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o Introduction

Let G be a finite group. Consider the set of Iog projective surfaces (V,A) defined over a
fixed, algebraically closed, gound field of characteristic zero which admit effective algebraic

G-actions. We say that a morphism f : (V, A) -År (Mi, r) is a G-morphism (or G-eguivariant

morph,ism) if f commutes with the G-actions. We can define the notion of relatively minimal
(or minimal) model with respect to the birational G-morphisms.
   The objective of the present article is to consider the equivariant classification of such

G-relatively minimal log projective surfaces in the case where the log Kodaira dimension
of (V,A) is -oo, i.e., 7C(V -AU Sing V) == -oo. Our attempt is achieved under some
technical hypotheses which enable us to make use of the Mori theory, but it still reveals
some phenomena which are pa,rticular to the equivariant settings (cf. Theorems 1.5, 2.6).
   We a,re motivated by Zhang [5] to consider this kind of equivariant classification. Ih the

case V is a smooth rational surface and A == O, the results treated in the present article a,re,
in fact, conta,ined in [5].

1 Preliminaries

Let (V,A) be a log projective surface (cf. [4]). Namely, V is a normal projective surface
and A is a reduced effective Weil divisor such that (V,A) has log terminal singularities.
Suppose that a finite group G acts algebraica,liy on V in such a way that A is G-stable.
Let VV be the algebraic quotient V//G and let r : V - ltV be the quotient morphism. Set
r -- T.(A). Then W is a norma,1 projective surface with at worst quotient singula,rities. Let

f: (V, D) - (V,A) be the minima,l resolution and let X = V-AUSing V.
   We assume that the follou,ing conditions hold:

 (1) (W, Ii) ia a log projective surface. Hence the singularz'ties of W lying on I" are cyclic

     quotient singutarities whose resolution graph has one (and only one? terminal compo-

     nent meeting the proper transform of r transversally in one point.

 (2) k(V- D) = -oo and that [D#] = A, where A is the proper transfoTTn, of Zl on V.
     The second condition im.plies that all possible rational adrn,issible rn.axirnal tu;igs (resp.

     rods, forks? ofD are peeled off

   By applying the Mori theory to the quotient surface l,V, we have

                      NE (i]i7) = NE (ff+A'.)Årmo(Vl7) + 2 R+IiiF,

                                                 PEf'
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 where jr' is a countable set of the extremal curves F on ItV with F being represented by an

 irreducible curve C on V and where

                l E (r+K.)lio(W) = {n E NE (M/) 1 (n -r+ Kw) 2 O}.

 Slnce ff'(NE (Vl7)) = NE (V)", we have

                 l E(V")G =: l E ,,sÅëÅÄk'.År)g(I7)GÅÄ 2(2 ZFg)RÅÄ?

                                             ZFG;:'t gG"

 where

             TiXJE ..(r.K.)k,(V)" =: {6 E NE (i)7)G I (g - rr'(r -}- Kiv)) }r o}.

 Ni ote that

                          A + Kv = T"(r + Kvlr) + R,

 where R is the leg ramificatiok elvisef wklch ls aR effeÅëtive divisoy (cf. Iitaka I2b. We

 a$sgme, furthermore, that

  (3) R is a nef divisor en V.

 Then it is clear that

             NE.•(r+k-r,,)imo(V)C g NE(Ar+Av))o(V)a

                               := {6 E 1 E(X7)G l (e • Yrc + k'iT,) }) o}.

 Hence we obtaiR the following result.

 LeirRma l.l WiSh th.E a.beve netatiens ang gss'if?}i.ptien$, 'ttie ft,ave

                  NE (Vr)G ex iTvE Åq2y. ..)År,(V)G + Åí(Åí {iiF9 )R+, ,

                                            EFEv ge6

 where Jr' ts a co'untable subset of 1"'.

    Let lii' = (2gEG Cig)/IHI be a G-invariant extremal curve, where H is the isotropy group

 of a,n irreducib}e component a, i.e., H = {g E G I ZiiT9 : (7}. We first assume that

 p(V//G) ) 2. The case p(V//G) == 1 will be treated Iater. Then there exists a nef divisor
 lilZ oxx V such tha,t (Ilii • Ii7{) == e. llence ([i7'2) S g by the Kodge lndex tkeorem.

 CAsE l. Suppe$e ([i72) Åq g. SIRce Åq[i7- Zg+ Kv) Åq e, we kave (F" • P# + Kv) Åq C, where

 F == Åí,EGCgAffI is the proper tTansform of .F". Moreover (F2) Åq g. Hefice, for the
 component C of F, it follows that (C • D# + Kv) Åq O and C+ Bk D is negative definite,
 for (C • D# + Kv) = (Cg • D# + Kv) for every g E G. rl"o go further, we need the following

 result.

 Lemma 1.2 Lllith the above notattons and assumptions, th,e follo'uJing assertions h,old:
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 (1) D# + Kv = f'(A + Kii7,) and Bk D are G-stable, and Sing (V) is a G-stable set.

  (2) If (F2) Åq O and C is not G-,stable, then Cn Cg = e whenever Cg 7C C forg E G.

Proof. The assert,ion (1) is clear. We shall prove the assert•ion (2). Let H be the isotropy
subgroup of C, a,nd let {gi, . . . , g.} be a set of representatives of the right coset decomposition

G/H. Let gi = e the ldentity and let Ci = Cg'. Suppose Cl C9 and (C•Cg) År O. IfCÅë A,
then C, is a(-1) curve. Furthermore, each Ci has at }east 6ne Cj such that (Ci•C,) År O.

Hence we have

                      (F2) = ((Ci+'''+Cs)2)

                                s
                            == 2( Ct ' Ci +'''+ Cs)

                               •i= 1
                            2}r (-1 + l) +•••+ (-1 + 1) == O,

which is a contradiction. Suppose C c A. Since

                        OÅr (C • D# + K.) 2 (C •C+ K. ),

it follows tha,t C ;! Pi and (C2) Åq O, for F+ Bk D is negative definite. Suppose (C2) S -2.

Since C9 E A for gE G and O År (C- D#+Kv), it follows that (C - C9) =O or 1 and
(C • C9) = 1 possibly for only one translate Cg. Furthermore, we have

(C•D#
   s

-
ÅíC,)Åq

  •i--l

Let Bi,...,Bt be uci O. Then we
have

                            :.,('mii)Åqi (or 2),

where bi = -(Bi2). This implies that t S 1 in the case Cn Cg l Åë and t S 3 if C n Cg = O
for every g E G- {e}. In the case t f{ 1 or in the case Cn C9 == to for every g E G- {e}

and t = 2, the connected component of F + Bk D containing C is an admissible rational
rod. This contradicts the hypothesis that A = [D#]. Hence C is a (-1) curve. In the case

CnCg == O for every g G G- {e} and t = 3, C has three twigs sprouting from it. Let
di,d2,d3 be the (absolute value of the) discriminants of the intersection of the three twigs.
Then the condition (C • D# - C) Åq 2 is stated as

                                S., (i'2}) Åq2

Hence {di,d2,d3} is, up to permuta,tions, one of the Platonic triplets. Hence the connected

c,omponent of D containing C is an admissible rational fork. This contradicts again the
condition A = [D#]. Hence C is a(-1) curve. The rest of the proof is the same as in the

1 if Cn Cg

2 if Cn Cg

lÅë for some gE G- {e}

=O forevery gEG-{e}.

of Bk D such that (C • Bi) År
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   By Lemma 1.2, we ca,n coritract {C9 1 g E G} simultaneously without losing the (r--
action if (Ii72) Åq O. Sinc,e the condition (Iii"2) Åq O implies that F + Bk D is negative defuiite,

t,his implies that the contra,ction of F on V produces again a log project,ive surface with a
(r-action (cf. [41). We say tha,t a log projective surface (V,A) with an a,ction of a finit,e
group C is G-reiatively minirr?,al if there is no curve 7i' : XgeG ag such that (IF'2) Åq O a,nd

('i"ww • 2SJ + Kv•) Åq C. IR terms of a minlmal reso}utloR f : (V, P) --År (Y, A), lt is eguivaleritto

say!xxg tkattkere !s Ro cgrve F me Åí,EG Cg gR V suck that (F2) Åq g, C+ Bk D ls Regat;ve

defiRke ane (C• "# ÅÄ Kv) Åq g. Give# an extrema,l curve IX = ÅígEGtiiS, we may assume,

without loss of generality, that (liF2) = O, i.e., F+BkD is not negative definite, but nega,tive

semi-definite.

