crepant divisorial contraction.} \]

\[u = 2 \text{ if } f' \text{ is a crepant divisorial contraction.} \]

\[F := \text{a general fiber of } f' \text{ if } f' \text{ is (3,1)-type.} \]

See Appendix for \((2,0)_{14}\.\]

\[g(C) = 0 \text{ in case } f' \text{ is of type } E_1 \text{ and every singularity of } Y \text{ is a } 1/2(1,1,1)-\text{singularity.} \]

\[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline
(-K_X)^3 & h = 5 & N & e & n & z & \deg \Delta & \deg F & f', X' \\
\hline
\frac{3}{2} & 1 & 9 & 0 & 1 & / & 3 & (3,1) \\
5 & 2 & 8 & 1 & 1 & / & 4 & (3,1) \\
?\frac{11}{2} & 3 & 7 & 2 & 1 & / & 5 & (3,1) \\
?\frac{11}{2} & 3 & 8 & 0 & 2 & 8 & / & (3,2), F_2,0 \\
?6 & 4 & 7 & 1 & 2 & 6 & / & (3,2), F_2,0 \\
?6 & 4 & 6 & 3 & 1 & / & 6 & (3,1) \\
?\frac{13}{2} & 5 & 6 & 2 & 2 & 4 & / & (3,2), F_2,0 \\
\hline
\end{array} \]

\[z = u. \]

\[\Delta := \text{the discriminant divisor of } f' \text{ if } f' \text{ is (3,2)-type.} \]

\[F := \text{a general fiber of } f' \text{ if } f' \text{ is (3,1)-type.} \]

\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline
(-K_X)^3 & h = 6 & N & e & n & z & \deg \Delta & (-K_Y \cdot C) & f', X' \\
\hline
\frac{13}{2} & 1 & 7 & 0 & 1 & 7 & / & (3,2), F^2_2 \\
\frac{7}{2} & 2 & 7 & 0 & 4 & / & 35 & (2,1), [5] \\
\frac{7}{2} & 2 & 6 & 1 & 1 & 6 & / & (3,2), F^2_2 \\
\frac{13}{2} & 3 & 7 & 0 & 2 & / & 9 & (2,1), [2], I(X') = 2 \\
\frac{13}{2} & 3 & 6 & 1 & 4 & / & 30 & (2,1), [5] \\
?\frac{13}{2} & 3 & 5 & 2 & 1 & 5 & / & (3,2), F^2_2 \\
?8 & 4 & 4 & 3 & 1 & 4 & / & (3,2), F^2_2 \\
?\frac{13}{2} & 5 & 3 & 4 & 1 & 3 & / & (3,2), F^2_2 \\
\hline
\end{array} \]
Q-FANO 3-FOLDS

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T. Sano in [San2].

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>$(-K_{Y'.C})$</th>
<th>f', X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{h}{2}$</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>36</td>
<td>$(2, 1), P^3$</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>18</td>
<td>$(2, 1), [3]$</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>32</td>
<td>$(2, 1), P^3$</td>
</tr>
<tr>
<td>$\frac{19}{2}$</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>$(2, 1), [3]$</td>
</tr>
<tr>
<td>$\frac{19}{2}$</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>28</td>
<td>$(2, 1), P^3$</td>
</tr>
</tbody>
</table>

Type [i] means the Q-Fano 3-fold of type [i] which was classified by T. Sano in [San2].

$u = z + 1.$

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>$(-K_{Y'.C})$</th>
<th>f',X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{21}{2}$</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>$(2, 1), B_3$</td>
</tr>
<tr>
<td>$\frac{21}{2}$</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>27</td>
<td>$(2, 1), Q_3$</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>$(2, 1), Q_3$</td>
</tr>
</tbody>
</table>

$u = z + 1.$

<table>
<thead>
<tr>
<th>$(-K_X)^3$</th>
<th>N</th>
<th>e</th>
<th>n</th>
<th>z</th>
<th>u</th>
<th>$(-K_{Y'.C})$</th>
<th>f',X'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{25}{2}$</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>$(2, 1), B_4$</td>
</tr>
</tbody>
</table>

$z = 1$ and $u = 2.$

In particular we have $(-K_X)^3 \leq 15$ and $h^0(-K_X) \leq 10.$

Based on this result, we can derive the following properties for X as in the main theorem:

Theorem A. If any index 2 point satisfies the assumption (5) of 0.2, then $| -K_X |$ has a member with only canonical singularities.

