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ON CLASSIFICATION OF WEAKENED
FANO 3-FOLDS WITH By =2

TATSUHIRO MINAGAWA

1. INTRODUCTION

We will work over C in this talk.

Definition 1.1. Let X be a 3-dimensional smooth projective variety and
(A,0) a germ of the 1-dimensional disk.

(1) We call X a Fano 3-fold when its anti-canonical divisor —Kx is ample.

(2) We call X a weak Fano 3-fold when its anti-canonical divisor —Kx is
nef and big.

(3) Let X be a weak Fano 3-fold, we call X a weakened Fano 3-fold when
X is not a Fano 3-fold and there exists a small deformation §: 2~ —
(A,0) of X such that the fiber 25 = f~!(s) is a Fano 3-fold for any
s €(4,0)\ {0}

This article contains the classification of weakened Fano 3-folds with By =
2. The i-th Betti number of a manifold X will be denoted by B;(X). Let
X be a weak Fano 3-fold. We remark that Ba(X) > 2 because X is a weak
Fano which is not a Fano 3-fold.

Fano 3-folds with By > 2 are classified by Mori and Mukai (cf. {M-M 1],
[M-M 2]). The classification of Fano 3-folds with By = 2 is useful for the
classification of weakened Fano 3-folds with By = 2.

Example 1.2. Let F = Fg be a smooth quadric surface in P3, H a hy-
perplane in P2 and ' a non-singular curve of bi-degree (2,4) on F which
is a hyperelliptic curve of degree 6 and genus 3. Let ¢: X — P? be the
blow-up of P3 along I, E the strict transform of F, f; a curve of bi-degree
(1,0) on E, f2 a curve of bi-degree (0,1) on E, and D the exceptional
divisor of 3. We have that v*F = E 4+ D. Then X is a weak Fano 3-
fold with By(X) which is not a Fano 3-fold. In fact (-Kx - fi) = 0 and
(-Kx - fa) = 2, thus —-Kx |E is a divisor of bi-degree (2,0) on E, and
(-Kx)3 = (—Kps)® — 2{(—Kps - T) — g(T') + 1} = 20. Thus it is enough
to show that (—=Kx - Z) > 0 for every irreducible and reduced curve Z on
X with Z ¢ E. Case in which %(Z) is a point, Z is a exceptional line and
(D-Z)=-1. Hence (—Kx - Z) = (*(—Kps) — D - Z) = 1. Case in which
¥(Z) is not a point, Since ~Kx ~ 4*H — D ~q 4yY*H — (2y*H — E) =
2y*H + E, Hence (~Kx - Z) > (2¢*H - Z) = (2H - ¢4 Z) > 0

Let € < P3 x (A,0) be a family of curves of genus 3 and degree 6 which
is a deformation of T to non-hyperelliptic curves. Let 2~ — P3 x A be the
blow-up along %. Then 27 is a Fano 3-fold of No.12 in Table 2 of [M-M 1]
for any s € (A,0)\ {0}. Thus X is a weakened Fano 3-fold.



Example 1.3. Let Q be a smooth quadric 3-fold, F' ¢ Fy a smooth quadric
surface in @, I' be a non-singular curve on F of bi-degree (1,3) which is a
curve of genus 0 and degree 4. Let ¢: X — Q be the blow-up of @ along I,
FE the strict transform of F, f; a curve of bi-degree (1,0) on E, f3 a curve
of bi-degree (0,1) on E. Then X is a weak Fano 3-fold with By(X) which is
not a Fano 3-fold. We can show it by the similar way as above. We remark
that (*f{x)3 = 28, (“'»Kx . fl) =0, and (—Kx . f'z) = 2.

