ON CLASSIFICATION OF WEAKENED FANO 3－FOLDS WITH $B_{2}=2$

TATSUHIRO MINAGAWA

1．Introduction

We will work over \mathbb{C} in this talk．
Definition 1．1．Let X be a 3－dimensional smooth projective variety and $(\Delta, 0)$ a germ of the 1 －dimensional disk．
（1）We call X a Fano 3 －fold when its anti－canonical divisor $-K_{X}$ is ample．
（2）We call X a weak Fano 3 －fold when its anti－canonical divisor $-K_{X}$ is nef and big．
（3）Let X be a weak Fano 3 －fold，we call X a weakened Fano 3 －fold when X is not a Fano 3 －fold and there exists a small deformation $f: \mathscr{X} \rightarrow$ $(\Delta, 0)$ of X such that the fiber $\mathscr{X}_{s}=f^{-1}(s)$ is a Fano 3－fold for any $s \in(\Delta, 0) \backslash\{0\}$ ．

This article contains the classification of weakened Fano 3 －folds with $B_{2}=$ 2．The i－th Betti number of a manifold X will be denoted by $B_{i}(X)$ ．Let X be a weak Eano 3 －fold．We remark that $B_{2}(X) \geq 2$ because X is a weak Fano which is not a Fano 3 －fold．

Fano 3－folds with $B_{2} \geq 2$ ane classified by Mori and Mukai（cf．［M－M 1］， ［M－M 2］）．The classification of Fano 3－folds with $B_{2}=2$ is useful for the classification of weakened Fano 3－folds with $B_{2}=2$ ．

Example 1．2．Let $F \cong \mathbb{F}_{0}$ be a smooth quadric surface in \mathbb{P}^{3}, H a hy－ perplane in \mathbb{P}^{3} and Γ a non－singular curve of bi－degree $(2,4)$ on F which is a hyperelliptic curve of degree 6 and genus 3 ．Let $\psi: X \rightarrow \mathbb{P}^{3}$ be the blow－up of \mathbb{P}^{3} along Γ, E the strict transform of F, f_{1} a curve of bi－degree $(1,0)$ on E, f_{2} a curve of bi－degree（ 0,1 ）on E ，and D the exceptional divisor of ψ ．We have that $\psi^{*} F=E+D$ ．Then X is a weak Fano 3－ fold with $B_{2}(X)$ which is not a Fano 3 －fold．In fact $\left(-K_{X} \cdot f_{1}\right)=0$ and $\left(-K_{X} \cdot f_{2}\right)=2$ ，thus $-\left.K_{X}\right|_{E}$ is a divisor of bi－degree $(2,0)$ on E ，and $\left(-K_{X}\right)^{3}=\left(-K_{\mathbb{P}^{3}}\right)^{3}-2\left\{\left(-K_{\mathbb{P}^{3}} \cdot \Gamma\right)-g(\Gamma)+1\right\}=20$ ．Thus it is enough to show that $\left(\rightarrow K_{X} \cdot Z\right)>0$ for every irreducible and reduced curve Z on X with $Z \not \subset E$ ．Case in which $\psi(Z)$ is a point，Z is a exceptional line and $(D \cdot Z)=-1$ ．Hence $\left(-K_{X} \cdot Z\right)=\left(\psi^{*}\left(-K_{\mathbb{P}^{3}}\right)-D \cdot Z\right)=1$ ．Case in which $\psi(Z)$ is not a point，Since $-K_{X} \sim 4 \psi^{*} H-D \sim_{Q} 4 \psi^{*} H-\left(2 \psi^{*} H-E\right)=$ $2 \psi^{*} H+E$ ，Hence $\left(-K_{X} \cdot Z\right) \geq\left(2 \psi^{*} H \cdot Z\right)=\left(2 H \cdot \psi_{*} Z\right)>0$ ．

