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Open algebraic surfaces with finite group actions

M. Miyanishi and K. Masuda

0 Introduction

Let G be a finite group. Consider the set of log projective surfaces (V,A) defined over a
fixed, algebraically closed, gound field of characteristic zero which admit effective algebraic
G-actions. We say that a morphism f : (V,A) = (W,T) is a G-morphism (or G-equivariant
morphism) if f commutes with the G-actions. We can define the notion of relatively minimal
(or minimal) model with respect to the birational G-morphisms.

The objective of the present article is to consider the equivariant classification of such
G-relatively minimal log projective surfaces in the case where the log Kodaira dimension
of (V,A) is —oo, ie., BV — AU Sing V) = —oco. Our attempt is achieved under some
technical hypotheses which enable us to make use of the Mori theory, but it still reveals
some phenomena which are particular to the equivariant settings (cf. Theorems 1.5, 2.6).

We are motivated by Zhang [5] to consider this kind of equivariant classification. In the
case V is a smooth rational surface and A = 0, the results treated in the present article are,
in fact, contained in [5].

1 Preliminaries

Let (V,A) be a log projective surface (cf. [4]). Namely, V is a normal projective surface
and A is a reduced effective Weil d1v1sor such that (V,A) has log terminal singularities.
Suppose that a finite group G acts algebraically on V in such a way that A is G-stable.
Let W be the algebraic quotient V//G and let 7 : V — W be the quotient morphism. Set
T = m.(A). Then W is a normal projective surface with at worst _quotient singularities. Let
f:(V,D) = (V,A) be the minimal resolution and let X =V — A U Sing V.

We assume that the following conditions hold:

(1) (W,T) ia a log projective surface. Hence the singularities of W lying on T are cyclic
quotient singularities whose resolution graph has one (and only one) terminal compo-
nent meeting the proper transform of I' transversally in one point.

(2) ®(V — D) = —co and that [D¥#] = A, where A is the proper transform of A on V.
The second condition implies that all possible rational admissible mazimal twigs (resp.

rods, forks) of D are peeled off.
By applying the Mori theory to the quotient surface W, we have

E (VV—) =NE (F+KW)20(W) + Z R+—F—7
Fer
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where 77 is a countable set of the extremal curves F on W with F' being represented by an
irreducible curve C on V and where

NE moxppo(W) = {n e NE(W) | (n T + Ky) > 0}

Since *(NE (W)) = NE (V)®, we have
NE (V) = NE oy ooV + 3 (S C)R,,
CerFi g€l

where

NE s ya(V) = {6 € NE(VIC | (6 (T + Kg) > 0},
- Note that
A + IX’V = TI'*(-I:‘ + I(W) + 7%,

where R is the log ramification divisor which is an effective divisor (cf. litaka [2]). We
assume, furthermore, that

(3) R is a nef divisor on V.

Then it is clear that

N—E_n' (T+Kpr)20 ( V)G C WE—(KWL}\‘

Hence we obtain the following result.

Lemma 1.1 With the above notations and assumptions, we have

NE (V)% = NE (5, 5poV)° + 32 CIR,,
CeF 9€C

where F is a countable subset of F'.

Let F = (2gec C’)/|H| be a G-invariant extremal curve, where H is the isotropy group

of an irreducible component C, ie., H = {g € G | C’ = C}. We first assume that
p(V/]/G) > 2. The case p(V//G) = 1 will be treated later. Then there exists a nef divisor

H on V such that (H - F) = 0. Hence (—F_z) < 0 by the Hodge index theorem.

CASE 1. Suppose (72) < 0. Since (F- A+ Ky) <0, we have (F - D* + Ky) < 0, where
F =3 ,ecC?/|H| is the proper transform of F. Moreover (F?) < 0. Hence, for the

component C of F, it follows that (C - D* 4+ Ky) < 0 and C + Bk D is negative definite,
for (C- D* + Ky) = (C9- D* 4 Ky) for every g € G. To go further, we need the following

result.

Lemma 1.2 With the above notations and assumptions, the following assertions hold:
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(1) D* + Ky = f*(A + Ky) and Bk D are G-stable, and Sing (V) is a G-stable set.
(2) If (F*) < 0 and C is not G-stable, then C N C9 = () whenever C? # C for g € G.

Proof. The assertion (1) is clear. We shall prove the assertion (2). Let H be the isotropy
subgroup of C, and let {gi, ... ,g.} be aset of representatives of the right coset decomposition
G/H. Let g, = e the identity and let C; = C%. Suppose C # C9 and (C-C?) > 0. f C ¢ A,
then C; is a (—1) curve. Furthermore, each C; has at least one C; such that (C;-C;) > 0
Hence we have

(F*) = ((Ci+---+C)H)
= i(ci-cl+--~+cs)
> (li11+1)+~'-+(—1+1)=0,
which is a contradiction. Suppose C C A. Since
0> (C-D*¥+Ky)>(C-C+Ky),

it follows that C' = P! and (C?) < 0, for F + Bk D is negative definite. Suppose (C?) < —2.
Since C9 € A for g € G and 0 > (C - D* + Ky), it follows that (C - C9) = 0 or 1 and
(C - C9) =1 possibly for only one translate C?. Furthermore, we have

(C . D# — iC,) <
=1

Let By,..., B; be all the irreducible components of Bk D such that (C - B;) > 0. Then we
have

1 if CNCI9#D forsome g€ G—{e}

2 if CNCI=Q forevery ge G — {e}.

t

Z<1~b%)<1 (or 2),

=1

where b; = —(B;*). This implies that ¢t < 1 in the case CNCY #Pand t <3 CNCI =0
for every g € G — {e}. In the case t < 1 or in the case C N C? = @ for every g € G — {e}
and ¢t = 2, the connected component of F' + Bk D containing C is an admissible rational
rod. This contradicts the hypothesis that A = [D¥#]. Hence C is a (—1) curve. In the case
CNC? = for every g € G — {e} and t = 3, C has three twigs sprouting from it. Let
dy,d3,d; be the (absolute value of the) discriminants of the intersection of the three twigs.
Then the condition (C - D* ~ C) < 2 is stated as

2 (1-2)

Hence {d;,d,,d3} is, up to permutations, one of the Platonic triplets. Hence the connected
component of D containing C is an admissible rational fork. This contradicts again the
condition A = [D#]. Hence C is a (—1) curve. The rest of the proof is the same as in the
previous case C' ¢ A. Q.E.D.
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By Lemma 1.2, we can contract {C? | g € G} simultaneously without losing the G-
action if (Fz) < 0. Since the condition (F1< 0 implies that F + Bk D is negative definite,
this implies that the contraction of F' on V produces again a log projective surface with a
G-action (cf. [4]). We say that a log projective surface (V,A) with an action of a finite
group G is G-relatively minimal if there is no curve F = EgeG C? such that (72) < 0 and
(F-A+ Ky) <0. In terms of a minimal resolution f : (V, D) — (V, A), it is equivalent to
saying that there is no curve F'= 37 . C? on V such that (F?) <0, C + Bk D is negative
definite and (C - D* + Ky) < 0. Given an extremal curve F = dec C?, we may assume,

without loss of generality, that (Fz) = 0, 1.e., F+ Bk D is not negative definite, but negative
semi-definite.

