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On the moduli space of order p* automorphisms
of the p-adic open disc

By

Barry Green?)

1. Introduction

The aim of this talk is to survey and build on recent work on liftings of galois covers
of smooth curves defined over an algebraically closed field k of characteristic p,
to relative smooth galois covers of curves over a suitable valuation ring R of
characteristic 0, dominating the Witt vectors W (k). In the first five sections we
draw attention to the recent results and methods used to attack this problem.

Due to a local-global-principle for lifting galois covers of smooth curves, this prob-
lem reduces to the problem of lifting groups of automorphisms of a formal power
series ring over k to groups of automorphisms of a formal power series ring over
the valuation ring R dominating W (k). Thus we are led to the study of finite
order automorphisms of the p-adic open disc and the geometry of their fixed
points. In this context those of p-power order are crucial to this study as we show
in section four.

The local-global-principle for liftings gives necessary and sufficient conditions, wh-
ereby liftings of the inertia groups acting on the completions of the local rings at
the points of a galois cover of smooth curves over k£ to smooth galois covers of the
p-adic open disc over R, ensures a global lifting to a galois covering of smooth
relative curves over R. The completed local rings are formal power series rings
over k and R respectively, and so provide the setting for this investigation.

In the final section we present a moduli space parametrization of order p™ auto-
morphisms of of the p-adic open disc Spec R[Z] with fixed points, and discuss its
elementary properties. We also show how the Oort-Sekiguchi conjecture for galois

1) The author would like to express his thanks to Professors Sekiguchi and Suwa for their
hospitality during his visit to the Mathematics Department at Chuo University, Tokyo.
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liftings of covers of smooth curves from characteristic p to characterisitic 0 can
be interpreted in this situation and discuss Hensel’s lemma type conditions on the
parametrization which would imply this conjecture.

2. Motivating Questions

We are interested in the following situation and questions:

Situation and Notation: Let k£ be an algebraically closed field of characteristic
p> 0, and C/k be a complete, non-singular, irreducible curve of genus g. Let R
be a complete discrete valuation ring dominating the ring of Witt vectors W (k)
and having uniformizing parameter 7. We denote the quotient field of R by K,
which is assumed finite over Quot(W(k)), and the corresponding integral and
algebraic closures by R and K.

Motivating Questions: Let G be a finite subgroup of Auty(C) and suppose
C — D = C/G is a finite galois cover of smooth proper integral curves over k.

1. Global question: Is it possible to find R as above and a finite galois cover of
smooth proper integral relative curves over R, C — D = (C/G, which lifts the
given cover C — D ?

2. Local question: Let y € C and I, C Auty(O¢, = k[z]) be the associated

inertia group. Is it possible to find R as above such that the inertia group lifts to
I, C AutRR[Z]l ?

Remark. Clearly if the global question is satisfied then for each y € C, we have
I, C Aut R(@c,y = R[Z]), so the local question is satisfied for each point y € C.
It turns out that the converse of this result is also true. This non-trivial theorem
is the local-global-principle for liftings referred to in the introduction. We briefly
sketch the proof method of this result in the next section and refer the reader to
[G-M1] for details and to {Be-Me] and [H1] for alternative proofs.

Historical background:

o If (|G|,p) = 1 the answer to the global question is yes for any R, by
Grothendieck, SGA 1. .

e If |G| > 84(g—1) then the answer is no, due to a contradiction using Hurwitz
bounds. In chararacteristic p there exist curves C/k such that one can choose
G with |G| > 84(g — 1), see [Ro], but in characteristic 0 the order of the
automorphism group of a curve of genus g is at most 84(g — 1).

One remarks that if G is abelian then by Nakajima, [N], the bounds for
G C Autg(C) are the same in any characteristic and so in this case one
doesn’t expect a contradiction using bounds. So one speculates that for such
G smooth liftings may always exist, and the first case one studies is for G
cyclic. Here one knows:
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e If G is cyclic of order pe, with (e,p) = 1, the answer is yes if R contains
a primitive p-th root of unity, say (. This result is due to Oort—Sekiguchi-
Suwa, [O-S-S].