CAsE 2. Suppose (7iT2) -pm- O,. Write 17 = Åí,S•., Ci, which is the integral part of f*(IZffT).

Consider first the case (F2) Åq O. We leave the case (F2) rm O below. We then have the
following result.

Iliemma 1.3 Suppose that (Iiirr2) : O and (F2) Åq O. Then the foglewing assertions hold.

 (i) If(Ii2) Åq g, then th,e Cg wit.h, g E G gre the m'gtualiy di$]'eint (-l) c'grves, andC-l-BkP

     is negaSi#e geLfinite, 'iehile FÅÄ Bk P is net RegaSive deL;`?nite. f7grSft.er?}?.ere, C (heRce

     Cg as wegg] is net a eompuonent of A.

 (2) If(02)= o, then (if•if") =O for everygE G.

 (3) There exists a P'-fibrationP: V --År B such that a rn,uitipte ofF is afiber ofP and that

     G preserves P.

Proof. (1) If (02) Åq O, then C+ Bk D is negative definite. So, if (F2) Åq O, the argument

in CAsE l works iR this case as well. Hence the Cg wkh g ff G are the mlltual}y disjoint
(-i) curves. We cafi coRtract the Cg simttltanegusly, thougk some compeRents ofBkD may
ooÅí 5e cofttrkcted because i? a- Bk D ls Ret Regative defiR}te. It is SheR c}ear tkat jF" kas two

or more irreducib}e components. Sttppose C C A (hence every C9 c A). Since (V,A) is
a iog projective surfa,ce, for each g E G, the connected component of F + Bk D containing
Cg Is an a,dmissible rational rod of Bk D with one end component meeting C9 ln one point
tra,nsversally. Then F+Bk D i$ nega,tive definite, which is not the case. So, Cg is not a

component of A.
   (2) since (Ii72) = (U2) : O, it is clear tha,t (C' • Og) = O for every g E G.

   (3) If (a2) Åq O, then the assertion (1) shows that f"(IiY) consists of smooth ratiormal

curves. Suppese (tr2) = e. Since (Zii • 2SI+ Kv) = (C - D# a- Kv) Åq O, it follows that the

proper tyansform C = f'ÅqC) !s a ratioital curve. Note that V is a ruled surface because
7if(.\) = -oo. If tke lrregularky g ls pgsltlve, ehe curves lxx a coRRected -gomponent of
F " Bk D are ma.pped to the $ame point by the Albanese morphisrit. Let P : V - B be the
Pi-fibration induced by the Albanese morphism of V. Then each connected component L
of lii"is contained in a fiber of p. Since (li72) = O, a multiple of 1rr is a fiber of P. Let e be a

general fiber of P. Then e is ulgebraically equivalent to NX with Ar År O. Hence eg \ NZ9.

Since (I• Zg) = O because W9 is also a connected component of [iiT, we have (e• eg) = o. "I"hi$

implies that G preserves the fibration P.
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   New suppose that V }s ratiou&l. Let, n. be a posltlve lnteger. By the RlemanR--Rock
theorem, we ha,ve

              hO(n f'(X)) - h.i(n f' (F)) : 3(n f"(X) i n•f"(pu) ' Kv) + l

                                           n-                                      wwnv -i(f'(F) ' Kv) + 1

                                      . g• (f*(?F) . D#) "

because

                       (f*(X) • p# + k'v) = (F • 2X + k'f Åq g.

Suppose (f'(i7)•D#) -År O. Then hO(nf'(.F)) År 1 for n dyÅr 1. So, ln(f*(]7))l defines a

morphism p : V - B whose general fibers are irreducible. Since (f'(F) • Kv) Åq -(f'(F) •
D#) E{; g, lt fo}}ews eha•t p ls a Pi-fi5ratioft. FuTtkermore, p }Rdwces a Pi-fibratloit P : i7 - B

such that p =; P•f and that a multipte of f'(C) is a fiber. By the same argument as above,
we know tha•t G preserves the fibration p. Suppose that (f'(I)e") • D#) Åq O. Then (IP'T• 2SJ) Åq o.

gence each ceRRected compoReRt IZ of lii' ls a cempo#ent of Zi; with ([Z2) Åq g. Thls case doe.s

not occur by the hypothesis• ([i7"2)=O. Q.E.D.
   The reducible fiber of the Pi-fibration in Lemrna 1.3 which is supported by a connected
compoRent of F can be speclfied a,s fol}ews.

Lemma 1.a Let Åë be a red?tced, reducible fiber of the Pi-fibration P : V --)- B in Lemma
1.3 whose support is a connected component L of F. Ut'rite th,e proper transform L : = f'(L)
eR the minim.ai reselntion V ef V gs L =: Åí,S-.i Ci. TheR every Ci 'is a (----l) e•ifrve. LeS Ge
be the subgroup ofG consisting of elements g tvith -lipa = ]7. Rurthermore, ifG is an abelian

grottp and C] acts on O e.ffectively, the possible confilgurations off'(Åë) are exhausted by the

foUo'tt,ing list:

 (1) s = 2, Go 2 Z/2Z and the dual graph of f"(Åë) is a linear graph, whtJch is the(-2)
     chain (corresponding to the exceptional graph of a rational double point of type A.?
     'ivi.tk, t.•we Åq-l) c'arves meeting the beth end cemponeRts of th,e (-2) ch,ain.

-

C2 En En-i E2 Ei Ci
(2) s = 4, ao N Z/2Z Å~ Z/2Z, a,nd the diLal graph, of f'(Åë) i$ a linear graph which is the

   (-2) ch,az'n (corresponding to the Exceptional graph of a rationat double point of t'ype
   A.? 'ivit•h• t'pte (-1) e'gy've.g ?n.F.eting eaeh, ef Sh.e beth eRd co?T},penents of tft.e (-2) e5,ain.

,
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(3)

    -1
C3 o
            -2 -2 -2 -2
                          ---ti--t -            En En-1 E2 El
C4 o

    -1
s= 3, Go ! Z/3Z and the dual graph, of f'(Åë) is a
linear branches, each of which consists of a (-2) curve
curve meeting the (-3) coml)onent.

                     -1

  -1
     C,

     C2
  -1
(-3) component
and(-1) curve

meet
'u,ith

ing

the

three

(-2)

                                 C,

                           -2 E3

               -1 -2 .3 -2 1
               Ci Ei E4 E2 C2

  (4) s l}l 3, th.e config•uration off'(Åë) is a 'unique (-s) curve E Tn.eeting s curves Ci,...,C.

      which are (-1) curves, and Go is aJinite subgroup ofPGL(2,k) acting transitively on
      the set {Pi,... , P.} of Pi with Pi = Ci n E.

 Jn particular, the fiber Åë has a unique singular point.

 Proof. Note that f'(Åë) is a degenerate fiber of a Pi-fibration on a smooth projective
 surface. Write

                                     sn                            f'(Åë) == 2aCi + 2 b, E,,

                                    i=1 j' =1

where the coeMcients of the Ci are the same becasuse every Ci is a translate of one of the

Ci and where the Bj are the exceptional curves of the minimal resolution f : V - V. Here
s År 2 and a -- 1 because Åë is a reduced and reducible fiber by the hypothesis. Note that
every Ci is an end component of f'(Åë). This implies that every Ci := f(Ci) passes through

one and only one singular point on Åë. Since this singular point is a quotient singular point,

the exceptional graph is either a rod or a fork.

   Suppose first that the exceptional graph E := Åíj"•.i Ej is a rod with n ) 2. So, we
may assume that (Ei•E,•) =1(resp. O) if )' =i+1with1giÅqn (resp. otherwise).
Hence Ei and E. are the end components. Note that Ci meets Ei or E., for otherwise
the coeflicient a mut be larger than 1. Suppose C := Ci meets Ei. We claim that the set
H of elements g E Go with (C9 • Ei) = 1 is a subgroup of Go. In fact, if g,h E H, then
(C9•Ei) = (Ch•Ei) = 1. Suppose (Cgh•E.) = 1. Then h maps the point Cg n Ei onto the
point Cghn E. on E.. Hence h maps Ei onto E.. So, (Ch t L-i) = O. This is a contradiction.
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Ixxdeed, H ls a, Roymal $gbgyoup of Ce of ixdex 2. IR partlc#lar,s ls eveR. Ifs :2, thea
the dual gra,ph of f'(Åë) is the case (1) listed above. So, assume that s 2 4. XVe cliam
that the stabiaizer group of C is trivial. In fact, let K = {g G H i CY = C}. Then the
sta,bMzer group of CÅí ls a conjugate of K. }Ience K acts on the curve E]i aRd fixes at least
three poiRts C; fi Ei, Ci fi Ei a,nd E2 fi Ei, where (C{ t Ei) == i. So, K acts trlvlally oR Ei.