Case 2. Suppose (_152) = 0. Write F = Y.5_, Ci, which is the integral part of f*(F).
Consider first the case (F?) < 0. We leave the case (F?*) = 0 below. We then have the
following result.

Lemma 1.3 Suppose that ("F-ﬂ) =0 and (F?) < 0. Then the following assertions hold.

(1) 1f(52) < 0, then the C9 with g € G are the mutually disjoint (—1) curves, and C+BkD
is negative definite, while F' + Bk D is not negative definite. Furthermore, C (hence
C9 as well) is not a component of A.

(2) If(_éz) =0, then (C-C’) =0 for every g € G.

(3) There ezists a P'-fibration p : V — B such that a multiple of F is a fiber of p and that
G preserves p.

Proof. (1) If (52) < 0, then C + Bk D is negative definite. So, if (F*) < 0, the argument
in CASE 1 works in this case as well. Hence the C? with g € G are the mutually disjoint
(—1) curves. We can contract the C? simultaneously, though some components of Bk ) may
not be contracted because F' + Bk D is not negative definite. It is then clear that F’ has two
or more irreducible components. Suppose C C A (hence every C9 C A). Since (V,A) is
a log projective surface, for each ¢ € G, the connected component of F' + Bk D containing
(9 is an admissible rational rod of Bk D with one end component meeting C? in one point
transversally. Then F' + Bk D is negative definite, which is not the case. So, C? is not a
component of A.

(2) Since (FZ) = (Ez) =0, it is clear that (C-C°) = 0 for every g € G.

(3) If (52) < 0, then the assertion (1) shows that f~(F) consists of smooth rational
curves. Suppose (—C_z) = 0. Since (C - A+ Ky) = (C - D* + Kv) < 0, it follows that the
proper transform C = f'(C) is a rational curve. Note that V is a ruled surface because
K(X) = —oo. If the irregularity ¢ is positive, the curves in a connected component of
F + Bk D are mapped to the same point by the Albanese morphism. Let 5 : V — B be the
P!-fibration induced by the Albanese morphism of V. Then each connected component L
of F is contained in a fiber of 5. Since (f2) = 0, a multiple of L is a fiber of 5. Let £ be a
general fiber of p. Then £ is algebraically equivalent to NI with N > 0. Hence ## =~ NL’.
Since (L - L°) = 0 because L’ is also a connected component of F, we have (£-£7) = 0. This
implies that G preserves the fibration p.
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Now suppose that V' is rational. Let n be a positive integer. By the Riemann-Roch
theorem, we have

R(nf"(F) = K (nf () = 5(nf"(F) nf"(F) = Ky) + 1

= () Kv)+1

(f(F)-D*)+1

Nt 3

because
(f*(F)-D* + Ky) = (F-A + Ky) <0.

Suppose (f*(F)- D#) > 0. Then h°(nf*(F)) > 1 for n > 1. So, |n(f*(F))| defines a
morphism p : V — B whose general fibers are irreducible. Since (f*(F) - Ky) < —(f*(F) -
D#) < 0, it follows that p is a P!-fibration. Furthermore, p induces a P!-fibrations: V — B
such that p = 5 - f and that a multiple of f*(C) is a fiber. By the same argument as above,
we know that G preserves the fibration 7. Suppose that (f*(F)-D#) < 0. Then (F-A) < 0.
Hence each connected component L of F is a component of A with (fz) < 0. This case does

not, occur by the hypothesis (_Fz) = 0. Q.E.D.

The reducible fiber of the P!l-fibration in Lemma 1.3 which is supported by a connected
component of F' can be specified as follows.

Lemma 1.4 Let & be a reduced, reducible fiber of the P!-fibration 3 : V — B in Lemma
1.3 whose support is a connected component L of F. Write the proper transform L := f'(L)
on the minimal resolution V of V as L = >i.1Ci. Then every C; is a (—1) curve. Let Gq
be the subgroup of G consisting of elements g with F’ = F. Furthermore, if G is an abelian
group and G acts on ® effectively, the possible configurations of f*(®) are ezhausted by the
following list:

(1) s = 2, Go = Z/27Z and the dual graph of f*(®) is a linear graph which is the (—2)
chain (corresponding to the exceptional graph of a rational double point of type A,)
with two (~1) curves meeting the both end components of the (—2) chain.

-1 -2 =2 -2 =2 -l

(o, O
Cg E.,-,_ E-n,_ 1 E2 EI Cl

(2) s=4, Gy ®Z/2Z x Z/2Z, and the dual graph of f*(®) is a linear graph which is the
(=2) chain (corresponding to the ezceptional graph of a rational double point of type
A, ) with two (—1) curves meeting each of the both end components of the (—2) chain.
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-1 -1

(3) s =3, Go = Z/3Z and the dual graph of f*(®) is a (—3) component meeting three
linear branches, each of which consists of a (—2) curve and (—1) curve with the (—2)
curve meeting the (—3) component.

—‘1003

O O
Cl E1 E4 E2 CZ

(4) s > 3, the configuration of f*(®) is a unique (—s) curve E meeting s curves Cy,... ,C,
which are (—1) curves, and Gy is a finite subgroup of PGL (2,k) acting transitively on
the set {Py,... , P} of P! with P,=C;NE.

In particular, the fiber ® has a unique singular point.

Proof. Note that f*(®) is a degenerate fiber of a P!-fibration on a smooth projective
surface. Write

f1(®)=Y"aCi+ > b;E,
=1

i=1

where the coeflicients of the C; are the same becasuse every C; is a translate of one of the
C; and where the B; are the exceptional curves of the minimal resolution f: V — V. Here
s > 2 and a = | because ® is a reduced and reducible fiber by the hypothesis. Note that
every C; is an end component of f*(®). This implies that every C; := f(C;) passes through
one and only one singular point on ®. Since this singular point is a quotient singular point,
the exceptional graph is either a rod or a fork.