Following these results it became natural to conjecture the following generalisation
(see [S], [O1] and [02]):

Oort-Sekiguchi Conjecture: The answer to the global lifting question is positive
if G is a cyclic group.

In a number of recent papers, see for example [G-M1), [Be], [M] and [G]
necessary conditions for the solvability of the lifting problem when the p-parts
of the inertia groups aren’t cyclic are given. Concerning the conjecture one of
the main results of [G-M1] answers it positively for G-galois covers whose inertia
groups are p%e-cyclic with ¢ <2 and (e,p) = 1. More precisely one has:

Theorem [G-M1]. Let f:C — C/G := D be a G-galois cover of proper
smooth curves over k. Assume that the inertia groups are p®e-cyclic with a < 2
and (e,p) =1. Then f can be lifted over R = W (k)[()] as a G-galois cover of
smooth R-curves, where ((z) is a primitive p?-root of unity.

By the local-global-principle for liftings the crucial question is the local one, namely
that of the existence of liftings of (G-galois covers of formal power series rings
k[2]/k[z]¢ = k[t] over k to G-galois covers of the formal power series rings
R[Z]/R[Z]¢ = R[T] over R, for R and G as above. This is the condition
which ensures smoothness of the lifting of curves. In contrast, the methods used
by Oort, Sekeguchi and Suwa to attack the lifting question are global in the sense
that they use generalized Jacobians.

When trying to construct a lifting of a G-galois cover of formal power series rings
k[2]/k[z]¢ = k[t] over k to one of the formal power series rings over R, there is
a useful smoothness criterion based on a result of Kazuya Kato in [K], which we
use. In our situation suppose k[z]/k[2]¢ = k[t] and E = Quot(R[T]) are given.
Then if we can find a finite G -galois field extension F of E such that for the
integral closure of R[T], say B,

i) Quot(B/nB) = k((z)) and

ii) the different of B over R[T] equals that of k[z] over k[t],
it follows B & R[Z], with B/xB = k[z] and R[Z]/R[Z]€ = R[T] as desired.
Consequently we are led to study liftings determined by equations and compar-
ison of the generic and special differents. For p?-cyclic extensions one needs a
presentation from which one can easily read the degree of the different; this is
done via Artin-Schreier-Witt Theory in [G-M1] (see Lemma 5.1 in Section II).
The first challenge is to lift the equations as a p? -cyclic cover of the open disc,
Spec R[T], and this can be done using Sekiguchi and Suwa’s recent work “On the
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unified Kummer-Artin-Schreier- Witt theory”, [S-S1] and [S-S2|. However, in order
to cover the disc by discs (i.e ensuring that the integral closure determines a disc,
so introducing no new “genus”) one needs to minimize the degree of the generic
different. This is done in [G-M1] by developing the theory from [S-S1] in an effec-
tive way, so giving explicit equations for liftings over open discs. As a result this
gives rise to p? -order and so (taking the p-power composition) p-order automor-
phisms of the open disc which are not defined over W (k)[¢] and so are of quite
distinct nature from those appearing in [O-S-S] for p-cyclic covers. Although one
hopes to be able to study the p® and general cases in this way, at present this
appears to be technically very difficult.

We remark that for lifting order p automorphisms one can show that mod =, the
automorphisms

Z v Z(T™ 2™,

for (m,p) =1 and ¢ a primitive p-th root of unity, define the extension of k((t))
given by the Artin-Schreier equation:

2P -z =1/t

and one can use these in a way that mimics [O-S-S] in order to lift galois covers
whose p-inertia at each point is cyclic of order at most p.