Let $\mathscr{C} \hookrightarrow \mathbb{P}^{3} \times(\Delta, 0)$ be a family of curves of genus 3 and degree 6 which is a deformation of Γ to non－hyperelliptic curves．Let $\mathscr{X} \rightarrow \mathbb{P}^{3} \times \Delta$ be the blow－up along \mathscr{C} ．Then \mathscr{X}_{s} is a Fano 3 －fold of No． 12 in Table 2 of［M－M 1］ for any $s \in(\Delta, 0) \backslash\{0\}$ ．Thus X is a weakened Fano 3 －fold．

Example 1.3. Let Q be a smooth quadric 3 -fold, $F \cong \mathbb{F}_{0}$ a smooth quadric surface in Q, Γ be a non-singular curve on F of bi-degree $(1,3)$ which is a curve of genus 0 and degree 4. Let $\psi: X \rightarrow Q$ be the blow-up of Q along Γ, E the strict transform of F, f_{1} a curve of bi-degree $(1,0)$ on E, f_{2} a curve of bi-degree $(0,1)$ on E. Then X is a weak Fano 3-fold with $B_{2}(X)$ which is not a Fano 3 -fold. We can show it by the similar way as above. We remark that $\left(-K_{X}\right)^{3}=28,\left(-K_{X} \cdot f_{1}\right)=0$, and $\left(-K_{X} \cdot f_{2}\right)=2$.
X is a weakened Fano 3 -fold. For example, let x, y a homogeneous coordinate on $\mathbb{P}^{1}, z_{0}, z_{1}, z_{2}, z_{3}, z_{4}$ a homogeneous coordinate on \mathbb{P}^{4}, and $(\Delta, 0)$ a germ of the 1 -dimensional disk with parameter t, we assume that Γ is given by a embedding \mathbb{P}^{1} into \mathbb{P}^{4} defined by $x^{4}, x^{3} y, 0, x y^{3}, y^{4}$ and Q is a smooth quadric 3 -fold containing Γ defined by $z_{0} z_{4}+z_{2}^{2}-z_{1} z_{3}=0$. We consider a family of embeddings of \mathbb{P}^{1} into \mathbb{P}^{4} over $(\Delta, 0)$ defined by $x^{4}, x^{3} y$, $t x^{2} y^{2}, x y^{3}, y^{4}, \mathscr{C} \rightarrow \mathbb{P}^{4} \times(\Delta, 0)$, which is a family of curves of genus 0 and degree 4 , and is a deformation of Γ to a curve not contained in any hyperplane in \mathbb{P}^{4}. Let $\mathscr{Q} \rightarrow \mathbb{P}^{4} \times(\Delta, 0)$ be a deformation of Q in \mathbb{P}^{4} defined by $z_{0} z_{4}+z_{2}^{2}-\left(1+t^{2}\right) z_{1} z_{3}=0$. We consider the family of embeddings $\mathscr{C} \rightarrow \mathscr{Q}$. Let $\mathscr{X} \rightarrow \mathscr{Q}$ be the blow-up of \mathscr{Q} along \mathscr{C}. Then \mathscr{X}_{s} is a Fano 3 -fold of No. 21 in Table 2 of [M-M 1] for any $s \in(\Delta, 0) \backslash\{0\}$. Thus X is a weakened Fano 3-fold.

Example 1.4. Let $M=\mathcal{O}_{\mathbb{P}^{2}}(2) \oplus \Omega_{\mathbb{P}^{2}}^{1}(2), \pi_{Z}: Z=\mathbb{P}(M) \rightarrow \mathbb{P}^{2}=Y$ the \mathbb{P}^{2}-bundle over \mathbb{P}^{2} associated to M, and L_{Z} the tautological line bundle (that is, L_{Z} is $\mathcal{O}_{\mathbb{P}^{2}}(1)$ on each fiber, and $\left(\pi_{Z}\right)_{*} L_{Z}=M$). We have that $K_{Z}=-3 L$. By the trivial surjection $M \rightarrow \Omega_{\mathbb{P}^{2}}^{1}(2)$, we have the following commutative diagram,