Suppose first that the exceptional graph E := ;.1:1 E; is a rod with n > 2. So, we
may assume that (E; - E;) = 1 (resp. 0) if j = 1+ 1 with 1 <1 < n (resp. otherwise).
Hence E, and E, are the end components. Note that C; meets E; or F,, for otherwise
the coeflicient @ mut be larger than 1. Suppose C := C; meets E;. We claim that the set
H of elements g € Go with (C9 - E,) =1 1s a subgroup of Go. In fact, if g,h € H, then
(C9-Ey) = (C*- E\) = 1. Suppose (C% - E,) = 1. Then h maps the point C? N E, onto the
point C9*N E,, on E,. Hence h maps E; onto E,. So, (C*- E)) = 0. This is a contradiction.
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Indeed, H is a normal subgroup of Gy of index 2. In particular, s is even. If s = 2, then
the dual graph of f*(®) is the case (1) listed above. So, assume that s > 4. We cliam
that the stabilizer group of C is trivial. In fact, let A’ = {g € H | C? = C}. Then the
stabilizer group of C; is a conjugate of i'. Hence K acts on the curve E, and fixes at least
three points C; N E,,C; N Ey and E; N E,, where (C; - Ey) = 1. So, K acts trivially on E;.
Consider the quotient space V) := V//R. Since G preserves the P'-fibration p : V — B,
there exists a P!-fibration p, : V; — B,. Then C = #](m(C)), where m; : V — V] is the
quotient morphism. Hence (C?) = |K|(m(C)?). Since C is a (—1) curve, it follows that
|K] = 1. Now the group H acts on E, so that the point £y N E; is a fixed point. Since H
acts effectively on the affine line F| — Ey N E,, H is a cyclic group of order ¢, where s = 2¢.
We assume that C;N Ey Z 0 for 1 <i<tand C;NE, # D for t +1 <1 <s. After the
contraction of Cy, ..., Cy, the component E, becomes a (—1) curve. Hence (E,?) = —(t+1).
Set P := Ey N E,. The action of H near the point P is given as (z,y) = ({z, (%), where
( is a primitive ¢-th root of unity, {z,y} is a system of local parameters at P such that E,
(resp. E,) is defined by y = 0 (resp. z = 0) and d is an integer 0 < d < t. Consider the
quotient space Vo := V//H with quotient morphism m, : V' — V2. Let E, and E, be the
images of | and FE, by m,, respectively. The point P .= m2(P) is a cyclic quotient singular
point of type (¢,d) if d > 0 and a smooth point if d = 0. By Sublemma below, we have
(~E-12) = (E}?) + (d/t), where E! is the proper transform of E, on the minimal resolution of
V,. We then have

— , d
—(t+1) = (B =t(E,) =t ((312) + ?) :
Since (E}?) is an integer, it follows that d = ¢ — 1 and (E}?) = —2. Then we can cntract
H-equivariantly the components C,,... ,C; and E;. On the minimal resolution of V;, we

contract the component E| and the linear chain of length ¢ —1 of the exceptional (—2) curves
arising from the resolution of singularity of the point P. Repeating the above argument,
we find that the configuration of the curves 3 7_, Ci+ 3 7, E; together with the H-actions
are described as follows, where P; := E; N E;;, for 1 <7 < n and { is a primitive ¢-th root
of unity. Furthermore, we let {z;,y;} be a system of local parameters such that E; (resp.
E;,)) is defined by y; = 0 (resp. z; = 0). The H-action near the point P; is given by
(i 5:) = (Cziy 7).

Sublemma W:th the above notations, we have

(B = (B + 5,

Proof. Write t/d in the form of a continued fraction

¢ 1
— T (Q —
d ! 1

ag —
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Then the total transform of E; + £, in the minimal resolution of singularity at P is a linear
chain

El+Gi+--+G, + £,

where (G;*) = —a; for 1 <i < s. Then the total transform of E, in the minimal resolution
is written as

E{ + alGl + Q'sz +---+ Q'.SG.H
where ), ... , o, are determined by the conditions

1—a10’1+02:0
al—a2a2+a3:0

Qg3 — Qs 1051 + Qg == O
a1 —aso, =0

Then it is easy to verify that
2 +2 .2 d
(Ev) = () +ar=(E) +

Q.E.D

CASE n = 2m+1. The H-action stabilizes each of the components £; (1 < j <n),and Go/H
flips the two branches 3 ;_ 1 Ci+ 3L Eyand 37, t Cit 3 mia E Let o be an element
not in H. Then o(E,,) = Epy2. Since |Go/H| =2, 0% € H. So, write 0> = r", where r € H
is a generator of H and 0 < r < t. Since o is an automorphism of finite order of E,,,, & P!,
it fixes two points, say @Q;, @,, and acts on Al := P! = {Q;, @} as an element of G,,. So, if
r > 0, then the points @, @, coincide Py, P4 up to a permutation. This is a contradiction.
Hence 02 = 1, and {Q1, @2} N{Pm, Pmt1} = 0. Note that o is an involution of the component
E,.+1 commuting with the H-action. Write E,.41 — {Ppn, Pny1} = Spec k[z,z7!], where P,
and P,y are respectively defined by z = 0 and z = co. Choose the coordinate z such that
@, is defined by = = 1 and choose, furthermore, a generator 7 of H such that 7(z) = (z.
Since ¢ acts on an automorphism of k[z,z!], we have o(z) = az™! with a € k* because
0(Pn) = Pmy1. Since 0(Qy) = @, and @, is defined by z = 1, it follows that @ = 1. So,
o(z) = z7!. Then it is easy to show that o070 = r~'. Thus Gy is a dihedral group of order
2t, which is not abelian unless ¢ = 2. If t = 2, then the graph of ® is the case (2).

CASE n = 2m. Let o be an element of Gy not in H. Then G, is generated by ¢ and
H = {r). Note that H fixes the points P; (1 < ¢ < n — 1) and o fixes the mid-point
Pn. Then Y7, Ci+ Z#m'mH E; is stabilized by Gg. Hence we can contract this divisor
G-equivariantly. After the contraction, we obtain a smooth projective surface V3 with a
P'-fibration p; : V3 — B on which the group G preserves the fibration p3, 1.e., p3 maps the
fibers of p3 onto the fibers of p3. The image of the fiber @ consists of two (—1) curves E,, and
E,41 meeting transversally in the point P... The element o acts on the fiber in such a way
that 0(E,,) = Ems1. Then, by Theorem 2.6 below whose proof is independent of the present
argument, o is an involution. Tracing the images of a point P chosen on E,, — { P, Pr_y}
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by the automorphisms ¢ and r. we know that 7o = 7. So, we obtain the same result as
in the case n = 2m + 1.

Suppose next that the exceptional graph ¥ is a unique irreducible component. Then the
curve C; intersects E transversally in a point P;. The restriction on the group  is that G is
a finite subgroup of PGL (2, k) acting on the set {F,,..., P} transitively. Hence the graph
of @ is the case (4).

Finally, consider the case the exceptional graph E is a fork. Since a fork has a (-2)
component meeting the central component E,, we denote the (—2) component by E,. There
is only one (—1) component ) meeting E,. In fact, there is at most one (—1) component
meeting F|. If there are none of them, then K|, must remain after the contraction of all
the (—1) components and all subsequently contractible components of f*(®). But this is
not the case. On the other hand, if ¢ € & maps Cy to C;, then g maps E, to a (—2)
component of the exceptional graph which is adjacent to C;. This ohservation shows that
the curve C; and a (—2) curve E; form a linear branch connected to the component E4. The
graph of f*(®) is thus the case (3) in the list. The group G acts on the component £, and
permutes three points P; := E; N E4 for i = 1,2,3. Suppose that Gy contains an element 7
which permutes cyclically three points Py, Py, P3. Then Gy = Z/37Z as long as Gy is abelian,
Suppose that any element of Gy fixes at least one point of P, P5, P5. Then there exist o, 0,
such that ¢,(P,) = P;,02(P) = P;. Then 0,0, permutes three points cyclically. This is a
contradiction. Hence Gy = Z/3Z. Q.E.D.

The observation in CASE n == 2m+1 n the proof of Lemma 1.4 implies the existence of a
fiber ® such that f~(®) is a linear chain of (—2) curves with t of the (—1) curves meeting each
of the end components of the chain if one admits the dihedral group. Here is an example.