Consider the quotient $pace Vi := V//K. Since G preserves the Pi-fibration p : V -År B,
there exists a Pi-fibra,tion pi : va --År Bi. Then C rm Tr(Ti(C)), where 7ri : V --År va is the
quotient morphlsm. }IeRce (C2) = IKI(xi(C)2). Since C l$ a (-lÅr ciirve, k follews that

U" = 1. Now the group H acts on Ei so that the point Ei n E2 is a fixed point. Since H
acts effectively on the afline line Ei - Ei n E2, H is a cyclic group of order t, where s == 2t.

We a,ssume tha•t Ci A Ei 7t O for I fi E{: t aRd Ci fl E. iE ut for t+1K ?1 f{ s. After the
contraction ofCi,... , Ct, the compoftent Ei becomes a(-l) curve. Hence (Eb =: --(t+l).
Set P := Ei n E2. The actlon of Hr near the point P is given as (x,y) le--"F (Åqx,Cdy), where

C is a primitive t-t,h root of unity, {x,y} is a system of locai parameters at P such that Ei

(re$p. E2) is defixed by y = e (resp. = xx e) and d is aR }#teger g S d Åq t. Cens}der the.

quotiefit space V2 := V//H with quotient morphism rr2 : V - V2. Let Ei and E2 be the
irna,ges of Ei and E2 by T2, respectively. The point P := r2(,P) is a cyciic quotient singular

point of type (t,d) ifdÅr O andasmooth point ifd= O. By Sublemrna below, we have
(Xi2År = (El2) + (d!", where El ls the proper trafisform ef [Ziri on the mlnimal reselution of

V2. We then ha,ve

                    -(t ÅÄ }) ww- (E,2) = t(IE,2) .. t ((g{2) " f)

Since (El2) is a,n integer, it follows that d == t-1 and (E{2) = -2. Then we can cntract

ff-egulv&rlantly ghe cempeReRts Ci,... ,Ct aRd E2. 0R t5e minlm&l reso}ut}oR of V2, vve
contra,ct the component E( a,nd the linear chain oflength t- l ofthe exceptional (-2) curves

ari$ing from the resolution of singularity of the point P. Repea,ting the above argument,
we, find that the configuration of the curves Z)i•..i Ci " Åí3"-=i E3 together with the H-actiens

are descrlbed as follows, where .lli := Ei fi Ei+i for l g i. Åq n a,nd Åq is a primltive t--th roct

of umity. Furthermore, we let {x'i,'yi} be a system of local parameters such that Ei (resp,
Ei+i) is defined by yi fu--' O (resp. xi = O). The ,if-action near the point Pi is given by
(xi, yi) s (Åqxi, Åq-iyi).

Sublemma Xtlith the above notat'ions, we have

                                            d                              (z2) urxe (gl2) + T,

Proof. Write t!d in the form of a coRt!nued

                           t
                           U=ai-
                                   a2 -

fractlon

   1

1

1

as
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Then t,he total transform of rti + IZIjr2 in the minimal resolution of singularity at IP is

chain
a linear

EI + Gi +'''+ Gs + E2',

where (Gi2) = -ai for 1 S i, nt s. Then the total transform of IZii ln the mlnimal resolution

is wnttefi a$

El + aGl + ft2g2 +•••+ or,Gs,

where ai,...,a, are determined by the conditions

1-aiai +a2 =O
al - a2a2 + a3 == O

a.,-2 - a.-la,-1 + cr. ww O

dvs-1 - asas = O

Tkeft ltis easy te verlfy that

                         (Xi2) == (El2) + ai = (ffl2) ÅÄ 3.

                                                                      Q.E.D.

CAsE n = 2m+1. The H-action stabilizes each ofthe cornponents E, (1 S ]" Åq- n), and (:]o/ll
flips the two branches Zl•..x CYi + Åí;=i Ej and 2i.,+i Ci + X:,..+2 Ej. Let a be a,n element

not in H. Then a(E.) = E.+2. Since IGo/HI = 2, a2 E ". So, write a2 = T', where r G "
is a generator of H and O S r Åq t. Since a is an automorphism of finite order of E.+i tw Pi,

lt fixes two polRts, say Åq?!, Åq?2, and &cts eR AI :== Pi - {qi,q2} as aR element ef G.. So, if

r År e, eheA the po}RÅí$ qi, 92 colnclde R., A." up to a permuta.tiolt. T51s ls & cgntra,dicelen.

llence ff2 == l, &Rd {{?i,qt2}fi{P., P.ÅÄi} = et. I oee that ff ls an lrwo}utloR gfthe compenexg

E."i commutlRg with the N-a,ctioR. Write E." - {R., R,.-i-i} = Spec k[x,x-i], where P.
and R.+i are respectively defined by x = O and x : oo. Choese the coordinate x such that
qi is defined by x = 1 and choose, furthermore, a generator r of H such that T(x) ww- Åqx.
Siruce a acts on an automorphisrn of k[x,x-i], we have cr(x) xx ax'-i with a E k' because
cr(Pm) == jPm+i• Since a((?i) : (?i and (?i is defined by x ww 1, it follows that a == 1. So,
cr(ur) = xri. Then it is easy to show that aTo == T-i. Thus Co is a dihedral group of order
2t, which is not abelian unless t ww 2. If t = 2, then the graph of Åë is the case (2).

CAsE n = 2m. Let a be an element ef Gc not in ll. Thea Ge ls gellerated by cr and
N = ÅqTÅr. Ngte that H fixes the peiRts Pi (l S f, S n - l) aRd g fixes tke m}d-poirk
Pm- Thell 2f-..i Ci + E]j#.,." Ej is stabl}ized 5.v Ge. He#ce we can cggtract ghls divlffor
G-equivariant-ly. After the coi}tractlon, we obtain a $mooth prejective sgrface V3 wit}} a
Pi-fibration p3 : V3 -År B on which the group G preserves the fibration p3, i.e., p3 maps the

fibers ofp3 onto the fibers ofp3. The image of the fiber Åë consists oftwo (-1) curves E. and

ll',.- meeting transversally in the point P.. The element cr acts on the fiber in such a wuy
t,ha,t cr(E.) = E.+i. Then, by Theorem 2.6 below whose proofis independent ofthe present
a,rgument, a is an involution. "I"ra,cing the images of a point P chosen on E. - {P., I?.mhD

2iO

8



by t,5e agt•omorp}}lsms a and r, we kRow that grff rm 7-i. So, we gbtaiR the same resglt as
in the ca,se n = 2m + 1.

   Suppose next that t,he exceptional graph E is a unique irreducible component. Then the
curve C lktersects E traRsversa,llÅr; iR a, point .Pi. Tke yestrlctloB eR the group G ls thftt Gf }s

a, finite subgroup ofP(]L Åq2,k) acting on the set {2ur}i,... , P,} transitively. Hence the graph

of O is the ca,se (4).

   F}Ral}y, ceRsider #he ca,se tke except}on&} gra.ph E ls a fork. SIRce a ferk has a Åq-2)

component meeting the central component E4, we denote the (-2) component by Ei. There
is only one (-1) component Ci rneeting Ei. In fact, there is at most one (-1) cornponent

meeting Ei. If there a,re RoRe of them, theR Ei must rema}n after the coRtractioit of a.l}
the (-l) compoitents and all subsequently coittractlb}e componeRts of f'(Åë). But this ls

not the case. On the other harmd, if g G G maps Ci to Oi, then g maps Ei to a (-2)
component of the except,ional graph which is adjacent to Ci. This observation shows that,
tke curve Ci aRd a (-2) cutve Ei form a, }lftear br&Rch cogkected to the compgitent E4. The
graph of f'(ep) is thus the case (:3) in the list. The group G acts on the component E4 and

permutes three points R :== Ei M E4 forime 1,2,3. Suppose that Go contains an elementr
which permutes cyc!lcal}y three points Pi, P2, P3. Then Ge ] Z/3Z as long as Go i$ abeliaR,
Suppose tha,t, a,fiy element of Go fixes at least ene point of Pi , P2, P3. Then there exl$t ei, a2

such that cri(Pi) = 4, cr2(Pi) ex P3. Then aia2 permutes thre.e points cyclically. This is a

cont,radiction. Hence Go2Z/3Z. Q.E.D.
   The ebservat}onin CAsE n me 2'm ÅÄ l }xx the proof of Lemma 1.4 }mplles the existence of a
fiber tp such tha,t f'(Åë) is a linear chain of (-2) curves with t of the (-1) curves meeting each

of the end components of the chain if one admits the dihedral group. Here is an example.