Let L_{W} be the tautological line bundle of $\pi_{W}: W \rightarrow \mathbb{P}^{2}$. Then $L_{W}=\left.L_{Z}\right|_{W}$. Let $l \subset \mathbb{P}^{2}$ be a line $H_{Z}=\left(\pi_{Z}\right)_{*} l$, and $H_{W}=\left(\pi_{W}\right)_{*} l$. Since W is a divisor of $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of bi-degree (1,1), we may assume that π_{W} is the second projection. We remark that the restriction Pic $\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) \rightarrow \operatorname{Pic}(W)$ is an isomorphism. Since $\left(\pi_{W}\right)_{*} L_{W}=\Omega_{\mathbb{p}^{2}}^{1}(2)$, we have that $K_{W}=-2 H_{W}+\left(-2 L_{W}\right)$ which is bi-degree ($-2,-2$). Thus L_{W} is bi-degree (1,0) and is base-point free. On the other hand, $K_{W}=K_{Z}+\left.W\right|_{W}=-3 L_{Z}+\left.W\right|_{W}=-2 H_{Z}-\left.2 L_{Z}\right|_{W}$. Since the restriction $\operatorname{Pic}(Z) \rightarrow \operatorname{Pic}(W)$ is isomorphism, $W \in\left|L_{Z}-2 H_{Z}\right|$. Thus $H^{1}\left(Z, \mathcal{O}_{Z}\left(L_{Z}-W\right)\right)=H^{1}\left(Z, \mathcal{O}_{Z}\left(-2 H_{Z}\right)\right)$. By the Leray spectral sequence, we have the exact sequence:

$$
0 \rightarrow H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(-2)\right) \rightarrow H^{1}\left(Z, \mathcal{O}\left(-2 H_{Z}\right)\right) \rightarrow R^{1}\left(\pi_{Z}\right)_{*} \mathcal{O}_{Z} \otimes \mathcal{O}_{\mathbb{P} 2}(-2)
$$

Hence $H^{1}\left(Z, \mathcal{O}_{Z}\left(L_{Z}-W\right)\right)=0$. Thus $\left|L_{Z}\right|$ is base-point free, because $W+$ $2 H_{Z} \in\left|L_{Z}\right|$. Moreover we have that $\left(L_{Z}\right)^{4}=6$ by easy calculations. We remark that the birational contraction $\phi_{Z}: Z \rightarrow \bar{Z}$ defined by L_{Z} is primitive (i.e. $\rho(Z / \bar{Z})=1$), the exceptional locus is W, and $\phi_{W}:=\left.\phi_{Z}\right|_{W}: W \rightarrow \mathbb{P}^{2}$ is the first projection. Let $X \in\left|2 L_{Z}\right|$ be a general member, then X is a weak Fano 3 -fold which is not a Fano 3 -fold because $\left(-K_{X}\right)^{3}=2\left(L_{Z}\right)^{4}=12$, and
we may assume that $E:=X \cap W$ is the pull back of a smooth quadric curve C in \mathbb{P}^{2} by ϕ_{W}. By the exact sequence

$$
\left.0 \rightarrow \mathcal{O}_{C} \rightarrow \Omega_{\mathbb{P}^{2}}^{1}(2)\right|_{C} \rightarrow \mathcal{O}_{C} \rightarrow 0
$$

we have that $E \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Let $\phi:=\left.\phi_{Z}\right|_{X}: X \rightarrow \phi_{Z}(X)=: \bar{X}$. Then $\left(-K_{\bar{X}} \cdot C\right)=2$.
X is a weakened Fano 3 -fold with $B_{2}(X)=2$. In fact, let \mathscr{M} be a defomation of locally free sheaves of rank 3 over $(\Delta, 0)$ from $\mathcal{O}_{\mathbb{P}^{2}}(2) \oplus \Omega_{\mathbb{P}^{2}}^{1}(2)$ to $\mathcal{O}_{\mathbb{P}^{2}}(1) \oplus \mathcal{O}_{\mathbb{P}^{2}}(1) \oplus \mathcal{O}_{\mathbb{P}^{2}}(1)$. Let $\mathbb{Z}:=\mathbb{P}(\mathscr{M}) \rightarrow \mathbb{P}^{2} \times(\Delta, 0), \mathscr{L}_{\mathscr{Z}}$ be the tautological line bundle. $\mathscr{X} \in\left|2 \mathscr{L}_{\mathscr{X}}\right|$ is a deformation of X to $\mathscr{X}_{t} \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ which is a divisor of bi-degree (2,2).