3. The local-global-principle for liftings

In this section we briefly sketch how rigid analytic geometry is used to solve the
lifting problem, under the assumption that for each y € C, I, C Autk@c,y lifts
to I, C Autg[Z], for suitable R. We remark that in [G-M1] this local-global-
principle was only proved for p®e-cyclic covers, a < 2, as that was the context
we were concerned with. The method explained there is general though and one
has:

Theorem. In the situation above, given (C/k,G) with G C AutC, we can find
a smooth proper connected galois lifting (C/R,G) for suitable R dominating
W (k) if and only if for each y € C, I, C Autx(Ocy = k[z]) lifts to I, C
Aut HR[[Z]] ?

Proof sketch. Suppose f:C — D = C/G andlet D denote a smooth relative
curve over W (k)[{(2)] whose special fiber is D. Denote by D>" the generic fibre
endowed with rigid analytic structure and let r: D®*® — D be the reduction map.
Let U C D = C/G be the étale locus, and U C D", be the affinoid defined by
U =r~}(U). Then by Grothendieck, up to isomorphism one can lift in a unique
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diagram 7
V — UcCD*

I I
v -1y vcoh

where V = f~1(U) Cc C and U =V/G. The aim is to compactify the morphism
f:V — U with a morphism of discss in a G-galois way. For this one extends f
to a G-galois étale cover f' : V' —s U’ C D*® where U’ is the union of U and
suitable annuli. On the other hand, for each © € D — U, if we are able to lift

1I Spec Cjc,y — Spec (;)D,z
y: f(y)=z

in a G-galois cover of open discs, then using a prolongation lemma (see [G-M1] or
[H1]) one can glue this cover to f': V' — U’ along the morphisms induced on
the annuli &4’ — . In this we we obtain a global lifting of the cover.

Hence the global lifting question reduces to the local one, i.e. whether over the open
disc Spec R[T], we have open discs, and this investigation reduces to studying
the geometry of automorphisms of open discs.

4. Finite order automorphisms of the p-adic open disc

As in the previous sections the rings of formal power series over & and R are
denoted by k[z] and R[Z], respectively. Note that R[Z] is a two dimensional
local ring with maximal ideal generated by Z and m, and its height one prime
ideals are all principal. If o € Autg(R[Z]) then we can write

o(2)=ao+a1Z +asZ® +asZ% + - -,

where a9 € TR and a; € R*. We denote the identity morphism on R[Z] (re-
spectively k[z]) by 1. From the context this will not lead to confusion. Observe
that reducing the coefficients of ¢ modulo (7), we obtain a canonical surjective
group homomorphism

U : Autg(R[Z]) — Autg(k[2]).
In view of the discussion in the previous sections we are interested in the following

questions:

Lifting Questions: 1. If & is a k -automorphism of k[z] of finite order, when
can we find a lifting of o to an R -automorphism of R[Z] of the the same order,
i.e. an R-automorphism o of R[Z] of the the same order such that ¥(o) =7 7
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More generally if G is a finite subgroup of Autg(k[z]), when can one find a
section of G in Autgr(R[Z]) with respect to ¥?

2. If G is a finite group, give criteria depending on the structure of the group,
which need to be satisfied in order that a realisation G C Autg(k[z]) can be lifted
to G C Autgr(R[Z]), for some complete discrete valuation ring R dominating
W(k)?

The first question is the one we are concerned with here, For the others we refer
the reader to [G-M1], [G-M2], [Be}, [M] and [G].

4.1. Automorphisms and their fixed points

In order to investigate the questions mentioned above it is useful to study data
associated with the fixed points determined by the action of ¢ € Autgr(R[Z]) on
the open disc D = Spec R[Z].

s .
Given o(Z) = }_ a;Z2* € Autg(R[Z]), it induces a Spec R automorphism of
1=0

the open disc D = Spec R[Z], which we call &. For rational points (Z —a) € D,
o
(a € TR), one has 6((Z — a)) = (Z — &), where & = Y_ a;a’. Such a point

is a fixed point if and only if @ = & More generally PFEO D is a fixed point
of ¢ if and only if P = (w,Z), (x), (0), or a height one prime ideal of R[Z]
and P D (0(Z) — Z). When we speak of fixed points we shall always mean the
points this last set defines in the geometric generic fibre and denote this set by
F,. These points correspond to the zeros of the series ¢(Z) — Z in R, and to
simplify our discussion we shall enlarge R suitably so that they are R -rational.
Using the Weierstrass Preparation Theorem they can be described as follows.

