ON THE SEMI-CONTINUITY OF MINIMAL LOG DISCREPANCIES

FLORIN AMBRO*

ABSTRACT. We show that the minimal log discrepancy function of 3-folds and toric varieties is lower semi-continuous. This semicontinuity property strenghtens the sharp upper bound of minimal log discrepancies conjectured by V.V. Shokurov.

0. INTRODUCTION

The Minimal Model Program predicts that an algebraic variety can be transformed into a minimal model after a finite sequence of surgery operations (divisorial contractions and flips). Singularities appear naturally in the process, and it is expected that varieties with *only log canonical singularites* form the largest class in which the Minimal Model Program works.

To any valuation centered on a a variety X with only log canonical singularities, one can associate a non-negative rational number, called *log discrepancy*. The *minimal log discrepancy* of X in a given point is the minimum of log discrepancies of all valuations centered at that point [Sh88]. For instance, the minimal log discrepancy a(x; X) of a variety X in a nonsingular point $x \in X$ coincides with the log discrepancy of the exceptional locus of the blow-up centered at x, and equals the codimension of x.

Discrepancies have been used for instance to obtain effective bounds for the generation of adjoint line bundles (cf.[ELM95, Ka97]). They are related to the factorization of birational maps between Mori fibre spaces (cf.[Co99]), and also to the classification of divisorial contractions (cf.[Ka94, Co99, K1, K2]).

A basic property of discrepancies is that they increase after each basic step of the Minimal Model Program, thus the termination of the Minimal Model Program process in a finite number of steps seems to rely on certain spectral properties of discrepancies. V.V. Shokurov proposed the following A.C.C. Conjecture, which is proven in codimension

^{*}Research Fellow of the Japan Society for the Promotion of Sciences.

FLORIN AMBRO*

two [Al93, Sh91], and for $\Gamma = \{0\}$ in the case of toric varieties [Br97] (see Section 1 for definitions and notations):

Conjecture 0.1. [Sh88] If $\Gamma \subset [0,1]$ is a subset satisfying the descending chain condition, then the set

 $A(\Gamma, n) := \{a(\eta; B); (X, B) \text{ log variety}, \operatorname{codim}(\eta, X) = n, b_j \in \Gamma \ \forall j\}$

satisfies the ascending chain condition.

An equivalent statement is that $A(\Gamma, n)$ is bounded from above and has no accumulation points from below. The following conjecture, proven up to codimension three [Mrk96, Ka93] based on the classification of terminal 3-fold singularities [Rd80, Mr85], proposes a sharp upper bound:

Conjecture 0.2. [Sh88] Let (X, B) be a log variety and let $\eta \in X$ be a Grothendieck point. Then the following inequality holds:

 $a(\eta; B) \leq \operatorname{codim} \eta.$

Moreover, X is nonsingular in η if $a(\eta; B) > \operatorname{codim} \eta - 1$.

Our goal is to strengthen the first part of Conjecture 0.2:

Main Theorem 1. Let (X, B) be a log variety, and let x be a closed point on a curve C in X. Assume one of the following extra assumptions is satisfied:

a) dim $X \leq 3$, or

b) X is a torus embedding and B is invariant under the torus action. Then $a(x; B) \leq a(\eta_C; B) + 1$.

We will show that the conclusion of the Main Theorem is equivalent to the lower semi-continuity of minimal log discrepancies of the points on a given log variety. Our result does not prove any new case of Conjecture 0.2, but we hope that the lower semi-continuity is the reason behind the conjectured sharp upper bound. We remark that the somehow related upper semi-continuity of thresholds in a family of hypersurfaces has been proved by analytic methods (cf.[DK00, PS00]).

This note is based on [Am99], which we refer to for futher details.

1. Preliminary

A variety is a reduced irreducible scheme of finite type over a fixed field k, of characteristic 0. An extraction is a proper birational morphism of normal varieties. A log pair (X, B) is a normal variety X equipped with an \mathbb{R} -Weil divisor B such that K + B is \mathbb{R} -Cartier. (X, B) is called a log variety if moreover, B is effective.

DISCREPANCIES

If (X, B) is a log pair and $\mu : \tilde{X} \to X$ is an extraction, the log codiscrepancy divisor of (X, B) on \tilde{X} is the unique divisor \tilde{B} on \tilde{X} such that $\mu^*(K+B) = K_{\tilde{X}} + \tilde{B}$ and $\tilde{B} = \mu^{-1}B$ on $\tilde{X} \setminus Exc(\mu)$. The identity $\tilde{B} = \sum_{E \subset \tilde{X}} (1-a(E; X, B))E$ associates to each prime divisor E of \tilde{X} a real number a(E; X, B), called the log discrepancy of E with respect to (X, B). The invariant a(E; X, B) depends only on the valuation with center $c_X(E) = \mu(E)$ defined by E on the field of rational functions of X. For simplicity, we may write a(E; B) for a(E; X, B).

