
Kinesaki talk, X 200e

  Diangle group$

by Gunther Cornelissen

'I'his i$ a repeTt eR joiRt wcrk with Fumiharu Kato and Aristides Kolltoge-

orgis which is to appear iR Math. ARlt., DgZ ig.Ig07!se0208eeOO!83.

,

Diangle grggps should make yenthixk gf triangje greups. Let r g PSL(2, R)
be a discrete cony-compact group with presentation

r tw Åqdv1,•••,ag,fi1,•••,Sg,71,•••,7k l ll[exi, Pil = 1, ll 72d -- 1, 7; j mm 1År.

Here, 7i are elliptic elemeRts, the ether eke$ beiRg hyperbelic. Sgch a group

acts by fractional transformations on the upper half plane H, and one can
compute the hyperbolic volume of a fundamental domain

            p(r) = vci(rxH) == 2?T(2g - 2+ t/.ll,(i ' di)

If S is a Riemann surface of genus g ) 2, its universal covering space is H,
and S is isomorphic to a space of the form rsXH for such a group rs without
elliptic elemeRts (its fuRdameRtal grogp). If Ns deRgges the Bcrmalizer ef rs

in PSL(2, R), then the automorphism group ef S is isomorphic to 2VsWs,

so we have

          IAut(s)l - lii\gl - ,"((IliZ)) == 4rr,((9.-.)') s s4(g - i),

the latter since one can estimate that pa(r) ) ft for any such group r
(in particular for r = Ns). This bound is known as Hurwitz's bound,
and in order to maximize IAut(S)l, it now seems reasonable to minimize
pa(Ns), so g(NsXH) aRd k. As it turRs eut that k 2 3 always holds, one
aTrives at triangie groups, which are defined te be grellps r as above with
(g :O, k == 3) as signature. By fixinga free normal subgroup rs of r, they
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correspoltd to coverings ef Pi ramified above three points with ramMcation

indices (mi,m2,m3) given by rsXH - rXH = Pi. A favourite example
of such a triangle group is the fundamental group of the modular curve
X(7) of genus 3, also known as Klein's quartic, which has 84(3 - l) xe 168

agtomcrphisms. The appetizer fer this talk i$ tkat, altbollgk k -År 3 iR
characteristic zero, diangle groups exist in positive characteristie (i.e.,
signature (g = O,k :2) groups).

"

We will review a few known facts in the fo11owing table. Let k be an al-
gebraically closed field. In the table, bounds on IAut(X)l for a projective
curve X over k of genus g 2 2 will be given in terms of the data in the side

b&rs.

char(k)=O 84(g-1)
(HURWITZ)

Å~Å~

Å~Å~

12(g-1)
(HERRLICH'80)

char(k)=pÅrg !6gÅÄlexc.
(STicsTExeTK'73)

84g(g--l)
(S.NAKAjlMA'87)

??
??

Let us explain the ingredients of this table. For a curve X over a field k of
positive characteristic p År O, one defines the p-rank of X to be

7 = dimF,Jac(X)lp].

It is always true that 7 g g, and if equality holds, one says that X is or-
dinary (which is a Zariski dense property in the moduli space of all curves

over k). For a general curve X, there is the bollnd of Stichtenoth - where
" +l exc." meaRs that there i$ cke exceptiok te the bcgttd (a Fermat cxrve)

- but it turns out that curves with many automorphisms tend to have alow
p-rank. This is already refiected in Nakajima's bound, which is quadratic in

the genus. However, the main observation is that there is no known family
{Xi},C•'.",i ofcuryes ofstrictiy increasing geRus g(Xi+!) År g(X" whgse Rum-

ber of automerphismas IAut(Xi)i attains a guadratic polynomial in g(Xi).
Rather, only such families are known that attain a third degree bound in
  g(Xi)'