Let m, = inf;>0{% : v(a;) < v(a;) for all i}, then
0(Z) — Z = am, fm,(Z)u(2),

where u(Z) —1 € (w,Z) and fn, (Z) is a unitary distinguished polynomial of

degree my, sothat |F,| = m,. Note that if m, # 0, so that for some a, v(a) > 0

we have (Z —a) € F,, we can centre o at Z = a (replace the parameter Z by
o0

Z — a) and so obtain o(Z) = 3 b;Z*, for suitable b; with v(b;) = 0. If ¢ has

=1
finite order, say o(¢) = n, then { = b; is an n-th root of unity which must be

primitive by 4.2.1 below, so we can express o by
o(Z2)=CA+a1Z+a2%+--),

where the coefficients a; are distinct from those used previously. We next re-
call a number of elementary facts on finite order automorphisms needed for our
discussion. The first five can be found in [G-M1} and for the sixth we give a proof.
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4.2. Elementary Facts: Suppose that o € Autr(R[Z]) has finite order, say
o(c) =n. Then:

4.2.1. If 0(Z) = Zmod Z? then o0 =1, ie. n=1.
4.2.2. If ¥(o) # 1 then o can be represented as

o(Z)=CZA+arZ +axZ* +---),

where ( Is a primitive n -th root of 1.

4.2.3. If (n,p) = 1, then o is linearizable and consequently 7 has exactly one
fixed point.

We first note that by [G-M1], p. 242, o has a fixed point and so can be represented
by 0(Z) = (Z(1+a1Z+azZ%+---), where ( is a primitive n-th root of 1. Now set
Z'=Z+4+(o(Z)+ -+ (D™ 1(Z). Then o(Z') =(Z', Z' =nZmodZ?
and as n € R*, we have R[Z] = R[Z'].

Note that this argument works over positive characteristic fields with characteristic
prime to n as well, provided they contain the required roots of unity.

4.2.4. If o(o) =p" and ¥(o) # 1, then o isn’t linearizable.
If it were then ¢(Z) = (Z, which implies ¥(¢) = 1, a contradiction.

4.2.5. If & € Autg(k[z]) with o(¢) = n and (n,p) = 1 then there exists o €
Autg(R[Z]) with ¥(¢) =7 and o(o) =n.

This follows directly from 4.2.3 above.

4.2.6. If 7 € Autg(k[z]) with o(6) =n =ep”, (e,p) =1, and if we are able to
lift automorphisms of k[[z] of order p”, then there exists o € Autg(R[Z]) with
¥(0) =7 and o(c) =n.

Let @ € Auty(k[z]) with o(@) =n = ep”, (e,p) =1, be given and set 7 =g" .
Then o(7) = e and so for some primitive e-th root of 1, say ¥, and parameter
2 we have T(2') = F2' and k[2'] = k[z]. U we let t = 2/7(2')---7°1(2) =
(7e=1/22)° then k[2/]™ = k[t]. For convenience we replace F(°~1/2;' by
2" and note that k[z"] = k[z']. Now &lipg has order p” and power series
representation

g(t) =t(l+ait+--).

!

