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              fi. LLI IIÅíEHit / sHIGEHARu TAKAYAMA

                      1. INTRODUCTION

  HereI would like to explain an analytic method to study fundamental
groups related with Fano varieties, log-terminal singularities (over C). A

pair (X,A) of a normal variety and an effective Q-divisor is said to be

Kawamata log-terminal (KLT for short), respectively log-canonicat (LC for

short), if the following conditions are satisfied: (i) Kx + A is Q-Cartier;

(ii) There exists a projective birational morphism pa : Y ---År X from a

smooth variety Y with a normal crossing divisor ÅíEi such that Ky NQ
rd(Kx + A) +ÅíeiEi holds with ei År -1, respectively ei ) -1, for all i,

where "NQ" denote the Q-linear equivalence. Our result is as follows.

Theorem 1.1. Let X be a normal variety and let pa : Y - X be a res-•
olution of singularities, Then the induced homomorphism of fundamental
groups pa. : Ti(Y) - Ti(X) is an isomorphism if (X,A) is KLTfor sorne

A.

Theorem 1.2. Let f : X - S be aproper sunjective morphism of normal
varieties with connected fibres. Assttme that there exists an effective Q-

divisor A such that the pair (X, A) ts KLT and that -(Kx + A) is f-nef

and f-big. Then f, : 7ri(X) - Ti(S) is an tsomorphism.

Corollary 1.3. Every Q-Fano variety is simply connected.

  As consequences of these theorems, we can see that the fundamental
group is preserved by contractions of extremal rays, flips, pluricanonical

morphisms of minimal varieties of general type (see [KMM] for terminolo-
gies).
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  Ko!}aur iKel, S7] proved the statemeRt for algebraic fundamenta} groups:

fti and some special cases of 1.1, and conjectured 1.1.

Remark" 1.4. A KLT singularity is a rational singularity [KMM, gl-31, how-

ever raticRal sigxlayities dg ket h&ve a property as ix Thecrem l.l. Fer
example, we let S be a fake projective plane (Mumford, Ishida-Kato, ...),

i•e•, pg xx q= O, e? = 3c2 == 9, Ks ample. By Yau, S is a ball quotient.
By a general theory of surfaces 6f general type, we have an embedding by

i3Ksl : Sg P27 with deg:ee 81. We let X be a ccRe over S ig P27. Since

pg(S) ww 4(S) == O, X has a rational singularity. Since X is a cone, we see

Ti (X) : 1. By blowing-up at the vertex, we have a resolution f : Y - X.

Since Y has a Pi-bundle structure over S, we see 7ri(Y) rm rri(S). Thus the

kemel of pe. : ?;!(Y) ----År xi(X) is quite }arge.

                      .
             2. MOTIVATION AND SOME BACKGROUNP

  My first result in this direction was Corollay l.3 which was motivated by

the followiRg

Theorem 2.1. (S. Kobayashi [Kob]) Let (X,w) be a compact Kdhler man-

ifold with positive Ricci curvature, i.e., X is thnos -Kx is ample. Then X

is simply cennected.

  I wanted to generalize Theorem 2,1 for singular Fano varieties in view

of the classificatioxx theory of algebraic varieties. One of the striking re-

sult of the study of Fano manifolds is its rational connectedness due to

Kcllgr-Miyagka-Mori [KMMol]. For Fa=e varieties, gRe also expect$ s=ch

a property. Our Corollary 1.3 is a small evidence for this, which I mean

Corollary 1.3 fit in the following diagram:

                        "FaRo varletie$"

       Miyaoka-Mori/ i? XÅr, Cor. 1.3
              uniru}ed - rationally (chain) Qk'" 7ri =1
                            connectedness

  The middle dowmarrgw is ukknewR. Furthermere

Question 2.2. Is every fiber of morphisrns in Theorem 1.1 and 1.2 ratio-
nally (chain) connected ?

                                                            227

2



  Theorem 1.1 and 1.2 are also supporting evidences that the question is

afirmative.

  This is just a background, we return to our problem. We next explain

the methods of proof of Theorem 2.1 and some notions which we will use
later in our proof.