So the general elephant conjecture by M. Reid is affirmative for such an $X.$
Theorem B. Let X be a Q-factorial Q-Fano 3-fold with (1) of 0.2. Let $N := \text{aw}(X)$. Then if $N > 1$ (resp. $N = 1$), X can be transformed to a Q-factorial Q-Fano 3-fold \tilde{Z}' with (1) of 0.2 and with only QODP's or $\frac{1}{2}(1,1,1)$-singularities as its singularities and $h^0(\mathcal{K}_{\tilde{Z}'}) = h$ and $\text{aw}(\tilde{Z}') = N - 1$ (resp. a smooth Fano 3-fold \tilde{Z}' with $\rho(\tilde{Z}') = 1$, $F(\tilde{Z}') = 1$ and $h^0(\mathcal{K}_{\tilde{Z}'}) = h$) as follows:

$$\tilde{Y} \xrightarrow{\tilde{f}} \tilde{X} \xrightarrow{\tilde{g}} \tilde{Z} \xrightarrow{\text{def}} \tilde{Z'},$$

where $\star \xrightarrow{\text{def}} \star' \star$ means that \star' is a small deformation of \star;

\tilde{X} is a Q-Fano 3-fold as in 0.2 and with only QODP's or $\frac{1}{2}(1,1,1)$-singularities as its singularities;

$\tilde{f} : \tilde{Y} \to \tilde{X}$ is chosen as f in the main theorem;

$\tilde{g} : \tilde{Y} \to \tilde{Z}$ be the anti-canonical model.

This is an analogue to the Reid's fantasy about Calabi-Yau 3-folds [RM1].

Theorem C. If any index 2 point is a $\frac{1}{2}(1,1,1)$-singularity, X can be embedded into a weighted projective space $\mathbb{P}(h, 2N)$, where $h := h^0(\mathcal{K}_X)$ and N is the number of $\frac{1}{2}(1,1,1)$-singularities on X.

We hope that this fact can be used for the classification of Mukai's type (see [Mu]).

1. Examples

We consider the case that $h^0(\mathcal{K}_X) = 4$ and $N = 4$. By the table of the main theorem, there are two possibilities of X in this case. We assume that every singularity of Y is a $\frac{1}{2}(1,1,1)$-singularity. Then one of the following holds:

[1]. f' is an extremal divisorial contraction which contracts a divisor E' to a curve C and $| -K_Y - E'| \neq \emptyset$. X' is a $(2,2,2)$-complete intersection in \mathbb{P}^6 and satisfies the following properties:

1. X' is factorial;
2. C is a smooth conic;
3. X' has 3 singularities $P_0 \sim P_2$ on C and P_i is an ODP or the singularity analytically isomorphic to the origin of $\{xy + z^2 + w^3 = 0\} \subset \mathbb{C}^4$. Outside P_i's, X' is smooth.

[2]. f' is blowing up at a smooth point $Q := f'(E')$ and $| -K_Y - E'| \neq \emptyset$. X' is smooth, isomorphic to A_{10} and there exist exactly three lines through the point Q.

We will construct examples for these cases by the following three steps:

Step 1. We construct X' satisfying the properties as stated as in [1] or [2];

Step 2. We construct f' satisfying the properties as stated as in [1] or [2];

Step 3. We construct $f : Y \to X$ as in the main theorem from Y'.

[1].

Step 1 for [1]. We construct X' with only ODP's.
Claim 1. Let V (resp. X') be a $(2,2)$-complete intersection in \mathbb{P}^6 (resp. a quadric section of V) with the following properties:

1. V (resp. X') contains a smooth conic C;
2. V (resp. X') has three ODP's $P_0 \sim P_2$ on C and outside P_i's, V (resp. X') is smooth.

Then X' is factorial.