Rewriting in terms of z” we have

72" =2""(1+a"+ )

and so
5"(2") — Z"(l + Elz”e 4. .)l/e_

Now let o(T) = (T(1 + a1T + ---) be an order p” automorphism lifting & to
R[T], where { is a suitable primitive p”-th root of 1. Next we consider the
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tame extension E of F = Quot(R[Z]) defined by Z"”° = T. Then the integral
closure of R[T] in E is R[Z"] and as o(Z"%) = (Z"°(1 + a12"° + ), it
follows o extends to an order m = ep” automorphism of R[Z"] defined by
o(2") = ¢YeZ"(1 4 a12"® + - --)V/¢. Furthermore with respect to the morphism
¥ : Autg(R[Z"]) — Autg(k[z"]), we have ¥(c) =7 as desired.

Hence the first lifting question reduces to:

Given T € Autg(k[z]) with o(¢) = p", find o € Autg(R[Z]) with V(o) =7
and o(g) =p".

Note the by the local-global-principle for liftings a positive answer to this question
would imply the Qort-Sekiguchi Conjecture. As mentioned in the introduction we
have:

Theorem 4.3. Let & € Autk(k[z]) with o(¢) = p", with r = 1,2. Then there
exists o € Autg(R[Z]) with ¥(o) =7 and o(c) =p".

The case r =1 is treated in [O-S-§], and r = 1,2 in [G-M1].

5. Comparison of the different: a local criterion for good reduction

In this section we draw attention to the smoothness criterion mentioned in section
two, which is useful when trying to construct a lifting of a G-galois cover of formal
power series rings k[z]/k[z]¢ = k[t] over k to one of the formal power series
rings over K. At present this is the only criterion we know of for attacking the
lifting question, which has been used successfully. We include a brief outline here,
but refer the reader to [G-M1] for details.

Let o be an automorphism of R[Z] of finite order n, which we assume doesn’t
induce the identity residually modw, so that ¢ has at least one fixed point.
Enlarging R we can assume that 0 is such a fixed point and that ¢(Z) =(Z(1+
a1Z + -+-), where ( is a primitive n-th root of unity.

51. Let T = Zo(Z)---0""YZ) = €Z™(1 + ---) where ¢ = (—1)*~1), Then
R[Z]¢*) = R[T].

From [Bo], chap. 7, corollary, p. 40, one knows that R[Z] is a finite free R[T]-
module of rank n, generated by 1,Z,2Z?% ..., Z™~ 1. On the other hand by a di-
mension consideration it follows that Fr(R[Z[¢*)) = Fr(R[T]). As R[Z]‘" is
integral over R[T'] which is integrally closed, the claim follows.

5.2. Let d,, resp. d,, be the degrees of the generic, resp. special differents for
the extension R[Z]/R[T]. Then d, = d,.
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Let f(X) = ][ (X —0*(Z)) be the irreducible polynomial of Z over R[T].
0<i<n

Then f'(Z) = p(Z)u(Z) where p(Z) is a distinguished polynomial and d, =

deg; p(Z). For the special different we have

d = v, ([] (z— 7(2)))

2

and so the result follows by the Weierstrass Preparation Theorem.

Note that the same equality for the differents clearly holds for towers of such cyclic
extensions. For the higher p-power oder cyclic lifting problem, however, the tower
has to be built in such a way that in characteristic 0, the composite extension is
galois, i.e. cyclic of the same p-power oder. Hence for this lifting problem we need:

i) equality of the differents to guarantee smoothness, and

ii) for the extension determining the cover to be galois.

For 5.2 there is a converse in the germ of curves context following from a formula
given by Kato [K], section 5, which we have used successfully to satisfy i) above,
when attacking the lifting problem. Adapting Kato’s result to our situation we
have:

5.3. Local criterion for good reduction. Let A = R[T] and B be a finite A-
module which is a normal integral local ring, and set Agx = AQg K, resp. Bg =
B®gr K. We assume that B/wB = By is reduced and setting Aq := A/mA, that
the extension By/Ag is generically étale. Let By be the integral closure of By
and define §x(B) = dimgBo/Bo. Let dn, resp. d, be the degrees of the generic
resp. special differents, i.e. the degrees of the differents for the extensions By /Ax
resp. Bo/Ao. Then d, = dy + 28;(B) and moreover if d, = d, it follows that
6x(B) =0 and B = R[Z].