X is a weakened Fano 3-fold. For example, let z,y a homogeneous coor-
dinate on P!, 2g, z1, 2, 23, 24 & homogeneous coordinate on P4, and (A, 0)
a germ of the 1-dimensional disk with parameter t, we assume that ' is
given by a embedding P! into P* defined by z*, z3y, 0, zy?, y* and Q is
a smooth quadric 3-fold containing I" defined by zpz4 + 25 — 2123 = 0. We
consider a family of embeddings of P! into P* over (A, 0) defined by z4, 3y,
tr2y?, zy?, yt, € — P4 x (A, 0), which is a family of curves of genus 0 and
degree 4, and is a deformation of I' to a curve not contained in any hyper-
plane in P*. Let 2 — P* x (A,0) be a deformation of @ in P* defined by
2924 + 28 — (L +¢?)z1 23 = 0. We consider the family of embeddings ¥ < 2.
Let 2 — 2 be the blow-up of .2 along ¥. Then 2 is a Fano 3-fold of
No.21 in Table 2 of [M-M 1] for any s € (A,0)\ {0}. Thus X is a weakened
Fano 3-fold.

Example 1.4. Let M = Op2(2) ® QL2(2), 7z: Z = P(M) - P? =Y the
P2-bundle over P? associated to M, and Lz the tautological line bundle
(that is, Lz is Op2(1) on each fiber, and (7z).Lz = M). We have that
Kz = —3L. By the trivial surjection M — Q]{,z(2), we have the following
commutative diagram,

Wi=Ph () . Z

Let Ly be the tautological line bundle of 7y : W — P2, Then Ly = Lz |w-
Let I C P? be aline Hz = (7z)4l, and Hy = (7w )«l. Since W is a divisor of
P2 x P? of bi-degree (1,1), we may assume that Ty is the second projection.
We remark that the restriction Pic (P? x P?) — Pic(W) is an isomorphism.
Since (mw )«Lw = Q4(2), we have that Ky = ~2Hyw + (~2Lw) which is
bi-degree (—2, —2). Thus Ly is bi-degree (1,0) and is base-point free. On
the other hand, Ky = Kz+W |w= ~3Lz+W |w= —2Hz—~2Lz |w. Since
the restriction Pic (Z) — Pic (W) is isomorphism, W €| Ly — 2Hz |. Thus
HY(Z,0z(Lz —W)) = HY(Z,Oz(—2Hz)). By the Leray spectral sequence,
we have the exact sequence:

0 — HY(P?, Op2(-2)) = HY(Z, O(—2Hz)) = R} (72).0z ® Op2(-2).

Hence HY(Z,0z(Lz~W)) = 0. Thus | Lz | is base-point free, because W +
2Hz €| Lz |. Moreover we have that (Lz)* = 6 by easy calculations. We
remark that the birational contraction ¢z: Z — Z defined by L is primitive
(i.e. p(Z/Z) = 1), the exceptional locus is W, and ¢y := ¢z {w: W — P2 is
the first projection. Let X €| 2Lz | be a general member, then X is a weak
Fano 3-fold which is not a Fano 3-fold because (—Kx)* = 2(Lz)* = 12, and
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we may assume that E := X NW is the pull back of a smooth quadric curve
C in P? by ¢w. By the exact sequence

0 = Oc = Qp2(2) |~ Oc — 0,

we have that E 2 P* x P!, Let ¢ := ¢z |x: X = ¢2(X) =: X. Then
(-K3-C)=2.

X is a weakened Fano 3-fold with By(X) = 2. In fact, let .# be a
defomation of locally free sheaves of rank 3 over (A, 0) from Opz2(2) ® Q32(2)
to Op2(1) @ Opz(1) © Op2(1). Let Z := P(#) — P? x (A,0), L be the
tautological line bundle. 2 €| 2. %% | is a deformation of X to 2; C P? x P?
which is a divisor of bi-degree (2,2).

Similarly, we have that a member X €| Lz | is a weakened Fano 3-fold
with (~Kx)? = 48 which will deform to a divisor of P? x P? of bi-degree
(1,1).