EXAMPLE 1.5 Let p: W — B be a P'-fibration on a log projective surface W. We assume
that the following conditions are satisfied.

(1) Let H be a cyclic group of order t. The group H acts on W so that p-g = p for
every g € G. Hence, for every smooth fiber F' of p, there are two points Py, Qo such
that Py, Qo are the fized points and H acts on Al = F = {Py,Qo} via the natural
G -action,

(2) Choose a smooth fiber F' as above. Choose an inhomogeneous coordinate z on F such
that Py, Qo are defined respectively by ¢ = 0,z = oo and that 7(z) = (z for a generator
T of H, where { is a primitive t-th root of unity. Consider an involution o on W such
that o acts on F as o(z) = a~'. Then oro = 7! on F. Hence the subgroup G of
Aut (W) generated by T and o is the dihedral group of order 2t.

Such an example of (W,p) with a G-action does ezist. For ezample, consider the above
G-action on P! and take a direct product P' x B. k

Blow up the points Py, Qo and obtain the exceptional curves Ly, Ry, respectively. By the
abuse of notations, we denote the proper transform of F by the same letter F' and denote the
intersection points FN Ly and FN R, by the letters Py and @y, respectively. Then the group
H acts on L, R,. Near the point Py on R,, choose a system of local parameters {z,y} such
that z is as above and y is an inhomogencous coodinate on L, with the point Py defined by
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y =0. Then the action of H on L, is given by 7(y) = ("'y. Hence there is another H-fired
point Py on L,. Similarly, there is a H-fired point @, on Ry. Blwo up the points P, (Q; to
obtain the exzceptional curves Lq, Ry, respectively. Continue this process to obtain a linear

chain
L+ L+ +0L+F+R+ -+ Rpny + R,

where we can extend the G-action onto the blown-up surfaces under which o(L;) = R; and
o(R;)) = L; for 1 < i < m. Choose the points A,,... , A, on L, which constitute the H-
orbit of Ay. Let B; = o(A;) for 1 < j <t. Now blow up these 2t points A,,... , A, and
By,..., B, to obtain the exceptional curves Cyyy,... ,Cs and Cy,... ,Cy, respectively. Let V
be the surface obtained by the above sequence of blowing-ups. Then the dihedral group G acts
transitively on the set of (—1) curves {C1,...,C:,Cit1,... ,C,}. The surface V has a P!-
fibration p : V' — B which extends the fibration p and contains 3., Ci+3 7" (L;+ R;)+ F
as a fiber. The linear chain 377_) L+ F+3°7, | R; which consists of (—2) hinear chains with

two —(t 4+ 1) curves attached to the end components contracts to a cyclic quotient singular
point.

Cast 3. Now suppose that (72) = (F?) = 0. It follows that F N Sing V = (. Then we have
the following result.

Lemma 1.6 Suppose s > 2, i.e., C = () is not G-stable. Then the following assertions
hold.

(1) Suppose (Cy - C;) # 0 for some i # 1. Then F is rewritten as
F=2 (Ci+C),
i=1

where s = 2r,(C;%) = (C*) = —1 and (C; - C!) = 1. Hence there ezists a P*-fibration
p: V — B such that the G-action preserves the P'- fibration.

(2) Suppose (C,-C;) =0 for every i # 1. Then (C;*) = 0 for every i, and there ezists a
P!-fibration p : V — B such that the G-action preserves the P'-fibration.

(3) The P'-fibration p: V — B in (1) and (2) above factors asp =p- f, where 5: V — B
is a P'-fibration.
Proof. (1) Since (Ci*) < 0 and (C; - D* + Ky) < 0, it follows that every C; is a (—1)
curve if C; is not contained in A for some 7 and a smooth rational curve if C; is contained
in A. Set (C;*) = —a with a > 1 and t = (Cy - 3_I_, C;). Since every C; is a translate of C;
by an element of G, we have (C; - 3., C;) = t. Since (F?) = 0, we have

s

(F%) = > (G- ) C))

=1

=y {(Cﬁ) + (C,--ZQ)}

J#i

=1

= ~—sa+ st,
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which yields that t = a because (F?) = 0. We shall show that a = 1, i.e., every C; is a
(=1) curve. Suppose a > 2. Since K(X) = —oo, we know that |D + Ky| = @. Suppose
that V is rational. It then follows that D and hence A has a tree as the dual graph. Since
Cy+ -4 C is a part of A, its dual graph is a tree. So, some component C; meets at most
one component of E#i C;. But the above remark shows that the number of the components
n E#i C; that C; meets is exactly a > 2. This is a contradiction. If V is irrational, V is
a ruled surface because |n(D + Ky)| = @ for every n > 0. Since C; is a rational curve, it is
a fiber component. Since the dual graph of a degenerate fiber of a P!-fibration has a tree
as the dual graph, the dual graph of C; + --- 4+ C, is a tree. The above argument for the
rational case works in the irrational case as well. Hence every C; is a (—1) curve. Hence we
may rewrite F as
F=>(Ci+C)),

i=1
where (C;?) = (C*) = —1 and (C;- C!) = 1. Since ((C; + C!)*) = 0, a complete linear
system A = |N(C, + Cj)| with N >> 0 defines a P'-fibration p : V — B, where B is a
smooth complete curve. Let ¢ be a general fiber of p. We shall show that £9 is a fiber of p as
well. In fact, note that (Cy + C}-C; + C!) = 0 forevery ] <i < randtheC;+C!(1<i<r)
exhaust all the G-translates of C; + Cy. Hence C; + C] is a fiber of p. Since

(£-(Cy+C)" )
(£-Ci+CH=0

(£-C +C))

for some 4, we know that #9 is a fiber of p.

(2) If (C, - C;) =0 for every i # 1, then (C;*) = 0 for | <: < s and a complete linear
system |[NC,| with N > 0 defines a P!-fibration p : V — B. It is clear that the G-action
on V preserves the P!-fibration p. Q.E.D.

Theorem 1.7 With the above notations and assumptions, suppose that (V| A) is G-relatively

minimal. Let F be a G-extremal curve such that (FZ) = Oand let 5 : V — B be the P!-
fibration defined by a linear system [nF| forn > 0 (cf. Lemmas 1.3 and 1.6). Let R be a
fiber p. Then the following assertions hold.

(1) A multiple of R is written in the form Y oeeC I’ up to the algebraic equivalence, where
L is an irreducible curve.
(2} If R is reducible and there are no singular points lying on R, then R consists of two
(—1) curves.
(3) If R is irreducible and reduced, then R is a smooth fiber. [f R is non-reduced, there is
a singular point lying on R.
Proof. (1) Since R is numerically equivalent to a Q-multiple of F, a multiple of R is a
divisor of the form }° . L, where L is an irreducible curve.

(2) Write B = .7, L;. If s > 2, then (__]:,-Zl< 0 for every ¢ beca}feE is connected.
Furthermore, the assertion (1) implies that (L; - A + Ky) < 0 because (F' - A+ Ky) < 0. If
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there are no singular points lying on R, the arguments in Lemma 1.6 shows that R consists
of two (—1) curves.