Observation: Note that in order to apply 5.3 in our context, given k[z]/k[z]¢ =
k[t] and A = R[T] we need to construct B such that Quot(Bj) = k((2)) and
dy = d,.

6. Parametrizing order p" automorphisms of R[Z]

In this section we describe a moduli space parametrization of order p" auto-
morphisms of of the p-adic open disc Spec R[Z] with fixed points, and discuss
its elementary properties. We show how the Oort-Sekiquchi conjecture can be in-
terpreted in this situation and discuss Hensel’s lemma type conditions on the
parametrization which would imply this conjecture. This work builds on results in
[G-M2] where order p automorphisms with fixed points were considered.

Without loss of generality we work with ¢ = p™ automorphisms of R[Z], which
have 0 as a fixed point and describe a parametrization of these. This will be done
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by fixing a given primitive g-th root of unity (, and studying the relationship
between the coefficients in

o(Z)=CZ(1+a1Z+ - +anZ™+ )

under iteration of o (composition with itself). We set R := Z,[(] and view the
a; as indeterminates, so that o(Z) € Rla;};[Z]. We express the g-th iterate as

oW Z)=Z(A+ E1Z+ -+ EnZ™ + ),

where E,, € Zy[(][ai]i. Let I, denote the ideal of R[ay,as,...,a,] generated
by (Ej)i<j<m.

Theorem 6.1. Using the notations above we have:

i) The E; are homogenous polynomials of degree i in the a; with coefficients
in R, where for each j, a; is given the weight j.

i) By=...=FE, ;=0

iii) Eq, Eq41, ..., E2q—1 € Rlai, a2,...,a4], and more generally for each positive
integer m,
qu, qu+1, ey E(m+l)q—l S R[al, azy. .., amq].

iv) The coefficent of amq in Enmgq Is q.

v) Let Jmq be the ideal of Rla,,...,as] generated by (Ejq)i<j<m. Then for
mq <1 < (m+1)q one has E; € Jpng ® K =: KJpy, where K = Quot(R).

vi) For each m € N we denote the image of E,, in k[(a;);] by Env. Then
Ewv=0, for 1 <i<gq, Eyw€klay,...,aq], for ¢+ 1 <1 < 2q, and more
generally E;v € klay,...,apn_1)q], for (m —1)g+1 <1i<mgq.

Proof. i) Introducing a new variable X and replacing Z by XZ in o each
a; is replaced by a;X*. After iteration one obtains E,,((a:X%);) = X™E,,((a:):),
which shows that after assigning weights the polynomials are homogenous. Note
that from this it follows that E,, € R[ay,...,a,] and the coefficient of a,, in
F,, is constant.

ii) Let B = Rlay, ..., aq), then by truncation o induces an endomorphism & on
BZ®BZ?®---®BZ9. The characteristic polynomialis [] (X —¢*) = X1,
1<i<q

and so by the Cayley-Hamilton Theorem &7 = 1, the identity. This is equivalent
to ii).

We shall need to first prove v) in order to show iii):

v) We prove v) by induction, assuming it proved for 1 < m/ < m and mq < I’ < L.

One has
o(Z)=¢Z1+a1Z + -+ a;Z") mod Z'*?

10
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and by the inductive hypothesis
c9(2) = Z(1 + E1Z"Y mod (K Jpmg, Z'72)
Using the identity o o ¢9(Z) = 0?0 0(Z) one obtains
¢HE Z™ = CE ZM Y mod (K Jigq, Z2472).