Theorem 1.5. Let X be a weakened Fano 3-fold with By(X) = 2. Then
(-Kx)3 =12,20,28 or 48. Moreover,

(1) if (-Kx)® =12 or 48, X is a conic bundle over P2.
(2) if (~Kx)® =20, X is isomorphic to Example (1.2).
(3) if (—Kx)3 =28, X is isomorphic to Example (1.3).

One of the key points of the classification of weakened Fano 3-folds with
By = 2 is the following theorem.

Theorem 1.6. (cf. [Pa] and [Mi]) Let X be a weak Fano 3-fold with By(X)
= 2 which is not a Fano 3-fold, ¢ac: X — Xac a multi-anti canonical model,
E the exceptional locus of Pa., and C = ¢(E).

X is a weakened Fano 3-fold if and only if ¢ |g: E — C is a P!-bundle
structure of E over C 2 P! and (-Kx,, -C) =2.

Let Z;(X) be the set of numerically equivalence class of 1-cycles on X.
Let Ni(X) = Z,(X) ®z R and NE(X) the closed convex cone in N(X)
generated by effective 1-cycles on X.

Since Ny(X) = R2, NE(X) has just two edges, corresponding to ¢q.
and the unique extremal contraction 9: X — Y. (cf. [K-M-M]) We study
possibilities of ¢ using the divisors —Kx and E.

Acknowledgement. I would like to thank Professor Yujiro Kawamata for
useful discussions, giving the author useful suggestions, and encouraging
the author during the preparation of this contents. I thank also Doctor
Hokuto Uehara and Master Masayuki Kawakita for stimulus discussions on
this paper.

Notations. (1) “~” means linearly equivalence.

(2) “~q” means Q-linearly equivalence.

(3) The P!-bundle P(Op: & Op1(n)) over P!, a Hirzebruch surface of degree
n, is denoted by F,, and the surface which is obtained by the contraction
of the negative section of F, is denoted by Fy .

(4) For a projective variety X, (-)x means the intersection number on X
and we will denote it by (+), if admissible.



2. PRELIMINARY

We devide types of ¢ into 3 cases to treat it.

Definition 2.1. Let ¢»: X — Y be an extremal contraction from a smooth
weak Fano 3-fold X.

(1) ¢ is called type R when dim(Y) = 3,
(2) v is called type C when dim(Y) = 2, and
(3) ¢ is called type D when dim(Y") = 1,

Let X be a weakened Fano 3-fold with B(X) = 2, ¢gc: X - X4 a
multi-anti canonical model, E the exceptional locus of ¢4, and C = ¢(E).
By Theorem 1.6, ¢ |g: E — C is a P'-bundle structure of E over C = P!
and (—Kx,, - C) = 2. Thus F is a Hirzebruch surface of degree n. Let f
be a reduced fiber of ¢ {g: E — C and h a section of ¢ |g: E = C with
(h?*)g = n. We have the following informations under this setting.

Lemma 2.2. Notations are as above.

(1) —Kx |g~ 2f, in particular (-Kx - f) =0 and (-Kx - h) =2,
(2) E |g~ —2h +nf, in particular (E - f) = —~2 and (E - h) = —n,
(3) (K% - E) =0,

(4) (Kx - E?) =4, and

(5) (E%) =0.

Proof. (1) is because (=Kx,_ -C) = 2. (2) is because Kx + E |[g~ Kg ~
—2h + (n — 2)f. For (3), (K% - E) = (Kx |g)% = (2f)% = 0. For (4), there
exists 2 member S of | —Kx,, | such that S NC = {p1, p2}, Sac i8 sMoOOGLh
away from {p1,p2}, (Sac,pi) is the ordinary double point for ¢ = 1,2, and
S := ¢%.Sac = Sac is a minimal resolution of S (Cf. [Mi] and [Shin]). Hence
E |s is disjoint two (—2)-curves on S. Thus (—Kx -E?) = (E |s)% = —4. (5)
is because 8 = (K2)g = (Kx + E)? - E) = (K% -E)+2(Kx - E*) +(E®%) =
8+ (E3) by (3) and (4). O

Lemma 2.3. Ifn =0, then (k) is not a point.