(3) If R is irreducible and if there are singular points lying on R, the proper trnsform
R:= f'(R) is a unique (—1) curve in a fiber f*(R) of the P!-fibration 5- f : V — C. So, the
multiplicity of R is greater than 1. Te assertion (3) follows from this observation. Q.E.D.

We shall next consider the case p(V//G) = 1. Then W(—) = R, [F] with (F ) > 0.
Then W = V//G is a log del Pezzo surface of rank one. If A # 0, then (W, F) Is an open
log del Pezzo surface of rank one. Hence W — T is isomorphic to A2 /G where G is a small
finite subgroup of GL (2,k). If A = 0, then V is a complete log del Pezzo surface of rank
one.

EXAMPLE 1.8 Let G be a small finite subgroup of GL (2, k), which is a central extension
0—C, — G — G —(1),

where C, is a cyclic group of order a and G is a finite cubgroup of SL (2,k). The natural
action of G on A? via GL (2,k) extends to an action of G onto P2, where A? is embedded
into P? by (z,y) — (l,z,y). Let Hy be the hyperplane at infinity. Then Hy is G-stable.
Set V = P?/C, and let A be the image of Hy on V. Then (V,A) is an open log del Pezzo
surface of rank one with G-action. The quotient W = V//G is a completion of Az/é.

EXAMPLE 1.9 Let V be the Hirzebruch surface P x P1. Let . be the involution on V which
exchanges the P!-factors, (P,Q) == (Q, P), for P,Q € P'. Then the quotient W = V//(1)
is isomorphic to P?, and the quotient morphism 7 : V — W branches over a conic I on P2.
Let A be the dzagonal on V such that 7*(T) = 2A. Then (W,T) is a log del Pezzo surface
of rank one, while rank Pic (V) = 2.

2 The case of relatively minimal P!'-fibrations

Consider the following example.

EXAMPLE 2.1 Let Wy be the Hirzebruch surface of degree n and let My (resp. M,) be the
minimal cross-section (resp. a cross-section disjoint from My). Let Py be a point on M,
and let £y be the fiber passing through Py. Blow up the point Py and its infinitely near points
Pi,...,P,_| lying on the fiber £y. Let o : W — Wy be the composite of these blowing-ups.
Let E; (1 < i <m) be the proper transform of the exceptional curve arising from the blowing-
up of the point P;_,. Let Ly be the proper transform of £o. Then Lo+ E; +2E,+---+ (m —
V)E,._1 + mE,, is the total transform of the fiber £y, whose dual graph is a linear chain with
(B = -2 for1 <i<m-— 1, (En%) = —1 and (Lo*) = —m. Then we can contract the
curve Lo and the curves Ey +--- + E,,_1 to the cyclic quotient singular points Qo and @,
respectively. Let 7 : W — V be the contraction. Let My = 7(Mo) and M, =1(M,). ThenV
has a P'-fibration p : V = C’ where C = P, The curves My and M, are the cross-sections
of B, and the point Q; lies on M, fori = 0,1.
Choose another fiber ¢, of the surface Wy. Then we have a linear equivalence

L+E +2E,+ -+ (m—1)E 1+ (m—10c"({) ~m(c™({;) — Enn).
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So, we can consider a degree m cyclic covering o : W — W which ramifies over L + FE| +
o Ep 1+ 07(4y). Let p 'V — W be the minimal resolution of the singularities. Let
Lo and E,, be respectively the reduced inverse images of Ly and E,,. Then (Zg) = —1 and
(E;) = —m. In fact, we can show that (a-p) " (Ey + -+ Em_1) and Lo are contractable
to smooth points. Let v : V 3 V be the contraction. Then V has a P -fibration p: V — C
such that R; := a™(0'(M;)) is a cross-section of p for 1 = 1,2 and C s an m-ple covering
of C totally ramifying over the points p({;) (i = 0,1). The cyclic group G of order m acts
on V as the covering transformation group and the action of G descends doun to V. By the
above construction, we know that the quotient surface V//G is isomorphic to V.

We can consider the degenerate fibers of the same type L(()i) + Efi) + 2E§i) +--+(m—
VE, _, +mE: fori=1,...,r and the smooth fibers a*({;) for j =7+ 1,... 7+ s, where
r + s is an even integer. Then the curve C above is a smooth projective curve of genus
(m—1)(r+s—2)/2.

A P!-fibration p : V — C from a smooth projective surface V with a finite group G-action
is called G-relatively minimal if G preserves the fibration p and if every fiber is irreducible
unless it consists of two (—1) curves C + C’ with C’ = C? for some g € G. The next result
shows that this example is essentially the unique case of a G-relatively minimal P!-fibration
with a horizontal irreducible component of D and a finite group G acting only along fibers.

Theorem 2.2 Let (V, D) be a pair of a smooth projective surface with a P'-fibration p :
V = C and a reduced effective divisor D with simple normal crossings. Suppose that a finite
group G acts in such a way that G preserves the P'-fibration p and that (V,p) is relatively
minimal in the above sense. Suppose furthermore that D contains horizontal components.
Then the following assertions hold.

(1) The P'-fibration p: V — C is a P'-bundle. Namely, there are no fibers consisting of
two (—1) curves.

(2) There is only one horizontal component, say R, of D which is not a component of
Bk D, G-stable and a cross-section of p.

(3) Let a: G — Aut C be the natural group homomorphism. If a is injective, the quotient
surface V := V//G is a normal projective surface with a P!-bundle over C := C//G and
V is isomorphic to the normalization of the fiber product V xz(C, q), where q : C—-C
is the quotient morphism.

(4) Let H be the kernel of the homomorphism a. Then H is a cyclic group. Let Vi := V//H
be the quotient surface. Then Vi is a smooth projective surface with a P'-fibration
p1 : Vi = C. The quotient morphism p; : V — Vi is a cyclic covering which totally
ramifies over the two cross-sections of the P'-fibration p,.

Proof. (1) Suppose that F = C + C' is a fiber of p consisting of two (—1) curves. Let R
be a horizontal component of D. If R ¢ Supp Bk D, then R? ¢ Supp Bk D for any g € G.
Since ¢’ = C? for some g € G, it follows that (C’- R) > 0 if R is G-stable and (C’- R?) > 0
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for some g € G if R is not G-stable. Since D# + Ky is G-invariant, we have

() F-D* + Ky)

I

|G|(F - D¥* + Kv)

geG

= ) {(C-D* + Ky)+(C'- D* + Kv)}
geG

> Y {(C-R+Kv)+(C'- R+ Ky)}
9€G

> 0.

This is a contradiction because zgec F9 gives rise to an extremal ray of NE (V)%. Hence
any horizontal component R of D is a component of Bk D. Let {R.},e; be the set of all
irreducible components of Bk D. Define the rational numbers a; by the condition:

(F+) aiRi-R)=0 forevery i€l
iel

Then Ziel o; R; 1s a nonzero effective divisor because the intersection matrix of Bk D is
negative definite and Bk D contains at least one horizontal component. Furthermore, the
coefficient a; > 0 if (R; - F') > 0. Then we have

= F+Za, (F- F+ZaR

iel i€l

which contradicts the hypothesis that (Tﬂ) = (F?*) = 0. Hence p is a P’-bundle.
(2) By (1) above, any fiber F of p is irreducible. If there is an irreducible horizontal

component of Bk D, then (752) > (), which is a contradiction. Suppose that there exists an
irreducible component R of D such that (R- F) > 2. Then we have

IGI(F-D* + Kv) = ()_F° D* + Ky)

gEG

> > (F- R+ Kv)
9€G

2 0,

which implies the stated results.