,
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The proofs ef Stichtenoth and Nakajima use the generalizatioll of Hurwitz's

formula connecting the genera of X and Aut(X)XX via the ramification
divisor, to which, in positive characteristic, also the higher groups in the
ramification filtratiott contribute. Thus, their proofs have a different fiavour

than the one for Riemann surfaces mentioned above using hyperbolic vol-
=mes, which is mcre aRalytic. Te dg thi$ kiRd ef amalytical preof gver 6ther

fields, one need rigid analysis. Although over a non-archimedean valued
field k (wkh residue class field k), cempact rigid-analytic aRd projective al-

gebraic curves can still be identified, the anaiogue of the dualism to discrete

group theory is of quite a different nature, as not all curves admit the same
universal topo}ogical covering space (e.g., curves having good reductioR are

analytically simply connected). But Mumford has shown that curves whose
stable redgctioB is split mgltiplicative (i.e., a uxieR Qf ratioxal curves inter-

secting in k-rational points) are isomorphic to an analytic space of the form
rX(Pk - L:), where r is a discentinuous grgup in PGL(2, k) wkh Cr as set
of limit points, Thus, the theory of non•-archimedean discrete groups is both
more restrictive than the complex analytic one (as it cannot be applied to
any curve), and more powerful, as it caxx lead to stronger resuks for such
so-called Mumford curves. This is already apparent in the result of Herrlich
for p-adic curves (oRe has te assume char(k) ) 7 ik the abeve table).

"

It turns out that, in positive characteristic, Mumford curves are ordinary
(basically, because the Jacobian is uniformzabie by (k')g/r"ts). The questioxx

remains what should be in place of the question marks in the above table,
axxd cur maiR resglt answers this qRe$tiok:

Theorem ([CoKaCo]), Let X be a Mumford curve ofgenus g 2 2 over a
nen-archimedean valued field of characteristic p År g. Thefi

          IAut(X)l g max{12(g -- 1),F(g) :=: 2va(va+ 1)2}.

Let =s fust make a few remarks abogt thi$ theorem. We gse the xxct&tioft
Zn, Dn for the cyclic and dihedral group of order n and 2n, respectively.

. If r i$ the Schottky group ef X, then Aut(X) = N/r, where N is the
normalizer of r in .PGL(2, k).
e We need the `Cmax" in the theorem. Although 12(g -- 1) År F(g) only for
g G {5, 6, 7, 8}, there does exists, e.g., a 1-dimemsicRal family of icosahedra}
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Mgmford cRrve$ cf gemus 6 (so iAgt(X)i ww IAsl :i2(6 - 1)). These eccer,
e.g., for the normalizer N = As *zs Ds•
e The bound is sharp. It is attained by the so-called ArtinSchreier-Mumford

c"rves whese aMxe egaatigR is giveR by

Xt,c : (xPt - x) (yP" - y) .,, c

fer an integer t akd c E k' with icl Åq !.2 [lrhe reductiell of this curve is a

" chess board" with (pt -- 1)2 holes, so the curve is Mumford and its genus is

gt := lpt - 1)2. Its automorphism grollp is isomoTphic to At : : Z;t x Dpt-i.

The Rermalizer of its Schettky group is isomcrphic to

Allt : (ZS x Zpt-1)*z,,-, Dpt-1•

The Schottky group of Xt,, is generated by the commutators [e,7s7], for
all e ff ZS, where 7 is a fixed involution in Dput--i - Zptwwi. Note that
Xt,c -År At,eNXt,e = Pi is ramified abgve three points in p Årww 3 and above

two points ifp me 2, so here is out first diangie group!

"

Let us now say something about the proof, which actually yields more: it
provides a kind of classificatien of tho$e curves X for which IAut(X)l År
12(g - 1). There are three steps. The first one is to observe that, by Hur-
witz's techniques, the bound is O,K. unless if X --)F Aut(X)XX is a cover of
Pi ramified above S 3 points (just oRe branch peint caRnot occur, since we
assume the curve ls erdinary), In the second step, all such ccvers are clas-

sified into families according to the abstract structure of the corresponding

N. In the third step, the bounds are established in each of the$e cases using

a mixture ef combiRatoria} greup theory axxd algebraic geometry.
In the second step, the structure of N can be studied by its action on the
Bruhat-Tits tree r of PGL(2, k). Although this princip!e of proof was also
used by Herrlich ig the p-adic case, tke quiRtes$ekce cf eur techRiques is
rather different. In the padic case the expected bourmd is linear in the genus,

and this allows Herrlich to restrict to normalizers that are the amalgam of

  iT. Sekiguchi asked dttring the talk whether the Artin-Schreier-Muraferd curves are

the unique curves that attain the (numerical) bound of the theorem. It turns out that
this is correct - at least when g Åë {5,6, 7, 8} - as will be shown in forthcomming work of

CerRelissexx and Kato.
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two finite groups. In positive characteristic, the expected bound is not, linear

in the genus, so we have to consider more complicated normalizers. We
therefore iBvestigate directly the link between the ramification in T : X -År

S : : Aut(X)XX and the combinaterial geometry ef the analytic reduction
ef S.