Definition 1.1. [Sh88] The minimal log discrepancy of a log pair (X, B) at a proper Grothendieck point $\eta \in X$ is defined as

$$a(\eta; X, B) = \inf_{c_X(E)=\eta} a(E; X, B),$$

where the infimum is taken after all prime divisors on extractions of X having η as a center on X. We set by definition $a(\eta_X; X, B) = 0$.

The log pair (X, B) has only log canonical singularities if $a(\eta; B) \ge 0$ for every proper point $\eta \in X$.

2. Lower semi-continuity

Definition 2.1. Let (X, B) be a log pair. The *mld-spectrum* of (X, B) is defined as the set $Mld(X, B) := \{a(\eta; B); \eta \in X\} \subset \{-\infty\} \cup \mathbb{R}$. We denote by a° the map $X \to Mld(X; B)$ $(x \mapsto a(x; B))$, defined on the closed points of X. The partition of X into the fibers of the map a° is called the *mld-stratification* of (X, B).

Lemma 2.2. Assume $W \subset X$ is a closed irreducible subvariety and (X, B) is a log pair with only log canonical singularities at η_W . Then there exists an open subset U of X such that $U \cap W \neq \emptyset$ and

$$a(x; B) = a(\eta_W; B) + \dim W$$

for every closed point $x \in W \cap U$.

Theorem 2.3. Given a log pair (X, B), the mld-spectrum Mld(X, B) is a finite set, and the mld-stratification is constructible, i.e. all the fibers of the map a^o are constructible sets.

Proposition 2.4. For a log variety (X, B), the following statements are equivalent:

- (1) The function a° is lower semi-continuous. That is, every closed point $x \in X$ has a neighborhood $x \in U \subseteq X$ such that $a(x; B) = \inf_{x' \in U} a(x'; B)$.
- (2) $a(x; B) \leq a(\eta_C; B) + 1$ for every closed point x on a curve C in X.

FLORIN AMBRO*

Proof. Assume (2) holds, and let $x \in X$ be a closed point. By Theorem 2.3, we may shrink X such that $x \in \overline{C}$ for every irreducible component C of the fibers of the map a^{o} . For $x' \in X$, there exists a C such that $x' \in C$. Since $x \in \overline{C}$, we infer that $a(x; B) \leq a(\eta_{C}; B) + \dim \eta_{C} = a(x'; B)$.

Assume (1) holds. Let U_x be a neighborhood of x such that $a(x; B) \leq a(x'; B)$ for all $x' \in U_x$. Then $U_x \cap \overline{\xi} \subset \overline{\xi}$ is an open dense subset. From Lemma 2.2, there exists some $x' \in U_x \cap \overline{\xi}$ such that $a(x'; B) = a(\xi; B) + \dim \xi$. Therefore $a(x; B) \leq a(\xi; B) + \dim \xi$. \Box

Proof of the Main Theorem. (a) If X is a curve or surface, the desired inequality is easily checked, so let us assume X is a 3-fold. We may assume a(x; B) > 1, thus (X, B) has only log canonical singularities.

Assume first $a(\eta_C; B) \leq 1$. From the Log Minimal Model Program (cf. [Ka92]), there exists a crepant extraction $\mu : (\tilde{X}, \tilde{B}) \to (X, B)$ such that \tilde{B} is effective and there exists a prime divisor E on \tilde{X} with $\mu(E) = C$ and $a(\eta_E; \tilde{B}) = a(\eta_C; B)$. Let η be the generic point of a curve in the fiber of $\mu|_E : E \to C$ over x. Then, $a(x; B) \leq a(\eta; \tilde{B}) \leq$ $a(\eta_E; \tilde{B}) + 1$, where the latter inequality holds by the 2-dimensional case.

Assume now $a(\eta_C; B) > 1$. Then we may assume a(x; B) > 2, thus X is nonsingular at both x and η_C and $a(x; B) - (a(\eta_C; B) + 1) =$ mult_C B - mult_x $B \leq 0$.

