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ON CONJECTURES OF BEILINSON-BLOCH-KATO
AND FINITENESS OF ALGEBRAIC CYCLES

NORIYUKI OTSUBO

ABSTRACT. In this article, we introduce a result on conjectures of Beilin-
son and Bloch-Kato on zeros of L-functions of motives, and its application

to the finiteness of codimension-two torsion algebraic cycles.

1. CHOwW GROUP

Let us start with the definition and a conjectual picture of algebraic cycles.
For an algebraic variety X over a field k and an integer d > 0, the Chow group
of algebraic cycles of codimension d modulo rational equivalence is defined by

CHYX)=Coker | @ wz) ™ P z
reX(@~1) yeX(@

where X (9 is the set of points of codimension i (equivalently, the set of irre-
ducible closed subvariety of codimension ©) and div is the divisor map.

If d = 1, CH'(X) coincides with the Picard group, and its structure is
well-known; for a projective smooth X we have an exact sequence

0 — Pick (k) — Pic(X) — NS(X) — 0.

Here, Pic} is an abelian variety called the Picard variety, and NS(X) is the
Néron-Severi group which is known to be finitely generated. Therefore, if for
example k is a finite field or a number field, Pic(X) is a finitely generated
abelian group.

The structure of Chow groups in general is highly unknown. Over number
fields, however, we have the following conjectures. Let k be the algebraic
closure of k, X = X ® k, and let

o : CHY(X) — HZ{(X, Qy(d))
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be the étale cycle class map and CH(X Jhom be its kernel. For X over a
number field and an integer n > 0, the Hasse-Weil L-function L(H™(X), s)
is defined and expected to have meromorphic continuation to the whole com-
plex plane . We simply denote by H*(k, —) the Galois cohomology group
H*(Gal(k/k),-).

Conjecture 1.1 (Tate [T1], Bloch [BI2], Beilinson [Be|, Bloch-Kato [B-K]).
Let X be a projective smooth variety over a number field k.
(i) CH%(X) is a finitely generated abelian group.
(i)
rankCH*(X)/CH*X )hom
= dimg, H(k, H*4(X,Qp(d))) = —ord,— 44 L(H?*(X),s).

(iii)
rankCH d(X Jhom
= dimg, H} (k, Hy? (X, Qp(d))) = ord—g L(H*7'(X), 5).

Here H;(k,~) is the Selmer group of Bloch-Kato (see (3.1)). Note that (i)
for an elliptic curve (d = 1) (or an abelian variety of dimension d) is nothing
but the Birch-Swinrerton-Dyer conjecture.

2. TORSION CYCLES OF CODIMENSION TWO

Though we know very little about the above conjectures for d > 2, torsion
of Chow groups of codimension two has been studied after Bloch’s program
[BI1] (cf. [CT]). Let K, be the Zariski sheafification of algebraic K-theory
functor U — K,(I'(U,Ox)) (e.g. Ko = Z, K; = O%). For a prime number p
invertible in k, let CH?(X){p} denote the p-primary torsion subgroup. Then
we have an exact sequence

0 — Hjo(X,K2) ® Qp/Zy — NHZ(X,Qp/Zp(2)) — CH*(X){p} — 0
(2.)
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where N denotes the first step of the coniveau filtration on the étale cohomol-
ogy group:

NH3(X,Qp/Z,(2)) = Ker(H (X, Qp/Z5(2)) — Ha(k(X), Qp/Zo(2))).

The first K-cohomology group has an expression

Hjo(X, o) = H | Ka(K(X)) = €D s(2) — D 2
zEX(l) yeX (2)
Thus the problem of showing the finitcness of CH?(X){p} becomes the prob-
lem of constructing elements in the K-cohomology group. In this line of study
we have the following results (as far as the auther knows):

Theorem 2.1. Let X be a projective smooth variety over a number field k.
Then the p-primary torsion subgroup CH?(X){p} is finite in the following
cases:

(i) H%(X,Ox) = 0 ([CT-R] and [Sa}).