Similarly, we have that a member $X \in\left|L_{Z}\right|$ is a weakened Fano 3-fold with $\left(-K_{X}\right)^{3}=48$ which will deform to a divisor of $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of bi-degree $(1,1)$.

Theorem 1.5. Let X be a weakened Fano 3-fold with $B_{2}(X)=2$. Then $\left(-K_{X}\right)^{3}=12,20,28$ or 48 . Moreover,
(1) if $\left(-K_{X}\right)^{3}=12$ or $48, X$ is a conic bundle over \mathbb{P}^{2}.
(2) if $\left(-K_{X}\right)^{3}=20, X$ is isomorphic to Example (1.2).
(3) if $\left(-K_{X}\right)^{3}=28, X$ is isomorphic to Example (1.3).

One of the key points of the classification of weakened Fano 3 -folds with $B_{2}=2$ is the following theorem.

Theorem 1.6. (cf. $[\mathrm{Pa}]$ and $[\mathrm{Mi}])$ Let X be a weak Fano 3-fold with $B_{2}(X)$ $=2$ which is not a Fano 3-fold, $\phi_{a c}: X \rightarrow X_{a c}$ a multi-anti canonical model, E the exceptional locus of $\phi_{a c}$, and $C=\phi(E)$.
X is a weakened Fano 3-fold if and only if $\left.\phi\right|_{E}: E \rightarrow C$ is a \mathbb{P}^{1}-bundle structure of E over $C \cong \mathbb{P}^{1}$ and $\left(-K_{X_{a c}} \cdot C\right)=2$.

Let $Z_{1}(X)$ be the set of numerically equivalence class of 1-cycles on X. Let $N_{1}(X)=Z_{1}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ and $\overline{N E}(X)$ the closed convex cone in $N(X)$ generated by effective 1-cycles on X.

Since $N_{1}(X) \cong \mathbb{R}^{2}, \overline{N E}(X)$ has just two edges, corresponding to $\phi_{a c}$ and the unique extremal contraction $\psi: X \rightarrow Y$. (cf. [K-M-M]) We study possibilities of ψ using the divisors $-K_{X}$ and E.

Acknowledgement. I would like to thank Professor Yujiro Kawamata for useful discussions, giving the author useful suggestions, and encouraging the author during the preparation of this contents. I thank also Doctor Hokuto Uehara and Master Masayuki Kawakita for stimulus discussions on this paper.

Notations. (1) " \sim " means linearly equivalence.
(2) " $\sim \mathbb{Q}$ " means \mathbb{Q}-linearly equivalence.
(3) The \mathbb{P}^{1}-bundle $\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$ over \mathbb{P}^{1}, a Hirzebruch surface of degree n, is denoted by \mathbb{F}_{n}, and the surface which is obtained by the contraction of the negative section of \mathbb{F}_{n} is denoted by $\mathbb{F}_{n, 0}$.
(4) For a projective variety $X,(\cdot)_{X}$ means the intersection number on X and we will denote it by (\cdot), if admissible.

2. PRELIMINARY

We devide types of ψ into 3 cases to treat it.
Definition 2.1. Let $\psi: X \rightarrow Y$ be an extremal contraction from a smooth weak Fano 3 -fold X.
(1) ψ is called type R when $\operatorname{dim}(Y)=3$,
(2) ψ is called type C when $\operatorname{dim}(Y)=2$, and
(3) ψ is called type D when $\operatorname{dim}(Y)=1$,

Let X be a weakened Fano 3-fold with $B_{2}(X)=2, \phi_{a c}: X \rightarrow X_{a c}$ a multi-anti canonical model, E the exceptional locus of $\phi_{a c}$, and $C=\phi(E)$. By Theorem 1.6, $\left.\phi\right|_{E}: E \rightarrow C$ is a \mathbb{P}^{1}-bundle structure of E over $C \cong \mathbb{P}^{1}$ and $\left(-K_{X_{a c}} \cdot C\right)=2$. Thus E is a Hirzebruch surface of degree n. Let f be a reduced fiber of $\left.\phi\right|_{E}: E \rightarrow C$ and h a section of $\left.\phi\right|_{E}: E \rightarrow C$ with $\left(h^{2}\right)_{E}=n$. We have the following informations under this setting.