(3) Let Y = V — R, where R is the unique G-stable cross-section of p. By (2) above,
Y is G-stable and p |y: Y — C is an A'-bundle. We denote p |y by the same letter p.
Since G preserves the Al-fibration p: Y — C, there exists a natural group homomorphism
a: G — Aut C such that p(v)*¥) = p(v9) for g € G and v € V. Let K be the function field
of C over the ground field k and let A be the function field of C over k, where C = C//G.
Since the generic fiber of p is the affine line Ak := Spec K[z], we have

g(z) = a(g)z + b(g) with a(g) € K",b(g) € K for g€G,
where

a(gh) = a(h)’a(g) and b(gh) = a(h)’b(g) + b(h)* for g¢,h €.
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Suppose that o is injective. Then G is considered as the Galois group of a field extension
K/K. By Theorem 90 of Hilbert, there exists ¢ € K* such that a(g) = ¢- (¢?)~*. Replacing
a by cz, we nay assume that a(g) = 1. Then b(g) = (d — d?)/|G|, where d = D ec b9).
Replacing z by = + d, we may assume that b(g) = 0 as well. Hence, with 2 chosen this way,
we have g(x) =z for g € G.

It then follows that there exists a G-stable U open set of C such that p~!(U) =X U x P!
with G acting on the factor /. Let V := V//G, which is a normal projective surface with
the morphism 5: V — C, where C:=C//G. Let p: V - V and ¢ : C — C be the quotient
morphisms. Then 75-p = ¢- p. The above observation implies that 57}(U) = U x P!, where
U = UJ/G. Hence p: Vo C is a P!-fibration. Let R := R//G. Since R is a cross-section
of p, it follows that R is a cross-section of 7, i.e., p g is the identity morphism. By [3], the
singularities of V which are not on the cross-section R are cyclic quotient singularities, for
V — R contains an A'-cylinder. It is clear that the natural morphism V — V x5 C is a
finite birational morphism. Hence V is isomorphic to the normalization of the fiber product
V XE C.

Note that if a fiber F has a singular point @ which is not on the cross-section R, then F
has also a singular point on the point FNR. In fact, let Q be a singular point of V not lying
on R if it exists at all. Suppose that F N R is a smooth point of V. Since p: V — C is a
Pl-bundle, F is irreducible. Let o : W — V be the minimal resolution of singularities. Then
o~ '(Q) consists of rational curves, each component of which has self-intersection number
< —2. Hence o~ !(F) consists of the proper transform F’ of F and the rational curves
with self-intersection number < ~2. Since o¢~'(F) is a degenerate fiber of a P'-fibration
p-o:W — C, the component F’ is the unique (—1) component. Since F' meets the cross-
section R and since F'N R is a smooth point of V, F' has multiplicity 1 in the fiber o~ (F).
Then there exists another (—1) component in o~*(F). This is a contradiction.

(4) The correspondence g —+ a(g) induces a group homomorphism a : H = G,,, where
H = Ker a. If the homomorphism is not injective, then we have, with the above notations,
g(z) = z + b(g) for g € Ker a. Then g € Ker a is of infinite order provided g € Ker a and
g # 1. This is a contradiction. Hence Ker a = (1). So, a is injective. Then, as a finite
subgroup of G,,, H is a cyclic group of order, say n. Let g be a generator of the group H.
Then a(g) is an n-th primitive root of unity. Suppose H # (1). Then g(z) = a(g)z + b(g)
and g(z + ¢) = a(g)(z + ¢), where ¢ = b(g)/(a(g) —1). Then the point z = —c is left fixed
under the H-action. The stated assertion then follows immediately. Q.E.D.

We consider next the case where the boundary divisor D has no horizontal components
with respect to the P!'-fibration p: V — C. Our objective is to prove Theorem 2.6.

Lemma 2.3 Let p: V — C be a G-relatively minimal P-fibration. Suppose that D has no
horizontal components and that p contains a fiber of the type F' = C + C’, where C' = C*
for g € G. Then the following assertions hold:

(1) C = C" and C N (' is fized under the action of g.
(2) If g acts along the fibers, i.e., p-g = p, then g has order 2 or 4.

(3) If g* moves the fibers, i.e., p-g # p, then g* has order either n = 2(s + 1) for some
s>0o0rn=3.
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Proof. (1) Suppose that C'? is contained in a fiber different from F'. Since C? is contained
in the same fiber as C’?, it follows that C" is contained in the fiber F'. Hence C* = C. Let
P:=CnNC'" Then PP e CI'NC" =C'NC ={P}, whence we know that P is fixed under

the action of g.

(2) The proof of the assertion consists of three steps.

(I) By the assertion (1), we have C9° = C and C% = (' Set h = g*>. Suppose that h
is not the identity element. Then h is an automorphism of A' = C — {P}. Let z be an
inhomogeneous coordinate of A!, with respect to which the point P corresponds to z = co.
Then h(z) = az + 3 with a € k* and 8 € k. Let n be the order of h. It is then easy to show
that

a*=1 and (a"'+--+a+1)F=0.

Let vy = 8/(a—1). Then A(z +v) = a(z + 7). So, by replacing z by z + v, we may assume
that h(z) = az. This implies that the components C and C’ have the points @ and @’
respectively which are fixed under h.

(II) In an open neighborhood of the point P, we can choose a system of local coordinates (z, y)
such that C' (resp. C’) is defined by y = 0 (resp. x = 0) and that h(z) = az and h(y) = ay.
Here h acts on x and y with the same weight because C and C’ are interchanged by the
action of g. Let ¢: V — V be the quotient morphism under the group (h). Then V has a
P!-fibration p: V = C because h preserves the P!-fibration p. Set P = ¢(P), Q = ¢(@) and
Q' = ¢(Q"). Then the branch locus of ¢ contains these three points P Q and Q’ Meanwhile,
¥ has an isolated cyclic quotient singularity at P Hence P is the isolated component of the
branch locus of g. The minimal resolution of P consists of only one (—n) curve A and the
proper transforms of ¢(C), ¢(C’) (say, 5, 6") meet the component A transversally.

(III) On the other hand, the points @ and @' are smooth points, for the cyclic group (k)
acts on V near Q as h(f n) = (a7'¢,n) with respect to a suitable local system of parameters

(&,n). Hence C+A + C'is a degenerate fiber of the P'-fibration on a smooth surface. This
implies that C and C' are (—1) curves. Hence n = 2. Hence the order of g is 4.