(i) X = ExXE where E is a semi-stable ellipptic curve over Q, and p {
6 - cond(E) (|L-S]).

(iii) X = ExE where E s an elliptic curve over Q with complex multiplica-
tion by the ring of integers of an imaginary quadratic field K, satisfying a
technical assumption which is satisfied if cond(E) is a power of a prime,
or X =(ExE)®qgK, and p{6 - cond(E) ([L1] [L-R] [O1]).

(iv) X = Km(E x E) the Kummer K3-surface associated to Ex E, for E and
p as in (ii) and (iii), or X = Km(Ex E)k for E as in (iit) ([L1] [O1]).

(v) X = Fermat quartic surface over Q or Q(v/~1) defined by the equation
zd + 1t =25 + 23 in P2 ([O1)).

The method of proof used in [L-S] [L1] {O1] will be reviewed in Section 4.

Remark 2.2. The structure of codimension-two Chow group is believed to be
very different whether HZ, (X, Ox) = 0 or not (Mumford’s theorem, Bloch’s
conjecture, see [Bl1]). For example, to show (i) of the above thoerem using
(2.1), we only need decomposable elements, i.e. the image of

Pic(Xl) ® (kl)* = H%ar(X,s ’Cl) Y H%a.r(XIJCl)

Normk//k

_L'J—’ H%ar(Xl’,C2) - H7ljar(X71C2)
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where X' := X ®y k' for a finite base extension k’/k. In other cases we also
need “indecomposable elements” .

Over p-adic fields (finite extensions of Q,), we have similar results. For
the varieties in the above theorem considered over p-adic fields, we know the
finiteness of prime-to-p torsion of CH?(X). In this situation, we have results
on the product of possibly different two elliptic curves [Sp| and a class of
Hilbert-Blumenthal surfaces [L2]. The study of the p-part of the Chow group of
varietics over p-adic fields is related to the surjectivity of a syntomic regulator.

Remark 2.3. The author noticed after the simposium that we can extend the
result (ii) and (iii) to any n-fold product of an clliptic curve E (and Ek)
as above. In a similar way, using the inductive structure of Fermat varieties
[Ka-Sh], we can show the similar result for the Fermat variety of degree 4 and

arbitrary dimension ¢ of the form
Tyt Th=zp Ty, (T21,d2>2)

over Q and Q(v/-1).

3. BEILINSON-BLOCH-KATO CONJECTURES

Now we introduce the result of [02] on conjectures Beilinson [Be] and Bloch-
Kato [B-K]. Let us recall a part of their conjectures which describe the order
of zeros of L-functions of motives in terms of motivic chohomology groups
(K-groups) and Selmer groups. For precise definitions and statements, see
the original articles or, for exapmle, [Sc] [N] [F-PR].

They state that a regulator (resp. p-adic regulator) map induces an is-
nomorphism from a motivic cohomology group defined by algebraic K-theory
to a Beilinson-Deligne cohomology group (resp. Selmer group) of Hodge (p-
adic Hodge) theoretic nature. We define HY,(X,Q(n))z, the “integral part”
of a motivic cohomology group by the image of

Kb m(®)Q — Kon-m(X)o = PKan-m(X)§)
13

2% Kon-m(X)§ =t Hi4(X,Q(n))
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where X is a (regular) proper flat model of X over O,. This is conjectured to
be a finite dimensional -vector space. For example, we have

H4(X,Q(d))z =HA(X,Q(d)) = CHY(X)q,
H}\A(Xv Q(2)) = H%a.r(Xa K:2)Q'
The Beilinson-Deligne cohomology group is defined by
HE(X/c,R(n)) = H™(X(C), [(27i)"R — Q")

and HZ'(X /g, R(n)) is the part fixed by compex conjugations both on X(C)
and the coefficient. Then the Beilinson conjecture claims that the regulator

map Teo induces an isomorphism
oo ®q R : Hif'(X,Q(n))z ® R — Hy (X /g, R(n))

for i — 2n < —3. If i — 2n = —2 it takes the form

(HY(X,Q(n))z ® (CH™'(X)/hom)g) ®g R = HZ (X g, R(n)).
An important property of Beilinson-Deligne cohomology is that if we assume
the fundamental property of the L-function of X, we have

dimg Hp' (X /g, R(n)) = ord,—iy1-nL(H'(X), )