Lemma 2.2. Notations are as above.
(1) $-K_{X} \mid E \sim 2 f$, in particular $\left(-K_{X} \cdot f\right)=0$ and $\left(-K_{X} \cdot h\right)=2$,
(2) $\left.E\right|_{E^{\sim}}-2 h+n f$, in particular $(E \cdot f) \equiv-2$ and $(E \cdot h)=-n$,
(3) $\left(K_{X}^{2} \cdot E\right)=0$,
(4) $\left(K_{X} \cdot E^{2}\right)=4$, and
(5) $\left(E^{3}\right)=0$.

Proof. (1) is because ($\sim K_{X_{a c}} \cdot C$) $=2$. (2) is because $K_{X} \neq\left. E\right|_{E \sim} ^{\sim} K_{E} \sim$ $-2 h+(n-2) f$. For (3), $\left(K_{X}^{2} \cdot E\right)=\left(K_{X} \mid E\right)_{E}^{2}=(2 f)_{E}^{2}=0$. For (4), there exists a member $S_{a c}$ of $\left|-K_{X_{a c}}\right|$ such that $S_{a c} \cap C=\left\{p_{1}, p_{2}\right\}, S_{a c}$ is smooth away from $\left\{p_{1}, p_{2}\right\},\left(S_{a c}, p_{i}\right)$ is the ordinary double point for $i=1,2$, and $S:=\phi_{a c}^{*} S_{a c} \rightarrow S_{a c}$ is a minimal resolution of S (Cf. [Mi] and [Shin]). Hence $\left.E\right|_{S}$ is disjoint two (-2)-curves on S. Thus $\left(-K_{X} \cdot E^{2}\right)=\left(\left.E\right|_{S}\right)_{S}^{2}=-4$. (5) is because $8=\left(K_{E}^{2}\right)_{E}=\left(\left(K_{X}+E\right)^{2} \cdot E\right)=\left(K_{X}^{2} \cdot E\right)+2\left(K_{X} \cdot E^{2}\right)+\left(E^{3}\right)=$ $8+\left(E^{3}\right)$ by (3) and (4).

Lemma 2.3. If $n=0$, then $\psi(h)$ is not a point.
Proof. Let L be a divisor on X such that the complete linear system of $m L$ defines ψ for sufficiently large m. Let $L \sim_{\mathbb{Q}}-a K_{X}-b E$. Then $(L \cdot f)=$ $2 b>0$ and $(L \cdot h)=2 a+n b$ by Lemma 2.2 (1) and (2). If $n=0$ and $(L \cdot h)=0$ then $L \sim_{\mathbb{Q}}-b E$. Let $S \in\left|-K_{X}\right|$, we have that $\left(\left.L\right|_{S}\right)_{S}^{2} \geq 0$ because L is nef, but $\left(\left.L\right|_{S}\right)_{S}^{2}=\left(L^{2} \cdot\left(-K_{X}\right)\right)=-b^{2}\left(K_{X} \cdot E^{2}\right)=-4 b^{2}<0$. It is a contradiction.

This lemma leads us to the following proposition.
Proposition 2.4. ψ is not of type D.
Proof. Let L be a divisor on X such that the complete linear system of $m L$ defines ψ for sufficiently large m. If ψ is of type D , then $\operatorname{dim} \psi(E)=1$ because $(L \cdot f)>0$. Hence $\left.L\right|_{E^{\sim}} c h$ for some $c>0$ and $n=0$ because of a property of Hirzebruch surface E. Then $(L \cdot h)=(c h \cdot h)_{E}=0$. It contradicts to Lemma 2.3.