Method of Proof (Theorem 2.1). Let (X, w) be a compact Kahler man-
ifold with positive Ricci curvature; X is Fano, and let T : X - X be the

universal cover.

e Uri(X) Åq +oo =År Ti(X) == 1

  This follows from quite standard argument
         x(X, O) = (deg T)-ix(XtV, O) - multiplicativity of x

            ii ll -Kodaira vanishing
         hO (X, O) (deg T)-' hO (X, O)
 Since both X and X'V are compact, hO(X, O) == hO(X'V, 0) = 1,

 and therefore degT = 1.

e ttTi(X) Åq +oo

  The following three methods of proof are known.
(1) Original: differential geometric
  We apply the following theorem for our universal cover (X'V, di).

Myers theorem: Let (IL(I,g) be a complete Riemannian manifold with
Ric g År const. År O. Then one can bound its diameter, in particular M is

compact.
  If we want to study of fundamental groups of singular varieties with Kx E

O (related to the so-called generalized Bogomolov decomposition), this kind

of differential geometric method should be generalized.

(2) Use of Atiyah's L2-index theorem [A], `76 (see g3)

  Our proof is a generalization of this method.

(3) Use of Mori's theory. Kollar-Miyaoka-Mori, Campana `92

  The rational-connectedness of Fano manifolds implies 7i(X) can not be

large.
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                         3. METHoD (2)

  We will prove the finiteness of ri(X) for (X,tu) as in Theorem 2.1 by
contradiction. Atiyah's L2-index theorem [A] asserts that the holomorphic

Euler character x(X, O) has multiplicativity, as in the case of finite 6tale
cevering, eveR if 7i' : XN  - X is in6Rite.

       Atiyah's L2-ikdex theorem
       1 7 X(X,O) th x(,)(XN,O)

       vanishing :ww Åí,År-o(-1)q dim.,(x) H(q2)(XN, O)

                  X rm dim.,(x) H(O,)(XN, O).

Then it follows that there exist,s

       e iS s E HÅqg2År(XN, O) : ak L2-kolomorphic fuRctioR eR X'V.

Where H(g,)(X,e) is the L2-cehemelogy group with respect te the pull-

backed metric di == T"tu, and

     h72)(XN, O) = dimrr,(x) H(q2)(XN, O) : =2 f., lsii2dVdi ER-Åro,

{si}iE!. C H(q2)(X'V,O) an orthogonal bagis, Xe a fundament,al dom.ain; it,

is the so-called von-NeiLmann dimension (which is finite, non-Regative and

well-defiRedl see IKo2, Chapter 6] for expository z}ctes). Atiyah's L2-ixdex

theorem is al$e hgld for every Hermiti&x vectox' buxdle gver a compact Her-

mitian maRife}d and its unramfied Galcis covering, moreover it is recently

generalized by Eyssidieux [E], Campana-Demailly [CD] for every coherent

analytic sheaf over a compact complex analytic space, which we will use
later.

  Since X covers the compact X and since a is holomorphic, we see that
ak E H(Oi)(X,O): Li-holomorphic for every k ) 2. Then we can consider

Peincar6 series:

              f) (.k) ,.,, 2 7* .k E He(X, O) == Åë

                      7ffrri(X).

which is convergent on every relatively compact domain in X, and is invari-

ant under the action of 7ri(X), and therefore we can regard it as an object

on X.
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Classical Fact 3.1. Assurrbe dai(X) = +oo. if P(ak') ! const. for every

k ÅrÅr 1 (this condition is automatically satisfied since we are considering

Poincare' series of holomorphic functions and X is compact?, then a E

const.

  Therefore, if ttTi(X) == +cx), the L2-integrability of a implies that a iE

const. = O. This leads a contradiction, and the finiteness of Ti(X).

              4. PROOF OF THEOREM (FINITENESS)

  Here we explain the method of proof of the following which is a mixture

of Theorem 1.1 and 1.2:

Theorem 4.1. Let f : X - S be a proper sunjective morphism of normal
varieties with connected fibres. Assume that there exists an effective (Q-

divisor A such that the pair (X, A) is KLT and that -(Kx + A) is f-nef

and f-big. Let pa : Y --År X be a resolution of singularities. Then for every

point O E S, there exists a contractible neighbourhood O G U c S such that

Ti((fopa)-'(U)) = 1. in particular one has isomorphisms Ti(Y) !! Ti(X) 1Årl

Ti(S).

  In case S = X, this is nothing but Theorem 1.1.

Proof of finiteness. We may assume without loss of generalities that S is

Stein, contractible and dim S År O so that there exists a deformation retract

Y ---År Yo := (f o pa)-'(O).