(—ords=n L(H*(X), s) if i — 2n = —2).
The (Q,-vector-space analog of) Selmer group associated to the p-adic rep-

resentation V = H*(X,Qp(n)) is a subgroup of the first Galois cohomology
group H!(k,V) defined by certain local conditions:

H(k,,V)
H}(k,V):=Ker | H'(k,V) > P 1=+ (3.1)
FAS ) 1
v pl&ceokaf(k"’V)

where k, is the completion of k at v. Then Bloch-Kato conjectures that the
p-adic regulator map r, induces an isomorphism

rp ®Q Qp : Hi (X, Q(n))z ® Qp — H} (K, V)

if i —2n # —1. Note that it is not a priori clear that the image is contained
in H}(k,V). |
Combining both conjectures (and the Tate conjecture) we obtain

ord,—i11-n L(H*(X), s) = dimgHy (X, Q(n))z = dimg,H {(k, V)
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for i — 2n < -2,

Our result concernes mostives of even degree generated by cycles. For a
projevtive smooth variety X over a number field k and an integer d > 0, let
A be the image of cli‘f : CHYX) — H2Y(X,Qu(d)), and T, V, A be A® Z,,
ARQp, A®Qp/Z,, respectively. On these modules the absolute Galois group
Gal(k/k) acts continuously and in fact gives an Artin representation

p:Gal(K'/k) — GL(V)

for a finite extension k’ of k where all the generators of A are defined (note that
A is a free abelian group of finite type by definition). Let V(r) = V@ Q,(1)®"
be the Tate twist where Q,(1) = (lim pon (k) @z, Qp.

Theorem 3.1. [O1] Let r, and ro be the number of the real and complez places
of k, respectively, and T, be the complex conjugate with respect to a real place
v. For an integer v > 1, put

(ry +72)d — ¥ rankgA™=(-1" ifr>2,

N(T‘) — vireal ,
(ri+72)d — ¥ rankgA™="! - rankg AC¥K/®)  ifr =1

vreal

Then we have:

(i)
ords—1-,L(p,s) = dimg, H}(k, V(r)) = N(r).

(ii) There exist N(r) elements in H}I{"H(X, Q(m + r))z, independent of p,
whose image by 7, lie in and generate H}(k, V(r)).

Remark 3.2. The computation of ords—;_,L(p, s) is classical (cf. [T2]).

The proof of this theorem is reduced to the case of Spec(k), for which
Beilinson’s conjecture is a theorem of Borel [Bol| [Bo2] (for = 1 this is the
classical Dirichlet unit theorem), and Bloch-Kato’s conjecture is a theorem
of Soulé [Sol] [So2}]. Note that if HZ, (X,0x) = 0 then V is the whole

HE(X, Qp(1)).
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4. APPLICATION

In this section, we review briefly the method of Langer-Saito for the finite-
ness of CH?(X){p}, and the technique of [O1] which applies Theorem 3.1 to
cases when the Selmer group is not finite. See also Langer’s article [L3].

In Theorem 2.1, the Selmer group is finite for (ii) or (iii). For (v), it is
not finite and has Z,-corank 2 (resp. 4) over Q (resp. Q(v/—1)). For (iv),
although the papers [L1] [O1] treated cases when the Selmer group is finite,
in general it can be infinite if the 2-torsion points of E are defined only over
a number field with infinite unit group.