3. The case ψ is of type C

The notations $X, \phi_{a c}: X \rightarrow X_{a c}, E, \psi: X \rightarrow Y, f, h, d, n$ are as in Section 1. We will show the following proposition in this section.
Proposition 3.1. If ψ is of type C, then $\left(-K_{X}\right)^{3}=12$ or 48 .
Proof. Since $\rho(Y)=1$, and Y is rational by Proposition 3.5 of [M-M 2], $Y \cong \mathbb{P}^{2}$. Let L be a divisor on X such that the complete linear system of $m L$ defines ψ for sufficiently large $m, \delta_{X}=\left(-K_{X}\right)^{3}$, and $L \sim_{\mathbb{Q}}-a K_{X}-b E$. Then $(L \cdot f)=2 b>0$ and $(L \cdot h)=2 a+n b$, and $\left(L^{3}\right)=\left(-a K_{X}-b E\right)^{3}=$ $\delta_{X} a^{3}-3 a b^{2}\left(K_{X} \cdot E^{2}\right)=\delta_{X} a^{3}-12 a b^{2}$ by Lemma 2.2. Since $(L \cdot h-n f)=$ $2 a-n b \geq 0, a \geq \frac{n b}{2}$. If $n=0$, then $(L \cdot h)=a$. Hence $a>0$ by Lemma 2.3. Thus $a>0$ in any case. We have an equation

$$
\begin{equation*}
a=\frac{\sqrt{12}}{\sqrt{\delta_{X}}} b \in \mathbb{Q} . \tag{3.1}
\end{equation*}
$$

Using the classification of Mori and Mukai (cf. Table 2 of [M-M 1]), we have that $\delta_{X}=12$ or 48 because δ_{X} is a deformation invariant.

When $\delta_{X}=12$, we have that $a=b$ and $a \geq \frac{n b}{2}=\frac{n a}{2}$. Thus $n=0,1$, or 2.

When $\delta_{X}=48$, we have that $2 a=b$ and $a \geq \frac{n b}{2}=n a$. Thus $n=0$ or 1.

4. The case ψ is of type R

The notations $X, \phi_{a c}: X \rightarrow X_{a c}, E, \psi: X \rightarrow Y, f, h, d, n$ are as in Section 1. We will show the following proposition first in this section.

Proposition 4.1. If ψ is of type R, then the pair $\left(\left(-K_{X}\right)^{3},\left(-K_{Y}\right)^{3}\right)=$ $(20,64)$ or $(28,54)$
Proof. Since $\rho(Y)=1, Y$ is a Fano 3-fold. Let D be the exceptional locus of $\psi, \delta_{X}=\left(-K_{X}\right)^{3}, \delta_{Y}=\left(-K_{Y}\right)^{3}$, and $\psi^{*}\left(-K_{Y}\right) \sim_{Q}-a K_{X}-b E$. Then $\left(\psi^{*}\left(-K_{Y}\right) \cdot f\right)=2 b>0$ and $\delta_{Y}=a^{3} \delta_{X}-12 a b^{2}$ by Lemma 2.2. Thus $a \neq 0$ because $\delta_{Y}>0$ and

$$
\begin{equation*}
b^{2}=\frac{a^{3} \delta_{X}-\delta_{Y}}{12 a} \tag{4.1}
\end{equation*}
$$

If $\psi\left(\left.D\right|_{E}\right)$ is 0-dimensional, then $\left.D\right|_{E \sim m} m(h-n f)$ for some natural number m and $\left.\psi^{*}\left(-K_{Y}\right)\right|_{E} \sim 2 b h$ because $\operatorname{dim} \psi(f)=1$. Thus $D \sim_{\mathbb{Q}} \frac{m}{4}\left(n K_{X}-2 E\right)$ and $\psi^{*}\left(-K_{Y}\right) \sim_{\mathbb{Q}} \frac{b}{2}\left(-n K_{X}-2 E\right)$ by Lemma 2.2. Since $\left(\left.\psi^{*}\left(-K_{Y}\right)\right|_{D}\right)_{D}^{2}=$ $0,\left(\left(-n K_{X}-2 E\right)^{2} \cdot\left(n K_{X}-2 E\right)\right)=n^{3}\left(K_{X}\right)^{3}+(4 n-8 n)\left(K_{X} \cdot E^{2}\right)=$ $-\delta_{X} n^{3}-16 n=0$. On the other hand, we have that $n \neq 0$ by Lemma 2.3, and that $\delta_{X}>0$, it is a contradiction. Thus $\psi\left(\left.D\right|_{E}\right)$ is 1-dimensional, and we have that $\psi: X \rightarrow Y$ is the blow-up of Y along the nonsingular curve $\Gamma:=\psi(D)$ and Y is smooth by Section 3 of $[\mathrm{Mo}]$. We have that $D \sim_{\mathbb{Q}}$ $\psi^{*}\left(-K_{Y}\right)+K_{X}=-(a-1) K_{X}-b E$. Since $\left(\psi^{*}\left(-K_{Y}\right)^{2} \cdot D\right)=0$, we have that $\left(\left(-a K_{X}-b E\right)^{2} \cdot\left(-(a-1) K_{X}-b E\right)\right)=a^{2}(a-1) \delta_{X}+4(-3 a+1) b^{2}=0$. Combining with (4.1), we have an equation