Since p f{ the result follows.

iii) This assertion now follows from the fact that E,q € Rlay,...,amq and
Klay,...,amg] N R[a1,...,8(mt1)q) = Rla1,...,@mq).

iv) From i) we know that the coefficient of a,,q in Epng is a constant. Let I be
the ideal (ay,...,@mq—1,2™9"?) in R[(a;):][Z]- Then

0(Z2)=C¢Z(1+ amgZ™7) mod I,
and recurrently
0U2) =¢1Z(1 + gqamqZ™?) mod I
=71+ EngZ™) mod ]

finishing the proof.

vi) The only assertions which don’t follow directly from the assertions already
proved are that Equv =0 and Engv € klay,...,a(m_1)q] for m > 1. This follows
from the commutativity of ¢ and o7 in kz]. Namely one has:

09(2) = z(1 + Epquz™1 + qu+1vz’"q+1) mod (Jmq—17, 2™mat3)
and

o(z) =z(1+a1z+---+ amq+1zmq+1) mod (Img—1v, 2™7+3).
Therefore

c0d(z2) =z(1+a1z+ + amgp12™")
(14 Epqvz™! + qu+1vzmq+l) mod (Irpg—1v, PAR AR
gloag(z) =2(1+a1z+- -+ amq+1zmQ+1 + alquzmq“)
(1 + Epqvz™ + Epgi1v2™ ) mod (Ing—1v, 2™9%3)
so that a1Emqv = 0mod (I;mg-1v) which implies the result.

6.2. Remark: For takling the lifting problem we note that if

a(z) =z(1+ a1z + ) € Autgk[z]

11
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and o(d) = g, then by v) above, provided we can find a lifting
0(Z2)=(Z(1+a1Z+ - +anZ™+---) € AutrR[Z]

such that qu((a,-)i) =0 for m > 1, we will have Er((a,-)i) =0 for each r > 1,
so o(c) =gq.

It is tempting to try to apply the Generalized Hensel’s Lemma to this ques-
tion (see [Gr]). By the remark above it suffices to apply this to the equations
to qu((ai)g) = 0 for each m > 1, and here the condition becomes:

For each m > 1 there exists constants N, > 1, ¢, > 1 and s, > 0 such that
if @ = (a1,az,...,amq) € R™ satisfies Eq(a) = Omod 7™V then there exists
b= (b1,b2,-..,bmq) With Ep.(a) =0 and b= amodnl¥m/cml=sm

For the lifting problem we need to find constants such that
[Nm/cm)} = sm > 1.

Progress in this direction, even for special families of automorphisms where re-
strictions are placed on the equations E; ((a;);), would be very interesting.

6.3. The moduli space of order ¢ automorphisms of Spec R[Z]

In our final paragraph we show how to associate an R-model with the ide-
als I,, which parametrizes the order ¢ automorphisms of Spec R[Z] with 0
a fixed point. Computations show that in general there is 7 -torsion in the rings
Rlai,...,a,]/Ln (For example for ¢ = p = 3 one checks that E3/\ € Ra;, as,a3],
see [G-M2] p. 298), so in order to find a flat R-model we consider Z,, := I, K N
Rlay,...,a,] and define

Xm = Spec Rlay, ..., am)/Im.

The inclusion of ideals Z,, R[a1, a2, ..., @¢m+1] C Tm41 induces an R-homomorphism

R[G,l, as, ,am]/Im — R[al, ag, .,.,am+1]/Zm+1

so that one can define:

6.3.1. Definition. We define the “moduli space of order ¢ automorphisms with
fized points” of the open disc Spec R[Z] to be the R-scheme X := l‘in X, where

the projective limit is compatible with the ideal inclusions I, C Zpq;.

6.3.2 Concluding Remark: Note that X (k) corresponds to automorphisms of
order g (or the identity) of k[z], and for R'/R a finite discrete valuation ring

179



13

On the moduli space of order p* automorphisms of the p-adic open disc

X(R') corresponds bijectively to automorphisms of order ¢ of R'[Z] such that
o(Z)=CZ(1+a1Z +--).

Moreover, in this context the Oort-Sekiguchi conjecture corresponds to ex-
tending a k-section of X to an R-section as in the diagram:

Speck — X
L7
Spec R
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