Proof. Let L be a divisor on X such that the complete linear system of mL
defines v for sufficiently large m. Let L ~g —aKx — bE. Then (L - f) =
2b > 0 and (L -h) = 2a + nb by Lemma 2.2 (1) and (2). If n = 0 and
(L-h) =0 then L ~g —bE. Let S €| —Kx |, we have that (L |§)5 > 0
because L is nef, but (L |s)% = (L? - (—Kx)) = —b*(Kx - E?) = —4b* < 0.
It is a contradiction. a

This lemma leads us to the following proposition.
Proposition 2.4. ¢ is not of type D.

Proof. Let L be a divisor on X such that the complete linear system of m.L
defines ¢ for sufficiently large m. If v is of type D, then dim¢(E) = 1
because (L - f) > 0. Hence L |g~ ch for some ¢ > 0 and n = 0 because
of a property of Hirzebruch surface E. Then (L -h) = (ch - h)g = 0. It
contradicts to Lemma 2.3. O
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3. THE CASE 7 Is OF TYPE C

The notations X, @gc: X = Xpe, E, Y: X 5 Y, f, h, d, n are as in
Section 1. We will show the following proposition in this section.

Proposition 3.1. If 1 is of type C, then (—Kx)3 =12 or 48.

Proof. Since p(Y) = 1, and Y is rational by Proposition 3.5 of [M-M 2],
Y =2 P2. Let L be a divisor on X such that the complete linear system of
mL defines 1 for sufficiently large m, §x = (—Kx)3, and L ~¢ —aKx —bE.
Then (L - f) = 2b> 0 and (L - h) = 2a + nb, and (L?) = (—aKx ~ bE)? =
dxa’ — 3ab?(Kx - E?) = dxa® — 12ab? by Lemma 2.2. Since (L -h —nf) =
20 —nb>0,a> "Tb. If n =0, then (L - h) = a. Hence a > 0 by Lemma 2.3.
Thus a > 0 in any case. We have an equation

(3.1) = Y2icq

Y 2;X
Using the classification of Mori and Mukai (cf. Table 2 of [M-M 1]), we have
that dx = 12 or 48 because dx is a deformation invariant.
When dx = 12, we have that a = b and @ > 2 = 3. Thusn =0, 1, or
2.
When 6x = 48, we have that 2a = b and a > 1‘2—’3 = na. Thus n = 0 or
1. O

4. THE CASE v IS OF TYPE R

The notations X, ¢gc: X = Xue, E, ¥: X = Y, f, h, d, n are as in
Section 1. We will show the following proposition first in this section.

Proposition 4.1. If ¢ is of type R, then the pair (-Kx)3, (-Ky)3) =
(20, 64) or (28,54)

Proof. Since p(Y) =1, Y is a Fano 3-fold. Let D be the exceptional locus
of 1/), 6X = (-—Kx)g, 5y = (—Ky)a, and ’l,ZJ‘(—-Ky) ~Q ——aKx — bE. Then
(¥*(=Ky) - f)=2b>0and éy = a®dx —12ab? by Lemma 2.2. Thus a # 0
because 4y > 0 and