$$
\begin{equation*}
2 \delta_{X} a^{3}-3 \delta_{Y} a+\delta_{Y}=0 . \tag{4.2}
\end{equation*}
$$

Let $x=4 a$, then x is an integer. Thus the equation

$$
\begin{equation*}
\delta_{X} x^{3}-24 \delta_{Y} x+32 \delta_{Y}=0 \tag{4.3}
\end{equation*}
$$

has an integral root. Since δ_{X} and δ_{Y} is a deformation invariant, using the list in Table 2 in [M-M 1], we have the following 2 possibilities:
(4.1.1) $\delta_{X}=20, \delta_{Y}=64$, and $x=8$.
(4.1.2) $\delta_{X}=28, \delta_{Y}=54$, and $x=6$.

In the following, we treat the above 2 cases in details.

$$
\text { The case } \delta_{X}=20, \delta_{Y}=64 \text {, and } x=8
$$

By [Is 1], and [Is 2], Y is isomorphic to \mathbb{P}^{3}. By the computation in the above proof, we have that $a=2$ and $b=2$. Thus we have that

$$
\psi^{*}\left(-K_{X}\right) \sim-2 K_{X}-2 E .
$$

Since $-2 K_{X}-\left.2\right|_{E} \sim 4 h+(4-2 n) f$ is a nef divisor, thus we have that $n=0$, 1 , or 2 . For $m>0$, Since $m \psi^{*}\left(-K_{Y}\right)-E-K_{X} \sim_{Q}\left(m+\frac{1}{2}\right) \psi^{*}\left(-K_{Y}\right)$ is nef and big, $H^{1}\left(X, \mathcal{O}\left(m \psi^{*}\left(-K_{Y}\right)-E\right)\right)=0$ by Kawamata-Viehweg vanishing theorem. Thus we may assume that $F:=\psi(E)$ is normal. Since $\mathbb{F}_{n} \not \subset \mathbb{P}^{3}$ for $n>0$, we have that $E \cong \mathbb{F}_{0}$ or $\mathbb{F}_{2,0}$. Since $D \sim-K_{X}-2 E$, as in Section 4 of [M-M 2] using Lemma 2.2, we have that $\left(D^{2} \cdot\left(-K_{X}\right)\right)=2 g(\Gamma)-2=4$. Thus $g(\Gamma)=3$. Moreover we have that $\left(-K_{Y} \cdot \Gamma\right)=24$ by the formula $\delta_{X}=\delta_{Y}-2\left\{\left(-K_{Y} \cdot \Gamma\right)-g\left(\Gamma^{\prime}\right)+1\right\}$. Thus we have that $(H \cdot \Gamma)=6$ for a hyperplane H in \mathbb{P}^{3}.

$$
\Gamma \subset F \subset \mathbb{P}^{3}
$$

By III. Ex 5.4, IV. Remark 6.4.1, and V. Ex 2.9 of [Ha], we have that $n=0$ and Γ is a non-singular curve of bi-degree (2.4) or (4.2) on $F \cong \mathbb{F}_{0}$.