ExAMPLE l.5 Letp; W - B be a Pi-f7bratien on a ieg projective s'urface W. We assume
that the follo'ttring conditions are satisLfied.

 (i) Let H be g cyclic groscp of order t. Tk.e groupu ff gcts on W se th,aS p=g == p for
     every y E G. Hence, for every sTn,ooth fiber 2FX ofp, there are two points Po,(?o s'uch
     that I?o,(?o are th,e .fixed points and H acts on Al == ,F" = {Po,(?o} via the nat'ural

     G.-action.

 ('2) Ch,oose a sm,ooth .fiber F as above. Choose an inhomogeneous coordinate x on F such
     that Po,eo are defined respectively byx == O,x ex oo and that r(x) : Cx fora aenerator
     T ofU., wh.ere Åq is a primiti.'ve t-th 'root of unity. Consider an 'invol'ution a on W such

     tft,at ff esets en F as cr(x) rm .i'-i, Th,en g7ct ex Tmi en F. ffence the sx5greup G ef

     Aut (W) generated by T and a 'is the dihedral group of order 2t.

Such an cxampge of (W,p) u,•ith a G-a.ction does exist. For exesm.ple, consider th,e above
G-acticn en. Pi and take a diTect p?'od'ifct Pi Å~ B.

   Blou, up the points Po, (?o and obtain the exceptional curves Li,Ri, respectively, By the
a6u.s"e of notations, wff denote the p7'oper transfor7n. of F by the sume lettef" F and denote the

interseefion points Ffi Li ang F ft Ri gy th,e getSer.s jYc gRg 9o, respecti.vegy. Then th.e gre'tip

" acts on Li,Ri. Near the point i?o on Rza, choose a system of local par(xTn,eters {x,y} such

tha,t x 'is as a,bove and 3,f is an inft,oTn,ogeneo'tts coodinate on Li 'with the point Po dejCi'ned 6'y
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 y=O. Then the action ofH on Li is given by 7(y) = C-iy. Hence there is another H"xed
 point Pi on Li. Similarly, there is a H-.fixed point ([2i on Ri. Blu,o up the points Pi,ei to

 obtain the exceptional curves L2, R2, respectivel'y. Continue this process to obtain a linear

 chat'n

                 Lm + Lm-i + '''+ Li +F+ Ri +''' + Rm-i + Rm;

 where u;e can extend th,e G-action onto the blown-up s'urfaces under which a(L,) = Ri and
a(Ri) == Li for1 S t: Åq- m. Ch,oose the points Ai,...,At on L. u,hich constit•ute the H-

 orbit of Ai. Let B.i = a(Aj) for1 f{g 1' S t. Now blo'w up these 2t points Ai,...,At and
Bi,...,Bt to obtat'n the exceptional curves Ct+i,...,C, and Ci,...,Ct, respectively. Let V

 be the surface obtained by the above sequence ofblowing-ups. Then the dihedralgroup (3! acts
transitively on the set of(-1) curves {Ci,...,Ct,Ct+i,...,C,}. Th,E surface V has a Pi-
.fibration p : V -År B which extends the fibration p and contains Ze•., Ci +2,M•.,(Lj + R,•)+F
as a,tiber. The linear chain ÅíiM•.i LJ• +F+ÅíoM•+i Rj• which consists of(-2) linear chains with

two -(t + l) curves attached to the end coTn.ponents contracts to a c'yclic guotient singular

potnt.

CAsE 3. IiVow suppose that (IFi2) = (F2) = O. It fo11ows that Iii'nSing i7 = O. Then we have

the following result.

Lemma 1.6 Suppose s }2 2, t'.e., C = Ci is not G-stable. Then the foUo'tving assertions
hold.

  (1) Suppose (Ci•Ci) 7C O for some i, iE 1. Then F is reu;rt'tten as

                                      r                                 F= 2(ci + c;),

                                     i=1
     where s = 2r, (Ci2) = (Ci2) == -1 and (Ci • CI•) = 1. Hence there exists a Pi-fibration

     p : V - B s'uch that the G-action preserves the Pi- .fibration.

 (2) Suppose (Ci-Ci) =O for everyi 7E 1. Then (Ci2) = O for every i, and there exists a
     Pi-;fibration p : V -År B such that the G-action preserves the Pi-Lfibration.

 (3) The Pi -Lfib ra tion p : V - B 'in (1? and (2? a6ove fa ctors as p = P• f, where p : l7 - B

     is a Pi-fibration.

Proof. (l) Since (Ci2) Åq O and (Ci - D# + Kv) Åq O, it follows that every Ci is a (-1)

curve if Ci is not contained in A for someiand asmooth rational curve if C, is contained
in A. Set (Ci2) ]= -a with a 2 1 and t = (Ci • ÅíI., Ci). Since every Cj is a translate of Ci

by an element of G, we have (Cj - Z)i#j Ci) = t. Since (F2) = O, we have

                                ss                      (F2) ,., Z(c,•2C,)

                               i--1 j'=1
                            - Åí {(c,2) + (c, .2 c,) 'År

                               ,=IN #i 1
                           = -sa+st,
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whlch ylelds tha,t t = a because (F2) xe O. We shail shgw that a -- l, l.e., every Ci ls a

(-1) curve. Suppose a }Er 2. Since 7if(X) == -oo, we know that ID + Kvl = O. Suppose
that l/ is rational. It therm follows that D a,nd hence A ha,s a tree as the dual graph. Since

Ci + • • •+ C, is a part of A, its dual gra,ph is a tree. So, some component Ci meets at most
oi}e componeRt of Åíj-si Cj. But the a,bove remark shows tha,t the murcber of the corapoReRts

lg Z)#i Cj tha,t Ci meets is exactly a k 2. Tkis ls a contradlctioR. If V is lrrationa,l, V ls
a ruled surface because ln(D + Kv)i : O for every n År O. Since C, is a rational curve, it is
a, fiber component. Since the dual gra,ph of a degenera,te fiber of a Pi-fibration has a, tree

as the dua,1 graph, the dual graph of Ci +•••+ C, is a tree. The above argument for the
ratienal c,ase vvorks in the irratioRa,l case as vve}}. Hexxce every Ci is a (-l) curve. Hefkce we

may rewrite i7 as

                                      r
                                F =xx Z(C, + C;•),

                                     i:-1

where (Cb = (C•2) =: -l aRd (Ci•Ci) = l. Since ((Ci -+- C;•)2) me g, a complete }inear

system A : IN(Ci + COI wkh 2V ÅrÅr g defines a Pi-fibratlon fi : Y ----År B, where B ls a
smooth complete curve. Let, ebe ageneral fiber of p. We shall show that eg is a fiber ofp as
well. In fa,ct, note that (Cx + Cl•C, + Ci) -ww O for every 1 ntÅq i -Åq rand the Ci+C; (1 wwÅq ?l Åq- r)

exhaust all the G-translates of Ci + C{. Hence Ci + Cl• is a fiber of p. Since

                                                     -l                        (eg - C, + CO = Åqe• (Ci + CO"                                                       )

                                      = (e• ci + c;•) =o

for some t:, we know that eg is a fiber of p.

   (2) If (Ct•C" == g for every i. f l, then (Ci2) =: O for l SiS s and a comp}ete }}near
system INCil witk N ÅrÅr C defixes a Pi-fibraÅíioR p : V N g. It is clea,r tk&t the C-aÅëtieR

onVpre$erves the P!-fibration p. Q.E.D.
Theorem 1.7 With the above notations and as.g.umptions, suppose that (V,A) is G-relatively
minim,ag. Let li7 be a a-extremag c'urve s'esch that ([ifT2) : Oand iet p : V - B be the pi-

.figrgtien deLfincd 5y g kneer syste,??. In•ji7i fern ÅrÅr g ÅqcÅí Lemmas l.•3 and i.6). Let R 5e G

.fiberP. Then the foiiou,ing a.g.sertions h,old.

 (1) A m•ultiple of[R ts u?nitten in the form ÅígEG[Zg up to the algebraic eeuivalence, wherE

     L is an irreducible curve.

 (2) If R is rednei5gc and t5.Ere g're Re sing'afar peiRts l'y'ins en IZ, Slt.en R egRsists of t'we

     (-i) curves.

 (3) lfR is z"rred'uci61e and reduced, then R is a smooth fiber. I7R is non--reduced, tht"re is

     a singular point lying on R.