(3) Suppose that A moves the fibers. Then the points @ and (' are the isolated fixed
points of h. Suppose that h acts on V near Q as h({,n) = (1€, a7 %) with 0 < d < n,
where (£€,7) is a suitable local system of parameters at Q. Let e = ged(n, d) and let

1

a3
—

be the continued fraction expansion of (n / )/(d/e). Then the minimal resolution of three
singular points P, Q Q' together with C, C' give rise to a degenerate P!-fiber whose dual
graph is given as follows.
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O——_ ...... O)— O— . O
C A c’
Hence either 3y =--- =3, =2and n =2(s+1)orn =0 =3 and s = 1. In the first
case, nfe = s+ 1 and d/e = s. Hence e = 2,n = 2(s + 1) and d = 2s. In the second case,
n=3and d = 1. Q.E.D.

Lemma 2.4 In Lemma 2.3, the case where g*> has order 3 is impossible.

Proof. The element g induces an involution g on V which preserves the P'-fibration p and
1nterchanges C and C'. Hence § g fixes the point P and interchanges the points Q and Q'
Hence g lifts to an involution g on the minimal resolution o : V' — V. The P'-fibration 5 )
lifts to a P!-fibration 5 : V — C. The inverse image of the fiber q(C + C') has the following

linear chain:
-3 -1 -3 —1 -3
o o —o0 —0
B C A C’ B’

where we denote the proper transforms of C and C" on V by the same letters. The exceptional
curve A arising from P is stable under the action of § g. Since the points CnAand C'N A
interchages by g, A has two points R, R’ which are fixed by g. We consider two cases
according as g moves the fibers of p or not. Let V be the quotient of 1% by ¢ which has the
Pl-fibration 5: V — C. Let F be the image of o7!(¢(C + C")). Suppose § moves the fibers
of . Then the points R, R’ are mapped to the singular points R, R of type A, on the surface
V. Then the minimal resolution of the points R, R gives rise to a degenerate P'-fiber of the
following type on a smooth surface:

But, with whatever value for the self-intersection number (ZZ), this graph cannot be the
graph of a degenerate P!-fiber. Suppose that § does not move the fibers of p. Then there
are no singular points appearmg on the fiber F. Since (A?) = —3 and (A?) = 2(22), this 1s
impossible again. Q.E.D.

Lemma 2.5 In Lemma 2.3, the following two cases do not occur.

(1) The element g* has order n = 2(s + 1) with s > 0.
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(2) The element g has order 4.

Proof. (1) With the notations in Lemma 2.3, the points @, Q’ on C, " are isolated fixed
points under the action of A :=Agz. Hence the points @, @’ on 5, C' are the isolated cyclic
singular points on the surface V. The element g induces an automorphism on V' which we
denote by the same letter g. Then g lifts to an automorphism g on the minimal resolution
V and interchanges the components C,C' as well as the linear chains sprouting from C,C.

Furthermore, ¢ acts on the component A. Since ¢ interchanges the points Ccn A,é’ NnA
on A, there are two other points R, R’ of A which are left fixed by g. There are two cases
according as g moves the fibers of the P!-fibration p: V — C or not.

Cask 1. Consider first the case where g moves the fibration p. Let V be the quotient of 1%
by g. Then the images R, R of R, R are the cyclic singular points of type A,. Let W be the
minimal resolution of V. Then W has a P!-fibration pw : W — C, where C is the quotient
of C by an involution. The fiber of pw corresponding to ¢(C + C') on V has the following
dual graph:

o]
\—~(s+2) -1 =2 ~2
C.—
/ A
o]
-2

In fact, the surface V is obtained by taking a double covering of W ramifying on the two
(—2) components meeting A and one more fiber of pw and by contracting the inverse images
of the (—2) components which become (—1) components on the double covering.

Since the P!-fibation pw is trivial over an open set of C, the function field k(\7) is written
as k(W)[t]/(t* = z), where z is an inhomogeneous parameter of V such that the above double
covering ramifies over the fibers (the fiber components) of pw lying over z = 0, cc.

To go further, we have to look into the quotient morphism g : V — V more closely.
With the notations of Lemma 2.3, the element A acts on V near the point () as A(£,n) =
(a'¢,a" %), where a is a primitive n-th root of unity and d = 2s. Set A’ = h**!. Then
h'* = 1 and the element A’ acts as h'(£,n) = (—€,7) near the point @ (and hence near the
point Q’). Hence h’ acts along the fibers of p,i.e., p-h' =p. Let g : V — Vi be the quotient
morphism by #' and let V, be the minimal resolution. The P!-fibration p: V — C descends
to a P-fibration p, : V; = C and the fiber p7'(p(C + C')) has the following dual graph:
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Let h be the automorphism on 171 and V; induced by h. Then Rt =1 and h acts trivially
on the component 41 Let @, Q] be the images on V| of the points @, Q’, respectively.
Then & acts on V; near the point @ (and Q)}) as E(fl,m) = (a7, a7°m), where o is a
prmrutlve (s +1)-th root of unity and where (£;,7,) is a system of local parameters such that
C'l is defined by 7, = 0. The quohent of V1 by the action of h is the surface V. Hence the
function field k(V}) is given as k(V) ® &) k(C) with a cyclic Galois extension k(C)/k(C C) of
degree s + 1 and the function field k(V) is obtained as k(V})[u]/(u? = y), where y is a fiber
coordinate of the P'-fibration 5, over an open set of C. Thus the field extension k(V)/k(V)
is a composite of a cyclic Galols extension k(171) =k(V) Q) k(C) of degree 2(s + 1) and a
quadratic extension k(V})[u]/(u? = y). Since k(V) = k(C)(u), the field extension k(V)/k(V)

cannot be a cyclic extension of degree 4(s + 1). -

CASE.2. Consider next the case where g does not move the fibration g. With the notations
of Case 1 above, the Pl-fibration 5 : V — C has two horizontal cross-sections which meet
the fiber components A in the points R, R’. Hence the function field k(A) is a quadratic
extension k(V)[u]/(u2 = z) where z is a fiber coordinate of the P!-fibration pw : V — C,
where C = C. Let g2 Vi = V be the quotient morphism by the automorphism A induced
by A. The same arguments as in the case 1 shows that the function field k(Vl) is written
as k(V) ® ey k(C), where k(C)/k(é) is a cyclic extension of degree s + 1. Furthermore, ¢,
induces an isomorphism between the comonents A, and A. Let Ry, R} be the points of A}
which correspond to the points R, R'. We may assume that u = 0,00 at the points R, R’,
respectively. Hence, if we consider u as the inhomogeneous coordinate of 21 via ¢, u takes
the value 0,00 at the points RI,RI, respectively. Note that the points R,, R} are different
from the points C1 N AI,C N A;. So, we may assume that u = 1 (resp. —1) at the point
C, N A, (resp. C’ N Al) The double covering q V — 171 ramifies over A, and the two
cross-sections of p; which meet the fiber Cl +A1 +C’ at the points @, @} on the components
C,,C!, respectively. Hence the field extension k(V’ /k(Vl) is given as

u+1
u—1

k(V) = k(i}])[l’], where 1)2 =
Hence, replacing v by (u — 1)v, we may assume that v> =u? —1 =2 — 1. So, we have
K(V) = (V) @) K(C)) 0] / (4 = 2,07 = 2 — 1)

This implies that the Galois group of the extension k(V)/k(V) is isomorphic to Z; x Z, x Z 41,
which is not a cyclic group of order 4(s + 1).