Let X/k be as before. Let N be an integer such that X[1/N] = X ®o,
Ok[1/N} is smooth over Ok[1/N], and assume p { 6/N. The first step is to
show:

(A) Ker(CH*(X[1/N]) — CH?*(X)) is torsion
By the localization exact sequence (X, := X®F, where F, is the residue field)

H},\ (X, Kg) — @D Pic(X,) — CH*(X[1/N]) — CH*(X) — 0,
oIN
this is again a problem of constructing elements in Hl (X, K2).

From (A) it follows that CH?(X){p} is Z,-module of cofinite type (i.e. of
the form Q,/Z,®"® (finite p-group)), since CH*(%X[1/N]) is such (cf. [CT-R]).
Let us denote the first and the second group in (2.1) by M and NV, respectively.
Then it suffices to show

(B) M = Ngiv.
Using the Hochschild-Serre spectral sequence we can embed these groups (af-
ter a slight modification of N) into H'(k, A) where A = HZ(X,Q,/Z,(2)).
Further we take localizations with local conditions:
1 H ' (kv7 A)
a:H'(k,A) - P ik, A)’

v: place of k
The following (B1) and (B2) imply (B):
(B1) The image of M = the image of Ny,
(B2) The Selmer group Hj(k, A) := Ker(a) is finite.

(B1) can be deduced from (A) using p-adic Hodge theory and some technical
argument for bad primes if we assume the Tate conjecture for divisors on the
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special fibers which is known for the cases of Theorem 2.1. We just remark
that there is an isomorphism [L-S]
H'(k,,V)
Hl(k,, V)
for v { 6N such that the boundary map in (2.1) and the localized p-adic
regulator map are compatible. Theorem 2.1 (ii)-(iv) were proved by showing
(A), (B1) and (B2) For (ii) and (iii), (A) is due to Mildenhall [M].

In general, (B2) is false as we mentioned in the previous section, in which

Pic(X,) ® Q, —

case we replace (B2) by the following axiom arising from the Bloch-Kato con-
Jjecture:

(B3) There is a subgroup Mg of M which surjects onto H}(k, Aldiv-

In the case (v) of Theorem 2.1, (B3) was shown by constructing very ex-
plicitly elements in Mz. In a general situation we can formulate as follows.
Define a sub-Gal(k/k)-representation V, C V by

Im (cll : Pie(X) ® Q, — HA (X, Qu(1))) (1),
and T, A. similarly. Then, Theorem 3.1 (ii) for d =1, r = 1 states
(B4) There is a subgroup Mgz of M which surjects onto H fl(k, Ac)div-
Therefore, for (B3) it suffices to show
(B5) The Selmer group H}(k, A/A,) is finite.

As we have seen, the essencial part of the proof is construction of elements
in H} (X,K3) (A) and the finiteness of a Selmer group (B5). The proof of
(B5) in the known cases required Iwasawa theoretic results involving “Euler
systems”. If H2 (X,0x) = 0, (A) is easy (Remark 2.2) and (B5) is trivial
since A = A. However, we cannot expect that (B5) is true in general.

Remark 4.1. We explain roughly how the results of Remark 2.3 are deduced
from the known results. Let X = Ex Ex---x E (n times). Then by Kiinneth
decomposition we have
V=HiX,Q(2)~ P HLE Q1) ®H(E Qin))
i1 o tin=2
Note that H)(E, Qp) ~ Q, and H2(E, Qx(2)) ~ Q,(1). This means that V is
a direct sum of the direct summands of HZ(EX E,Q,(2)) via the pull-backs
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by the projections pri; : X — ExE. Therefore we obrain H}(k,V) =0
(k = Q or K). For the part (A), we have a similar expression of NS(X,,)
by NS(F, x E,) and we can obtain enough elements in M by the pull-backs
pri;(Hzo (E X E, Ka)).

A Fermat varity of dimension n is constructed from n-fold product of the
Fermat curve of the same degree by blowing-up, taking quotient by a finite
group, and blowing-down [Ka-Sh|. This cnables us to use the similar method
as the product of an elliptic curve.
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