(b) Assume $X = T_N(\Delta)$ is toric variety and $B = \sum_i (1 - a_i)B_i$ is an invariant divisor. By definition, there exists a piecewise linear form φ on $N_{\mathbb{R}}$ such that $\varphi(v_i) = a_i$ for every *i*, where $\{v_i\}$ are the primitive vectors on the rays of Δ . We may assume the log variety (X, B) has only log canonical singularities, i.e. $0 \le a_i \le 1$ for every *i*. Then we have the following formula for the minimal log discrepancies of (X, B) at the generic points of the orbits:

$$a_{\sigma} := a(\eta_{\operatorname{orb}(\sigma)}; B) = \inf\{\varphi(v); v \in \operatorname{rel} \operatorname{int}(\sigma) \cap N\}, \ \sigma \in \Delta.$$

First of all, each strata in the mld-stratification is a union of orbits of the torus action. This follows from Lemma 2.2 and the transitivity of the torus action. Then it is enough to check that $a_{\sigma} + \operatorname{codim}(\sigma) \leq a_{\tau} + \operatorname{codim}(\tau)$ if τ is a face of σ , which follows from a dimension count. \Box

Finally, we record for completeness the known first "gap" in the 3-dimensional spectrum predicted by the A.C.C. conjecture:

Proposition 2.5. Assume (X, B) is a log variety of dimension 3 and let $x \in X$ be a closed point. Then the following hold:

a) a(x; B) > 2 iff X is nonsingular at x and $a(x; B) = 3 - \text{mult}_x(B)$.

DISCREPANCIES

b) a(x; B) = 2 iff one of the following holds:

i) X is nonsingular at x and $\operatorname{mult}_{x} B = 1$.

ii) $x \notin \text{Supp}(B)$ and X has a cDV singularity at x (cf. [Rd80]).

References

- [Al93] Alexeev, V., Two two-dimensional terminations, Duke . Math. J., 69, No. 3, 527-545 (1993).
- [Am99] Ambro, F., On minimal log discrepancies, Math. Res. Lett. 6 (1999), 573-580.
- [Br97] Borisov, A.A., Minimal discrepancies of toric singularities, Manuscripta Math. 92 (1997), no. 1, 33-45.
- [Co99] Corti, A., Singularities of linear systems and 3-fold birational geometry, Warwick preprint, 1999.
- [DK00] Demailly, J-P., Kollár, J., Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, preprint 2000.
- [ELM95] Ein, L.; Lazarsfeld, R.;Maşek, V., Global generation of linear series on terminal threefolds, Internat. J. Math. 6 (1995), no. 1, 1-18.
- [K1] Kawakita, M., Divisorial contractions in dimension 3 which contract divisors to smooth points, preprint math.AG/0010207, 2000.
- [K2] Kawakita, M., Divisorial contractions in dimension three which contract divisors to compute A_1 points, preprint math.AG/0005207, 2000.
- [Ka97] Kawamata, Y., On Fujita's freeness conjecture for 3-folds and 4-folds, Math. Ann. 308 (1997), no. 3, 491-505.
- [Ka94] Kawamata, Y., Divisorial contractions to 3-dimensional terminal quotient singularities, Higher-dimensional complex varieties (Trento, 1994), 241-246, de Gruyter, Berlin, 1996.
- [Ka93] Kawamata, Y., The minimal discrepancy of a 3-fold terminal singularity, An appendix to [Sh93].
- [Ka92] Kawamata, Y., Termination of log flips for algebraic 3-folds, Internat. J. Math. 3 (1992), 653-660.
- [Mrk96] Markushevich, D., Minimal discrepancy for a terminal cDV singularity is 1, J. Math. Sci. Univ. Tokyo 3 (1996), no. 2, 445–456.
- [Mr85] Mori, S., On 3-dimensional terminal singularities, Nagoya Math. J., 98 (1985), 43-66.
- [PS00] Phong, D.H., Sturm, J., Algebraic estimates, stability of local zeta functions, and unifrom estimates for distribution functions, Ann.of Math. 152 (200), 277-329.
- [Rd80] Reid, M., Canonical 3-folds, in Géométrie algébrique Angers 1979 (A. Beauville, ed.), Sijthof & Noordhoff, 1980, 273-310.
- [Sh88] Shokurov, V.V. Problems about Fano varieties, Birational Geometry of Algebraic Varieties, Open Problems -Katata 1988, 30-32.
- [Sh91] Shokurov, V.V., A.c.c. in codimension 2, preprint 1991.
- [Sh93] Shokurov, V.V., 3-Fold log flips, Russian Acad. Sci. Izv. Math. 40:1 (1993), 95-202.

Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153, JAPAN

E-mail address: ambro@ms.u-tokyo.ac.jp