(2) By the proof of Lemma 2.3, this is the case 2 above, where the quotient morphism
: Vi = V is the identity morphism. Hence k(V) = k(V)[u, v]/(u? = z,v? = z — 1), and
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the Galois group of the extension k(V)/k(V) is isomorphic to Z; x Z,. So, it is not a cyclic
group of order 4. Q.E.D.

As a consequence of Lemmas 2.3, 2.4 and 2.5, we obtain the following result.

Theorem 2.6 Let p: V — C be a relatively minimal P'-fibration with a G-action. Suppose
that D has no horizontal components and that p contains a fiber of the type F = C + C"',
where C' = C9. Then g is an involution.

EXAMPLE 2.7 Let Vy be the Hirzebruch surface of degree n > 2 and let M be the minimal
section. Let B be a smooth irreducible curve which is linearly equivalent to 2M + 2nf, where
¢ is a fiber of the canonical P'-fibration py on Vy. Then B has genus n — 1. Hence the
restriction polg : B — P! ramifies at 2n points on B. Let 0 : V — V, be the double covering
ramified over the curve B and let o : V — V be the covering involution.

Let £y,... Ly, be the fibers of po which meet the curve B only in single points with
multiplicity 2. Then o*(£;) = C; + C! (1 < ¢ < 2n), where C; and C! are the (—1) curves
meeting each other transversally in one point. The composite p := pg-o : V — Pl is a
Pl-fibration and has C; + C! as a degenerate fiber. The involution ¢ exchanges C; and C!.

Since BN M = (), the inverse image o*(M) is a disjoint sum My + M, with (My?) =
(M?) = —n. We may assume that the C; meet My and the C! meet M,. The contraction of
Ci,...,C}, brings the surface V' back again to the Hirzebruch surface Vo, The image of M,
is the section M’ of Vo which is disjoint from the minimal section M. Let 7 : V — Vj be the
contraction of Cy,... ,C} . Then we have

Ky, ~ —2My—(n+2)¢
2n
Kv ~ m(Ky)+ )Y C
i=1
2n
(M) = M +) Ci
=1
Hence Ky ~ —My — My —2¢. Let D = My + M,. Then we compute

-9 —9
D#+A’v=nn M0+”n M, + Ky.

Then C; + C} is a c-invariant ertremal curve with (C;+C!-D* + Kv) = —4/n.
It follows by induction that
b(g™) = (alg)™ ™" + -+ +alg) +1) b(g) for g€ Kera,

where b(1) = 0. If a(g) # 1, then the point given by z = —b(g)/(a(g) — 1) is left fixed by the
action of g, but this is not possible because G acts on Yx freely. If a(g) = 1 and m is the
order of g, then b(g) = 0 because a(g)™ ' +---+a(g)+1=m#0 and b(¢g™) = 0. Then g
acts on Y trivially, and this is a contradiction. Hence Ker a = (1) and « is injective.

222



3 Appendix by M. Namba

The following result might be well-known among the experts.

Theorem 3.1 Let X be a complete smooth curve of genus g defined over the ground ﬁeldk
of characteristic zero. Let ¢ be a nontrivial eutomorphism of finite order. Let d be the order
of . Then the number of the fized points of @ is less than or equal to 2g/(d — 1) + 2. The
equality holds if and only if X and ¢ are given as follows:

29

X: yl=(z—a) --(z—a,) with Szd—-‘i*+2>

where ay,... ,a, are all distinct, and where v is given by

(z,y) = (z,(y)
with a d-thprimitive root { of the unity.

Proof. Let (¢) be the cyclic group of order d generated by the said automorphism ¢. Let
Y be the quotient of X by {(¢) and 7 : X — Y be the quotient morphism. Let gy be the
genus of the smooth curve Y. Let B, = {q,... , ¢} be the branch locus of 7. Then (y) acts
transitively on the set 77(¢) for 1 < i < s. Let ef,..., e, be the respective ramification
indices over the points g;,... ,q,. By the Riemann-Hurwitz formula, we then have

~ d
29—2:d(2go~—2)+z;(e,~—1).
5

i=1

It is written as

- 1 29 — 2
S(1-1) -2 - (1)
€; d

=1
Let P be a point of X. Then P is fixed by ¢ if and only if ¢ is totally ramified over the
point g := ¢(P), i.e., ¢ € B, and d = e at q. Let n be the number of the fixed points of .
Then the equality (1) implies that

1\  2g-2
n(l-—)gg +2.

So, we obtain the inequality
29
< —+2 2
neTa T @
Now the above computations show that the equality occurs in the inequality (2) if and
only if 7 ramifies totally over every point of B, and the curve Y has genus g, = 0. Hence

the curve X determines as follows:

y'=(z—a) - (z—a,), where n:dﬁl——{-l (3)

Here (d ~ 1) | 2g because s is an integer. Q.E.D.

Now fix the genus ¢ and consider when the maximum value of n is attained.
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Corollary 3.2 Let X be a complete smooth curve of genus g and let ¢ be a nontrivial
automorphism of X of finite order. Then the number of the points left fired by ¢ is less than
or equal to 2g + 2. The number is equal to 2g + 2 if and only if one of the following cases
occur:

(1) X is a hyperelliptic curve and ¢ is the hyperelliptic involution.
(2) X is an elliptic vurve and ¢ is the multiplication by (—1).

(3) X is a rational curve and p(z) = (z, where { is a primitive d-th root of the unity and
z 15 an inhomogeneous coordinate.

Proof. The relation in (3) implies that the maximal value 2g + 2 of n is attained if and
only if either d = 2 and g > 0 or g = 0. If d = 2 and g > 2, then X is a hyperelliptic curve
and ¢ is the hyperelliptic involution. Suppose ¢ = 1 and d = 2. Then the hyperelliptic
involution is the multiplication by (—1) when X is defined by the equation in (3). If g =0
then  fixes two points P;, P,. Choose an inhomogeneous coordinate z so that x = 0,00 at
Py, P;, respectively. Then ¢(z) = (z for a primitive d-th root of unity. Q.E.D.

We note that any automorphism ¢ has finite order provided g > 2.
Corollary 3.3 Let X be a complete smooth curve of genus g > 3. Suppose that X is

trigonal. Namely, there erists a degree 3 morphism f : X — P'. Let ¢ be a nontrivial
automorphism. Then the number of points left fired by ¢ is less than or equal to g + 2.

Proof. As remarked above, ¢ has finite order. If the quotient morphism 7 coincides with
the trigonal morphism f above, then d = 3 and n < g+ 2. Otherwise, d > 4 because X is
not hyperelliptic. Q.E.D.

Corollary 3.4 Let X be a complete smooth curve with genus g > 5. Let ¢ be a nontrivial
automorphism of X. Suppose that X is not hyperelliptic nor trigonal. Then the number of
points left fized by ¢ is less than or equal to (2/3)g +2

Proof. Clear.
A further question is the following:

Question. Let X be a projective smooth variety of dimension m. Let ¢ be an automorphism
of X. Is it possible then to find an integer n such that ¢ is trivial provided o fizes more than
n points.
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