Proof. We claim that V contains the plane P spanned by C. Let σ be the pencil which consists of quadrics in \mathbb{P}^6 containing V. Since P_i is an ODP on V, there is a quadric in σ which is singular at P_i. If there is a quadric in σ which is singular at all P_i's, then it is singular on P and hence V is singular along C, a contradiction. So σ is generated by two quadrics which are singular at some P_i. But such quadrics contains P and hence V contains P.

Let $\nu : \tilde{V} \rightarrow V$ be the composition of the blowing ups at $P_0 \sim P_2$ and F_i the exceptional divisor over P_i. Let \tilde{X}' be the strict transform of X' on V and H the total transform of a hyperplane section of V. Then $\tilde{X}' \sim 2H - F_0 - F_1 - F_2$. Note that $|H - F_1 - F_2|$ is free outside the strict transform l_{ij} of the line through P_i and P_j and $|H - F_k|$ is free (note that l_{ij} is contained in V since $l_{ij} \subset P$). By this, we can easily see that $|\tilde{X}'|$ is free and \tilde{X}' is numerically trivial only for l_{ij}'s $((i,j) = (0,1), (1,2), (2,0))$.

Let ϕ be the morphism defined by $|\tilde{X}'|$. Then ϕ-exceptional curves are l_{ij}'s. We will prove that $\text{Leff}(\tilde{V}, \tilde{X}')$ holds and \tilde{X}' meets every effective divisor on \tilde{V}. By [H, p.165, Proposition 1.1] and the argument of [H, p.172, the proof of Theorem 1.5], it suffices to prove that $\text{cd}(\tilde{V} - \tilde{X}') < 3$, i.e., for any coherent sheaf F on $\tilde{V} - \tilde{X}'$, $H^i(\tilde{V} - \tilde{X}', F) = 0$ for all $i \geq 3$. Let $\tilde{V} := \phi(\tilde{V})$ and $\tilde{X}' := \phi(\tilde{X}')$. Consider the Leray spectral sequence

$$E^{p,q}_2 = H^p(\tilde{V} - \tilde{X}', R^q\phi'_*F) \Rightarrow E^{p+q} = H^{p+q}(\tilde{V} - \tilde{X}', F),$$

where $\phi' := \phi|_{\tilde{V} - \tilde{X}'}$. Since $\tilde{V} - \tilde{X}'$ is affine and the dimension of every fiber of ϕ ≤ 1, we have $E^{p,q}_2 = 0$ for $p \geq 1$ or $q \geq 2$ whence $E^{p+q} = 0$ for $p + q \geq 2$. So the assertion follows.

Furthermore since \tilde{X}' is nef and big, $H^i(\tilde{V}, O(-n\tilde{X}')) = 0$ for $n \geq 1$ and $i = 1, 2$ by KKV vanishing theorem. Hence by the Grothendieck-Lefschetz theorem [G, p.135, 3.18] (or [H, p.178, Theorem 3.1]), we have $\text{Pic}\tilde{X}' \simeq \text{Pic}\tilde{V} \simeq \mathbb{Z}^4$. So $\rho(\tilde{X}'/X') = 3$ which imply that X' is factorial.

We will give a pair (V, X') satisfying the condition of Claim 1. Let C be a smooth conic in \mathbb{P}^6 and $P_0 \sim P_2$ three points on C. We can choose a coordinate of \mathbb{P}^6 such that $C = \{x_0x_1 + x_1x_2 + x_2x_0 = x_3 = x_4 = x_5 = x_6 = 0\}$ and $P_i = \{x_j = 0\}$ for $j \neq i$.

Claim 2. Let X' be a $(2,2,2)$-complete intersection in \mathbb{P}^6 satisfying the following conditions:

1. X' is factorial;
2. X' contains a smooth conic C;
3. X' has three ODP's $P_0 \sim P_2$ on C and outside P_i's, X' is smooth.