The case $\delta_{X}=28, \delta_{Y}=54$, and $x=6$
By [Is 1], and [Is 2], Y is isomorphic to $Q \subset \mathbb{P}^{4}$ a non-singular quadric 3 -fold. By the computation in the above proof, we have that $a=\frac{3}{2}$ and $b=\frac{3}{2}$. Thus we have that

$$
\psi^{*}\left(-K_{X}\right) \sim_{Q}-\frac{3}{2} K_{X}-\frac{3}{2} E
$$

Since $-\frac{3}{2} K_{X}-\frac{3}{2} E$ is a nef \mathbb{Q}-divisor, thus we have that $n=0,1$, or 2 . For $m>0$, since $m \psi^{*}\left(-K_{Y}\right)-E-K_{X} \sim_{\mathbb{Q}}\left(m+\frac{2}{3}\right) \psi^{*}\left(-K_{Y}\right)$ is nef and big, $H^{1}\left(X, \mathcal{O}\left(m \psi^{*}\left(-K_{Y}\right)-E\right)\right)=0$ by Kawamata-Viehweg vanishing theorem. Thus we may assume that $F:=\psi(E)$ is normal and we have that $E \cong \mathbb{F}_{0}$, \mathbb{F}_{1}, or $\mathbb{F}_{2,0}$. If $n=1$, using Lemma $2.2,\left(\psi^{*}\left(-K_{Y}\right) \cdot f\right)=\left(-\frac{3}{2} K_{X}-\frac{3}{2} E \cdot h\right)=$ $3+\frac{3}{2}=\frac{9}{2}$ is not a integer. Hence it is a contradiction and we have that $E \cong F \cong \mathbb{F}_{0}$ or $\mathbb{F}_{2,0}$. Let H be a hyperplane in \mathbb{P}^{4} and H_{Q} the complete intersection of Q and H. We have that $F \in\left|H_{Q}\right|$. By the same calculation in the first case we have that $g(\Gamma)=0$ and $\left(H_{Q} \cdot \Gamma\right)=4$.

$$
\Gamma \subset F \subset Q \subset \mathbb{P}^{4}
$$

By III. Ex 5.4, IV. Remark 6.4.1, and V. Ex 2.9 of [Ha], we have that $n=0$ and Γ is a non-singular curve of bi-degree (1.3) or (3.1) on $F \cong \mathbb{F}_{0}$.

References

[Ba-Hu] Barth W. and Hulek K., Monads and moduli of vector bundles, Manuscripta Math. 25 (1978)
[Be 1] Beauville A., Variété de Prym et jacobiennes intermédiaires, Ann. Sci. École Norın. Sup. 10 (1977)
[Be 2] Beauville A., Complex Algebraic Surfaces, Cambridge University Press (1983)
[Ha] Hartshone R., Algebraic Geometry, GTM 52, Springer-Verlag (1977)
[Is 1] Iskovskih V. A., Fano 3-fold I, English translation, Math. USSR Izv. 11 (1977)
[Is 2] Lskovskih V. A., Fano 3-fold II, English translation, Math. USSR Izv. 12 (1978)
[K-M-M] Kawamata Y., Matsuda, K., and Matsuki K., Introduction to the minimal model problem, Adv. Stud. Pure Math. 10, Kinokuniya-North Holland (1987)
[Mi] Minagawa T., Global smoothing of singular weak Fano 3-folds, Preprint (1999)
[Mo] Mori S., Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982)
[M-M 1] Mori S. and Mukai S., Classification of Fano 3-folds with $B_{2} \geq 2$, Manuscripta Math. 36 (1981)
[M-M 2] Mori S. and Mukai S., On Fano 3-folds with $B_{2} \geq 2$, Algebraic and Analytic Varieties, Adv. Stud. in Pure Math. 1 (1983)
[Pa] Paoletti, R., The Kähler cone in families of quasi-Fano threefolds, Math. Z. 227 (1998)
[Shin] Shin K.H., 3-dimensional Fano varieties with canonical singularities, Tokyo J. Math. 12 (1989)
[Take] Takeuchi K., Some birational maps of Fano 3-folds, Compositio Math. 71 (1989)
Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 153-8551, Japan

E-mail address: minagawa@math.titech.ac.jp