Preef. (l) Slfice R }s nvmerically equlvaleRt #e a Q-rauklple gf F, a multlple of R ls a
divisor of the form ÅígEG L, where L is an irreducibie curve.

   (2) Write 72 = Åíf.r r.i. If s ) 2, then (IZ,2) Åq O for every i because Iii is connected.

Furt,herrnore, the assertion (1) implies that (Li • ti)s + Kv) Åq O because ("Fi • A + Kv) Åq O. If
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 there a,re no singular points lying on R, the arguments in Lemma 1.6 shows that R consists
 of two (-1) curves.
    (3) If R is irreducible and if there are singular points lying on R, the proper t,rnsform
 R := f'(R) is a unique (-1) curve in a fiber f'(R) of the Pi-fibration P•f : V -År C. So, the

 multiplicity of R is greater than 1. Te assertion (3) follows from this observation. Q.E.D.

    We shall next consider the case p(X7//G) = 1. Then NE (i7)G = R.[7iT] with ([)ii2) År o.

 Then W == V//G is a log del Pezzo surfa,ce of rank one. If A 7L O, then (liV,F) is an open
 log del Pezzo surface of rank one. Hence l,ll - r is isomorphic to A2/a, where a is a small

 finite subgroup of GL (2,k). If A = O, then V is a complete log del Pezzo surface of rank

 one.

 ExAMpLE 1.8 Let G be a small finite subgroup of GL (2,k), u)hich is a centrat extension

                          o- c. -År a-G-(1),
                                          '
 iphere C. is a cyclic group of order a and G is a .finite s'ubgroup of SL (2,k). The natural
 action of a on A2 via GL (2,k) ext6nds to an action of a onto P2, where A2 is embedded
 into P2 by (x,y) s (1,x,y). Let Ho be the hyperplane at infinity. Then Ho is a-stable.

 Set V = P2/C. and let A be the image of Ho on V. Th,en (V,A) is an open log del Pezzo
 s'urface of rank one wt'th G-action. The quotient liV == V//G is a completion ofA2/G.

 ExAMpLE 1.9 Let V be the Hirzebruch s'urface Pi Å~Pi. Let t, be th.e 'involution on V which
 exch,anges the Pi-factors, (P, (?) =-} ((?, P), for P, (? E P'. Then the guotient VV = V//ÅqLÅr

 is isomorphic to P2, and the guotient m,orphisrn T : V -År W branches over a conic r on P2.

 Let A be the diagonal on V such that T"(r) =2A. Then (W,F) is a log del Pezzo surface
 of rank one, while rank Pic (V) = 2.

2 The case of relatively minimal Pi-fibrations

 Consider the following example.

 ExAMpLE 2.1 Let ltVo be the Hirzebrttch surface of degree n and iet Mo (resp. Mij be the
 minimal cross-section (resp. a cross-section disj'oint from Mo?. Let Po be a point on Mi
 and let eo be the fiber passing thro'ttgh Po. Blow up the point Po and its infinitely near points

 Pi,... , P.-i lying on the fiber eo. Let a : ltV - VVo be the composite of these blo-uJing-ups.

 Let Ei (1 fi{ i ff{ 7n) be the proper transform of the exceptional c'urve arising frorn, the blowing--

 up of the point Pi-i. Let Lo be theproper transform ofeo, Then Lo+Ei+2E2+-••+(m-
 1)E.-i + 'rnE. is the total transform. of the .fibereo, whose dualgraph is a linear chain with
 (Ei2) = -2 for1 S i ÅqN m- 1, (E.2) = -1 and (Lo2) = -m. Then u,e can contract th,e
 c'urve Lo and the c?Lrves Ei + •• - + E,.-i to the cyclic quotient singular points (2o and (2i,

 respectively. Let T : W -År V be the contraction. Let Mo = T(Ax/Io) and Mi = T(Mi). Then V
 has a Pi-fibrationp: V - C,, where C rv Pi. The curves Mo and AIIi are the cross-sections

 of p, a,nd the point qi lies on M, fori = O,1.
    Choose another .fiber ei of the surface ItVo. Then we have a iinear eq?tivalence

         L + Ei +2E2 + •• • + (m - 1)Em-i + (m - 1)a'(ei) tv m(a'(ei) - Em).
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So, 'tve can consider a degrEe 77Nz c;tyclt7c covering a• : t WV - LV u)hich ram.ifies over L + Ei +

-•J  + E.-i + a'(ei). Let p : V - IV be the rninim,al resolution of the singularities. Let
Lo and E. be respectively thE redttced inverse images of Lo and E.. Then (Lg) = -1 and

(Ek) = -rn. In fact, we can show that (a•")-i(Ei +••• + E.-i) and Lo are contractable
to smooth points. LEt u : V - V be the contraction. Then V has a Pi-Lfibrationp: V - C
such th.at R, := a'(a'(Mi)) is a cross-section ofp for i. = 1,2 and C is an m-ple covering
of Ci totally ram.t'fyt'ng over the pot'nts ZS(ei) (i == O,l). The cyckc group G of order 7n acts

on V as the covering transformation gro'up and the action ofG descends down to V. By the
above constr'uction, 'u;e know that the quotient surface V//G is isomorphic to V.
   ItVe can consider the degenerate !iber.g of the same type L8i) + E{i) + 2ESi) + ••• + (m -

1) EA .i + m Eh for i = 1, . . . ,r and th.e smooth .fibe rs a'(ej ) for j' = r + 1, . . . ,r Å} s, where

r+s is an even integer. Th,en the curve C above is a srn,ooth proj'ective curve of genus
(m - 1)(r + s - 2)/2.

   A Pi-fibration p : V - C from a smooth projective surface V wit,h a finite group G-action
is called G-relatively minimal if G preserves the fibration p and if every fiber is irreducible

unless it, consists of two (-1) curves C+ C' with C' = Cg for some g E G. The next result
shows that this example is essentially the unique case of a G-relatively minimal Pi-fibration

with a, horizonta,1 irreducible component of D and a finite group G acting only along fibers.

Theorem 2.2 Let (V, D) be a pair of a smooth proJ`ective surface with a Pi-Lfibration p :
V - C and a reduced e.ffective diviisor D with simple normal crossings. Suppose that a finite
group G acts in such a way that G preserves the Pi-.tibratilon p and that (V, p) is relatively

minirnal i,n the above sense. Suppose furthermore th.at D contains horizontal components.
Then the following assertions hold.

 (1) The Pi-.fibration p : V - C is a Pi-bundle. NaTnel'y, there are no fibers consisting of

     t'tvo (-1) curves.

 (2) There t`s only one horizontal coTn.ponent, say R, of D which is not a coTn,ponent of

    Bk D, G-stable and a cross-section ofp.

 (3) Let a : G -År Aut C be the natural gro'up homorn,orphism. ifa is injective, th.e guott'ent

    s•urface i7 := V//G is a norrn,alproj'ective s'urface u,ith a Pi-bundle overC := Cl/G and

    V is z'somorphic to the norrn.alization of the jFiber product V Å~6(C, q), where q : C - C

     is the guotient morphism.

 (4) Let H be the kemel of the h,om,omorphisma. Then H is a cyclic group. Let Vi :== V//H
     be the quotient surface. Then Vi is a sm,ooth proj'ective surface with a Pi-.fibration

    pi : Vi -År C. Th•e guotient m•orphism pi : V - Vi 'is a cyclic covering wht'ch totally
     ramilfies over the t'uJo cross-sections of th,e Pi-fibration pi.

Proof. (1) Suppose tha,t F = C+ C' is a fiber of p consisting of two (-1) curves. Let R
be a horizontal component of D. If R gZt Supp Bk D, then Rg Åë Supp Bk D for any g E G.
Since C' = C9 for some g E G, it follows that (C' • R) År O if R is G-stable and (C' • Rg) År O
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for some g E G if R i$ Rot G-sta,b}e. S}xce D# + Kv ls G-invaTlafit, we have

            IGI(F• D# + Kv) = (Åí Fg • D# + Kv)

                                geG
                            = 2{(C ' D# + Kv)+ (C' • P# " Kv)}

                               gEa
                            }l Åí {(C ` R) + Is'y) + (C' - R9 + Kv)}

                               gEG
                            ) o.

Th!s is a contradlctioR becau$e 2,EG Fg glves rise to aR extrema} ray ef NE (V)G. Hence

any horizonta} compofient R of D is a componeni, of Bk P. Let {Ri}iEf be the set ef a,ll
irreducible components of Bk D. Define the rational numbers ai by the condition:

                     (F +2a{ Ri • R" =C fer every ?j E l.