Then X' is the intersection of three quadrics $Q_1 \sim Q_3$ of the following forms by permuting P_i's if necessary:
HIROMICHI TAKAGI

\[
Q_1 := \{m_0x_0 + m_1x_1 + q_1 = 0\};
\]
\[
Q_2 := \{pm_1x_1 + m_2x_2 + q_2 = 0\};
\]
\[
Q_3 := \{x_0x_1 + x_1x_2 + \sum_{i=3}^{6} l_ix_i = 0\},
\]

where \(p \in \mathbb{C}, \) \(m_i \) (resp. \(q_i \)) is a linear form (resp. a quadratic form) of \(x_3 \sim x_6 \)
and \(l_i \) is a linear form of \(x_0 \sim x_6 \).

Conversely if \(X' = Q_1 \cap Q_2 \cap Q_3 \), where \(Q_i \) is of the form as above and \(m_i, q_i \)
and \(l_i \) are suitably general, then \(X' \) satisfies (1) \sim (3).

Proof. Let \(\gamma \) be the net which consists of quadrics containing \(X' \). \(\gamma \) contains a
member \(Q_1 \) which is singular at \(P_2 \). Then \(Q_1 \) is of the form as above. If \(m_1 = m_2 = 0 \), then \(Q_1 \) is singular on the plane \(P \) spanned by \(C \) and hence \(X' \) is singular along \(C \), a contradiction. Hence \(m_1 \neq 0 \) or \(m_2 \neq 0 \). By permuting \(P_1 \) and \(P_2 \) if necessary, we may assume that \(m_1 \neq 0 \). \(\gamma \) contains a member \(Q_2 \) which is singular
at \(P_0 \). \(Q_2 \) is of the form as

\[
\{m_1'x_1 + m_2x_2 + q_2 = 0\},
\]

where \(m_1' \) and \(m_2 \) (resp. \(q_2 \)) are linear forms (resp. a quadratic form) of \(x_3 \sim x_6 \).
\(\gamma \) also contains a member \(Q' \) which is singular at \(P_1 \). If \(Q_1, Q_2 \) and \(Q' \) generate \(\gamma \), then \(X' \) contains the plane \(P \), a contradiction to the factoriality and \(F(X') = 1 \).

Hence \(Q' \) is contained in the pencil generated by \(Q_1 \) and \(Q_2 \). So \(m_1' = pm_1 \) for
some \(p \in \mathbb{C} \) and

\[
Q = \{-pm_0x_0 + m_2x_2 + (q_2 - pq_1) = 0\}.
\]

Since \(X' \) does not contain \(P \) as noted above, \(\gamma \) contains a member \(Q_3 \) of the form
as in the statement. \(Q_3 \) is not contained in the pencil generated by \(Q_1 \) and \(Q_2 \) and hence \(Q_i \)'s generate \(\gamma \).

Conversely let \(X' := Q_1 \cap Q_2 \cap Q_3 \), where \(Q_i \) is of the form as above and \(m_i, q_i \)
and \(l_i \) are suitably general. We can easily check that \(X' \) satisfies (2) and (3). Set \(V := Q_1 \cap Q_2 \). We may assume that \(V \) satisfies the condition of Claim 1. Hence by
Claim 1, \(X' \) is factorial. \(\square \)

Step 2 for [1]. Let \(\nu' : \tilde{X}' \to X' \) be the composition of the blowing ups at
\(P_0 \sim P_{N-2} \) and \(F_i' \) the exceptional divisor over \(P_i \). Let \(\mu' : \tilde{X}' \to \tilde{X} \) be the
blowing up along the strict transform \(\tilde{C} \) of \(C \) and \(F' \) the \(\mu' \)-exceptional divisor. We will
denote the strict transforms of the two fibers of \(F_i \simeq \mathbb{P}^1 \times \mathbb{P}^1 \) through \(F_i \cap \tilde{C} \)
by \(l_{ij} \) (\(i = 1, 2 \)). Note that \(-K_{\tilde{X}}, l_{ij} = 0 \). We can easily see that \(|-K_{\tilde{X}}| \) is free by
\(\mathcal{P} \cap X' = C \), where \(\mathcal{P} \) is the plane spanned by \(C \) and \(-K_{\tilde{X}} \) is big. Hence \(l_{ij} \)'s are
flopping curves on \(\tilde{X}' \) and we can see that the classes of \(l_{11} \) and \(l_{22} \) belong to the
same ray. Let \(\tilde{X}' \to \tilde{X}'^+ \) be the flop. Then the strict transforms of \(F_i \)'s on \(\tilde{X}'^+ \)
are \(\mathbb{P}^2 \)'s and we can contract them to \(\frac{1}{2}(1,1,1) \)-singularities. Let \(g' : \tilde{X}'^+ \to Y' \) be
the contraction morphism, \(f' : Y' \to X' \) the natural morphism and \(E' \) the strict transform of \(F' \).