  We take a general holomorphic function a E HO(S,mles,o) with a sufft-

ciently high multiplicity k at O E S. Since the fundamental group is a

birational invariant of smooth varieties, by taking a modification of Y, we

also may assume that pa : Y - X is the so-called log-resolution of (X, A)

and div(f"a). Namely, pa : Y - X is a projective birational morphism
such that the exceptional divisor Åí Ei of pa plus the strict transform Ai of

A plus D :== div((f o pa)"a) is supported by a divisor with simple normal

crossings only, and such that

                 Ky +Ai == pa'(Kx + A) +2eiEi

                                  ,holds with ei År -1 for all i. Then we set

          F := 2reiiE, effective pa-exceptional divisor;

         A2 := 2(reii - ei)E,i effective fractional Q-divisor.
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Since -(Kx + A) is f-nef and f-big, we may also assume that there exist
an (f o pa)-ample Q)-divisor A and an effective Q-divisor A3 with very small

coeMcients such that

                     -rd(Kx + A) = A + A,

and that (Y, Ay := Ai + A2 + A3) is KLT (cf. [KMM, O-3-6]). Then by
definition, we have

                       F = Ky +Ay +A.

So we can apply the vanishing theorem of Kawamata-Viehweg [KMM, S1-2],
Demailly-Nadel [D2, S51 for F and some sheaves related to F.

  Since we took a general a E HO(S,mko) with k ÅrÅr 1, there exists a

rational number O ÅqÅq to Åq 1 with the following two properties:

  (1) The non-KLT locus of (Y, Ay + toD) is Yo.

We note that to may not be the so-called log-canonical threshold, namely

(Y, Ay + toD) may not be LC along Yo, and that D = div((f o pa)'a) is
linearly equivalent to O. We let fw the multiplier ideal sheaf of (Y, Ay +

toD), and W the complex subspace of Y defined by Xw (supp W = Yo).
  (2) The natural injection HO(Y,FxZw) - HO(Y, F) is not surjective.

  By the vanishing theorem of Kawamata-Viehweg, Demailly-Nadel, we
have

            Hg(Y, F) = Hq(Y, Fx Zw) =O for qÅr O.

These imply, by a long exact sequence argument, we have vanishings and a

non-vanishing:

       Hq(VV, F) =: O for qÅr O, and HO(W, F) lO by (2).

In particular x(IiV, F) l O.

  Let 7r : Y ----År Y be the universal cover, and set F := T'F, etc. We also

have vanishings of L2-cohomology groups:

           H(q,) (Y, F) = H(q,) (Y,Fx Zfu) =o for q År o.

(Please be carefu11! I did explain nothing about L2-cohomology groups in

this section, which is slightly different from that in g3.) Then by a Iong

exact sequence of L2-cohomology groups, we have

                   H(q,)(ti', #) = O for q År O.
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Then by the L7-index theorem for 7Tiiz7 : W - W with P"lpti [CD, 5.1] [E,

6.2], and by vanishings and a non-vanishing, we have

      O f Åí(-1)qhq(W, F) xe 2(-1)gh7,)(W, F) == h2,)(W, F).

          g)e g)e
Moreover by the vanishing: HO2)(Y,FXXfu) = O, we have

                      O pt cr E H(O,)(Y, F)

as ax exteRsioR of HÅq02)(W, F).

  Let us denote P(k) the subspace of ffeÅqY, FXk) which is geRerated by

products of Poincar6 series:

 pÅqk) := Åq(Åq21)p(ffXkt), P(ffXk') == .,,.lil,II](y)'y"crXk',2ki :r- k}k; ;) 2))

Then we qoute the following lemma of Gromov [Gr, 3.2.Aj ([Ko2, Chapter
13] for expository):

Subiemma 4.2. Assume 7yi(Y) is infinite. Then there exist k ÅrÅr 1 and p,
p' E PÅqk) sueh that (p/p')ly, is a non-constant meromorphic junction on Yo.

  On the other hand, since F is pa-exceptional and f : X ----År S has con-
nected fibres, we have natural isomorphisms: HO(Y,FXk) :: HO(X,O) or-

Hg(S, 0) fcT every positive k. 'Therefc:e such a qgotient p/p; must be a

constant on Yo. This is a contradiction. Thus 7i(Y) must be finite.
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