                          iEl

Then Åíiw aiRi 'is a nonzero effective divisor because the intersection matrix of Bk D is
negatlve defiRlte and Bk D co#talRs at least o#e horizoRtal cempeneRt. Furtherii}ore, the
coeficient dvi År O if (Ri - F) År e. Then we have

                 (Ii72) : ((,F' + 2 dviRi)2) = (F • F+ Åí aiRi) År O,

                             IEj ifff
which contradicts the hypothesis that (Iii'r2) = (F2) = O. Hence p is a Pi-bundle.

   Åq2) By Åq1) abeve, any fiber F of p is irTeducible. If there ls an irreducib}e horizontal
c,ompoRent of Bk D, theR (IXY2) År g, which is a contradlction. Suppose that there ex}sts an

irreducible component R of P such tha,t (R • F) k 2. Then we have

                    IGI( ,F • D# + Ky) = (Åí Fg • D# ÅÄ K.)

                                        gGG
                                     År- Åí(17g • Rg + Is'v)

                                        gffC
                                     ) g,

which implies the sta,ted results.

   (3) Let Y = V - R, vvhere R ls the unique G-stable cross-section of p. By (2) above,
Y is G-stable and p ly: \ -År C is an Ai-bundle. We denete p ly by the same }etter p.
Since G preserves the Ai-fibration p : Y - C, there exists a natural group homomorphisrn
dv : G - Aut C such that p(v)dv(9) = p(v9) for g ff G and v ff V. Let K be the function field

of C over the grognd field k age let, K be t5e fuactioR field of C over k, wkere C = C/!G.
Since the generic fiber of p is the a,fline line Ak :rm Spec K[x], we huve

            g(x) :a(g)x+b(g) with a(g)GIs",b(g)GK for gEG,

where

          a(gh) rm a( h, )ga(g) and b(gh) = a(h)g b(g) + b(h)g for g, h• E a.

216

14



Suppose that a• is injective. Then G is considered as the Galois group of a field extension
K/K. By Theorem 90 of Hilbert, there exists c E K' such that a(g) = c- (cg)-'. ReplaÅëing
th-  by atz', we nay assume that a(g) : i. Then b(g) = (d- d")/iGl, where d= Åí,,Gb(g).
Replacing x by x + d, we may assurne that b(g) = O as well. Hence, with a: chosen this way,

we have g(x) =x forgE G.
   It then follows t,hat t,here exists a G--sta,ble U open set of C such tha,t p-i(U) or- U Å~ Pi

with G act,IRg on the fa.ctor U. Let V := V!!G, whlch !s a xxorrRal projective surface with
tke morphlsm s- : V - C, where C :== C//G. Let p : V -" V and g : C -År C be the guotiept,
morpklsms. Thefi 3-p == g•p. The &beve observ&tloR impiies that p--i(U) or if Å~ Pi, where
t/' : U//G. Heltce P : V - C ls a Pi-fibratien. Let R :=: R//G. Since R is a cross-section

of p, it foilows that R is a cross-•section of p- , i.e., p- h is the identity rnorphism. By (31, the

singularities of V which are net on the cross-section R are cyclSc quotient singularities, for
V' - [iZ contains an Ai-cylinder. It is clear that the natural morphism V -År i7 xuC is a

finit,e birational morphism. Hence V is isomorphic to the norrnalization of the fiber product

V xlff C.

   Note that if a fiber F has a singuJar point (? which is not on the cross-section R, then F
has also a singular polnt on the point ,F' fi R. IR fact, }et Q be a singular point of V not }ying

oit R if it exlsts a.t all. Suppose t}}at FA R is a smoetk peint of V. SIRce s : V - C is a
P2-bwwdle, F ls lrredgcible. Let ff : W -År V be the mlnimal reselutioR ofsiRgularkies. Tkek
ffnvi (C?) cofislsts of ratioRa,l curves, each cempeBeRt of vvhich ha,s self-intersectlo# nttmber
f --2. Hence u-i(F) consist$ of the proper transform F' of F and the ra,tiona,l curve$
with self-intersection number nt -2. Since a-i(F) is a degenerate fiber of a P'-fibration
P• cr : W - C, the component F' is the unique (-1) component. Since F meets the cross--
section R and since FnR is a, srnooth pojnt of V, F' has rnultipljcjty 1 in the fibeT a-i(,F').

Then there exists another (-1) cormponent in a-i(F). This is a contradiction.

   (4) The correspondence g e a(g) induces a group homomorphism a : H - G., where
ff rm Ker a. If the homomorphism is not injective, then we have, with the above notations,
gÅqx) : x + bÅqg) for g E Ker a. Then g E Ker a is of lnfinite order provided g E Ker a and
s pt l. This ls a coRtyadlctieft. I-IeRce Ker a = (l). So, a is lnject}ve. Tkell, a$ a finite

siibgregp of G., H l$ a cyc}}c gro{ip of order, say R. Let g be a geRer&tor ef tke gyoup N.
Thexx a(g) ls an n-th prlmltive root ef ufilty. Suppose " # (l). Then g(x) = a(g)x + b(g)
and g(x + c) = a(g)(x + c), where c == b(g)/(a(g) - l). Then the point x = -c is left fixed

under the H-action. The sta,ted a$sertion then follows immediately. Q.E.D.

   We consider next the case where the boundary divisor D has no horizontal components
with respect to the Pi-fibration p ; V --År C. Our objective is to prove Theorem 2.6.

Lemma 2.3 Let p : V -År C be a G-relatively mint:m,al Pi-•fibration. Suppose that D has no

korik-onta,g co?n.ponents and that p contesins a .fiber of the type F : C+ C', wft.ere C' = C9

forg G G. Tk.en th.E follewing asse'rtions 5.eE:

 (i) C = C'" andC fi C' ts fixed u,nder the actien ofg.

 (2) lfg acts along the fibe'rs, i.e., p-g = p, th.en g has order2 or4.

 (3) U"g2 moves the fibers, i.e., p•g 7e p, then g2 has order eith,er n, = 2(s+ 1) for sorn,e

     sÅrO orn= 3.
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 Proof. (1) Suppose that C'g is contained in a fiber different from F. Since Cg is contained
 in the same fiber as C'g, it follows that C'g is contained in the fiber F. Hence C'g = C. Let

 P :== Cn C'. Then Pg E Cg n C'g = C' nC= '{P}, whence we know that P is fixed under

    (2) The proof of the assertion consists of three steps.

 (I) By the assertion (1), we have Cg2 = C and C'g2 :: C'. Set h, = g2. Suppose that h.

 is not the identity element. Then h is an automorphism of A' = C - {P}. Let x be an
 inhomogeneous coordina,te of Ai, with respect to which the point P corresponds to x == oo.

 Then h(x) == ax+3 with a E k' and 6 E k. Let n be the order of h. It is then easy to show

 that

                                     '
                       a"=1 and (a"'i+•••+a+1)P=O.

 Let 7 = 5/(a- 1). Then h(x + or) == a(x +7). So, by replacing x by x +7, we may assume
 that h(x) = ax. This implies that the components C a,nd C' have the points O and Q'
 respectively which are fixed under h. ,

 (II) In an open neighborhood of the point P, we can choose a system of local coordinates (x, y)

 such that C (resp. C') is defined by y = O (resp. x = O) and that h(x) = ax and h(y) = ay.

 Here h acts on x and y with the same weight because C and C' are interchanged by the
 action of g. Let q : V - V be the quotient morphism under the group ÅqhÅr. Then V has a
 Pi-fibration pA : V - C because h preserves the P'-fibration p. Set P = q(P),e = q(e) and

 e' = q(e'). Then the bra,nch locus of q contains these three points P,e and e'. Meanwhile,

 V has an isolated cyclic quotient singularity at P. Hence P is the isolated component of the
                                         A branch locus of g. The minimal resolution of P consists of only one (-n) curve A and the
                                   AA proper transforms of q(C), q(C') (say, C, C') meet the component A transversally.

 (III) On the other hand, the points O and QA' are smooth points, for the cyclic group ÅqhÅr

 acts on V near O as h.(6,n) = (a-i6, ny) with respect to a suitable local system of parameters

             AA (C,n). Hence C+A+ C' is a degenerate fiber of the Pi-fibration on asmooth surface. This

            AA implies tha,t C and C' are (-1) curves. Hence n = 2. Hence the order of g is 4.