We will see that \(|-K_{Y'}, -E'| \neq \phi \). Let \(F'^+ \) be the strict transform of \(F' \) on
\(\tilde{X}'^+ \). Then \(-K_{\tilde{X}', +} - F'^+ = g'^*(-K_{Y'}, -E') \). Furthermore \(h^0(-K_{\tilde{X}', +} - F'^+) = \)
h^0(-K_{X'}, -F')$. Hence it suffices to prove that $h^0(-K_{X'}, |F'|) \leq 3$ since $h^0(-K_{X'}) = 4$. Since there is a smooth member of $| -K_{X'}|$, we have $N_{C'/X'} \simeq \mathcal{O}(-1) \oplus \mathcal{O}(-2)$. Hence $F' \simeq \mathbb{F}_1$ and $-K_{X'}|_{F'} \simeq C_0 + l$, where C_0 is the minimal section of F' and l is a fiber of F'. So we are done.

Step 3 for [1]. Since Y' has only $\frac{1}{2}(1,1,1)$-singularities and $-K_{Y'}$ is nef and big, we can construct a similar diagram $Y_0' := Y' \rightarrow Y_1' \rightarrow Y_2' \rightarrow \cdots \rightarrow Y_i' \rightarrow Y := Y' \rightarrow X$ to 0.3 by considering extremal rays, where $Y_i' \rightarrow Y_{i+1}'$ is a flop or a flip for $i = 0$ and a flip for $i \geq 1$. Let E_i (resp. E_i) be the strict transform of E on Y_i' (resp. Y). Let R_i be the extremal ray which is other than the ray associated to f' for $i = 0$ or the K_Y-negative extremal ray for $i \geq 1$. By similar calculations to 0.3, we have

\begin{align*}
(1) \quad (-K_{Y'})^2 E &= 1 + \sum a_i'd_i'; \\
(2) \quad (-K_Y)^2 E &= -2 - \sum a_i'^2 d_i'; \\
(3) \quad E_3 &= -6 + \sum a_i'^3 d_i' + e',
\end{align*}

where e', a_i' and d_i' are similarly defined to 0.3 with respect to $-K_{Y'}$ and E_i and furthermore we can see that a_i' is a non negative integer.

Claim 3. $E_i . R_i < 0$.

Proof. We can prove the assertion by induction. For $i = 0$, $E_0 . R_0 < 0$ can be directly checked. Assume that the assertion holds for the numbers less than i. So the other extremal ray than R_i is positive for E_i. Since $-K_{Y'}$ is free outside a finite number of curves, $-K_{Y'}|_{E_i}$ is numerically equivalent to an effective 1-cycle. Hence by $-K_{Y'} E_i^2 = -K_{Y'} E_2 = -2$, we have $E_i . R_i < 0$. □

By this claim, we know that f is an divisorial contraction whose exceptional divisor is E. If f is a crepant divisorial contraction, then $l = 0$. But $(-K_{Y'})^2 E = 1$, a contradiction. Hence f is a K_Y-negative contraction. Assume that f is (2,1)-type which contracts E to a curve C'. Then $(-K_{X'} C') = (-K_Y + E) (-K_{Y'}) E = -1 - \sum d_i' a_i'(a_i' - 1) < 0$, a contradiction since X is a Q-Fano 3-fold.