2 a36x — Oy
4.1) b = BT
If (D |g) is 0-dimensional, then D |g~ m(h—nf) for some natural number
m and ¥*(—Ky) |g~ 2bh because dim(f) = 1. Thus D ~g F(nKx —2E)
and ¢*(—Ky) ~g 4(-nKx — 2E) by Lemma 2.2. Since (¢*(-Ky) [p)p =
0, (-nKx — 2E)? - (nKx — 2E)) = n3(Kx)? + (4n — 8n)(Kx - E?) =
—dxn3 — 16n = 0. On the other hand, we have that n # 0 by Lemma 2.3,
and that dy > 0, it is a contradiction. Thus (D |g) is 1-dimensional, and
we have that ¢/: X — Y is the blow-up of Y along the nonsingular curve
I' := ¢(D) and Y is smooth by Section 3 of {Mo]. We have that D ~q
Y*(~Ky) + Kx = —(a — 1)Kx — bE. Since (*(~Ky)? - D) =0, we have
that ((—aKx —bE)?-(—(a—1)Kx —bE)) = a*(a—-1)éx +4(—3a+1)p* =0.
Combining with (4.1), we have an equation

(4.2) 26xa® — 3bya + by = 0.



Let = = 4a, then z is an integer. Thus the equation
(4.3) dxz® — 24dyx + 320y =0

has an integral root. Since §x and dy is a deformation invariant, using the
list in Table 2 in [M-M 1], we have the following 2 possibilities:

(4.1.1) éx =20, 0y =64, and z = 8.
(4.1.2) 6x =28,0y =54,and z =6

In the following, we treat the above 2 cases in details.

The case dx = 20, §y =64, and z = 8

By (Is 1], and [Is 2], Y is isomorphic to P3. By the computation in the
above proof, we have that a = 2 and b = 2. Thus we have that

*(—Kx) ~ —2Kx ~ 2E.

Since —2Kx —2 |g~ 4h+(4—2n) f is a nef divisor, thus we have that n = 0,
1, or 2. For m > 0, Since my*(—Ky) — E — Kx ~q (m+ 3)¢*(—Ky) is nef
and big, HY(X, O(my*(—Ky) — E)) =0 by Kawa.mata—Vlehweg vanishing
theorem. Thus we may assume that F': = ¢(E) is normal. Since F,, ¢ P3
for n > 0, we have that E 2 Fy or Fp . Since D ~ —Kx —2F, as in Section
4 of [M-M 2] using Lemma 2.2, we have that (D? - (-Kx)) = 29(I') —2 = 4.
Thus ¢(I') = 3. Moreover we have that (—Ky - I') = 24 by the formula
§x = by —2{(—Ky -T') — g(T') + 1}. Thus we have that (H -I') = 6 for a
hyperplane H in P3
FTcFcP

By IIL. Ex 5.4, IV. Remark 6.4.1, and V. Ex 2.9 of [Ha|, we have that n =0
and I’ is a non-singular curve of bi-degree (2.4) or (4.2) on F 2 Fy.

The case dx == 28, 0y =54, and z =6

By (Is 1], and [Is 2|, Y is isomorphic to @ C P* a non-singular quadric
3-fold. By the computation in the above proof, we have that a = % and
b = —g— Thus we have that

P (—Kx) ~ Q~§KX~~E

Since —%Kx - %E’ is a nef Q-divisor, thus we have that n = 0, 1, or 2. For
m > 0, since mw*( Ky)— E — Kx ~q (m + 2)y"(—Ky) is nef and big,
HY(X,O(my*(—Ky) — E)) = 0 by Kawamata-Viehweg vanishing theorem.
Thus we may assume that F': = (&) is normal and we have that E = Fg,
Fi, or Fag. If n = 1, using Lemma 2.2, (y*(~Ky) - f) = (-3 ~3E-h) =

3+ % = % is not a integer. Hence it is a contradiction and we have that
E = F =~ Fjor Fap. Let H be a hyperplane in P4 and Hg the complete
intersection of Q and H. We have that F' €| Hp |. By the same calculation

in the first case we have that g(I') =0 and (Hg - I') = 4.
FrcFcQcP
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By III. Ex 5.4, IV. Remark 6.4.1, and V. Ex 2.9 of [Ha|, we have that n =0
and T is a non-singular curve of bi-degree (1.3) or (3.1) on F' = Fy.
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