                                                     AA    (3) Suppose that h moves the fibers. Then the points q and e' are the isolated fixed
 points of h. Suppose that h acts on V near Q as h(6,n) = (a-iC,a-dn) with eÅq dÅq n,
where (6,n) is a suitable Iocal system of parameters at 9. Let e = gcd(n,d) and let

                             n1                             i== Pi- 1
                                      B, -

                                               -l
                                                 5s

 be the continued fraction expansion of (n/e)/(d/e). Then the minima,1 resolution of three

               AAA AA singular points P,O,q' together with C, C' give rise to a degenerate Pi-fiber whose dual

graph is given a,s follows.
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-
fis

  CF--"....,.
- 5, - l - n - 1 - Pi

   Hence
case, n/e
n = :3 and

either

== s+
d == L

Pi =
1 and

      a

'''  = fis

d/e == s.

     A

== 2 and

 Hence

        -Bs

--•---- D
      CA,

 n == 2(s+I) or n= ai =3 and s= 1. In the first
e = 2,n= 2(s+1) and d= 2s. In the second case,
                                       Q.E.D.

Lemma 2.4 Jn Lemma 2.ge, the case where g2 has order3 is t'mpossible.

                                             AProoÅí The element g induces an involution gA on V which preserves the Pi-fibration pA and

interchanges C and C'. Hence gA fixes the point P and interchanges the points (? and e'.
Hence gA lifts to an involution gN on the minimal resolution a : V - i]'. The Pi-fibration pA

                      NAIifts to a P'-fibration pN : V - C. The inverse image of the fiber q(C + C') has the following

linear chain:

- 3 - 1 - 3 - 1 - 3

                      AA               B C A Ct B,
                                    AALwhere we denote the proper transforms of C and C' on V by the same letters. The exceptional
                                                                          Acurve A arising from P is stable under the action of g. Since the points CnA and C'nA
interchages by g, A has two points R,R' which are fixed by gN. We consider two cases
according as g moves the fibers of pN or not. Let V be the quotient of i)7 by g-' which has the

Pi-fibration P : V - C. Let F be the image of a-i(g(C + C')). Suppose gN moves the fibers
of p'V. Then the points R, R' are mapped to the singular points IR, [Ai' of type A2 on the surface

V. Then the minimal resolution of the polnts Iii, 7i' gives rise to a degenerate Pi-fiber of the

following type on a smooth surface:

But, with
graph of a

a,re no slng
impossible

          -o2

           Å~ -1 -3
           /w
          -02

whatever value for the self-intersection number (A2), this graph cannot be the

degenerate Pi-fiber. Suppose that g does not move the fibers of pN. Then there
u}ar points appearing on the fiber 7fi. Since (A2) = -3 and (A2) = 2(7i2), this is

Lemma 2

 (1) The

,5 In Lemm,a

element g2 has

2•3, the following t•u,o

 order n = 2(s + 1) u;i

caSes do not occur.

th sÅr O.
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 ("2) Th.e Element g has order 4.

Proof. (1) With the notations in Lemma 2.3, the points (?,Q' on C,C' are isolated fixed
                                             -.. "- AApoints under the action of h :-g2. Hence the points C9, (?' on C, C' a,re the isolated cyclic

singular points on the surface V. The element g induces an automorphism on V whic,h we
denote by the sa,me letter g. Then g lifts to an automorphism g on the minimal resolution
V a.nd iRterckaages the components C, C' as weli as the linear chains spTontiRg from C, C'.

-

bu--------••-----vr---

          s

                                                                 A N-.Furthermore, g acts on the component A. Since g interchanges the points Cn A,C' n A
on A, there are two other points R, R' of A which are..left fiAxed by g. There are two case$
according as g moves the fibers of the Pi-fibrat}on p- : V - C or not.

CAsE l. Cggsider fir$Åí the case w}iefe g mcves the ftbration ptw. Let V be the quotleat ef V

                   - ww't                        of R, R' are the cycllc slRgularr polnts of type A2. Let W be tke                     Rby g. Thelt the lmages                   R,
minimal reso}ution of V. Then W ha,s a P'-fibra,tieft pw : W ---År C, where C ls the quotlent

of C by an involution. The fiber of pw corresponding to g(C + C') on V has the foilowing

dual graph:

                -z

                  Å~                       -(s+2) -1 -2 -2
                      Cpt--b---KF---- - - • - -O                 o/X v
                -3

In fact, the surface V is obtained by taking a double covering of ltV ramifying on the two

(-2) components meeting A and one more fiber of pw and by contracting the inverse irnages
of the (-2) components which become (-1) components on the double covering.
                                               ma N   Since the Pi-fibation pw is trivial over an open set of C, the function field k(V) is written

a,s k(W)[t]/(t2 = x), where :'v is an inhomogeneous parameter of V such that the above double

covering ramifies over the fibers (the fiber components) of pw lying over x = O, oo.
   To go further, we have to iook into the qgotient morphism q : V - 9 more closely.

NVkh tke gotat}ogs of Lemflla 2.3, tke elemellt h ftcts exx Y near the pelnt 9 as h.(6,") :
(or-ig,G-S), wkere ft ls a prlmklve n.-tk root ef uRlty &Rd d rm 2s. SeS k.i =: hS". [lrhea
h'2 = l a.Rd the element h,' a,cts as h.'(C,ny) =: (-C,R) ltear the poiBt e (&Bd hence near the

                                                             Apoint (2'). Hence h' acts a,long the fibers of p, l.e., p•h' : p. Let qi : V - Vi be the quotient

morphism by h' and let Vi be the minimal resolution. The Pi-fibration p : V - C descends
t,o a, Pi-fibration p'V i : Vi ---År C armd the fiber pN I '(p(C + C')) has the following dual graph:
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                  -1 -2 -1
                   O'------..-.

                  AAA                  C, A, Cf
Let h be the automoArphism on Vi and Vi induced by hLThen hS+i = 1 and h acts trivially
on the component Ai. Let (?i,ql be the images on Vi of the points (?,Q', respectively.
Then h acts on Vi near the point ei (and q'i) as h•(4i,ni) = (aii6i,afSepi), where ai is a,

primi'tive (s + 1)-th root of unity and where (4i, ni) is a system of local parameters such that

Ci is defined by ni = O. The quotient of Vi by t,he action of h is the surface V. Hence the
function field k(Vi) is given as k(V) X,(.-) kn(C) with a cyclic Galois extension k(C)/k(C) of

degree s + 1 and the function field k(V) is obtained as k"(9i)[u]/(u2 = 'y), where y is a fiber

coordinate of the Pi-fibration pN i over an open set of C. Thus the field extension k(V)lk(V7)

                                       A-is a composite of a cyclic Galois extension k(Vi) = k(V) Xk(a) k(C) of degree 2(s + l) and a

quadratic extension k(Vi)[u]/(u2 = y). Since k(V) = k(C)(u), the field extension k(V)/k(V)

ca,nnot be a cyclic extension of degree 4(s + 1).

CAsE 2. Consider next the case where g does not move the fibration pN. With the notations
                                 .vAof Case 1 above, the Pi-fibra,tion pN : V -År C has two horizontal cross-sections which meet
                                                                Athe fiber components A in the points R, R'. Hence the function field k(V) is a quadratic
extension k(V)[u]/(u2 == z), where z is a fiber coordinate of the Pi-fibration pw : V -År C,

where C = C. Let q2 : Vi --År V be the quotient morphism by the automorphism h induced
                                                                    Aby h. The same arguments as in the case 1 shows that the function field k(Vi) is written
as k(V) Xk(c-) k(C), where k(C)/k(C) is a cyclic extension of degree s + 1. Furthermore, q2

                                           AAinduces an isomorphism between the comonents Ai and A. Let Ri,Ra be the points of Ai
which correspond to the points R, R'. We may assume that u = O, oo at the points R, R',
                                                                 Arespectively. Hence, if we consider u as the inhomogeneous coordinate of Ai via q2, u takes
the value O, oc at the points Ri,Ra, respectively. Note that the points Ri, Rl are different

               A AA Afrom the points Ci n Ai,C{ n Ai. So, we may assume that u = 1 (resp. -1) at the point
Ci nAi (resp. C{ n Ai). The double covering qi : V - Vi ramifies over Ai and the two
                                   AAAcross-sections of pN i which meet the fiber Ci +Ai+C{ at the points Qi,ql on the components
Ci, C{, respectively. Hence the field extension k(V)/k(Vi) is given as

                       k( V) = k( 9i )[t;], where v2 = \. ! 11 .