Let Crlv (respectively [TfN) be the subtree of {r which is generated by the
limit points of r, seen as ends of r (respectively the limit points together

with the fixed points of torsion elements in N). The quotients TN =: NXorN

aRd TN = NN7"tN are homctopic tg the lntersection graph of tke amaiytic
reductioit of S as a rigid analytic space, but Tk has finitely many ends
attached to it, which are in bijection with the points above which 7r is
branched. The advantage of using TN instead of the usual TN lies in the
following key pToposition, which replaces the "restriction to an amalgam of
twe groups" IR the p-adic case: If T is a subtyee ef T& kavixg the same
ends as Tk, then T is a contraction of Tk, i.e., every geodesic connecting
a point from TN - T to T is a path on which the stabilizers of vertices are
ordered increasingly w.r.t, inclusion in the clirection ofT. in particular, the

amalgams associated to T and T& are the same (= N). The preof ef this
result is very combinatgrial axd depeRds oR the strgcture theorem for finite

subgroups of PGL(2, k), It is then enough to consider a simpler subtree T
of rN which is a "line" ifm =: 2 and a "star" ifm = 3. We then show that
only finitely many types ofsuch trees T (and hence, ofsuch groups N) exist,

aRd this gives the cl&ssificatioxx of pg$sible N. The aRalogue cf hyperbelic

volume in the case ofa tree such as TN is given by

              pa(TN) = [..]Et(T.) l"iVli wl de ,E;(T.) IIiillvl'

where E, V are #he set$ cf edges aRd vertices of TN, respectively, aRd Nx is
the stabilizer of x (be it an edge or vertex) for the actiek of N. The main

theorem is equivalent to '

                 pa(TN) 2 min{Eilti7 2v!rg/ IIk i i) }

,

At the end of this talk,I want to finish by showing a typical diangle group!

It correspcRds to the pdymaliier

               N = PGL(2,pt) *z$xz.,-., ZSd Å~ Zpt-i;
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which is one of the seven families of "diangle" N's. One can wonder what
orbifold this is the normalizer of. It turns out to be an arithmetical object.
Let q = p`, F = F,(T), and A = F,[T]; let F.. = F,((T-i)) be the
completion of F and C a completion of the algebraic closure of F... On
Drinfeld's "upper half plane" 9 := Pb - PÅr.. (which is a rigid analytic

space over C), the group GL(2,A) acts by fractional transformations. Let
Z 2 F; be its center. For n E A, the quotients of S} by congruence subgroups

T(n) = {7 E GL(2,A) : 7 = 1 mod n} are open analytic curves which can
be compactified to projective curves X(n) by adding finitely many cusps.
These are moduli schemes for rank two Drinfeld modules with principal level
structure. They turn out to be Mumford curves for the free group T which
splits the inclusion r(n),.. Åq r(n), where r(n),., is the subgroup generated

by torsion elements. It turns out that the normalizer ofr is N, and for
p t 2 or q # 3, the automorphism group of the Drinfeld modular curves
X(n) is the "modular" automorphism group G(n) := r(1)/r(n)Z. That
these are genuine diangle groups can be seen from the fact that the TN has
only two ends, which are stabilized by Zq+i and ZSd Å~ Zpt-i, respectively.

These correspond exactly to the ramification groups in X(n) - X(1) = Pi.

"

Based on the above material, one can conjecture that for any ordinary curve
of genus g ) 2 over a field k of positive characteristic, the following bound

should hold

IAut(X)l g max{84(g - 1),F(g) := 2vX9(Vl7 + 1)2}.

(notice the factor 84!). Can one prove such a result by a kind of deforma-

tion of an ordinary curve with many automorphisms to a totally degenerate
curve?2

  2At least, it is possible to compute the dimension of the first order equivariant defor-

mation space of Mumford curves and of ordinary curves, as will be shown in forthcomming
work of Cornelissen and Kato.
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