By the classification of a (2,0)-type contraction from a 3-fold with only index 2 terminal singularities (see Appendix), if f is such an contraction, then we have $-K_Y E_2 \geq -2$. On the other hand $-K_Y E_2 \leq -K_{Y'} E_2 = -2$. Hence there is no flip. So $(-K_Y)^2 E = (-K_{Y'})^2 E = 1$ and hence again by the classification of a contraction as above, f is the blow up at a $\frac{1}{2}(1,1,1)$-singularity or the weighted blow up at a QODP with weight $(\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, 1)$ (we use the coordinate as stated in the definition of QODP). In any case X is a Q-Fano 3-fold with $I(X) = 2$. We can easily check that $(-K_X)^3 = 4$ and $aw(X) = 4$. Furthermore by this, $F(X)$ must be $\frac{1}{2}$. So X is what we want.

[2].
HIROMICHI TAKAGI

Step 1 for [2]. The Grassmannian $G(2, 5)$ (parameterizing 2-dimensional subspaces of 5-dimensional vector space) can be embedded into \mathbb{P}^9 by the Plücker embedding. Its defining equations are $x_{ij}x_{kl} - x_{ik}x_{jl} + x_{jk}x_{il} = 0$ for all $1 \leq i < j < k < l \leq 5$, where x_{pq} $(1 \leq p < q \leq 5)$ is a Plücker coordinate. Let Q be the point defined by $x_{pq} = 0$ for any $(p, q) \neq (1, 2)$. Let l_1 (resp. l_2) be the line $\in G(2, 5)$ defined by $x_{pq} = 0$ for any $(p, q) \neq (1, 2), (1, 3)$ (resp. $(p, q) \neq (1, 2), (2, 4)$). Let l_3 be the line $\in G(2, 5)$ defined by the equations $x_{pq} = r_{pq}x_{12}$ for $(p, q) \neq (1, 2)$ such that $r_{34} = r_{35} = r_{45} = 0$, $r_{13}r_{24} - r_{23}r_{14} = 0$, $r_{13}r_{25} - r_{23}r_{15} = 0$, $r_{14}r_{25} - r_{24}r_{15} = 0$ and $r_{15}r_{25} \neq 0$. Let H be the 3-plane spanned by l_1, l_2 and l_3. Then $G(2, 5) \cap H = l_1 \cup l_2 \cup l_3$. Hence by [MM3, Proposition 6.8], there are two hyperplane H_1, H_2 and a quadric Q such that $X' := G(2, 5) \cap H_1 \cap H_2 \cap Q$ is smooth and X' contains l_1, l_2 and l_3. Since the tangent space of X' at Q also contains all the lines on X' through Q, it is equal to H. Hence there are only three lines on X' through Q.

Step 2 for [2]. Let $f' : Y' \rightarrow X'$ be the blow up at Q and E' the exceptional divisor. Let l'_1, l'_2 and l'_3 be the transforms of l_1, l_2 and l_3 on Y'. Since $Bs(-K_{Y'}) = l'_1 \cup l'_2 \cup l'_3$, the rank of the natural map $H^0(-K_{Y'}) \rightarrow H^0(O(-K_{Y'}|_{E'}))$ is 3. Hence there is a unique member E of $-K_{Y'} - E'$ such that $h^0(-K_{Y'}) = 4$.

Step 3 for [2]. Since $-K_{Y'} + E'$ is free and $-K_{Y'} + E'$ is numerically trivial only for l'_1, l'_2 and l'_3 and positive for a curve in E', they are numerically equivalent and span an extremal ray R of $NE(Y')$. Since $Bs(-K_{Y'}) = l'_1 \cup l'_2 \cup l'_3$ and $-K_{Y'}|_{E'} < 0$, Supp $R = l'_1 \cup l'_2 \cup l'_3$. Furthermore by $Bs(-K_{Y'}) = l'_1 \cup l'_2 \cup l'_3$ again, there is a smooth anti-canonical divisor D ([MM3, Proposition 6.8]). Hence the contraction of l'_1, l'_2 and l'_3 is a log flopping contraction for the pair (Y', D) and the log flop exists. Let $Y' \dashrightarrow Y'_0$ be the log flop. Since $D.l'_i = -1$, the normal bundle of l'_i is of type $(-1, -2)$. Hence Y'_0 has three $\frac{1}{2}(1, 1, 1)$-singularities. Since $-K_{Y'_0}$ is nef and big, we can construct a similar diagram $Y'_0 \dashrightarrow Y'_1 \dashrightarrow \cdots Y'_i \dashrightarrow Y'_{i+1} \cdots Y := Y'_i \dashrightarrow X$ to Lemma 3.2 by considering extremal rays, where $Y'_i \dashrightarrow Y'_{i+1}$ is a flop or a flip for $i = 0$ and a flip if $i \geq 1$. Let E_i be the strict transform of E on Y'_i.