Hence, replacing v by (it - 1)v, we may assume that v2 = u2 - 1 = z - 1. So, we have

                k(V) = (k( i7) op,(.-) k(C)) [u,v] / (u2 == z,v2 = z - 1) .

This implies that the Galois group of the extension k(V)/k(V) is isomorphic to Zi Å~ Z2 Å~ Z,+i,

which is not a cyclic group of order 4(s + 1).

   (2) By the proof of Lemma 2.:3, this is the case 2 above, where the quotient morphisrn

q2 : Vi - V is the identity morphism. Hence k(V) = k(V)[u,v]/(u2 = z,v2 = z - 1), a,nd
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the Galois group of the extension kn(V)/k"(V) is isomorphic to Z2 Å~ Z2. So, it is not a cyclic

   As a consequence of Lemmas 2" .3, 2.4 and 2.5, we obtain the following result.

Theorem 2.6 Let p : V - C be a relatively m21nimal Pi -fibration 'tvith a G-action. S•uppose

that D has no horizontal components and that p contains a .fiber of the type iF = C + C',
u)here C' == Cg. Then g is an involution.

ExAvi pLE 2.7 Let Vo be the H/:rzebruch s'urface of degree n }ir 2 and let IL(I be the minimal

section. Let B be a smooth irreducible curve which is linearly eguivalent to 2M+2ne, where
e is a .fiber of the canonical Pi-fibration po on Vo. Th.en B has genus n- 1. Hence the
restriction polB : B - Pi ramzL16es at 2n points on B. Let a : V - Vo be the double covering

ram,zltied over the curve B and iet L : V -År V be the covering involution.

   Let ei,... ,e2. be the f7bers of po 'u;hich meet the curve B only in single points u,ith
multiplicity 2. Then a'(4) == Ci + C;• (1 Si SI 2n), where Ci and CI• are the(-1) cu7n,es
m.eeting each other transversally in one point. The com,posite p := po •a : V - Pi is a
Pi-:fibratilon and has Ci + C;• as a degenerate fiber. The involtttion t exchanges Ci and Cl.

   Since BA ll4 = O, the inverse image a'(M) is a disj'oint sum. Mo + Mi uiith (Mo2) =
(Mi2) == -n. We may assume that the Ci meet Mo and the Cl meet 1lfi. Th,e contraction of

C{,...,C5. brt'ngs the .R.urface V back again to the Hirzebr'uch surface Vo, The image of Mi
is the section M' of Vo 'tvhich is disj'oint from. the minimal section M. Let r : V - Vo be the

contraction of Cl,...,C5.. Then u,e have

                            A'v, N -2Mo-(n+2)e
                                              2n
                             Ky N T'(Kvo)+2CS
                                             i=1
                                          2n
                          .*(Mt) = M,+2C;.
                                         i=1

Hence Kv tN, -ll4o - Mi -2e. Let D = Mo + Mi. Then we compute

                                n-2                                          n-2                     D# + Kv =                                     Mo+                                               Ml + Is'v.
                                  nn
Th,en Ci + C,t is a L-invart'ant extrern,al curve u,ith (Ci + C,{ - D# + Kv) == -4/n.

   It follows by induction that

               b(gM) = (a(g)M-' +••-+ a(g) + 1) b(g) for g E Ker a,

where b(1) = O. If a(g) l 1, then the point given by x = -b(g)/(a(g)-1) is left fixed by the
a.ction of g, but this is not possible because G acts on YK freely. If a(g) = 1 and m is the
order of g, then b(g) = O because a(g)M'i + • • • + a(g) + 1 = m # O and b(gM) == O. Then g

acts on Y trivially, and this is a contra,diction. Hence Kera = (1) and a is injective.
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3 Appendix by M. Namba
The following result, might be well-known among the expert,s.

Theorem 3.l LeS X be a cempgctg smoeth c#rue of gentts g defined over the gro'und field k
ef cA.utacteristic ierg. Let cfe; 5e g kentrt'vial a'gtem.erpft,ism. effiniSe orden Let. d 5e Site erder

of {A. [Z"hen the number of the !ix6d points of cR is ies.q. than or equal to 2g/(d - 1) +2, The

eguality holds zf and only tf X and g4 are given as folloit,s:

                                                        2g                x: yd =(x-ai)-•-(x-a.) utth S=d.1"2,

where ai,...,a, are aii distinct, and where g is given by

                                 (x, y) e (x, Cy)

'u}ith a d-thprfmiSive root Åq of the ?mity.

Proof. Let ÅqgÅr be the cyc}ic grfiup of order d geRerated by the said automorphism g. Let

Y be the quotient of X by Åqg4År and T : X -År Y be the quotient rnorphism. Let go be the
genus of the smooth curve Y. Let B. :{gi,...,q,} be the branch locus of rt. Then ÅqvÅr acts
transitively on the set rrwwi(qi) for1 Si S s. Let ei,..,,es be the respective ramification

lndlces over the polRts qi,...,g.. By the RlemaRR-Kurwkz formu}a, we then have

                        2g -2 = d(2ge -2) + E., il(et - i)'

It is written as
                         l.S., (i-k,)= 2gi2 -y 2- 2gfi. (i)

Let P be a point of X. Then P is fixed by p if and only if g is totally ramified over the
point q:= eq(P), i.e., g ff BT and d=: e at q. Let n be the number of the fixed points of p.

Then the equa}ky (l) lmplles that

                             n (i - i) s 2gi2+2.

So, we obtain the inequality
                                       2g                                 nsd-i+z (2)
   Now the above comptxta,tions show tha,t the equality occurs in the inequality (2) if and

only if r raniifies totally over every point of B. and the curve Y has genus go = O. Hence

the curve X determines a,s follows:

                 gd -ts-- (x-esB-••(x-a.), where n=d2-gl"2. (3)

Here (d-1)I2g because ,s is an integer. Q.E.D.
   Now fix the genus g and consider when the maximum value of n is atta,ined.
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Corollary 3.2 Let X be a coml)tete smooth c'urve of genus g and let c,o be a nontrivial
a•utorn.orph•ism o.fX of.finite orde•r. Then the num.ber of the points left fixed by y4 'is less than

or eq•ual to 2g +2. The nttrr?,ber is eq'ual to 2g +2 if and only of one of thE follou,ing cases

occ'ur:

 (1) X is a hyperelliptic curve and ye 'is the hyperelliptic invol'ution.

 (2) X 'is an eSliptic 'u'urve aRd yA is th.c ?}?.'ugtiplicatien by (-i).

 (•3År X is a ratienai e'u,rue and g(x) == Åqx, where Åq is a primitive d-t.h. reoS of the scnity and

     x is an inh.omogeneeus coordinate.

Proof. The relation in (3) implies that the maximal value 2g +2 ofn is attained if a,nd
only if either d = 2 and g År O or g = O. If d = 2 and g ) 2, then X is a hyperelliptic curve

and g is the hyperellipt,ic involution. Suppose g = 1 and d = 2. Then the hyperel}iptic
involution is the multiplication by (-1) when X is defined by the equation in (3). Ifg ue O

then vn fixes two points Pi,4. Choose an inhomogeneous Åëoordinate x so that x = O, oc) at
jF?!,P2, respectlvely. Then w(x) = Åqx for aprlmitive d-th root of unity. Q.E.b.

   We Rete tha.t aRy agtomorphlsrf} g ha$ fuke order provMed g ) 2.

Corollary 3.3 Let X be a eompgete sTn.eoth euf,ve of genus g }l 3. S'uppese th,at• X is
trigonal. NamEly, th.ere exists a (legree 3 rn,orphism f : X ---År Pi. Let {,p be a nontrt'vial

automorphism. Then th,e n'u,rn,ber ofpoints left j6xed by g is less than or equal to g+2.

Proof. As remarked above, g has finite order. If the quotient morphism T coincides with
the trigona,l morphism f above, then d = 3 and n S g+ 2, Otherwise, d ) 4 because X is

Coro}lary 3.4 Let X be a complete smeeth, curve with, gen'us g l}) 5. Let {g be a noRtrz'vial
a'tttom,sf }ft.is7??. ef X. S'itppebhe th,at X is Rei• hypereiliptic Rer trisengi. Then tft,e Rura.5er of

peints geft .fi=ed 5y ye is gÅí.g.$ th,a,lt er eg'uÅíl te (2/3)g +2

ProoÅí C}ear.
   A further question is the following:

Question. Let X be a pro)'ective s•rnooth variety of dimension m. Let g be an autoTn.orphism
ofX. Js it posst'ble then to find an integer n such that {p is trivial provided c,o .fixes more than

n points.
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