Similarly to Step 3 for [1], we can see that f is the blow up at a $\frac{1}{2}(1, 1, 1)$-singularity or the weighted blow up at a QODP with weight $(\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, 1)$. In any case X is a Q-Fano 3-fold with $I(X) = 2$. Since $(-K_X)^3 = 4$ and $N = 4$, $F(X)$ must be $\frac{3}{2}$. So X is what we want.

APPENDIX

In this appendix, we give the table of a (2, 0)-type contraction from a 3-fold with only index 2 terminal singularities.

Proposition. Let X be a 3-fold with only index 2 terminal singularities and $f : X \rightarrow (Y, Q)$ a contraction of (2, 0)-type to a germ (Y, Q) which contracts a prime divisor E to Q. Then the following holds:

1. Assume that E contains no index 2 point. Then one of the following holds:

 \[(2, 0)_1 : (E, -E|_E) \cong (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)) \text{ and } Q \text{ is a smooth point} ;\]

 \[(2, 0)_2 : (E, -E|_E) \cong (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1)|_{\mathbb{P}^1 \times \mathbb{P}^1}) \text{ and } (Y, Q) \cong (xy + zw = 0) \subset \mathbb{C}^4, o);\]
Q-FANO 3-FOLDS

(2, 0)_3 : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, \mathcal{O}_{\mathbb{P}^2}(1)|_{\mathbb{F}_{2,0}}) \text{ and } (Y, Q) \simeq (((xy + z^2 + w^k = 0) \subset \mathbb{C}^4), o)(k \geq 3);

(2, 0)_4 : (E, -E|_E) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2)) \text{ and } Q \text{ is a } \frac{1}{2}(1,1,1)-\text{singularity.}

Furthermore for all cases, f is the blow up of Q.

(2) Assume that E contains an index 2 point. Then one of the following holds:

(2, 0)_5 : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, l), \text{ where } l \text{ is a ruling of } \mathbb{F}_{2,0}.

Q is a smooth point and f is a weighted blow up with weight $(2, 1, 1)$.

In particular we have $K_X = f^*K_Y + 3E$;

(2, 0)_6 : $K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = \frac{1}{2}$;

(2, 0)_7 : $K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = \frac{3}{2}$;

(2, 0)_8 : $K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = 1$;

(2, 0)_9 : $K_X = f^*K_Y + E$ and Q is a Gorenstein singular point. $E^3 = 2$;

(2, 0)_{10} : (E, -E|_E) \simeq (((xy + w^2 = 0) \subset \mathbb{F}(1,1,2,1)), \mathcal{O}(2)).

(Y, Q) \simeq (((xy + z^k + w^3 = 0) \subset C^4/\mathbb{Z}_2(1,1,0,1)), o).

f is a weighted blow up with a weight $\left(\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}\right)$.

In particular we have $K_X = f^*K_Y + \frac{1}{2}E$;

(2, 0)_{11} : (E, -E|_E) \simeq (\mathbb{F}_{2,0}, 3l).

Q is a $\frac{1}{3}(2,1,1)$-singularity and f is a weighted blow up with a weight $\frac{1}{3}(2,1,1)$.

In particular we have $K_X = f^*K_Y + \frac{1}{3}E$;
HIROMICHI TAKAGI

References

[MM3] ———, *Classification of Fano 3-folds with $B_2 \geq 2$, I*, to the memory of Dr. Takehiko MIYATA, Algebraic and Topological Theories, 1985, pp. 496–545.

Q-FANO 3-FOLDS

[T3] _____, a private letter to the author.

RIMS, KYOTO UNIVERSITY, KITASHIRAKAWA, SAKYO-KU, 606-8502 KYOTO, JAPAN
E-mail address: takagi@kurims.kyoto-u.ac.jp